<<

72

Fruits (5), 317–326 | ISSN 0248-1294 print, 1625-967X online | https://doi.org/10.17660/th2017/72.5.7 | © ISHS 2017 Review

Platonia insignis), murici (AByrsonima review of the nutritional andSpondias biological mombin activities) of three Amazonian : bacuri ( 1,a 1 1, R.S. Cadena2 1 1 spp.), and taperebá ( A. Aniceto , A. Porte , J. Montenegro and A.J. Teodoro 2 Nutritional Biochemistry Core, Food and Nutrition Program, UNIRIO, Avenid Pasteur 296-Urca, 22290-240 Rio de Janeiro, RJ, Basic Nutrition Department of Federal University of the State of Rio de Janeiro Summary Significance of this study Introduction – The Amazonian region contains What is already known on this subject? several native fruit species of potential interest, in- • cluding bacuri ( insignis), murici ( nutritional with important bioactive com crassifolia and B. verbascifolia), and taperebá (Spon- Bacuri, murici, and taperebá are naturally occurring dias mombin). Methodology – This is an updated re- - view of the reported nutritional composition and pounds. They are a part of the Brazilian population’s biological activities of bacuri, murici, and taperebá Whatfruit are intake, the new especially findings? in their production regions. fruits and their co-products. Results and discussion – • Amazonian fruits and their co-products are a poten- functional foods and for therapeutic purposes, particu tial source of various bioactive compounds, such as This review highlights the potential of these species as phenolic compounds and carotenoids. They are also - a good source of nutrients such as calcium, magne- Whatlarly is for the the expected domestic impact market. on horticulture? sium, C, , and . These • compounds possess properties and activities that could be used to delay or prevent many sinceIdentifying it provides the bio-functional valuable information qualities for of thesethe domestic fruits diseases. Conclusion – This review highlights the po- market.is important to the Brazilian fruit production economy, tential of these species as functional foods and for therapeutic purposes, particularly for the domestic market. de nutriments tels que calcium, magnésium, vita- Keywords mine C, vitamine A et fibres alimentaires. Ces compo- sés phyto-chimiques possèdent des propriétés et des activités qui pourraient être utilisées pour retarder speciesBrazil, Amazon, food composition, biological properties, ou prévenir de nombreuses maladies. Conclusion – Cet phytochemical compound, phenolics, underutilized examen souligne le potentiel de ces espèces comme Résumé aliments fonctionnels et à des fins thérapeutiques, en particulier pour le marché domestique.

Mots-clés amazoniennes:Revue des propriétés bacuri nutritionnelles (Platonia insignis et ), muricibiologiques (Byrsonima des fruits de trois espècesSpondias ). Brésil, Amazonie, composition alimentaire, propriétés mombin biologiques, composé phyto-chimique, composé Introduction – La régionspp.) etamazonienne taperebá ( recèle plu- phénolique, espèce sous-utilisée sieurs espèces de fruits indigènes d’intérêt poten- tiel, en particulier bacuri (Platonia insignis), murici Introduction (Byrsonima crassifolia et B. verbascifolia) et taperebá (Spondias mombin). Méthodologie – Il s’agit d’une mise Brazil is the third-largest producer of edible fruits, sur- à jour des connaissances rapportées sur la composi- concentrated in the south, southeast, and northeast of the passed only by China and India. Fruit production is mainly tion nutritionnelle les activités biologiques des fruits et al., 2010; Vieira et al., 2011). Fruit pro de bacuri, murici, taperebá et leurs coproduits. Résul- country (Canuto - tats et discussion – Les fruits amazoniens et leurs co- duction in the Amazon represents only 0.2% of the total produits sont une source potentielle de divers compo- sumed either fresh or processed (Canuto et al production, and produces mainly exotic fruits that are con- sés bioactifs tels que composés phénoliques et caroté- ., 2010). The noïdes. Ils représentent également une bonne source Amazon region has a rich biodiversity of fruit etspecies, al., 2012). with approximately 220 species of edible fruit, representing 44% a Corresponding author: [email protected]. of the native fruit biodiversity in Brazil (Neves Tropical areas typically possess diverse fruit species with many uses, including fresh consumption, animal feed-

Volume 72 | Issue 5 | September/October 2017 317 et al

Aniceto . | Fruit nutritional and biological activities of three Amazonian species et al.,

