Phyllosilicates and Sulfates on Mars

Total Page:16

File Type:pdf, Size:1020Kb

Phyllosilicates and Sulfates on Mars Phyllosilicates and Sulfates on Mars Case Studies from Terra Cimmeria and Valles Marineris Inauguraldissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften am Fachbereich Geowissenschaften der Freien Universität Berlin Vorgelegt von Lorenz Wendt Berlin, 2012 I Ersttgutachter: Prof. Dr. Ralf Jaumann Fachbereich Geowissenschaften Institut für Geologische Wissenschaften Fachrichtung Planetologie und Fernerkundung und Deutsches Zentrum für Luft- und Raumfahrt DLR Institut für Planetenforschung, Abteilung Planetologie Zweitgutachter: Prof. Dr. Stephan van Gasselt Freie Universität Berlin Fachbereich Geowissenschaften Institut für Geologische Wissenschaften Fachrichtung Planetologie und Fernerkundung Datum der Disputation: 13. Juli 2012 III Eidesstattliche Erklärung Hiermit erkläre ich, die vorliegende Arbeit selbständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel erstellt zu haben. Lorenz Wendt V Danksagung Ich möchte zuallererst Herrn Prof. Neukum meinen Dank aussprechen. Seine High Resolution Stereo Camera (HRSC), die er mit viel Durchhaltevermögen nach dem Absturz der Mars 96 Mission auf Mars Express auf die Reise schickte, gab mir überhaupt erst die Möglichkeit, mich an der Freien Universität Berlin mit der Geologie des Mars zu beschäftigen. Herr Prof. Neukum hat mir damit die Tür zur Planetenforschung geöffnet, und mir auch in vielerlei anderer Hinsicht Möglichkeiten zur wissenschaftlichen Weiterentwicklung eröffnet. Herrn Prof. van Gasselt danke ich für die Begutachtung der vorliegenden Arbeit, die fachlichen Diskussionen und die kritische Durchsicht meiner Manuskripte, sowie die menschliche Unterstützung an manch einem schwierigen Punkt, der sich im Lauf der Arbeit an dieser Dissertation ergab. Und natürlich danke ich ihm für die viele Mühe im Hintergrund, die er sich mit der Betreuung der wissenschaftlichen Anträge gemacht hat, aus denen viele meiner Kollegen und auch ich ihren Lebensunterhalt bestritten haben. Ich danke Herrn Prof. Jaumann, Herrn Prof. Kaufmann, Herrn Prof. Heubeck und Frau Dr. Sowe für Ihre Rollen als Gutachter der vorliegenden Arbeit. Ich danke Dr. Jean-Philippe Combe, Dr. Janice Bishop, Dr. Patrick McGuire, Dr. Laetitia Le Deit und Dr. Damien Loizeau für ihre Lehrstunden zum Thema Infrarotspektroskopie. Sie haben mich an dieses komplexe Thema herangeführt und mich auf seine Feinheiten und Fallstricke aufmerksam gemacht. Ich freue mich über die gute Zusammenarbeit und hoffe auf deren Fortsetzung in Zukunft. Ich danke auch Hern Prof. Tom McCord und seinen Mitarbeitern für zwei interessante Forschungsaufenthalte im "Bear Fight Institute" in den Bergen von Washington. Ebenso bedanke ich mich bei Dr. Ted Roush und seiner Familie und Dr. Giuseppe Marzo für die Zusammenarbeit und freundliche Betreuung bei einem Forschungsaufenthalt am NASA Ames Research Center. Ich bedanke mich bei Prof. Foing, Prof. Ehrenfreund und ihren Mitarbeitern und Studenten für die vorweggenommene Reise zu unserem Nachbarplaneten. Dies war eine wirklich interessante und inspirierende Erfahrung. Mein Dank geht an meine Kollegen an der Freien Universität Berlin, insbesondere Herrn Dr. Kneissl, Herrn Gross und Frau Musiol sowie Herrn Walter, Herrn Platz, Herrn Dr. Michael und Frau Balthasar, mit denen ich viel Zeit verbracht habe, um unsere Forschungsergebnisse zu diskutieren, uns gegenseitig auf die Sprünge zu helfen oder uns anderweitig bei Laune zu halten. Und schließlich bedanke ich mich von Herzen bei Marie Espinasse, die mich auf so viele Weisen auf meinem Weg unterstützt hat. VII Abstract The Martian history has recently been divided into three eras, based on the