Review of the MEPAG Report on Mars Special Regions

Total Page:16

File Type:pdf, Size:1020Kb

Review of the MEPAG Report on Mars Special Regions THE NATIONAL ACADEMIES PRESS This PDF is available at http://nap.edu/21816 SHARE Review of the MEPAG Report on Mars Special Regions DETAILS 80 pages | 8.5 x 11 | PAPERBACK ISBN 978-0-309-37904-5 | DOI 10.17226/21816 CONTRIBUTORS GET THIS BOOK Committee to Review the MEPAG Report on Mars Special Regions; Space Studies Board; Division on Engineering and Physical Sciences; National Academies of Sciences, Engineering, and Medicine; European Space Sciences Committee; FIND RELATED TITLES European Science Foundation Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions Committee to Review the MEPAG Report on Mars Special Regions Space Studies Board Division on Engineering and Physical Sciences European Space Sciences Committee European Science Foundation Strasbourg, France Copyright National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This study is based on work supported by the Contract NNH11CD57B between the National Academy of Sciences and the National Aeronautics and Space Administration and work supported by the Contract RFP/IPL-PTM/PA/fg/306.2014 between the European Science Foundation and the European Space Agency. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of any agency that provided support for the project. Cover: An artist’s impression of NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander on the surface of Mars. InSight is scheduled to be launched in March 2016 and it carries instruments built by NASA, the German Space Agency (DLR), and French Space Agency (CNES). The U.S.-built spacecraft bus is seen after deploying DLR’s mole and heat flow probe (left) and CNES’ seismometer (right). The type of geological analysis performed to certify that InSight will no access a Special Region is a model that can be used by future Mars missions. Image Credit: NASA/JPL-Caltech. International Standard Book Number-13: 978-0-309-37904-5 International Standard Book Number-10: 0-309-37904-0 In the United States and outside of Europe, copies of this report are available free of charge from: Space Studies Board Keck Center of the National Academies of Sciences, Engineering, and Medicine 500 Fifth Street, NW Washington, DC 20001 (202) 334-3477/[email protected] www.nationalacademies.org/ssb/ssb.html Limited copies of this and other ESSC reports are available free of charge from: European Science Foundation Dr Emmanouil Detsis 1 quai Lezay-Marnésia B.P. 90015 67080 Strasbourg Cedex France Phone: +33 388 767154 [email protected] Additional copies of this report are available from the National Academies Press, 500 Fifth Street, NW, Keck 360, Washington, DC 20001; (800) 624-6242 or (202) 334-3313; http://www.nap.edu. Copyright 2015 is administered by the National Academy of Sciences on behalf of the co-publishers, the National Academies Press in the United States and the European Science Foundation in Europe. All rights reserved. Printed in the United States of America Copyright National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions The National Academy of Sciences was established in 1863 by an Act of Congress, signed by President Lincoln, as a private, nongovernmental institution to advise the nation on issues related to science and technology. Members are elected by their peers for outstanding contributions to research. Dr. Ralph J. Cicerone is president. The National Academy of Engineering was established in 1964 under the charter of the National Academy of Sciences to bring the practices of engineering to advising the nation. Members are elected by their peers for extraordinary contributions to engineering. Dr. C. D. Mote, Jr., is president. The National Academy of Medicine (formerly the Institute of Medicine) was estab lished in 1970 under the char- ter of the National Academy of Sciences to advise the nation on medical and health issues. Members are elected by their peers for distinguished contributions to medicine and health. Dr. Victor J. Dzau is president. The three Academies work together as the National Academies of Sciences, Engineering, and Medicine to provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions. The Academies also encourage education and research, recognize outstanding contributions to knowledge, and increase public understanding in matters of science, engineering, and medicine. Learn more about the National Academies of Sciences, Engineering, and Medicine at www.national-acade- mies.org. Copyright National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions Copyright National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions The European Space Sciences Committee (ESSC) is the European Science Foundation’s (ESF’s) strategic board on space research. It aims to promote space science related activities, to facilitate the definition and the organization of space research programs in Europe, and to encourage the coordination of space research in concert with the European Space Agency, the European Commission and European Union, European scientific associations, national space agencies, and scientific organiza- tions of other countries concerned with space-related research. Following the establishment in 1974 under the auspices of the UK