ing, agribusiness, and crop diversification (Bataglion valuable pulp among the native AmazonianByrsonima fruit , which(Bou- of2015). growing The recognition Amazonian of region their containsnutritional a largeand therapeutic number of langer and Crouzet, 1999; Ferreira and Melo, 2007). valuenative (Malta and exotic et al. fruit species ofet potential al., 2010). interest because The murici belongs to the genusByrsonima crassifolia andhas beenB. verbascifolia most extensively belong studiedto B. subgen. within Byrsonima the (cited as local Brazilian and, 2013; international Rufino market, which represents B.family, subgen. and containsBrachyzeugma about 130Nied.) species. (Barbosa et al., 2014; Ha The consumption of tropical fruit is increasing in the macek et al., 2014; ). It - istics,an opportunity and nutrients for localwith thegrowers potential to gain to prevent access diseasesto markets or Guilhon-Simplicio and Pereira, 2011 where consumers placeet emphasis al on exotic food character- (is found predominantly in the northern, northeastern, and 2003;central Sales regions et al of Brazil, including the Amazonian region support health (Rufino ., 2010). The diversity of specieset al., 10.0Guilhon-Simplicio m in height, and and the Pereira, wood is 2011; used inAlves the construction and Franco, 2010).in Amazonia is influenced by the surrounding flora, by mi- ., 2013). The tree can reach between 0.8 and gration,Considering and by thethe evolutionspeed of introductionof new species of new(Shanley species of et al., 2011 roundof housing in shape, and fine between masonry 1.7 (andGuilhon-Simplicio 2.0 cm in diameter, and Perei with- characterization of their functional properties poses a chal ra, 2011; Alberto ). The murici fruit is small and lengefruits (Neves and other et al , identification of these species and provide an overview of nutritional and biological activities of- an average weight of between 4.45 and 5.45 g. The fruit is ., 2012). Therefore,Platonia this review insignis sought), murici to predominantly yellow, andet theal., pulp2012; is Hamacek fleshy, soft, et andal., 2014; juicy. (Byrsonima Spondias mombin). A strong and unusual cheese flavoret alcontributes., 2013; to its uniqueet al., three Amazonian species: bacuri ( 2011;and exotic Morzelle flavor et (Nevesal., 2015 ) Methodologyspp.), and taperebá ( Alves and Franco, 2003; Sales AnacardiaceaeAlberto which contains about 60 to 75 genera and 600 species, of whichThe the taperebá Spondias tree belongs comprises to the about 14 speciesfamily, glob Between April and July 2016, a literature search was con- ducted through the search engines Scopus, Science Direct, - fruits:and Google bacuri Scholar (Platonia to gather insignis publicly), murici available (Byrsonima information spp.), ally. Trees belonging to this family are commonly found in on the nutrientSpondias composition mombin of). threeSearch selected terms included Amazonian the (America, Asia,et al .,and 2011; Africa, typicallyet al in tropical areas. In Brazil,Silva etit isal .,found 2014 mainly). Spondias in the mombin northern and northeastern regions cies,and taperebáin conjunction ( with terms such as nutrient composition, Tiburski Ugadu ., 2014; Duvall, 2006; scientific name and English common name of each fruit spe- height, and the seeds are spread is knownthrough as animal taperebá dispersal. or cajá in Brazil. The fructiferous tree can reach from 15 to 30 m in chemical composition, minerals, , , seeds, and leaves. Reference lists of scientific articles were fruits,The market the bark sales and of leavesthis fruit of thisare increasingtree are often owing used to inits tra ac- azoniancross-checked sites, and and included only relevant articles papers and books were publishedincluded. The be cessibility and availabilityet throughout al the year. BesidesSilva the et data search was limited to reports of fruits sourced from Am- al., 2014 - as the average of data from different authors who used sim- drupes,ditional andmedicine are 2 to(Ugadu 5 cm in length., 2014; and Duvall,1.75 to 2006;3.55 cm in di tween 1999 and 2016. The values in tables were calculated ). The fruits are round, elliptical, or ovoid-shaped were also included. - - ilar analytical methods. Data from food composition tables inameter. fruit Thepulp average (Neves weightet al., 2012;of the fruitSilva isand 15.3 Carvalho, g, and the 2011; ma- Botanical description jority of itset almass., 2011; is made up of seeds,Silva producing et al., 2014; a low Maldo yield et al., 2014; Mattietto et al., 2010; Bora et al., Tiburski Duvall, 2006; - Bacuri, murici, and taperebá (Figure 1) are species of nado-Astudillo fruit trees found primarily in the northern andClusiasea northeastern fami 1991). The fruit is rich in carotenoids and vitamin A, and the regions Clusioideae of Brazil. Their botanical, characteristics as Platonia are insignisdiverse ingcolor (Neves of the et peel al., and2012; pulp is predominantlyet al., 2011; yellow. Silva et It al has., 2014; a fi- (Table 1).et The al., 2008;bacuri Souza tree is et a alfruit tree in the - brous and smooth textureet al .,and 2014; tastes Bora sour-sweet et al and refresh- ly, subfamily and is classified Tiburski (Aguiar ., 2013). The tree is predom- NutritionalMaldonado-Astudillo composition ., 1991). gionsinantly of found Brazil. in It theis a mediumopen vegetation to large tree,in areas reaching of transition, a height ofand 30 is to commonly 35 m and found a diameter in the northernof 1.5 to 2.0and m northeastern in more devel re- oped specimens (Homma and de Carvalho, 2010; Silva and Amazonian fruits are widely recognized as a good source de Carvalho, 2011 - fruits.of nutrients, and Table 2 shows the predominant chemical et al and nutritional components of bacuri, murici, and taperebá ). The tree can produce up to 2,000 fruits et al., per year (Shanley ., 2010; Boulanger and Crouzet, 1999). 2014;Bacuri Rogez are et characterized al., 2004 by a high soluble content, The bacuriet treeal., 2010;can be Nascimento used as a source et al., 2007).of wood Bacuri and , fruit concentrationprimarily containing of amino glucose acids and ( fructose (Yamaguchi). It contains in addition to the extraction of oil and bran as a by-product sodium, potassium, phosphorus,). This fruit magnesium, contains airon, notably calcium, high (Shanley et al Nazaré, 2000 bosehas a withthick a rind diameter and traditionally of 7 to 15 cm two and seeds, an average and is about weight 10% of an fruits, such as araça boi (Eugenia stipitata) and cupuaçu pulp by weight (Shanley ., 2010). The fruit is ovoid to glo- (copper, and grandiflorum zinc in higher) ( Homma amounts and than de otherCarvalho, Amazoni 2010;- et al., 2014; Rogez et al., 2004). Sousa et al. (2011) 200 to 1,000 g. Externally, bacuri fruit has a pale yellow to found that Brazilian fruits, including bacuri, cupuaçu (Theo- brownish yellow color. The edible part inside is soft, fibrous, bromaYamaguchi grandiflorum ), and guava, have high contents of lipids. and mucilaginous, and the juice pulp has a strongly attrac- tive and exotic flavor. Bacuri fruit has the most economically

318 International Journal of Tropical and Subtropical Horticulture et al

Aniceto . | Fruit nutritional and biological activities of three Amazonian species

FigureF IGURE 1. 1. SpondiasSpondias mombin mombin); (B, E): bacuri (Platonia insignis Platonia); and insignis (C, F): murici (Byrsonima crassifoliaByrsonima and crassifoliaB. verbascifolia B. verbascifolia TreesTrees and and fruits fruits (internal (internal and and external external views) views) of (A, of D): (A, taperebáD): taper (ebá ( ); (B, E): bacuri ( ); and (C, F): murici ( and ). Adapted from ).Rabelo Adapted (2012). from Rabelo (2012).

Table 1 . Phenotypic description of Bacurithree Amazonian fruits. Murici Taperebá structure traits Platonia insignis Byrsonima spp. Spondias mombin Tree height (m) 30.0-35.0 0.8-10.0 15.0-30.0 Fruit diameter (cm) 7.00-15.00 1.70-2.00 1.75-3.55 Weight (g) 200-1,000 4.45-5.45 ≈ 15.30 Fruit color White yellow Yellow Yellow Shape Ovoid to globose Small round Round, elliptical or ovoid

References Homma and de Carvalho, 2010; Neves et al., 2012; Hamacek et al., Neves et al., 2012; Silva and Carvalho, Silva and Carvalho, 2011; 2014; Guilhon-Simplicio and Pereira, 2011; Tiburski et al., 2011; Ugadu et al., Boulanger and Crouzet, 1999; 2011; Alves and Franco, 2003; Sales 2014; Duvall, 2006; Silva et al., 2014; Ferreira and Melo, 2007 et al., 2013; Alberto et al., 2011; Maldonado-Astudillo et al., 2014; Mattietto Morzelle et al., 2015 et al., 2010; Bora et al., 1991

12 Volume 72 | Issue 5 | September/October 2017 319 et al

Aniceto . | Fruit nutritional and biological activities of three Amazonian species Table 2. Bacuri Murici Taperebá Analyzed Chemicalelements and nutritional composition of three Amazonian fruits. Platonia insignis Byrsonima spp. Spondias mombin Moisture (g 100 g-1) 84.99 ± 0.75 76.18 ± 4.14 86.87 ± 1.34 Protein (g 100 g-1) 1.53 ± 1.07 1.33 ± 0.57 0.71 ± 0.40 Ash (g 100 g-1) 0.62 ± 0.19 0.81 ± 0.22 0.58 ± 0.17 (g 100 g-1) 14.09 ± 4.30 12.98 ± 7.26 13.90 ± 0.00 Lipids (g 100 g-1) 2.03 ± 1.31 4.27 ± 2.75 0.44 ± 0.25 Fiber (g 100 g-1) 7.18 ± 1.87 9.43 ± 4.31 1.38 ± 0.42 Sodium (mg 100 g-1) 26.37 ± 0.00 45.43 ± 0.00 4.28 ± 1.80 Potassium (mg 100 g-1) 149.81 ± 0.00 346.73 ± 0.00 214.14 ± 104.85 Calcium (mg 100 g-1) 17.09 ± 0.00 83.38 ± 7.60 20.88 ± 8.97 Magnesium (mg 100 g-1) 22.16 ± 0.00 43.70 ± 0.00 13.55 ± 2.19 Iron (mg 100 g-1) n.a. 1.00 ± 0.41 0.76 ± 0.44 Manganese (mg 100 g-1) 0.45 ± 0.00 0.08 ± 0.00 0,02 ± 0.00 Phosphorus (mg 100 g-1) 10.76 ± 0.00 7.69 ± 0.00 26.40 ± 6.42 Zinc (mg 100 g-1) 1.04 ± 0.00 0.37 ± 0.39 0.17 ± 0.00 Copper (mg 100 g-1) 0.38 ± 0.00 0.09 ± 0.00 0.07 ± 0.07 Selenium (mg 100 g-1) n.a. 2.36 ± 0.00 n.a. Cobalt (mg 100 g-1) n.a. 27.24 ± 0.00 n.a. Nickel (mg 100 g-1) n.a. 26.41 ± 0.00 n.a. Soluble solids (°Brix) 14.27 ± 1.56 8.89 ± 2.59 12.24 ± 2.45 pH 3.26 ± 0.19 3.93 ± 0.58 2.91 ± 0.43 Total (g 100 g-1) 11.13 ± 0.92 n.a. 5.07 ± 0.75 Total solids (%) 15.71 ± 3.56 n.a. n.a. Titratable acidity (%) 1.87 ± 0.72 0.47 ± 0.30 1.68 ± 0.20 Reducing sugars (g 100 g-1) 6.03 ± 2.89 2.97 ± 0.00 4.80 ± 0.78 References Canuto et al., 2010; Aguiar et Hamacek et al., 2014; Morzelle Tiburski et al., 2011; Maldonado- al., 2008; Rogez et al., 2004; et al., 2015; Silva et al., 2008; Astudillo et al., 2014; Mattietto et al., De Nazaré, 2000; De Carvalho et De Souza et al., 2012; Almeida 2010; Bora et al., 1991; Leterme et al., 2003; Clerici and Carvalho-Silva, et al., 2011; Dias et al., 2012; al., 2006 2011; da Silva et al., 2010 Guimarães and Silva, 2008; Moo-Huchin et al., 2014; Neves et al., 2015 n.a.: not applicable.