predominating aqueous sediments formed in them, with a "phyllosian" during the Noachian period, during which relatively warm and wet climatic conditions led to the formation of phyllosilicates, a "theiikian era" in the Hesperian, dominated by sulfate-rich deposits formed during relatively shortlived climatic excursions from an otherwise cold and dry climate caused either by episodes of enhanced volcanic activity or variations of the orbital parameters of Mars, and a "siderikian era" in the Amazonian, in which anhydrous conditions allowed only the anhydrous formation of ferric oxide, giving Mars its red colour. In this thesis, these hypotheses are tested by investigating phyllosilicate-rich and sulfate-rich deposits in three selected regions of Mars using data from the imaging spectrometers Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) and the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Both instruments operate in the visible to short-wave infrared spectrum. The hyperspectral data are analyzed using dedicated software and interpreted together with topographic data and imagery from various sensors combined in a geographical information system. The study area located between Terra Cimmeria and Terra Sirenum features enigmatic knob fields, comprising Ariadnes Colles, Atlantis Chaos and Gorgonum Chaos. They have previously been mapped as Hesperian or Amazonian units and contain Mg-Fe bearing smectites and locally Al-rich phyllosilicates. This thesis shows that the mounds are erosional remnants of a once contiguous layer, the "Electris deposit", described in previous studies as a fine-grained, possibly glass-rich unit of proposed eolian origin, altered into phyllosilicates. Based on cross-cutting relationships, an upper Noachian age below the Hesperian "ridged plains" unit (Hr) is proposed. A younger, precipitation-fed valley network filled a lake in the Gorgonum basin and small bodies of water in which chlorides formed. The second and third study investigate sulfate-rich light-toned deposits (LTD) in the Vallis Marineris region (Juventae Chasma and Ophir Chasma), which are partly analyzed using the linear spectral unmixing scheme MELSUM. These deposits are spectrally dominated by kieserite or szomolnokite, which are locally overlain by polyhydrated sulfate deposits as well as jarosite, iron oxides and unidentified phases with absorptions at 2.21 μm or 2.23 μm. Various processes are proposed for the formation of the individual outcrops. The topographic distribution of the deposits in Ophir Mensa is inconsistent with a standing body of water and a formation from evaporating groundwater infiltrated into previously sulfate-free deposits is favored. In contrast, a formation in a lake, playa or under a glacier is consistent with the mineralogy of the central valley of Ophir Chasma and its flat, low-lying topography. The sulfate outcrops on the southern chasm VIII wall are found on local ridges, which cannot have been reached by groundwater. Here, a water supply from the atmosphere by rain, snow, fog or frost is more conceivable. The three studies in this thesis confirm the postulated correlation between the types of aqueous mineral formation and the stratigraphic periods observed elsewhere on Mars. The phyllosilicates in the Terra Cimmeria/Terra Sirenum region formed during the Noachian at the surface, indicating a climate that allowed the existence of liquid water. The Hesperian-aged, sulfate-rich deposits in Vallis Marineris are best explained by evaporating groundwater, consistent with their location in zones of groundwater upwelling, as shown by previous researchers. The role of magmatic heating vs. climate variations caused by changes of the orbital parameters remains