Royal Society of the “Provisional Space Science Board for Europe,” the ESSC was established in 1975 as a Standing Committee of the newly created European Science Foundation. The ESSC had grown out of the need for a collaborative effort that would ensure European space scientists made their voices heard on the other side of the Atlantic, in an era when successive Apollo and space science missions had thrust the idea of space exploration into the collective conscious for the first time. The ESSC remains just as relevant today as it acts as an interface with the European Space Agency (ESA), the European Com- mission, national space agencies, and ESF Member Organisations on space-related aspects. The mission of the ESSC is to provide an independent European voice on European space research and policy. It is the ESF’s Strategic Board on space research. Based in Strasbourg, France, ESF was set up in 1974 as an independent, non-governmental, non-profit organisation to help its Member Organisations collaborate internationally on research programmes. ESF helps meet this objective by providing administrative, management and coordination services to independent scientific boards/committees and collaborative scientific projects, whilst harnessing in-depth knowledge of the European Commission and associated research communities. Now after 40 years of success in stimulating European research through its networking and coordination activities, ESF is undergoing a major change of focus. It is concentrating on activities designed to support and sustain the funding and conduct of scientific research across Europe. This is a natural evolution of its traditional role, since the aim remains to promote scientific developments through collaborative actions, but with the emphasis shifting to helping research funding organisations carry out their decision making processes. ESF’s aim is to serve and strengthen science by exploiting its assets to build and develop an organisation that is self-financing and independent, but at the same time non-profit and customer-service oriented. To this end it will be working alongside lead- ing science funding institutions as well as national funding bodies. ESF currently has 66 member organisations in 29 countries. Copyright National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions Copyright National Academy of Sciences. All rights reserved. Review of the MEPAG Report on Mars Special Regions COMMITTEE TO REVIEW THE MEPAG REPORT ON MARS SPECIAL REGIONS PETRA RETTBERG, German Aerospace Center, Chair ALEXANDRE ANESIO, University of Bristol VICTOR BAKER, University of Arizona JOHN A. BAROSS, University of Washington, Seattle SHERRY L. CADY, Pacific Northwest National Laboratory CHRISTINE M. FOREMAN, Montana State University ERNST HAUBER, German Aerospace Center GIAN GABRIELE ORI, Universita d’Annunzio DAVID PEARCE, Northumbria University NILTON RENNÓ, University of Michigan GARY RUVKUN, Harvard Medical School BIRGIT SATTLER, University of Innsbruck MARK P. SAUNDERS, NASA (retired) DIRK WAGNER, German Research Center for Geosciences Helmholtz Centre Potsdam FRANCES WESTALL, Centre National de la Recherche Scientifique Staff EMMANOUIL DETSIS, Science Officer, European Science Foundation DAVID H. SMITH, Senior Staff Officer, Space Studies Board NICOLAS
Recommended publications
  • MID-LATITUDE MARTIAN ICE AS a TARGET for HUMAN EXPLORATION, ASTROBIOLOGY, and IN-SITU RESOURCE UTILIZATION. D. Viola1 ([email protected]), A
    First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars (2015) 1011.pdf MID-LATITUDE MARTIAN ICE AS A TARGET FOR HUMAN EXPLORATION, ASTROBIOLOGY, AND IN-SITU RESOURCE UTILIZATION. D. Viola1 ([email protected]), A. S. McEwen1, and C. M. Dundas2. 1University of Arizona, Department of Planetary Sciences, 2USGS, Astrogeology Science Center. Introduction: Future human missions to Mars will region of late Noachian highlands terrain, and is com- need to rely on resources available near the Martian prised of a series of grabens and ridges surrounded by surface. Water is of primary importance, and is known later Hesperian/Amazonian lava flows from the Thar- to be abundant on Mars in multiple forms, including sis region [7]. The proposed landing site is within these hydrated minerals [1] and pore-filling and excess ice lava flows (HAv), and provides access to a region of deposits [2]. Of these sources, excess ice (or ice which late Hesperian lowlands in the western region of the exceeds the available regolith pore space) may be the EZ. There is evidence for Amazonian glacial and peri- most promising for in-situ resource utilization (ISRU). glacial activity [e.g., HiRISE images Since Martian excess ice is thought to contain a low PSP_008671_2210 and ESP_017374_2210], and the fraction of dust and other contaminants (~<10% by Gamma Ray Spectrometer water map suggests that volume, [3]) only a modest deposit of excess ice will there is abundant subsurface ice in the uppermost me- be sufficient to support a human presence. ter within this region [10]. Meandering channel-like Subsurface water ice may also be of astrobiological features have been identified in HiRISE images (e.g., interest as a potential current habitat or as a preserva- PSP_003529_2195 in close proximity to apparent ice tion medium for biosignatures.