Phytochemical constituents (Hamacek et al., 2014; Silva et al., 2008; Souza et al., 2012) Murici pulp contains a high Morzelle amount et of al dietary., 2015 ), fiber and Many bioactive compounds have been identified in ironand a( significantet al amount., 2006 ).of Hamaceklipids ( et al. (2014) observed bacuri, murici, and taperebá. These fruits are considered is very rich in minerals, such as calcium, phosphorous, and as significant sources of these phytochemical constituents vitaminsZuniga because it contains a high amount of , and (Table 3). that murici fruit can provide the daily recommended dose of Bacuri contains phytochemical constituents with compoundsantioxidant properties,( suchet al as., 2014; polyphenols. Bruno et The al ., seeds 2013). of is a good source of vitamins A and E. Murici contains amounts this plant have been studied to identify potential bioactive fruitof vitamin and peach. A similar to those in nectarine, and higher than Yamaguchi et al., 2014; Bruno et al., 2013). those in , and contains more than kiwi Bacuri fruit is rich in etfatty al substances, diterpenes, xanthones, acids,and including palmitic,(Yamaguchi linoleic, stearic, and oleic acids, Taperebá contains significant dietary fiber (1.18%), etcom al.,- According to Bruno . (2013), bacuri seeds contain fatty 2010).prising Itboth has soluble high levels and insoluble of potassium fibers, along although with soluble , fi- Garcinielliptone is a natural benzenphenone that has been soursop,ber (0.75%) jenipapo is found (Genipa in a greater americana proportion) and (Mattiettomangaba ( Han- and are therefore attractive to the natural oil industry. cornia speciosa and copper compared to other fruits, and is a source of vita Platoniaisolated from bacuri seeds. This substance is not commonly ), contains significant amount of magnesium found inet fruits, al. and bacuri is the first member of the genus - known to contain et this al type of compound. et Costa al., (mins C andet A. al It., 2011;can be consideredet al., a2014). source of pro-vitamin A; 2011).Junior noted that garcinielliptone has significant a portion of 100 g provides about 37% of the RDI for adults antioxidant activity (Bruno ., 2013; Costa Junior Tiburski Ugadu

320 International Journal of Tropical and Subtropical Horticulture et al

Aniceto . | Fruit nutritional and biological activities of three Amazonian species Table 3. Bacuri Murici Taperebá Analyzed Antioxidantactivities or compounds activity and bioactive compounds of three Amazonian fruits. Platonia insignis Byrsonima spp. Spondias mombin Antioxidant activity (μmol Trolox g-1) 0.60 ± 0.00 11.19 ± 5.24 8.20 ± 0.57 Total polyphenols (g GAE kg-1) 0.40 ± 0.00 2.39 ± 0.58 0.63 ± 0.13 Ascorbic acid (mg g-1) 0.02 ± 0.01 0.62 ± 0.66 0.58 ± 0.82 Total anthocyanins (mg g-1) 0.003 ± 0.000 0.010 ± 0.003 0.570 ± 0.000 Flavonoids (mg g-1) 0.17 ± 0.00 0.14 ± 0.00 0.08 ± 0.01 Total carotenoids (mg g-1) n.a. 0.06 ± 0.08 0.04 ± 0.03 References Canuto et al., 2010; Rufino et al., Rufino et al., 2010; Sales et al., Rufino et al., 2010; Sales et 2010, 2011; Clerici and Carvalho- 2013; Almeida et al., 2011; Dias et al., 2013; Tiburski et al., 2011; Silva, 2011 al., 2012; Moo-Huchin et al., 2014; Mattietto et al., 2010; Murillo et Morais et al., 2013; Gordon et al., al., 2010; Olayiwola et al., 2013; 2011; Ribeiro et al., 2013 Contreras-Calderón et al., 2011; Zielinski et al., 2014 n.a.: not applicable.