elusive. Although the groundwater upwelling may have been driven or facilitated by heat induced into the subsurface by volcanic activity, the post-Noachian valley networks in the Terra Cimmeria/Terra Sirenum study area and the jarosite-rich deposits on the walls of Ophir Chasma indicate precipitation and run-off, which cannot be explained by volcanic heating of the subsurface alone but require a regional or global climatic excursion towards higher temperatures, possibly related to variations in the orbital parameters of Mars. IX Zusammenfassung Aktuelle Studien unterteilen die Klimageschichte des Mars anhand der dominierenden, im Zusammenhang mit Wasser gebildeten Sedimente in drei Epochen, das "Phyllosian" während des Noachiums, in der ein wärmeres und feuchteres Klima zur Bildung von Tonmineralen führte, das "Theiikian" im Hesperium, dominiert von sulfathaltigen Ablagerungen, die in kurzen klimatischen Abweichungen von einem überwiegend kalten und hyperariden Klima, ausgelöst entweder durch verstärkte vulkanische Aktivität oder Änderungen der Orbitalparameter des Mars, abgelagert wurden, und das "Siderikian", in dem durch die hyperariden Umweltbedingungen lediglich der eisenoxidreiche rote Staub entstand, der dem Mars seine Farbe gibt. In diese Doktorarbeit werden diese Hypothesen getestet, indem phyllosilikat- und sulfatreiche Ablagerungen in drei ausgewählten Gebieten anhand von Daten der abbildenden Spektrometer OMEGA und CRISM untersucht werden. Beide Instrumente arbeiten im Bereich des sichtbaren bis kurzwelligen Infrarotspektrum. Die Hyperspektraldaten werden mit verschiedenen Methoden ausgewertet und in Kombination mit Topographie und Bilddaten zahlreicher Kamerasysteme interpretiert. Im Untersuchungsgebiet zwischen Terra Cimmeria und Terra Sirenum befinden sich die Hügelfelder Ariadnes Colles, Atlantis Chaos und Gorgonum Chaos. Sie wurden in früheren Arbeiten als hesperische oder amazonische Ablagerungen kartiert und enthalten Mg- und Fe- reiche Smektite und untergeordnet Al-reiche Tonminerale. Diese Arbeit zeigt, dass die Hügel Erosionsreste einer ehemals zusammenhängenden Formation waren, dem "Electris deposit",
Recommended publications
  • Former Astronaut Visits Stennis
    Volume 7 Issue 8 www.nasa.gov/centers/stennis August 2012 Touchdown! Take it both ways – the Mars Science Laboratory rover, Curiosity, touched Sharp at a height of about 3.4 miles, taller than Mount Whitney in California. down on the surface of Mars early on the morning of Aug. 6 CDT, and the The Curiosity team hopes to drive the rover to the mountain to investigate NASA team scored a very big touchdown for space exploration. This image its lower layers, which scientists think hold clues to past environmental taken by Curiosity shows what lies ahead for the rover – its main science change. This image was captured by a rover camera shortly after it landed. target, Mount Sharp. The rover’s shadow can be seen in the foreground, It has been linearized to remove the distorted appearance that results from and the dark bands beyond are dunes. Rising up in the distance is Mount its fisheye lens. For additional coverage and photos, see pages 4-7. Page 2 LAGNIAPPE August 2012 “NASA is in a unique position to excite and inspire students about STEM education, and to help grow our technical workforce.” From the desk of Katie Wallace Director, Office of Education, Stennis Space Center he Mars Science Laboratory’s successful land- and over 8,000 students and parents. Our workshops ing on Mars early Aug. 6 was a huge engi- have a satisfaction rating of 99 percent. Tneering accomplishment! Years of research, planning, collaboration and dedication came down to In addition, we focus on student activities that enrich seven minutes.