    [Show full text]
  • Evidence for Volcanism in and Near the Chaotic Terrains East of Valles Marineris, Mars
    43rd Lunar and Planetary Science Conference (2012) 1057.pdf EVIDENCE FOR VOLCANISM IN AND NEAR THE CHAOTIC TERRAINS EAST OF VALLES MARINERIS, MARS. Tanya N. Harrison, Malin Space Science Systems ([email protected]; P.O. Box 910148, San Diego, CA 92191). Introduction: Martian chaotic terrain was first de- ple chaotic regions are visible in CTX images (Figs. scribed by [1] from Mariner 6 and 7 data as a “rough, 1,2). These fractures have widened since the formation irregular complex of short ridges, knobs, and irregular- of the flows. The flows overtop and/or bank up upon ly shaped troughs and depressions,” attributing this pre-existing topography such as crater ejecta blankets morphology to subsidence and suggesting volcanism (Fig. 2c). Flows are also observed originating from as a possible cause. McCauley et al. [2], who were the fractures within some craters in the vicinity of the cha- first to note the presence of large outflow channels that os regions. Potential lava flows are observed on a por- appeared to originate from the chaotic terrains in Mar- tion of the floor as Hydaspis Chaos, possibly associat- iner 9 data, proposed localized geothermal melting ed with fissures on the chaos floor. As in Hydraotes, followed by catastrophic release as the formation these flows bank up against blocks on the chaos floor, mechanism of chaotic terrain. Variants of this model implying that if the flows are volcanic in origin, the have subsequently been detailed by a number of au- volcanism occurred after the formation of Hydaspis thors [e.g. 3,4,5]. Meresse et al.
    [Show full text]
  • Formation of Gullies on Mars: Link to Recent Climate History and Insolation Microenvironments Implicate Surface Water Flow Origin
    Formation of gullies on Mars: Link to recent climate history and insolation microenvironments implicate surface water flow origin James W. Head*†, David R. Marchant‡, and Mikhail A. Kreslavsky*§ *Department of Geological Sciences, Brown University, Providence, RI 02912; ‡Department of Earth Sciences, Boston University, Boston, MA 02215; and §Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064 Edited by John Imbrie, Brown University, Providence, RI, and approved July 18, 2008 (received for review April 17, 2008) Features seen in portions of a typical midlatitude Martian impact provide a context and framework of information in which their crater show that gully formation follows a geologically recent origin might be better understood. Assessment of the stratigraphic period of midlatitude glaciation. Geological evidence indicates relationships in a crater interior typical of many gully occurrences that, in the relatively recent past, sufficient snow and ice accumu- provides evidence that gully formation is linked to glaciation and to lated on the pole-facing crater wall to cause glacial flow and filling geologically recent climate change that provided conditions for of the crater floor with debris-covered glaciers. As glaciation snow/ice accumulation and top-down melting. waned, debris-covered glaciers ceased flowing, accumulation The distribution of gullies shows a latitudinal dependence on zones lost ice, and newly exposed wall alcoves continued as the Mars, exclusively poleward of 30° in each hemisphere (2, 14) with location for limited snow/frost deposition, entrapment, and pres- a distinct concentration in the 30–50° latitude bands (e.g., 2, 7, ervation. Analysis of the insolation geometry of this pole-facing 8, 14, 18).