and promote anticonvulsant action in a pilocarpine model (Morzelle et al et al., 2011; Morais et al., (Silva et al., 2014). Garcinielliptone FC is also a potential Murici fruit contains highly active natural antioxidants antiparasitic agent (Silva et al ., 2015; Almeida and dichloromethane fractions of bacuri seeds contain 2013). Approximately 19 polyphenolic compounds have ., 2015). The ethyl acetateet al. been identified in murici, including gallotannins, quinicet acid, al., (2011b) concluded that the dichloromethane fraction is 2011;gallates, Maldini proantrocyanides, et al., 2011; Mariutti et al derivates, and galloyl compounds with biological activity. Costa Júnior derivates, which are rarely found in fruits (Gordon considered to be a good source of carotenoids, and it contains acetate and dichloromethane fractions against H2 2 more β et., 2014). al., 2012). The fruitIt also is strongly neuroprotective.S. cerevisiae The protective effect of the et ethyl al., O -induced -carotene than lycopene (Souza cytotoxicity in was measured (Costaet al .,Júnior 2011a). (Mariutticontains considerable et al., 2013; Murillo amounts et ofal .,lutein 2010). and zeaxanthin, but 2013a), and compounds in the ethyl acetate fraction were lesser than those found in green leafy vegetables such as kale 5.24found to possess antioxidant activity (Costa Murici showed-1 higher antioxidant activity (11.19 ±) Taperebá fruits contain more phenolic compounds μmol-1 Trolox g ) compared to bacuri (0.60 ± 0.00 μmol-1 areincluding consumed , in Brazil and more ( antioxidantet al., compounds2011; Mattietto such fruit,Trolox leaves, g ) andbark, taperebá and stems (8.20 (Malta ± et 0.57 al., μmol2013; TroloxSilva et gal., etas al vitamin., 2010; C Murillo and carotenoids, et al than many otheret al fruits., 2013). that (Table 3). Thiset antioxidant al activity has been measured in the Tiburski ., 2010; Olayiwola 2007; Rufino ., 2009). Extracts ofet muricial and stems βTaperebá containsα more lutein thanβ zeaxanthins, andet also al., contain ethyl acetate, which is known to exhibit bactericidalet al., 2011;contain Murillo other et types al., 2010). of carotenoids High amounts including of gallic zeinoxanthin, acid and 2013effects. Bacteria (Martínez-Vázquez ., 1999), and murici -criptoxanthin, -carotene, and -carotene (Tiburski et al., fruit extract exhibits antibacterial activity (Pío-LeónMaldini 2015). Silva et al et al). Lipophilic extracts from murici bark are regarded as quercetin have been found in taperebá pulp (Bataglion antidepressanta potential source effects of anti-inflammatory ( etcompounds al., 2011 (), while . (2012) concluded that taperebá pulp can ., 2009). Murici flavonoid extracts possess potential effectively inhibit oxidation, which is attributed to its yellow Herrera-Ruiz Biologicalflavonoids, carotenoids activity and chlorophyll. rotavirusother extracted ( compoundset al., 2012). includingMalta et al . tannins, (2012) found saponins, that coumarins, and terpenes have shown activity against Cecílio The biodiverse Amazonian region in Brazil is the source (muriciCampomanesia extract provided cambessedeana higher protection against hydrogen of many plant species that are important in natural folk peroxide and cyclophosphamide, compared to gabiroba medicine, and have been widely disseminated worldwide. ) extract. The extract also did The rich flora of the Amazonian biome has been extensively not possess any mutagenic or genotoxic effects. studied in order to evaluate the efficacy and therapeutic Taperebá leaves contain many phenolic compounds, effects of its plants or isolated compounds. The established including saponins, tannins, flavonoids, alkaloids, and biological activity of the bacuri, murici, and taperebá plants isglycosides, a source whichof alkaloids, display saponins, antimicrobial tannins, activity eugenols, against and is presented in Table 4. various organisms (Aromolaran and Badejo, 2014). The bark Bacuri contains several biologically active compounds, et al., 2010). Phenolic compounds from notably garcinielliptone FC (GFC), a natural prenylated phenolic compounds, which possess potential anti-tumor benzophenone, which has several beneficial health effects. activity (Ataman et al., 2006). Rutin and Garcinielliptone FC compounds are found mainly in bacuri leaf extracts exhibit anticonvulsant properties, and sedative seeds, and areet capableal., 2011). of Garcinielliptone preventing lipoperoxidation, FC possesses antiviraland antidopaminergic properties acting effects against (Ayoka dengue virus (Silva et probably through hydroxyl radical scavenging activityet alquercetin from taperebá extracts are considered to possess al(Costa Júnior be active against Leishmania leishmania and Leishmania cytotoxic and leishmanicidal activity (Costa Júnior donovani., 2011). Tannic et acid al., 2012). derived from taperebá is found to ., 2013b), and decreases the frequency of pilocarpine- induced seizures, which may influence epileptogenesis (Accioly

Volume 72 | Issue 5 | September/October 2017 321 et al

Aniceto . | Fruit nutritional and biological activities of three Amazonian species Table 4.

Species Biological activityParts of threeof plant AmazonianBiological fruits. activities References Bacuri Seed Antioxidant and anticonvulsant effects Costa et al., 2011a Platonia insignis Seed Antioxidant effects and antioxidant effect preventing Costa Junior et al., 2011 lipoperoxidation Seed Antioxidant activity Costa Júnior et al., 2013a Seed Cytotoxic and leishmanicidal properties Costa Júnior et al., 2013b Fruit Free radical scavenging behavior Rufino et al., 2010 Seed Anticonvulsant activity Da Silva et al., 2014; Da Costa et al., 2011 Seed Antiparasitic agent Silva et al., 2015 Seed Cicatrizing activity Mendes et al., 2015 Murici Root/stem/fruit Antimicrobial activity Martínez-Vázquez et al., 1999; Byrsonima crassifolia Pío-León et al., 2013 Leaf/bark/fruit Antioxidant activity Almeida et al., 2011; Silva et al., 2007 Bark Anti-inflammatory activity Maldini et al., 2009 Leaf/bark Spasmogenic activity Bkjar and Malone, 1993 Leaf Photochemoprotective effect Souza et al., 2012 Leaf Antiulcerogenic activity Pompeu et al., 2012 Fruit Free radical scavenging behavior Rufino et al., 2009 Aerial part Antidepressant effect Herrera-Ruiz et al., 2011 Murici Fruit Antigenotoxic and antimutagenic properties Malta et al., 2012 Byrsonima verbascifolia Fruit Antioxidant and antiproliferative activities Malta et al., 2013 Leaf Antiviral activity against rotavirus Cecílio et al., 2012 Taperebá Leaf Sedative, antiepileptic and antipsychotic effects Ayoka et al., 2006 Spondias mombin Leaf Gastroprotective effects and antioxidative potentials Sabiu et al., 2015 Fruit/leaf Antioxidant and antimicrobial properties Aromolaran and Badejo, 2014 Leaf Antifertility property Asuquo et al., 2013 Bark Anticancer activity Ataman et al., 2010 Leaf Antiviral activities against dengue virus Silva et al., 2011 Leaf Leishmanicidal activity Accioly et al., 2012 Fruit Free radical scavenging behavior Rufino et al., 2010

Food applications desserts (Silva and Carvalho, 2011; coffee shops, and in the form of frozen pulp as well (Silva liquors,et and al., is2006; consumed Neves etin althe., 2011). form of ice cream, jelly, and andBacuri Carvalho, is traditionally 2011; Ferreira sold andin bags Melo, at markets,2007; Clerici fairs, and Alves and Franco, 2003;Silva da Silva et al., 2010 etZuniga al., 2014 in regional recipes (Homma and de Carvalho, 2010) and the Taperebá is sold unprocessed oret al in., pulped2011; Bicas form et ( al., Carvalho-Silva, 2011; ). The bark is used ), but is mainly frozen, as it can be transported et al., 2010; Ferreira and Melo, 2007). throughout the country (Tiburski fruit has become an exotic component of dishes in modern 2011). The fruit has a good yield, and its aroma and strongSilva cuisine (Shanley andexotic Carvalho, flavor has 2011; led Mattiettoto its wide et useal., 2010;in the Borajuice et and al nectar Regionally, it is widely used in the juice and nectar industry, Soaresindustry, et andal in savory dishes in regional restaurants ( and in ice cream and frozen products. In dairy products, it etis ., 1991; alincluded., 2010; inHomma yogurt, and creams, de Carvalho, and desserts. 2010; Silva It is andconsumed Carvalho, in ( ., 2006). The ice cream industryet al., 2011; also uses tapereet al.,- 2011;jelly and Ferreira fruit desserts and Melo, in 2007;many regions of Brazil (Shanley et 2014;bá fruit. Bora Regionally, et al the pulp is consumedet al., 2006) in andjelly inand the yogurt form al., 2010 Silva and Carvalho, 2011; Tiburski etUgadu al De Nazaré, 2000; da Silvaet al ., ., 1991; Soares 2010; Silva). In and , Carvalho, 2011; it is Ferreiraused as a and filler Melo, in 2007). Conclusionof liquors, wines, and and alcoholic future beverages prospects (Bora ., 1991). and cakes, and as liquor in alcoholic products (Shanley nutritional fruits with important bioactive compounds, The cheese-like flavorSilva ofand murici Carvalho, has 2011; aroused Rezende the inter and- andBacuri, are a part murici, of the and Brazilian taperebá population’s are naturally fruit intake, occurring es est of fine dining chefs, who have made use of the fruit in meat and fish sauces ( - sweetenedFraga, 2003). with In sugarthe Amazon or brown and sugar northeast, or unsweetened the pulp is (comSilva- pecially in the regions where they are produced. Identify- andmonly Carvalho, mixed with 2011 water). Murici and can manioc be used flour, in andthe productionserved either of valuableing the bio-functional information for qualities the domestic of these market. fruits Bacuri,is important muri to the Brazilian fruit production economy, since it provides - juices and nectars, as a filler in , and in wines and ci, and taperebá fruits and their co-products are important