    [Show full text]
  • Imaginative Geographies of Mars: the Science and Significance of the Red Planet, 1877 - 1910
    Copyright by Kristina Maria Doyle Lane 2006 The Dissertation Committee for Kristina Maria Doyle Lane Certifies that this is the approved version of the following dissertation: IMAGINATIVE GEOGRAPHIES OF MARS: THE SCIENCE AND SIGNIFICANCE OF THE RED PLANET, 1877 - 1910 Committee: Ian R. Manners, Supervisor Kelley A. Crews-Meyer Diana K. Davis Roger Hart Steven D. Hoelscher Imaginative Geographies of Mars: The Science and Significance of the Red Planet, 1877 - 1910 by Kristina Maria Doyle Lane, B.A.; M.S.C.R.P. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2006 Dedication This dissertation is dedicated to Magdalena Maria Kost, who probably never would have understood why it had to be written and certainly would not have wanted to read it, but who would have been very proud nonetheless. Acknowledgments This dissertation would have been impossible without the assistance of many extremely capable and accommodating professionals. For patiently guiding me in the early research phases and then responding to countless followup email messages, I would like to thank Antoinette Beiser and Marty Hecht of the Lowell Observatory Library and Archives at Flagstaff. For introducing me to the many treasures held deep underground in our nation’s capital, I would like to thank Pam VanEe and Ed Redmond of the Geography and Map Division of the Library of Congress in Washington, D.C. For welcoming me during two brief but productive visits to the most beautiful library I have seen, I thank Brenda Corbin and Gregory Shelton of the U.S.
    [Show full text]
  • SPACE RESEARCH in POLAND Report to COMMITTEE
    SPACE RESEARCH IN POLAND Report to COMMITTEE ON SPACE RESEARCH (COSPAR) 2020 Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Report to COMMITTEE ON SPACE RESEARCH (COSPAR) ISBN 978-83-89439-04-8 First edition © Copyright by Space Research Centre Polish Academy of Sciences and The Committee on Space and Satellite Research PAS Warsaw, 2020 Editor: Iwona Stanisławska, Aneta Popowska Report to COSPAR 2020 1 SATELLITE GEODESY Space Research in Poland 3 1. SATELLITE GEODESY Compiled by Mariusz Figurski, Grzegorz Nykiel, Paweł Wielgosz, and Anna Krypiak-Gregorczyk Introduction This part of the Polish National Report concerns research on Satellite Geodesy performed in Poland from 2018 to 2020. The activity of the Polish institutions in the field of satellite geodesy and navigation are focused on the several main fields: • global and regional GPS and SLR measurements in the frame of International GNSS Service (IGS), International Laser Ranging Service (ILRS), International Earth Rotation and Reference Systems Service (IERS), European Reference Frame Permanent Network (EPN), • Polish geodetic permanent network – ASG-EUPOS, • modeling of ionosphere and troposphere, • practical utilization of satellite methods in local geodetic applications, • geodynamic study, • metrological control of Global Navigation Satellite System (GNSS) equipment, • use of gravimetric satellite missions, • application of GNSS in overland, maritime and air navigation, • multi-GNSS application in geodetic studies. Report
    [Show full text]
  • Formation of Gullies on Mars: Link to Recent Climate History and Insolation Microenvironments Implicate Surface Water Flow Origin
    Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate surface water flow origin James W. Head*†, David R. Marchant‡, and Mikhail A. Kreslavsky*§ *Department of Geological Sciences, Brown University, Providence, RI 02912; ‡Department of Earth Sciences, Boston University, Boston, MA 02215; and §Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064 Edited by John Imbrie, Brown University, Providence, RI, and approved July 18, 2008 (received for review April 17, 2008) Features seen in portions of a typical midlatitude Martian impact provide a context and framework of information in which their crater show that gully formation follows a geologically recent origin might be better understood. Assessment of the stratigraphic period of midlatitude glaciation. Geological evidence indicates relationships in a crater interior typical of many gully occurrences that, in the relatively recent past, sufficient snow and ice accumu- provides evidence that gully formation is linked to glaciation and to lated on the pole-facing crater wall to cause glacial flow and filling geologically recent climate change that provided conditions for of the crater floor with debris-covered glaciers. As glaciation snow/ice accumulation and top-down melting. waned, debris-covered glaciers ceased flowing, accumulation The distribution of gullies shows a latitudinal dependence on zones lost ice, and newly exposed wall alcoves continued as the Mars, exclusively poleward of 30° in each hemisphere (2, 14) with location for limited snow/frost deposition, entrapment, and pres- a distinct concentration in the 30–50° latitude bands (e.g., 2, 7, ervation. Analysis of the insolation geometry of this pole-facing 8, 14, 18).
