Journal of the Arkansas Academy of Science

Total Page:16

File Type:pdf, Size:1020Kb

Journal of the Arkansas Academy of Science Journal of the Arkansas Academy of Science Volume 64 Article 1 2010 Journal of the Arkansas Academy of Science - Volume 64 2010 Academy Editors Follow this and additional works at: https://scholarworks.uark.edu/jaas Recommended Citation Editors, Academy (2010) "Journal of the Arkansas Academy of Science - Volume 64 2010," Journal of the Arkansas Academy of Science: Vol. 64 , Article 1. Available at: https://scholarworks.uark.edu/jaas/vol64/iss1/1 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Entire Issue is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 64 [2010], Art. 1 Journal of the CODEN: AKASO ISBN: 0097-4374 ARKANSAS ACADEMY OF SCIENCE VOLUME 64 2010 ARKANSAS ACADEMY OF SCIENCE Library Rate ARKANSAS TECH UNIVERSITY DEPARTMENT OF PHYSICAL SCIENCES 1701 N. BOULDER AVE RUSSELLVILLE, AR 72801-2222 Published by Arkansas Academy of Science, 2010 3 Journal of the Arkansas Academy of Science, Vol. 64 [2010], Art. 1 https://scholarworks.uark.edu/jaas/vol64/iss1/1 4 Journal of the Arkansas Academy of Science, Vol. 64 [2010], Art. 1 Arkansas Academy of Science, Dept. of Physical Sciences, Arkansas Tech University PAST PRESIDENTS OF THE ARKANSAS ACADEMY OF SCIENCE Charles Brookover 1917 N. D. Buffaloe 1960 Gary Heidt 1986 Dwight M. Moore 1932-33, 1964 H. L. Bogan 1961 Edmond Bacon 1987 Flora Haas 1934 Truman McEver 1962 Gary Tucker 1988 H. H. Hyman 1935 Robert Shideler 1963 DavidChittenden 1989 L. B. Ham 1936 L. F. Bailey 1965 Richard K. Speairs, Jr. 1990 W. C. Munn 1937 James H. Fribourgh 1966 Robert Watson 1991 M. J. McHenry 1938 Howard Moore 1967 Michael W. Rapp 1992 T. L. Smith 1939 John J. Chapman 1968 Arthur A. Johnson 1993 P. G. Horton 1940 Arthur Fry 1969 George Harp 1994 L. A. Willis 1941-42 M. L. Lawson 1970 James Peck 1995 L. B. Roberts 1943-44 R. T. Kirkwood 1971 Peggy R. Dorris 1996 Jeff Banks 1945 George E. Templeton 1972 Richard Kluender 1997 H. L. Winburn 1946-47 E. B. Whittlake 1973 James Daly 1998 E. A. Provine 1948 Clark McCarty 1974 Rose McConnell 1999 G. V. Robinette 1949 Edward Dale 1975 Mostafa Hemmati 2000 John R. Totter 1950 Joe Guenter 1976 Mark Draganjac 2001 R. H. Austin 1951 Jewel Moore 1977 John Rickett 2002 E. A. Spessard 1952 Joe Nix 1978 Walter E. Godwin 2003 Delbert Swartz 1953 P. Max Johnson 1979 Wayne L.Gray 2004 Z. V. Harvalik 1954 E. Leon Richards 1980 Betty Crump 2005 M. Ruth Armstrong 1955 Henry W. Robison 1981 Stanley Trauth 2006 W. W. Nedrow 1956 John K. Beadles 1982 David Saugey 2007 Jack W. Sears 1957 Robbin C. Anderson 1983 Collis Geren 2008 J. R. Mundie 1958 Paul Sharrah 1984 Joyce Hardin 2009 C. E. Hoffman 1959 William L. Evans 1985 Scott Kirkconnell 2010 INSTITUTIONAL MEMBERS The Arkansas Academy of Science recognizes the support of the following institutions through their Institutional Membership in the Academy. ARKANSAS STATE UNIVERSITY, Jonesboro ARKANSAS TECH UNIVERSITY, Russellville JOHN BROWN UNIVERSITY, Siloam Springs SOUTHERN ARKANSAS UNIVERSITY, Magnolia UNIVERSITY OF ARKANSAS AT FAYETTEVILLE UNIVERSITY OF ARKANSAS FOR MEDICAL SCIENCES, Little Rock UNIVERSITY OF ARKANSAS AT MONTICELLO UNIVERSITY OF ARKANSAS AT PINE BLUFF UNIVERSITY OF THE OZARKS, Clarksville UNIVERSITY OF ARKANSAS AT FORT SMITH EDITORIAL STAFF Editor-in-Chief Managing Editor Biota Editor Associate Editors Mostafa Hemmati Ivan H. Still Douglas A. James C. Geren, UAF Dept. of Physical Science Dept of Biological Sciences Dept of Biological Sciences B. Doria, U. Ozarks Arkansas Tech University Arkansas Tech University Univ. of Arkansas S. Itza, U. Ozarks Russellville, AR 72801 Russellville, AR 72801 Fayetteville, AR 72701 [email protected] [email protected] [email protected] COVER: From the crystal structure of the FGF –FGF receptor complex by J. Sakon and S. Kumar, UA Fayetteville. Published by Arkansas Academy of Science, 2010 5 Journal of the Arkansas Academy of Science, Vol. 64 [2010], Art. 1 ARKANSAS ACADEMY OF SCIENCE 2010 APRIL 9-10, 2010 th 94 ANNUAL MEETING University of Arkansas at Little Rock Arkansas https://scholarworks.uark.edu/jaas/vol64/iss1/1 6 Journal of the Arkansas Academy of Science, Vol. 64 [2010], Art. 1 JOURNAL ARKANSAS ACADEMY OF SCIENCE Annual Meeting April 9-10, 2010 University of Arkansas at Little Rock Scott Kirkconnell Jeff Robertson Jeff Robertson President President-Elect Secretary Mostafa Hemmati Mostafa Hemmati Collis Geren Treasurer JAAS Editor-in-Chief Historian Secretary’s Report MINUTES OF THE 94th MEETING ARKANSAS ACADEMY OF SCIENCE 3. Secretary’s Report: Jeff Robertson 94th ANNUAL MEETING Minutes from the 2009 November Executive SUMMARY OF BUSINESS MEETING Committee Meeting were reviewed and accepted. University of Arkansas at Little Rock There were currently 100 AAS members (48 of April 10, 2010 which are life members). This number continues the decline in membership over the past 10 years. 1. The meeting was called to order by President-elect More discussion on that topic follows later. Jeff Robertson substituting for President Scott Kirkconnell. The Academy membership and the 4. Treasurer’s Report: Mostafa Hemmati LOC were met early Saturday morning with a An accounting of the AAS “net worth” for 2009 campus-wide electrical outage thereby testing the was presented and discussed by the membership. resiliency and resolve of students, faculty and The report was reviewed by an Academy auditing researchers alike. I am proud to say that we team and accepted by the membership. prevailed. Swapping the order of the business meeting for the scheduled talks to prolong our hope 5. Historian’s Report: Collis Geren that city maintenance crews would restore power was The AAS annual meeting this year at UALR will be valiant but in the end not enough. However, the the 94th meeting of the AAS and the fifth time at individual session chairs and participants showed UALR, previous meetings were in 1976, 1981, quite an astounding ability to improvise and adapt in 1987, and 2002. holding their sessions after the business meeting The Academy thanks UALR chancellor Joel anyway with a can-do attitude despite the lack of Anderson as well as the LOC members March electron flow. Huddled around battery powered Seigar, Al Adams, Brian Berry, Hassan Elsalloukh, laptops and color PDF backup copies everyone Jamey Jones, and Olga Tarasenko. gathered in their small groups for the exchange of The Academy introduces the new AAS scientific information and knowledge. It was quite Undergraduate Research Awards Program headed epic and a testament to our dedication to the goals of by Dr. Kurt Grafton of Lyon College (AAS Vice the Academy and contributed to a memorable President). meeting! The proceedings of the Academy are published in the Journal, which is now available online at 2. Local Arrangements Committee, 2010: Marc Seigar http://libinfo.uark.edu/aas/ and through the Registration information, campus orientation, and AAS membership pages at meeting schedules were presented by Marc Seigar, http://www.ArkansasAcademyofScience.org. LOC chair. There were 232 registered participants, 78 oral presentations and 72 posters with a ratio of 6. Newsletter Editor’s Report: Jeff Robertson 2:1 students to faculty and researchers making The newsletter was sent out completely presentations. electronically and distributed to members past and Journal of the Arkansas Academy of Science, Vol. 64, 2010 5 Published by Arkansas Academy of Science, 2010 7 Journal of the Arkansas Academy of Science, Vol. 64 [2010], Art. 1 Business meeting report present, to all academic science departments of 4- 12. Junior Humanities and Science Symposium (JSHS) year and 2-year institutions as well as related Linda Kondrick institutions throughout the state (e.g. Arkansas Support from the Academy of $100 for student Game and Fish, US Forest Service, Natural Heritage awards requested. Commission, etc). 