322 International Journal of Tropical and Subtropical Horticulture et al

Aniceto . | Fruit nutritional and biological activities of three Amazonian species sources of bioactive compounds and nutrients, which can be used in food and therapeutic applications. screening of Byrsonima crassifolia Bkjar, E., and Malone,39 M.H. (1993). Pharmacological and chemical , a medicinal tree from Mexico. Part I. J. Ethnopharmacol. , 141–158. https://doi.org/10.1016/0378- tentials.It is also Novel important research to could investigate improve the our synergy knowledge of mixtures of the 8741(93)90029-5. of fruits and their nutritional, functional, and sensory po- Bora, P.S., Narain, N., Holschuh,Spondias H.J., and mombin Vasconcelos,) fruits. Food M.A. Chem. da S. (1991). Changes in physical and chemical composition during underutilizedsynergistic effects fruits. of these fruits. Such investigations could 41 lead to the discovery of the most beneficial effects of these maturation of yellow mombin ( , 341–348. https://doi.org/10.1016/0308-8146(91)90058-V. References 14, Boulanger, R., and Crouzet, J. (1999). Free and bound flavour components of Amazonian fruits. 1: Bacuri. Flavour Fragance J. et al in vitro of Accioly, M.P., Bevilaqua, C.M.L., Rondon, F.C.M., de Morais, S.M., Mach- 303–311. https://doi.org/10.1002/(SICI)1099-1026(199909/10) Musa paradisiaca Spondias mombin 14:5<303::AID-FFJ834>3.0.CO;2-C. 187ado, L.K., Almeida, C., . (2012). Leishmanicidal activity L. and L. fractions. Vet. Parasitol. compoundsBruno, R., Carvalho, isolated fromF., Freita, Insignis M., Mart., and Feitosa, a perspective C.M. (2013). for developing Survey , 79–84. https://doi.org/10.1016/j.vetpar.2011.12.029. of physicochemical and pharmacological94, 161–168. properties of extracts and Aguiar, L.P., De Figueiredo, R.W., Alves, R.E., Maia, G.A., and De Souza, Platonia insignis Mart.). phytomedicines. Braz. J. Pharm. V.A.B. (2008). Physical and28 physico-chemical characterization of fruits from different genotypes of bacuri ( Canuto, G.B., Xavier, A.A.O., Neves, L.C., and Benassi, M.D.E.T. Ciênc. e Tecnol. Aliment. , 423–428. https://doi.org/10.1590/ Rev.(2010). Bras. Physical Frutic. and32 chemical characterization of fruit pulps from S0101-20612008000200024. Amazonia and their correlation to free radical scavenger activity. , 1196–1205. https://doi.org/10.1590/S0100- (Alberto,Byrsonima P.S., verbascifolia Silva, F.G., Cabral, J.S.R., Fátima Sales, J.D.,32, and1015–1020. Pereira, F.D. (2011). Methods to overcome of the dormancy in murici 29452010005000122. Rich.) seeds. Semin. Agrar. (Carvalho,Platonia J.E.U.insignis de, De Nazaré, R.F.R., and Do Nascimento, W.M.O. https://doi.org/10.5433/1679-0359.2011v32n3p1014. Bras.(2003). Frutic. Physical and physicochemical characteristics of a bacuri et al. (2011). Bioactive compounds 25 Almeida, M.M.B., Sousa, P.H.M., Arriaga, Â.M.C., Prado, G.M., Mart.) type with better industrial yield. Rev. , 326–328. https://doi.org/10.1590/S0100- Brazil.Magalhães, Food C.E.D.C., Res. Int. Maia, 44 G.A., and antioxidant activity of fresh exotic fruits from northeastern 29452003000200036. foodres.2011.03.051. Sobral, M.E.G., et al. (2012). Screening of Brazilian medicinal plants , 2155–2159. https://doi.org/10.1016/j. Cecílio, A.B., De Faria, D.B., Oliveira, P.D.C., Caldas, S., De Oliveira,141 D.A.,

Byrsonima for antiviral activity against rotavirus. J. Ethnopharmacol. , 975– crassifoliaAlves, G., and Franco, M.R. (2003). Headspace985 gas chromatography – mass spectrometry of volatile compounds in murici ( 981. https://doi.org/10.1016/j.jep.2012.03.031. compounds and technological aspects of minor fruits grown in L. Rich). J. Chromatogr. A. , 297–301. https://doi. Brazil.Clerici, M.T.P.S.,Food Res. and Int. Carvalho-Silva, 44, 1658–1670. L.B. (2011). https://doi.org/10.1016/j. Nutritional bioactive org/10.1016/S0021-9673(02)01398-5. foodres.2011.04.020. Spondias mombin against some clinical bacterial isolates Aromolaran, O., and Badejo, O.K. (2014). Efficacy4, 442–446. of fresh https:// leaf extracts of from typhoid patients. Asian Pacific J. Trop. Dis. Contreras-Calderón, J., Calderón-Jaimes, L., Guerra-Hernández, doi.org/10.1016/S2222-1808(14)60603-4. fruitsE., and from García-Villanova, . Food B. (2011).Res. Int. Antioxidant , 2047–2053. capacity, https://doi. phenolic Spondias mombin on the 44 Asuquo, O.R., Oko, O.O.K., Brownson, E.S., Umoetuk, G.B., and Utin, I.S. org/10.1016/j.foodres.2010.11.003.content and vitamin C in pulp, peel and seed from 24 exotic 2(2013). Effects of ethanolic leaf extract of pituitary-gonadal axis of female Wistar rats. Asian Pacific J. Reprod. , 169–173. https://doi.org/10.1016/S2305-0500(13)60141-4.et al. Costa, J.S. da, De Almeida, A.A.C., Tomé, A.D.R., Citó, A.M.D.G.L.,Platonia Saffi, Ataman, J.E., Idu, M., Okoro, M., Akinbo, S.F., Ayinde, B., Ibe, N.I., insignisJ., and De Freitas, R.M. (2011a). Evaluation of possible antioxidant22, 678– Spondias mombin and anticonvulsant effects of the ethyl acetate fraction from (2010). Preliminary1, 100–110. studies on the phytochemistry and efficacy of extracts of the bark of L. on induced cancer in rats. Mart. (Bacuri) on epilepsy models. Epilepsy Behav. Ann. Biomed. Sci. 684. https://doi.org/10.1016/j.yebeh.2011.09.021. dichloromethaneCosta, J.S. da, de Ferraz, fraction A.B.F., from Feitosa, C.M., das Graças on pilocarpineLopes Citó, effectsAyoka, of A.O., Spondias Akomolafe, mombin R.O., Iwalewa,Anacardiaceae E.O., ) Akanmu,in mice and M., rats. and Platonia insignis A.M., Saffi, J., and de Freitas, R.M. (2011b)., 1104–1110. Evaluation ofhttps://doi. effects of Ukponmwan, O.E. (2006).103 ,Sedative, 166–175. antiepileptic https://doi.org/10.1016/j. and antipsychotic 21 L. ( J. Ethnopharmacol. induced seizures. Braz. J. Pharmacogn. jep.2005.07.019. org/10.1590/S0102-695X2011005000163. Barbosa, C.Z. dos R., Mendonça, M.S., and De Rodrigues, R.S. effectsCosta Júnior,in vitro J.S.,of Garcinielliptone Ferraz, A.B.F., FC Filho, isolated B.A.B., from Feitosa, Platonia C.M., insignis Citó, of Byrsonima A.M.G.L., Freitas, R., and Saffi, J. (2011). Evaluation of antioxidant Malpighiaceae(2014). Seedling morphology of three sympatric savanna species 5 : First evidence of cryptogeal209, 401–407. germination https://doi. in and an overlooked seedling type in . Flora Mart. J. Med. Plants Res. , 293–299. S.G., Feitosa, C.M., et al. (2013a). Investigation of biological activities - Morphol. Distrib. Funct. Ecol. Plants Costa Júnior, J.S., Ferraz, A.B.F., Sousa, T.O., Silva, R.Platonia a C., De insignis Lima, org/10.1016/j.flora.2014.06.005. 112, 34–41. https://doi. of dichloromethane and ethyl acetate fractions of Bataglion, G.A., da Silva, F.M.A., Eberlin, M.N.,180 and, 280–287. Koolen, https:// H.H.F. (2015). Determination of the phenolic composition from Brazilian Mart. seed. Basic Clin. Pharmacol. Toxicol. tropical fruits by UHPLC–MS/MS. Food Chem. org/10.1111/j.1742-7843.2012.00924.x. et al doi.org/10.1016/j.foodchem.2015.02.059. Costa Júnior, J.S., Almeida, A.A.C., Ferraz, A.D.B.F., Rossatto, R.R., et al Bicas, J.L., Molina, G., a Dionísio, P., Barros, F.F.C., Wagner, R., PlatoniaSilva, T.G., insignis Silva, .P.B.N., Nat. Prod. Res.. (2013b). 27, 470–474. Cytotoxic https://doi.org/10.10 and leishmanicidal from Brazil. Food Res. Int. 44, 1843–1855. https://doi.org/10.1016/j. properties of garcinielliptone FC, a prenylated benzophenone from foodres.2011.01.012.Maróstica, M.R., . (2011). Volatile constituents of exotic fruits 80/14786419.2012.695363.