    [Show full text]
  • 4.1 Potential Facilities List FY 17-18
    FY 2017-2018 Annual Report Permittee Name: City of San José Appendix 4.1 FAC # SIC Code Facility Name St Num Dir St Name St Type St Sub Type St Sub Num 820 7513 Ryder Truck Rental A 2481 O'Toole Ave 825 3471 Du All Anodizing Company A 730 Chestnut St 831 2835 BD Biosciences A 2350 Qume Dr 840 4111 Santa Clara Valley Transportation Authority Chaboya Division A 2240 S 7th St 841 5093 Santa Clara Valley Transportation Authority - Cerone Division A 3990 Zanker Rd 849 5531 B & A Friction Materials, Inc. A 1164 Old Bayshore Hwy 853 3674 Universal Semiconductor A 1925 Zanker Rd 871 5511 Mercedes- Benz of Stevens Creek A 4500 Stevens Creek Blvd 877 7542 A.J. Auto Detailing, Inc. A 702 Coleman Ave 912 2038 Eggo Company A 475 Eggo Way 914 3672 Sanmina Corp Plant I A 2101 O'Toole Ave 924 2084 J. Lohr Winery A 1000 Lenzen Ave 926 3471 Applied Anodize, Inc. A 622 Charcot Ave Suite 933 3471 University Plating A 650 University Ave 945 3679 M-Pulse Microwave, Inc. A 576 Charcot Ave 959 3672 Sanmina Corp Plant II A 2068 Bering Dr 972 7549 San Jose Auto Steam Cleaning A 32 Stockton Ave 977 2819 Hill Bros. Chemical Co. A 410 Charcot Ave 991 3471 Quality Plating, Inc. A 1680 Almaden Expy Suite 1029 4231 Specialty Truck Parts Inc. A 1605 Industrial Ave 1044 2082 Gordon Biersch Brewing Company, Inc. A 357 E Taylor St 1065 2013 Mohawk Packing, Div. of John Morrell A 1660 Old Bayshore Hwy 1067 5093 GreenWaste Recovery, Inc.
    [Show full text]
  • Review of the MEPAG Report on Mars Special Regions
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/21816 SHARE Review of the MEPAG Report on Mars Special Regions DETAILS 80 pages | 8.5 x 11 | PAPERBACK ISBN 978-0-309-37904-5 | DOI 10.17226/21816 CONTRIBUTORS GET THIS BOOK Committee to Review the MEPAG Report on Mars Special Regions; Space Studies Board; Division on Engineering and Physical Sciences; National Academies of Sciences, Engineering, and Medicine; European Space Sciences Committee; FIND RELATED TITLES European Science Foundation Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions Committee to Review the MEPAG Report on Mars Special Regions Space Studies Board Division on Engineering and Physical Sciences European Space Sciences Committee European Science Foundation Strasbourg, France Copyright National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This study is based on work supported by the Contract NNH11CD57B between the National Academy of Sciences and the National Aeronautics and Space Administration and work supported by the Contract RFP/IPL-PTM/PA/fg/306.2014 between the European Science Foundation and the European Space Agency.
    [Show full text]
  • Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
    Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P.
    [Show full text]
  • Widespread Crater-Related Pitted Materials on Mars: Further Evidence for the Role of Target Volatiles During the Impact Process ⇑ Livio L
    Icarus 220 (2012) 348–368 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process ⇑ Livio L. Tornabene a, , Gordon R. Osinski a, Alfred S. McEwen b, Joseph M. Boyce c, Veronica J. Bray b, Christy M. Caudill b, John A. Grant d, Christopher W. Hamilton e, Sarah Mattson b, Peter J. Mouginis-Mark c a University of Western Ontario, Centre for Planetary Science and Exploration, Earth Sciences, London, ON, Canada N6A 5B7 b University of Arizona, Lunar and Planetary Lab, Tucson, AZ 85721-0092, USA c University of Hawai’i, Hawai’i Institute of Geophysics and Planetology, Ma¯noa, HI 96822, USA d Smithsonian Institution, Center for Earth and Planetary Studies, Washington, DC 20013-7012, USA e NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA article info abstract Article history: Recently acquired high-resolution images of martian impact craters provide further evidence for the Received 28 August 2011 interaction between subsurface volatiles and the impact cratering process. A densely pitted crater-related Revised 29 April 2012 unit has been identified in images of 204 craters from the Mars Reconnaissance Orbiter. This sample of Accepted 9 May 2012 craters are nearly equally distributed between the two hemispheres, spanning from 53°Sto62°N latitude. Available online 24 May 2012 They range in diameter from 1 to 150 km, and are found at elevations between À5.5 to +5.2 km relative to the martian datum. The pits are polygonal to quasi-circular depressions that often occur in dense clus- Keywords: ters and range in size from 10 m to as large as 3 km.