    [Show full text]
  • NASA Mars Exploration Strategy: “Follow the Water”
    Gullies on Mars -- Water or Not? Allan H. Treiman NASA Mars Exploration Strategy: “Follow the Water” Life W Climate A T Geology E Resources R Evidence of Water on Mars Distant Past Crater Degradation and Valley Networks ‘River’ Channels Flat Northern Lowlands Meteorites Carbonate in ALH84001 Clay in nakhlites MER Rover Sites Discoveries Hydrous minerals: jarosite! Fe2O3 from water (blueberries etc.) Silica & sulfate & phosphate deposits Recent Past (Any liquid?) Clouds & Polar Ice Ground Ice Valley Networks and Degraded Craters 1250 km River Channels - Giant Floods! 225 km 10 km craters River Channels - ‘Normal’ Flows 14 km 1 km River Channels from Rain? 700 km Science, July 2, 2004 19 km Ancient Martian Meteorite ALH84001 MER Opportunity - Heatshield and parachute. Jarosite - A Water-bearing Mineral Formed in Groundwater 3+ KFe3 (SO4)2(OH)6 2 Jarosite = K2SO4 + 3 Fe2O3 + 3 H2SO4 Hematite is in “Blueberries,” which still suggest water. Stone Mountain MER Spirit: Columbia Hills H2O Now: Clouds & Polar Caps Ground Ice – Mars Orbiter GRS Water abundances within a few meters depth of the Martian surface. Wm. Feldman. AAAS talk & Los Alamos Nat’l. Lab. Press Release, 15 Feb. 2003. (SPACE.com report, 16 Feb. 2003) So, Water on Mars !! So? Apparently, Mars has/had lots of water. Lots of evidence for ancient liquid water (> ~2 billion years ago), both surface and underground. Martian Gullies - Liquid Water or Not? Material flows down steep slopes, most commonly interpreted as water-bearing debris flows [Malin and Edgett (2000) Science 288, 2330]. Liquid water is difficult to produce and maintain near Mars’ surface, now.
    [Show full text]
  • Workshop on the Martiannorthern Plains: Sedimentological,Periglacial, and Paleoclimaticevolution
    NASA-CR-194831 19940015909 WORKSHOP ON THE MARTIANNORTHERN PLAINS: SEDIMENTOLOGICAL,PERIGLACIAL, AND PALEOCLIMATICEVOLUTION MSATT ..V",,2' :o_ MarsSurfaceandAtmosphereThroughTime Lunar and PlanetaryInstitute 3600 Bay AreaBoulevard Houston TX 77058-1113 ' _ LPI/TR--93-04Technical, Part 1 Report Number 93-04, Part 1 L • DISPLAY06/6/2 94N20382"£ ISSUE5 PAGE2088 CATEGORY91 RPT£:NASA-CR-194831NAS 1.26:194831LPI-TR-93-O4-PT-ICNT£:NASW-4574 93/00/00 29 PAGES UNCLASSIFIEDDOCUMENT UTTL:Workshopon the MartianNorthernPlains:Sedimentological,Periglacial, and PaleoclimaticEvolution TLSP:AbstractsOnly AUTH:A/KARGEL,JEFFREYS.; B/MOORE,JEFFREY; C/PARKER,TIMOTHY PAA: A/(GeologicalSurvey,Flagstaff,AZ.); B/(NationalAeronauticsand Space Administration.GoddardSpaceFlightCenter,Greenbelt,MD.); C/(Jet PropulsionLab.,CaliforniaInst.of Tech.,Pasadena.) PAT:A/ed.; B/ed.; C/ed. CORP:Lunarand PlanetaryInst.,Houston,TX. SAP: Avail:CASIHC A03/MFAOI CIO: UNITEDSTATES Workshopheld in Fairbanks,AK, 12-14Aug.1993;sponsored by MSATTStudyGroupandAlaskaUniv. MAJS:/*GLACIERS/_MARSSURFACE/*PLAINS/*PLANETARYGEOLOGY/*SEDIMENTS MINS:/ HYDROLOGICALCYCLE/ICE/MARS CRATERS/MORPHOLOGY/STRATIGRAPHY ANN: Papersthathavebeen acceptedforpresentationat the Workshopon the MartianNorthernPlains:Sedimentological,Periglacial,and Paleoclimatic Evolution,on 12-14Aug. 1993in Fairbanks,Alaskaare included.Topics coveredinclude:hydrologicalconsequencesof pondedwateron Mars; morpho!ogical and morphometric studies of impact cratersin the Northern Plainsof Mars; a wet-geology and cold-climateMarsmodel:punctuation
    [Show full text]
  • PUTTING LIFE on MARS: Using Computer Graphics to Render a Living Mars