Volume 72 | Issue 5 | September/October 2017 323 et al

Aniceto . | Fruit nutritional and biological activities of three Amazonian species

Carotenoids from Byrsonima crassifolia Dias, F., Abadio, B., Galv, I., and Botelho, R. (2012).23, 1–6. Physicochemical andMariutti, in vitro L.R.B., Rodrigues, E., and Mercadante, A.Z. (2013). characteristics and antioxidant activity of three native fruits from 31, 155–160.: Identification, https://doi.org/10.1016/j. quantification Brazilian savannah (cerrado). Aliment. e Nutr. Spondias mombin jfca.2013.05.005. scavenging capacity against peroxyl radicals. 32 J. Food Compos. Anal. jhg.2005.02.001.Duvall, C.S. (2006). On the origin of the tree in Africa. J. Hist. Geogr. , 249–266. https://doi.org/10.1016/j. Byrsonima crassifolia Platonia insignis Mart. species Mariutti, L.R.B., Rodrigues, E., Chisté, R.C., Fernandes, E., and Bois Mercadante, A.Z. (2014). The Amazonian fruit Ferreira, M.D.S., and ,Melo, 21–28. M. (2007). 294 Int.effectively 64, 618–625. scavenges https://doi.org/10.1016/j.foodres.2014.07.032. reactive oxygen and nitrogen species and richness in secondary forests of north-eastern Para, Brazil. protects human erythrocytes against oxidative damage. Food Res. Forets des Trop. Gordon, A., Jungfer, E., Silva, B.A., Maia, J.G.S., and Marx, F. (2011). 59 Martínez-Vázquez,Byrsonima M., crassifolia González-Esquinca, R., Cazares Luna, 66 L.,, Phenolic constituents and antioxidant capacity of four underutilized Moreno Gutiérrez, M.N., and García-Argáez, N. (1999). Antimicrobial fruits from the amazon region. J. Agric. Food Chem. , 7688–7699. activity of (L.) H.B.K. J. Ethnopharmacol. https://doi.org/10.1021/jf201039r. 79–82. https://doi.org/10.1016/S0378-8741(98)00155-X. pharmacological aspects of Byrsonima (Malpighiaceae). Guilhon-Simplicio, F., and Pereira, M. (2011). Chemical and Spondias 34 mombinMattietto, R.A., Santos Lopes, A., and Castle de Men, H. (2010). 40422011000600021. Physical and physicochemical13, characterization156–164. https://doi.org/10.4260/ of caja fruit ( Quim. Nova , 1032–1041. https://doi.org/10.1590/S0100- L.) and its pulp, obtained using two types of extractor. Guimarães, M.M., and Silva, M.S. (2008). Nutritional value and Braz. J. Food Technol. BJFT2010130300021. (Byrsonima verbascifolia 28, 817–821. chemical and physical characteristics of dried murici fruits obtainedMendes, M.C.,from Oliveira,Platonia insignis G., and Lacerda, J. (2015). Evaluation of9, ). Ciência e Tecnol. Aliment. cicatrizant activity of a semisolid pharmaceutical formulation https://doi.org/10.1590/S0101-20612008000400009. Mart. Afr. J. Pharm. Pharmacol. Hamacek, F.R., Martino, H.S.D., and Pinheiro-Sant’Ana, H.M. (2014). 154–164. https://doi.org/10.5897/AJPP2014.4169. et al. (2014). ofMurici, carotenoids fruit from and the vitamins.Cerrado of Fruits Minas 69Gerais, Brazil: physical and Moo-Huchin, V.M., Estrada-Mota, I., Estrada-León, R., Cuevas- org/10.1051/fruits/2014032.physicochemical characteristics, and occurrence and concentration Glory, L., Ortiz-Vázquez, E., de L.V. y Vargas, M., , 459–472. https://doi. Determination of some152 physicochemical, 508–515. https://doi.org/10.1016/j. characteristics, bioactive compounds and antioxidant activity of tropical fruits from Yucatan, et al foodchem.2013.12.013. Herrera-Ruiz, M., Zamilpa, A., González-Cortazar, M., Reyes-Chilpa, Mexico. Food Chem. fromR., León, Byrsonima E., García, crassifolia M.P., . (2011). Antidepressant18, 1255–1261. effect https:// and pharmacological evaluation of standardized extract of flavonoids in vitro de frutos doMorais, Cerrado M.L., Brasileiro. Silva, A.C.R., Rev. Araújo, Bras. C.R.R., Frutic. and 35 Dessimoni-Pint,, 355–360. https://doi. N.A.V.O. . Phytomedicine (2013). Determinação do potencial antioxidante doi.org/10.1016/j.phymed.2011.06.018. ascensão Bacuri. Ciênc. Hoje. 41–45. Homma, A., and de Carvalho, J.E.U. (2010). Fruta amazônica em org/10.1590/S0100-29452013000200004. Morzelle, M.C., Bachiega, P., De Souza, E.C., Vilas Boas, E.V.D.B., and content of tropical fruits and unconventional foods of the de curriola, gabiroba e murici provenientes do Cerrado Brasileiro. Lamounier, M.L. (2015). Caracterização química e física de frutos Leterme, P., Buldgen, A., Estrada, F., and Londoño, 95 A.M., 644–652. (2006). Rev. Bras. Frutic. 37 https://doi.org/10.1016/j.foodchem.2005.02.003. 036/14. Andes and the rain forest of Colombia. Food Chem. , 96–103. https://doi.org/10.1590/0100-2945- Maldini, M., Montoro, P., and Pizza, C. (2011). Phenolic compounds from Byrsonima crassifolia Screening of vegetables and fruits from for rich sources Murillo, E., Meléndez-Martínez, A.J., and Portugal, F. (2010). 56, 122, 167–172. https://doi. 1–6. https://doi.org/10.1016/j.jpba.2011.03.032. L. bark: Phytochemical investigation and org/10.1016/j.foodchem.2010.02.034. quantitative analysis by LC-ESI MS/MS. J. Pharm. Biomed. Anal. of lutein and zeaxanthin. Food Chem.