    [Show full text]
  • Optimal Reconfiguration Maneuvers for Spacecraft
    58th International Astronautical Congress, Hyderabad, 24-28 September 2007. Copyright 2007 by Lindsay Millard. Published by the IAF, with permission and Released to IAF or IAA to publish in all forms. IACIAC----07070707----C1.7.03C1.7.03 OOOPTPTPTIMALPT IMAL RRRECONFIGURATION MMMANEUVERS FFFORFOR SSSPACECRAFT IIIMAGING AAARRAYS IN MMMULTI ---B-BBBODY RRREGIMES Lindsay D. Millard Graduate Student School of Aeronautics and Astronautics Purdue University West Lafayette, Indiana [email protected] Kathleen C. Howell Hsu Lo Professor of Aeronautical and Astronautical Engineering School of Aeronautics and Astronautics Purdue University West Lafayette, Indiana [email protected] AAABSTRACT Upcoming National Aeronautics and Space Administration (NASA) mission concepts include satellite arrays to facilitate imaging and identification of distant planets. These mission scenarios are diverse, including designs such as the Terrestrial Planet Finder-Occulter (TPF-O), where a monolithic telescope is aided by a single occulter spacecraft, and the Micro-Arcsecond X-ray Imaging Mission (MAXIM), where as many as sixteen spacecraft move together to form a space interferometer. Each design, however, requires precise reconfiguration and star-tracking in potentially complex dynamic regimes. This paper explores control methods for satellite imaging array reconfiguration in multi-body systems. Specifically, optimal nonlinear control and geometric control methods are derived and compared to the more traditional linear quadratic regulators, as well as to input state feedback linearization. These control strategies are implemented and evaluated for the TPF-O mission concept. IIINTRODUCTION Over the next two decades, one focus of NASA‘s Upcoming National Aeronautics and Space Origins program is the development of sophisticated Administration (NASA) mission concepts include telescopes and technologies to begin a search for satellite formations to facilitate imaging and extraterrestrial life and to monitor the birth of identification of distant planets.
    [Show full text]
  • Looking for Volcanic Ash Deposits Within the Interior Layered Deposits of Valles Marineris, Mars – Physical and Chemical Characteristics of Ash Falls and Flows
    47th Lunar and Planetary Science Conference (2016) 2752.pdf LOOKING FOR VOLCANIC ASH DEPOSITS WITHIN THE INTERIOR LAYERED DEPOSITS OF VALLES MARINERIS, MARS – PHYSICAL AND CHEMICAL CHARACTERISTICS OF ASH FALLS AND FLOWS. M.A. Matiella Novak1, C. Viviano-Beck1, K. Seelos1 and D. Buczkowski1 , 1Johns Hopkins Univer- sity Applied Physics Laboratory, 11101 Johns Hopkins Road, Laurel, MD 20723. Introduction: Candor, Ophir, and Ganges Chas- ing the record of volcanic ash deposits on Mars could mata, located within Valles Marineris, Mars, contain also provide this same type of stratigraphic correlation Interior Layered Deposits (ILDs). Previous geologic on a regional or even global scale. The presence of mapping has shown that ILDs are regional formations volcanic ash falls within the chasmata ILDs of Valles and contain deposits that are widespread through Val- Marineris have been suggested by numerous studies, les Marineris. While the formation of these features e.g., [2],[3],[5],[6], as well the presence of consolidat- remains somewhat enigmatic, one leading hypothesis ed volcanic ash material (i.e. welded tuffs) [1]. With suggests that some layers within the ILDs may be com- its close proximity to the Tharsis Volcanic Plateau, the posed of explosive volcanic deposits, comparable to presence of diverse types of volcanic material within the Bishop Tuff ignimbrite of Long Valley Caldera, the ILDs is likely. Furthermore, if volcanoes in this CA [1]. region are the source of ash layers within the ILDs then This investigation aims to advance our understand- it’s reasonable to assume that the physical characteris- ing of how volcanic deposits may have come to exist tics of these deposits would change in both thickness within these chasmata and how subsequent surface and particle size with distance from the source, and in processes altered these deposits.