    InSight: RIVIER ACADEMIC JOURNAL, VOLUME 9, NUMBER 1, SPRING 2013 PUTTING LIFE ON MARS: Using Computer Graphics to Render a Living Mars Kevin M. Gill ‘11G* Senior Software Engineer, Thunderhead.com, Manchester, NH Keywords: Computer Graphics, Mars, Life, Planetary Science, OpenGL Abstract This article describes the software, algorithms & decisions that went into the development of the Living Mars image project. This includes topics related to computer graphics, software development, astronomy, & planetary science. The purpose of the project was to create a visualization of the planet Mars as could look with a living biosphere. This makes no distinction as to whether this biosphere would represent an ancient or future, possibly terraformed planet. 1 Background Mars, named for the Roman god of war. Ancient civilizations have forever associated the planet with fear, war, and destruction. It is the color of blood, and “one of a handful of planets visible to the naked eye, and the only one of marked color, so the planet demanded attention (Pyle, 2012).” Ever since man has noticed it, there have been dreams and visions of life on Mars, from Giovanni Schiaparelli and Percival Lowell describing channels and canals to Robert A. Heinlein’s science fiction. Lowell, in particular famous for fantastic writings of Mars, asked “are physical forces alone at work there, or has evolution begotten something more complex, something not unakin to what we know on Earth as life?” (Lowell, 1895) Even more recent discoveries by NASA’s Curiosity rover have found proof that liquid water once flowed billions of years ago positing an environment that could have served host to life (Brown, 2013).
    [Show full text]
  • Aqueous Minerals from Arsia Chasmata of Arsia Mons, Tharsis Region: Implications for Aqueous Alteration Processes on Mars
    45th Lunar and Planetary Science Conference (2014) 1826.pdf AQUEOUS MINERALS FROM ARSIA CHASMATA OF ARSIA MONS, THARSIS REGION: IMPLICATIONS FOR AQUEOUS ALTERATION PROCESSES ON MARS. N. Jain*, S. Bhattacharya, P. Chauhan, Space Applications Centre (ISRO), Ahmedabad, Gujarat, India ([email protected]/ Fax: +91-079- 26915825). Introduction: The Arsia Chasmata is a complex help of high resolution data such as MGS-MOC (Mars collapsed region located at the northeastern flank of Global Surveyor-Mars Orbiter Camera), Viking orbiter Arsia Mons (figure 1 A and B) within Tharsis region [3], fresh appearing lava flows [4], graben and glaciers of planet Mars and is the most important region for the on flanks of Arsia Mons [5], young lava flows [6] study of minerals like phyllosilicate and pyroxene. The small shields at floor of caldera [7]. reflectance data of MRO-CRISM (figure 1 C D) has Present study mainly focuses on the mineralogy of confirmed above mentioned minerals in the study area. Arsia Chasmata which interestingly contains The presence of these minerals at the Arsia Chasmata absorption features of aqueous altered minerals such as on Mars provides the evidence of its past watery serpentine (phyllosilicate). This mineral is also located environment and their processes of formation. In the in Nili Fossae region which is long, narrow depression present study the absorption features of serpentine present on Mars [8]. But in the present study (phyllosilicate) are obtained at 2.32 µm, 1.94 µm and occurrence of this mineral at high altitude region raise 2.51 µm. Previous studies on Mars show that the curiosity to know about their formation processes.