C., et al. Nascimento, W.M.O. do, de Carvalho, J.E.U., and Muller, C.H. ofMaldini, the bark M., Sosa,of Acacia S., Montoro, cornigera P., Giangaspero,Byrsonima A., Balick, M.J.,crassifolia Pizza, Rev. Bras. Frutic. 29 (2007). Occurrence and geographical distribution of bacuri. Kunth, Sweetia(2009). panamensis Screening of the topical anti-inflammatorySphagneticola activity , 657–660. https://doi.org/10.1590/S0100- trilobata Willdenow,122, 430–433. https://doi. Yakovlev and the leaves of 29452007000300044. Hitchcock. J. Ethnopharmacol. Nazaré, R.F.R. De (2000). Productos41, 0–27. agroindustriais de bacuri, org/10.1016/j.jep.2009.02.002. cupuaçu, graviola e açaí, desenvueltos pela Embrapa Amazônia et al. (2014). Oriental. Embrapa Amaz. Orient. Maldonado-Astudillo, Y.I., Alia-Tejacal, I., Núñez-Colín, Spondias purpurea C.A., Jiménez- Hernández, J., Pelayo-Zaldívar, C., López-Martínez, V., et al. (2011). Production of blends based on tropical S. mombin 174 Neves, L.C., Benedette, R.M., Tosin, J.M., Chagas, E.A., Da Silva,33, 187– V.X., scienta.2014.05.016.Postharvest physiology and technology of L. and Prill, M.A.D.S., L. Sci. Hortic. , 193–206. https://doi.org/10.1016/j. and native fruits from Brazilian Amazon. Rev. Bras. Frutic. 197. https://doi.org/10.1590/S0100-29452011005000023. and Pastore, G.M. (2012). In vivo antimutagenicMalta, L.G., Ghiraldini, properties F.G., of two Reis, Brazilian R., Oliveira, Cerrado M.D.V., fruits Silva, and L.B.,the Neves, L.C., Benedette, R.M., and Chagas,34 E.A., 1165–1173. (2012). Characterization https://doi. analysis of antigenotoxic49, 604– and of the antioxidant capacity of natives fruits from the Brazilian 611. https://doi.org/10.1016/j.foodres.2012.07.055. Amazon Region 1. Rev. Bras. Frutic. identification of phenolic phytochemicals. Food Res. Int. org/10.1590/S0100-29452012000400025. Neves, L.C., Tosin, J.M., Benedette, R.M., and Cisneros-Zevallos, L. Malta, L.G., Tessaro, E.P., Eberlin, M., Pastore, G.M., and Liu, R.H. (2015). Post-harvest nutraceutical behaviour during ripening and (2013). Assessment of antioxidant and antiproliferative activities 174 fruits. Food Res. Int. 53, 417–425. https://doi.org/10.1016/j. org/10.1016/j.foodchem.2014.10.111.senescence of 8 highly perishable fruit species from the Northern foodres.2013.04.024.and the identification of phenolic compounds of exotic Brazilian Brazilian Amazon region. Food Chem. , 188–196. https://doi.

324 International Journal of Tropical and Subtropical Horticulture et al

Aniceto . | Fruit nutritional and biological activities of three Amazonian species

et al. (2014). Behavioral and neurochemical Olayiwola, I.O., Akinfenwa, V.O., Oguntona, C.O., Sanni, S.A., Onabanjo, Silva, A.P. dos S.C.L. da, Lopes, J.S.L., Vieira, P. de S., Pinheiro, E.E., O.O., and31 Afolabi, W.A.O. (2013). Phytonutrient, antioxidant and inducedMirna, M.L., seizures. José, J.C., Pharmacol. Biochem. Behav. 124, 305–310. mineral composition of some wild fruits in South West Nigeria. Niger. https://doi.org/10.1016/j.pbb.2014.05.021.studies in mice pretreated with garcinielliptone FC in pilocarpine- Food J. , 33–40. https://doi.org/10.1016/S0189-7241(15)30074-6. et al. (2015). Brazilian fruit pulps as functional foods andPaz, additives: M., Gúllon, Evaluation P., Barroso, of bioactive M.F., Carvalho, compounds. A.P., Food Domingues, Chem. 172 V.F.,, et al Gomes, A.M., Silva, A.P., Silva, M.P., Oliveira, C.G., Monteiro, D.C., Pinto, P.L.,29, 681–687.Mendonça, https://doi.org/10.1016/j.tiv.2014.12.014. R.Z., . (2015). Garcinielliptone FC: Antiparasitic 462–468. https://doi.org/10.1016/j.foodchem.2014.09.102. activity without cytotoxicity to mammalian cells. Toxicol. Vitr. et al Pío-León, J.F., Díaz-Camacho, S.P., López-López, M., Uribe-Beltrán,Byrsonima crassifoliaM.D.J., Willms, K., López-Angulo,Psidium G., sartorianum . (2013). Actividad Silva, E.M., Souza, J.N.S., Rogez, H., Rees, J.F., and Larondelle,101 Y. ,(2007). 1012– antibacterianaCrescentia de alata extractos de frutos de nanchi ( 1018.Antioxidant https://doi.org/10.1016/j.foodchem.2006.02.055. activities and polyphenolic contents of fifteen selected (L.) Kunth),12, 356–364. arrayán ( (O. Berg) Nied.) plant species from the Amazonian region. Food Chem. y ayale ( Kunth). Bol. Latinoam. y del Caribe Plantas Med. y Aromat. Silva, F., Silva, S., Silva, G., Mendonça, R., Alves, R.E., and Dantas, Pompeu, D.R., Rogez, H., Monteiro,Byrsonima K.M., Tinti, crassifolia S.V., and eCarvalho, de Inga A.L. (2012). Bioactive32 compounds and antioxidant activity in fruits edulisJ.E. (2012). Capacidade42 antioxidante e triagem farmacológica 20612012005000101.of clone and ungrafted genotypes of yellow mombin tree. Ciência de extratos brutos de folhas de e Tecnol. Aliment. , 685–691. https://doi.org/10.1590/S0101- . Acta Amaz. , 165–172. https://doi.org/10.1590/S0044- 59672012000100019. Spondias genus: botanical aspects, chemical and pharmacological Silva, G., Brito, N., Santos, E., López,10, 27–41. J.A., and Almeida, G. (2014). Rabelo, A. (2012). Frutas nativas da Amazônia comercializadas nas feirasRezende, de -AMC.M., and (Manaus:Fraga, S.R.G. INPA). (2003). Chemical and aroma potential. Rev. Biol. e Farmácia determination of the pulp and seeds of murici (Byrsonima crassifolia 14 CiênciaSilva, M.R., Rural Lacerda, 38 D.B.C.L., Santos, G.G., and Martin, D.M. de O. 50532003000300014. 84782008000600051.(2008). Caracterização química de frutos nativos do cerrado. L.). J. Braz. Chem. Soc. , 425–428. https://doi.org/10.1590/S0103- , 1790–1793. https://doi.org/10.1590/S0103-