    [Show full text]
  • THE CURIOUS SHORELINES of GORGONUM CHAOS. A. D. Howard1 and J
    Sixth International Conference on Mars (2003) 3190.pdf THE CURIOUS SHORELINES OF GORGONUM CHAOS. A. D. Howard1 and J. M. Moore2, 1Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904 ([email protected]), 2NASA Ames Re- search Center, MS 245-3, Moffett Field, CA 94035 ([email protected]). Introduction: Level, bench-like platforms in the The center of the concave basin is partially occu- interior of the Gorgonum Chaos basin appear to be pied by the knobby “chaos”. These are generally flat- shorelines associated with an ancient lake. These topped mesas that appear at one time to have been a shorelines, however, seem to lack the typical features continuous deposit that has been dissected into isolated of shorelines associated with wave and current trans- mesas along linear trends. We have interpreted such port and erosion, such as crescentic embayments, spits, deposits in this and other basins in the region to be barrier islands, and wave-cut cliffs. Rather, the lake- lake-related deposits, possibly evaporates that have facing platform edges are commonly rounded and cu- been partially dissolved [5]. These deposits were em- mulate in planform, often evenly encircling presumed placed and eroded prior to the features discussed here. islands. We interpret these shorelines to have been Shoreline Features: The center of Gorgonum ba- formed by outward growth in a quiescent environment, sin is relatively free of chaos knobs (Fig. 1) and is a possibly in ice-covered bodies of water and possibly, in relatively level plain at an elevation of about -350 to - part, as chemical precipitates.
    [Show full text]
  • Iani Chaos As a Landing Site for the Mars Science Laboratory. T. D. Glotch1, 1Jet Propulsion Laboratory, Cali- Fornia Institute of Technology
    Iani Chaos as a landing site for the Mars Science Laboratory. T. D. Glotch1, 1Jet Propulsion Laboratory, Cali- fornia Institute of Technology. [email protected] Iani Chaos, the source region of Ares Valles, is centered at ~342°E, 2°S. The chaotic terrain is widely- believed to have formed via the removal of subsurface water or ice, resulting in flooding at the surface, and the formation of Ares Vallis. Within Iani Chaos, de- posited stratigraphically above the chaotic terrain, are smooth, low-slope, intermediate-to-light-toned depos- its that are rich in a hydrated mineral that is most likely gypsum [1] as well as hematite[2-3] (Figure 1). Crystalline hematite and sulfates have been de- tected from orbit in numerous locations, including Me- ridiani Planum [4], Aram Chaos [1,5-6], Valles Marin- eris[5], and Aureum and Iani Chaos[2-3]. The MER Opportunity rover landed at Meridiani Planum and has shown that hematite is present as spherules that erode from a light-toned sulfate-rich outcrop. The MER team’s hypothesis of an ancient dune/interdune playa environment at Meridiani Planum[7] has been chal- lenged by both volcanic[8] and impact[9] models. A Figure 1. Map of hematite abundance in Iani Chaos. Hema- rover sent to one of the other locations rich in hematite tite abundance varies from ~5-20%. Based on OMEGA and sulfates will help to resolve the current debate and data[1], the presence of sulfate roughly correlates with that increase understanding of the role of ground and sur- of hematite.
    [Show full text]