    [Show full text]
  • Non-Active Dunes in the Acheron Fossae Region of Mars Between the Viking and Mars Global Surveyor Eras
    GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 7, PAGES 1069-1072, APRIL 1,2000 Non-active dunes in the Acheron Fossae region of Mars between the Viking and Mars Global Surveyor eras James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, D. C. Abstract. Comparison of a high resolution Viking image area during the Science Phasing Orbit portion of the MGS (422810; 8 mlpixel) with a Mars Orbiter Camera image (SP2- mission [Albee el al., 19981, the images from which were 502106; 5.6 mlpixel) ur duneb in the Acheron Fossae region of recently released. The MOC image covers an area coincident Mars (3S0N, 135"W) rcvcals that the dunes moved <I pixel with one of the highest resolution images obtained during the during a span of almost 21 Earth years. Very shallow Vlking missions. This situation represents a unique opportunity illumination in the MOC image indicates the dunes are <1.5 In to assess the mobility of Martian dunes (at one location) over the high. The images indicate that any movement of these Martian nearly 21 Earth years that separate the Viking and MGS dunes is ~0.4mlyr, a rate that is less than the documented missions. movement of comparable dunes on Eatth by a factor of up to 200. The Aihcnjn Fosae tlunes acc.lr uithin ;I rig;on i,f 1~0,s tIier~,~rl Procedure inertia. inJir:~tin@that the d~~nt.~ma! hr \tnhili7cd h) n pznnsne dust cover. Alternatively. the saltation threshold was not The Viking image (frame 422810, 8 mlpixel) was processed exceeded significantly at this location in more than 20 years.
    [Show full text]
  • Companion Q&A Fact Sheet: What Mars Reveals About Life in Our
    What Mars Reveals about Life in Our Universe Companion Q&A Fact Sheet Educators from the Smithsonian’s Air and Space and Natural History Museums assembled this collection of commonly asked questions about Mars to complement the Smithsonian Science How webinar broadcast on March 3, 2021, “What Mars Reveals about Life in our Universe.” Continue to explore Mars and your own curiosities with these facts and additional resources: • NASA: Mars Overview • NASA: Mars Robotic Missions • National Air and Space Museum on the Smithsonian Learning Lab: “Wondering About Astronomy Together” Guide • National Museum of Natural History: A collection of resources for teaching about Antarctic Meteorites and Mars 1 • Smithsonian Science How: “What Mars Reveals about Life in our Universe” with experts Cari Corrigan, L. Miché Aaron, and Mariah Baker (aired March 3, 2021) Mars Overview How long is Mars’ day? Mars takes 24 hours and 38 minutes to spin around once, so its day is very similar to Earth’s. How long is Mars’ year? Mars takes 687 days, almost two Earth years, to complete one orbit around the Sun. How far is Mars from Earth? The distance between Earth and Mars changes as both planets move around the Sun in their orbits. At its closest, Mars is just 34 million miles from the Earth; that’s about one third of Earth’s distance from the Sun. On the day of this program, March 3, 2021, Mars was about 135 million miles away, or four times its closest distance. How far is Mars from the Sun? Mars orbits an average of 141 million miles from the Sun, which is about one-and-a-half times as far as the Earth is from the Sun.
    [Show full text]
  • THE 1:1,000,000 GEOLOGIC MAP of ARSIA MONS, MARS. W. B. Garry1, D. A. Williams2, A. M. Dapremont3 and D. E. Shean4 1NASA Goddard
    Planetary Geologic Mappers Meeting 2018 (LPI Contrib. No. 2066) 7028.pdf THE 1:1,000,000 GEOLOGIC MAP OF ARSIA MONS, MARS. W. B. Garry1, D. A. Williams2, A. M. Dapremont3 and D. E. Shean4 1NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, MD 20771, [email protected], 2School of Earth and Space Exploration, Arizona State University, Tempe, AZ, 85287, 3Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30331, 4College of Engineering, University of Washington, Seattle, WA, 98195. Introduction: Arsia Mons, centered at 8.26°S and (MGS) Mars Orbiter Laser Altimeter (MOLA) topogra- 239.1°E, is the southernmost edifice of the three Tharsis phy [15] that reveal morphologic details and spatial re- Montes volcanoes on Mars. Each volcano has a similar, lationships appropriate for our mapping purposes. overall shape and structure [1, 2], but there are distinct Mapping Methods: Mapping was completed in spatial distributions of morphologic features that hint ESRI’s ArcMap™ 10.2. Line work was drawn at map each volcano has a slightly different evolution history scales of ~1:100,000 to ~1:50,000 with vertex spacing [3]. To determine the differences between these three of 500 m and registered to the THEMIS daytime infra- Martian shield volcanoes, we present a series of individ- red base map. The final ArcMap project includes loca- ual geologic maps of Arsia (this map), Pavonis [4], and tion features (points), linear features (lines), geologic Ascraeus Mons [5] based on high-resolution data sets to contacts (lines), and geologic map (polygons). show their similarities and differences.