13. Arkansas Science Teachers Association (ASTA): 7. Journal (JAAS #64) Report: Editor-In-Chief No Report Mostafa Hemmati & Managing Editor Ivan Still 30 manuscripts were submitted at the spring 14. Committee Reports: meeting for publication in JAAS #63 and sent to 3 independent reviewers. Papers were returned with a. Biota Committee: Doug James commentary before the end of July 2009. 49 lists have been scanned and completed Authors received their feedback during July 15-28, digitally on CD. 15 more animal and lower plant 2009 and asked to submit their responses by August taxa lists are left to be completed including algae, 31, 2009. This was also the deadline for page mushrooms, liverworts, mosses, spiders and birds. charges. Linking of the lists on the web from Univ. of Three manuscripts were rejected because of Arkansas Fayetteville Biological Sciences to the unanimous rejection from the peer review process Academy website is also planned. and three others were withdrawn. Journal reviews, editing and payments were b. Development Committee: Betty Crump completed by the end of October of 2009. Two big tasks before us are 1) develop the search Journal authors now play an important role as the criteria for potential grant funding agencies, 2) final editor for their publication. Their final hiring a grant writing specialist to assist in submission is the “galley-proof” for the Journal and creating successful proposals, notwithstanding our how the manuscript will appear in publication.
Recommended publications
  • Mosquito Species Identification Using Convolutional Neural Networks With
    www.nature.com/scientificreports OPEN Mosquito species identifcation using convolutional neural networks with a multitiered ensemble model for novel species detection Adam Goodwin1,2*, Sanket Padmanabhan1,2, Sanchit Hira2,3, Margaret Glancey1,2, Monet Slinowsky2, Rakhil Immidisetti2,3, Laura Scavo2, Jewell Brey2, Bala Murali Manoghar Sai Sudhakar1, Tristan Ford1,2, Collyn Heier2, Yvonne‑Marie Linton4,5,6, David B. Pecor4,5,6, Laura Caicedo‑Quiroga4,5,6 & Soumyadipta Acharya2* With over 3500 mosquito species described, accurate species identifcation of the few implicated in disease transmission is critical to mosquito borne disease mitigation. Yet this task is hindered by limited global taxonomic expertise and specimen damage consistent across common capture methods. Convolutional neural networks (CNNs) are promising with limited sets of species, but image database requirements restrict practical implementation. Using an image database of 2696 specimens from 67 mosquito species, we address the practical open‑set problem with a detection algorithm for novel species. Closed‑set classifcation of 16 known species achieved 97.04 ± 0.87% accuracy independently, and 89.07 ± 5.58% when cascaded with novelty detection. Closed‑set classifcation of 39 species produces a macro F1‑score of 86.07 ± 1.81%. This demonstrates an accurate, scalable, and practical computer vision solution to identify wild‑caught mosquitoes for implementation in biosurveillance and targeted vector control programs, without the need for extensive image database development for each new target region. Mosquitoes are one of the deadliest animals in the world, infecting between 250–500 million people every year with a wide range of fatal or debilitating diseases, including malaria, dengue, chikungunya, Zika and West Nile Virus1.