et al et al Ribeiro, A.B., Bonafé, E.G., Silva, B.C., Montanher, P.F., Santos Júnior, phenolicSilva, R., components Morais, S.M., of Marques, two Spondias M.M.M., species Lima, against D.M., Santos,dengue S.C.C.,virus. O.O., Boeing, J.S., . (2013). Antioxidant capacity, total 24phenolic Almeida, R.R., . (2011). Antiviral17 , activities406–413. of extracts and content, fatty acids and correlation by principal component analysis of exotic and native fruits from Brazil. J. Braz. Chem. Soc. , 797– J. Venom. Anim. Toxins Incl. Trop. Dis. 804. https://doi.org/10.1590/S0103-50532013000300009. (São Paulo: Metalivros). Silva, S., and Carvalho, J.E.U. (2011). Frutas da Amazônia Brasileira Rogez, H., Buxant, R., Mignolet, E., Souza,Eugenia J.N.S., stipitata Silva, E.M.,), bacuri and (Larondelle,Platonia insignis Y. (2004).) and Chemical cupuaçu composition(Theobroma of grandiflorum the pulp of). three Eur. polpaSilva, V.K.L.do bacuri da, de( Figueiredo, R.W., Mart.) de Brito,congelada E.S., por Maia, 12 G.A., meses. de typical Amazonian218 fruits: Araça-boi ( Platonia insignis Sousa, P.H.M., and34 de Figueiredo, E.A.T. (2010). Estabilidade da Food Res. Technol. , 380–384. https://doi.org/10.1007/s00217- 70542010000500030. 003-0853-6. Cienc. Agrotecnol. , 1293–1300. https://doi.org/10.1590/S1413-

Rufino, M.S.M., Fernandes, F.A.N., Alves, R.E.,114 and Brito, E.S. de (2009). Free radical-scavenging behaviour of some north-east Brazilian Soares, E.B., Gomes, R.L.F., Carneiro, J.G.D.M.E., Do Nascimento,28, 518– fruits in a DPPH system. Food Chem. , 693–695. https://doi. F.N., Silva, I.C.V., and Da Costa, J.C.L. (2006). Physical and chemical org/10.1016/j.foodchem.2008.09.098. characterization of yellow mombin fruits. Rev. Bras. Frutic. 519. https://doi.org/10.1590/S0100-29452006000300039. Rufino, M.S.M., Alves, R.E., de Brito, E.S., Pérez-Jiménez, J., Saura- Calixto, F., and Mancini-Filho, J. (2010). Bioactive compounds and Sousa, M.S.B., Vieira, L.M., Silva, M.J.M.,35 and Lima, A. (2011). Brazil. Food Chem. 121 Nutritional characterization and antioxidant compounds in pulp foodchem.2010.01.037.antioxidant capacities of 18 non-traditional tropical fruits from , 996–1002. https://doi.org/10.1016/j. residues of tropical fruits. Ciência Agrotec. , 554–559. https://doi. org/10.1590/S1413-70542011000300017. characterization of Platonia insignis Rufino, M.S.M., Alves, R.E., Fernandes, F.A.N., and Brito, E.S. (2011). Souza, I.G.B., Souza, V. a B., and Lima, P.S.C. (2013). 40 Molecular, 3835– 44, 2072–2075. https://doi.org/10.1016/j. Mart. (‘Bacurizeiro’) using inter foodres.2010.07.002.Free radical scavenging behavior of ten exotic tropical fruits extracts. Food Res. Int. simple sequence repeat (ISSR) markers. Mol. Biol. Rep. 3845. https://doi.org/10.1007/s11033-012-2462-6. Photochemoprotective effect of Byrsonima crassifolia et al Souza, R.O., Siqueira, S., Rogez, H., and Fonseca, M.J.V. (2012). ProtectiveSabiu, S., Garuba, roles of T., Spondias Sunmonu, mombin T., Ajani, and E., Ficus Sulyman, exasperata A., Nurain, I., culture. Free Radic. Biol. Med. , S105. https://doi.org/10.1016/j. extract Reports. (2015). 2 Indomethacin-induced gastric ulceration in rats: 53 . Toxicol. against oxidative damage induced by UVA radiation in fibroblast cell , 261–267. https://doi.org/10.1016/j.toxrep.2015.01.002. the bioactive compound content in murici and hog plum fruits. Rev. freeradbiomed.2012.08.219. Sales, A., Gil, T., and Waughon, M. (2013). Influence of processing on 6, 7–15. Souza, V.R. De, Pereira, P.A.P., Queiroz, F., Borges, S.V., and Deus Agrar. fruits.Souza Carneiro,Food Chem. J. (2012). 134 , Determination381–386. https://doi.org/10.1016/j. of bioactive compounds, nd antioxidant activity and chemical composition of Cerrado Brazilian Shanley, P., Cymerys, M., Serra, M., and Medina, G. (2010). Fruit Trees and Useful Plants in Amazonian Life, 2 ed. (United Nations, Food foodchem.2012.02.191. and Agriculture Organization).

Volume 72 | Issue 5 | September/October 2017 325 et al

Aniceto . | Fruit nutritional and biological activities of three Amazonian species

(Tiburski,Spondias J.H.,mombin Rosenthal, A., Deliza, R., de Oliveira44, 2326–2331. Godoy, R.L.,https:// and doi.org/10.1016/j.foodres.2011.03.037.Pacheco, S. (2011). Nutritional properties of yellow mombin L.) pulp. Food Res. Int.

Spondias mombin 3Ugadu,, 101–107. A.F., Mathias, C.O., Ogbanshi, M.E., and Eze, U.S. (2014). Phytochemical analysis of . Int. J. Innov. Res. Dev.

in vitro’ of tropical fruit pulps. Vieira,Rev. Bras. L.M., Frutic.Sousa, M.S.B.,33 Mancini-Filho, J., and Lima, A. (2011). Total phenolics and antioxidant capacity ‘ , 888–897. https://doi.org/10.1590/S0100- 29452011005000099. Platonia insignis). Sci. Yamaguchi,3 K.K.L., Victor, C., Pereira, L., Lima, E.S., and Florêncio, V. (2014). Química e farmacologia do Bacuri ( Amaz. , 39–46.

phenolics,Zielinski, A.A.F.,carotenoids, Ávila, S.,and Ito, in V.,vitro Nogueira, A., Wosiacki, G., and Haminiuk, C.W.I. (2014). The association between chromaticity,79, antioxidant activity of frozen fruit pulp in Brazil: An application of chemometrics. J. Food Sci. 510–516. https://doi.org/10.1111/1750-3841.12389. Byrsonima crassifolia) fruit. Food Process.Zuniga, A.,Preserv. Pinedo, 30 A., Rezende, J.R., Silva, C.S., and Monteiro, J.A. (2006). Drying kinetics for murici ( , 699–705. https://doi.org/10.1111/j.1745- 4549.2006.00084.x.

Received: Apr. 6, 2017 Accepted: Aug. 28, 2017

326 International Journal of Tropical and Subtropical Horticulture