    [Show full text]
  • Prospects for Life on Mars Without Doubt, Mars Is the Planet That Has Inspired the Most Speculation About Life Outside Earth. It
    Prospects for Life on Mars Without doubt, Mars is the planet that has inspired the most speculation about life outside Earth. It has also starred in more science fiction stories than all other non-Earth planets put together. In this lecture we will have some fun exploring the history of these notions, as well as the entirely serious pursuit of life on Mars that is an ongoing focus of NASA. Lowell and the canals Fascination with Mars has probably occurred since the dawn of humans. Its bright red aspect draws attention, and it is probably no accident that multiple civilizations identified it with the god of war. We take our tradition in this respect from the Romans. Mars, the fourth planet from the Sun, is the second smallest of the terrestrial planets. It has about 1/10 of the mass of the Earth and 1/3 of Earth’s surface gravity, with the consequence that it has difficulty holding onto gases and thus has an atmosphere with only about 1% of the density of Earth’s. The atmosphere itself is mostly carbon dioxide; the oxygen that was in the atmosphere has combined with the iron in the crust to make rust, which is why the planet is red. Mars has no detectable magnetic field, which suggests to some people that it is solid throughout: for comparison, the Earth’s molten interior combined with its rotation (which is similar to that of Mars) generates our magnetic field. Nonetheless, Mars has some spectacular surface features including the largest volcano in the Solar System, Olympus Mons, which rises an amazing 25 km above the surface and is 600 km wide at its base.
    [Show full text]
  • EARLY Hirise OBSERVATIONS of SLOPE STREAKS and AVALANCHE SCARS
    Lunar and Planetary Science XXXVIII (2007) 1783.pdf EARLY HiRISE OBSERVATIONS OF SLOPE STREAKS AND AVALANCHE SCARS. F.C. Chuang1, A.S. McEwen2, V.C. Gulick3, and The HiRISE Team. 1Planetary Science Institute, 1700 E. Fort Lowell Rd., Suite 106, Tucson, AZ 85719 (e-mail: [email protected]); 2Lunar and Planetary Lab, University of Arizona, Tucson, AZ 85721; 3NASA Ames Research Center and SETI Institute, Moffett Field, CA 94035. Introduction: Approximately 15 images from the High Resolution Imaging Science Experiment (HiRISE) instrument [1] early in the Primary Science Phase were targeted at mass wasting features. These images have spatial resolutions of 25-50 cm/pxl, al- lowing for more detailed analyses of features than could be seen at Mars Orbiter Camera (MOC) scales. Multi-spectral false-color images of the red, blue- green, and infra-red channels of some targets were also produced for analyses. Here we present early observa- tions of Martian slope streaks and avalanche scars, including detection of any changes or newly formed streaks since they were last imaged by MOC. Background: Slope streaks are features prevalent throughout the mid-latitudes (30ºS to 40ºN) of Mars, often concentrated in volcanic regions and/or low ther- mal inertia [2-7]. Streaks are typically dark and are observed along the slopes of impact craters, buttes, knobs, escarpments, ridges, and troughs. Although rare, light slope streaks have been observed on dark surfaces [8]. Streaks generally start at a point source and then widen along its path downslope, often travel- ing over, and sometimes around various obstacles. Slope streaks are believed to not have relief, to not disturb the pre-existing surface, and only leave a dark trail along its path where the underlying topography can still be seen.
    [Show full text]