    [Show full text]
  • A Mosquito Psorophora Ciliata (Fabricius) (Insecta: Diptera: Culicidae)1 Ephraim V
    EENY-540 A Mosquito Psorophora ciliata (Fabricius) (Insecta: Diptera: Culicidae)1 Ephraim V. Ragasa and Phillip E. Kaufman2 Introduction For additional information on mosquitoes, see http://edis. ifas.ufl.edu/IN652. Psorophora ciliata (Fabricius) is a large mosquito (Cutwa and O’Meara 2005) that has developed an outsized reputa- tion because of its relatively intimidating heft and persistent Synonymy biting behavior (Gladney and Turner 1969), including Psorophora ciliata (Fabricius 1794) anecdotal historical accounts of its legendary aggressiveness Culex ciliata Fabricius (1794) (Wallis and Whitman 1971) and ‘frightening appearance’ Culex conterrens Walker (1856) (King et al. 1960). The ‘gallinipper’ or ‘shaggy-legged Culex molestus Weidemann (1820) gallinipper’ was used as a common name for Psorophora Culex rubidus Robineau-Desvoidy (1827) ciliata in various published reports (Ross 1947; King et al. Psorophora boscii Robineau-Desvoidy (1827) 1960; Breeland et al. 1961; Goddard et al. 2009). The term Psorophora ctites Dyar (1918) was mentioned much earlier by Flanery (1897) describing (From ITIS 2011) the mosquito as ‘the little zebra-legged thing—the shyest, slyest, meanest, and most venomous of them all’ [sic] but Distribution did not specify what species it was. The word gallinipper Psorophora ciliata usually is associated with other flood- originated as a vernacular term in the southeastern region water mosquitoes, including many species from the Aedes of the United States referring to ‘a large mosquito or other genera (Breeland et al. 1961), and has a wide distribution insect that has a painful bite or sting’ and has appeared in the New World. Floodwater mosquitoes often lay in folk tales, traditional minstrel songs, and a blues their eggs in low-lying areas with damp soil and grassy song referencing a large mosquito with a ‘fearsome bite’ overgrowth.
    [Show full text]
  • Checklist of Illinois Native Trees
    Technical Forestry Bulletin · NRES-102 Checklist of Illinois Native Trees Jay C. Hayek, Extension Forestry Specialist Department of Natural Resources & Environmental Sciences Updated May 2019 This Technical Forestry Bulletin serves as a checklist of Tree species prevalence (Table 2), or commonness, and Illinois native trees, both angiosperms (hardwoods) and gym- county distribution generally follows Iverson et al. (1989) and nosperms (conifers). Nearly every species listed in the fol- Mohlenbrock (2002). Additional sources of data with respect lowing tables† attains tree-sized stature, which is generally to species prevalence and county distribution include Mohlen- defined as having a(i) single stem with a trunk diameter brock and Ladd (1978), INHS (2011), and USDA’s The Plant Da- greater than or equal to 3 inches, measured at 4.5 feet above tabase (2012). ground level, (ii) well-defined crown of foliage, and(iii) total vertical height greater than or equal to 13 feet (Little 1979). Table 2. Species prevalence (Source: Iverson et al. 1989). Based on currently accepted nomenclature and excluding most minor varieties and all nothospecies, or hybrids, there Common — widely distributed with high abundance. are approximately 184± known native trees and tree-sized Occasional — common in localized patches. shrubs found in Illinois (Table 1). Uncommon — localized distribution or sparse. Rare — rarely found and sparse. Nomenclature used throughout this bulletin follows the Integrated Taxonomic Information System —the ITIS data- Basic highlights of this tree checklist include the listing of 29 base utilizes real-time access to the most current and accept- native hawthorns (Crataegus), 21 native oaks (Quercus), 11 ed taxonomy based on scientific consensus.
    [Show full text]
  • The Mosquitoes of Minnesota
    Technical Bulletin 228 April 1958 The Mosquitoes of Minnesota (Diptera : Culicidae : Culicinae) A. RALPH BARR University of Minnesota Agricultural Experiment Station ~2 Technirnl Rull!'lin :z2g 1-,he Mosquitoes of J\ilinnesota (Diptera: Culicidae: Culicinae) A. llALPII R\lm University of Minnesota Agricultural Experiment Station CONTENTS I. Introduction JI. Historical Ill. Biology of mosquitoes ................................ Zoogeography Oviposition ......................................... Breeding places of larvae ................................... I) Larrnl p;rowth ....................................... Ill ,\atural factors in the control of larvae .................. JI The pupal stage ............................................... 12 .\lating .................................... _ ..... 12 Feeding of adults ......................................... 12 Hibernation 11 Seasonal distribution II I\ . Techniques Equipment Eggs ............................... · .... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Larvae Pupae Adults Colonization and rearing . IB \. Systematic treatment Keys to genera Adult females . l'J \fale terminalia . 19 Pupae ······················································· .... ········ 2.'i Larvae ····················································· ..... ········ 2S :-n Anopheles ········································· ··························· Anopheles (Anopheles) barberi .................... · · · · · · · · · · · · · · · · · · · · · · · · earlei ...•......................... · · · · ·
    [Show full text]
  • A Synopsis of the Mosquitoes of Missouri and Their Importance from a Health Perspective Compiled from Literature on the Subject
    A Synopsis of The Mosquitoes of Missouri and Their Importance From a Health Perspective Compiled from Literature on the Subject by Dr. Barry McCauley St. Charles County Department of Community Health and the Environment St. Charles, Missouri Mark F. Ritter City of St. Louis Health Department St. Louis, Missouri Larry Schaughnessy City of St. Peters Health Department St. Peters, Missouri December 2000 at St. Charles, Missouri This handbook has been prepared for the use of health departments and mosquito control pro- fessionals in the mid-Mississippi region. It has been drafted to fill a perceived need for a single source of information regarding mosquito population types within the state of Missouri and their geographic distribution. Previously, the habitats, behaviors and known distribution ranges of mosquitoes within the state could only be referenced through consultation of several sources - some of them long out of print and difficult to find. It is hoped that this publication may be able to fill a void within the literature and serve as a point of reference for furthering vector control activities within the state. Mosquitoes have long been known as carriers of diseases, such as malaria, yellow fever, den- gue, encephalitis, and heartworm in dogs. Most of these diseases, with the exception of encephalitis and heartworm, have been fairly well eliminated from the entire United States. However, outbreaks of mosquito borne encephalitis have been known to occur in Missouri, and heartworm is an endemic problem, the costs of which are escalating each year, and at the current moment, dengue seems to be making a reappearance in the hotter climates such as Texas.
    [Show full text]
  • MOSQUITOES of the SOUTHEASTERN UNITED STATES
    L f ^-l R A R > ^l^ ■'■mx^ • DEC2 2 59SO , A Handbook of tnV MOSQUITOES of the SOUTHEASTERN UNITED STATES W. V. King G. H. Bradley Carroll N. Smith and W. C. MeDuffle Agriculture Handbook No. 173 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE \ I PRECAUTIONS WITH INSECTICIDES All insecticides are potentially hazardous to fish or other aqpiatic organisms, wildlife, domestic ani- mals, and man. The dosages needed for mosquito control are generally lower than for most other insect control, but caution should be exercised in their application. Do not apply amounts in excess of the dosage recommended for each specific use. In applying even small amounts of oil-insecticide sprays to water, consider that wind and wave action may shift the film with consequent damage to aquatic life at another location. Heavy applications of insec- ticides to ground areas such as in pretreatment situa- tions, may cause harm to fish and wildlife in streams, ponds, and lakes during runoff due to heavy rains. Avoid contamination of pastures and livestock with insecticides in order to prevent residues in meat and milk. Operators should avoid repeated or prolonged contact of insecticides with the skin. Insecticide con- centrates may be particularly hazardous. Wash off any insecticide spilled on the skin using soap and water. If any is spilled on clothing, change imme- diately. Store insecticides in a safe place out of reach of children or animals. Dispose of empty insecticide containers. Always read and observe instructions and precautions given on the label of the product. UNITED STATES DEPARTMENT OF AGRICULTURE Agriculture Handbook No.
    [Show full text]
  • Species List For: Engelmann Woods NA 174 Species
    Species List for: Engelmann Woods NA 174 Species Franklin County Date Participants Location NA List NA Nomination List List made by Maupin and Kurz, 9/9/80, and 4/21/93 WGNSS Lists Webster Groves Nature Study Society Fieldtrip Participants WGNSS Vascular Plant List maintained by Steve Turner Species Name (Synonym) Common Name Family COFC COFW Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer negundo var. undetermined box elder Sapindaceae 1 0 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Actaea pachypoda white baneberry Ranunculaceae 8 5 Adiantum pedatum var. pedatum northern maidenhair fern Pteridaceae Fern/Ally 6 1 Agastache nepetoides yellow giant hyssop Lamiaceae 4 3 Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Ambrosia artemisiifolia common ragweed Asteraceae/Heliantheae 0 3 Ambrosia trifida giant ragweed Asteraceae/Heliantheae 0 -1 Amelanchier arborea var. arborea downy serviceberry Rosaceae 6 3 Antennaria parlinii var. undetermined (A. plantaginifolia) plainleaf pussytoes Asteraceae/Gnaphalieae 5 5 Aplectrum hyemale putty root Orchidaceae 8 1 Aquilegia canadensis columbine Ranunculaceae 6 1 Arisaema triphyllum ssp. triphyllum (A. atrorubens) Jack-in-the-pulpit Araceae 6 -2 Aristolochia serpentaria Virginia snakeroot Aristolochiaceae 6 5 Arnoglossum atriplicifolium (Cacalia atriplicifolia) pale Indian plantain Asteraceae/Senecioneae 4 5 Arnoglossum reniforme (Cacalia muhlenbergii) great Indian plantain Asteraceae/Senecioneae 8 5 Asarum canadense wild ginger Aristolochiaceae 6 5 Asclepias quadrifolia whorled milkweed Asclepiadaceae 6 5 Asimina triloba pawpaw Annonaceae 5 0 Asplenium rhizophyllum (Camptosorus) walking fern Aspleniaceae Fern/Ally 7 5 Asplenium trichomanes ssp. trichomanes maidenhair spleenwort Aspleniaceae Fern/Ally 9 5 Srank: SU Grank: G? * Barbarea vulgaris yellow rocket Brassicaceae 0 0 Blephilia hirsuta var.
    [Show full text]
  • Testing Effects of Aerial Spray Technologies on Biting Flies
    TESTING EFFECTS OF AERIAL SPRAY TECHNOLOGIES ON BITING FLIES AND NONTARGET INSECTS AT THE PARRIS ISLAND MARINE CORPS RECRUIT DEPOT, SOUTH CAROLINA, USA. A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Mark S. Breidenbaugh December 2008 Dissertation written by Mark S. Breidenbaugh B.S., California State Polytechnic University, Pomona 1994 M.S., University of California, Riverside, 1997 Ph.D., Kent State University, 2008 Approved by _____________________________, Chair, Doctoral Dissertation Committee Ferenc A. de Szalay _____________________________, Members, Doctoral Dissertation Committee Benjamin A. Foote _____________________________ Mark W. Kershner _____________________________ Scott C. Sheridan Accepted by ______________________________, Chair, Department of Biological Sciences James L. Blank ______________________________, Dean, College of Arts and Sciences John R.D. Stalvey ii TABLE OF CONTENTS Page LIST OF FIGURES……………………………………………………………………viii LIST OF TABLES………………………………………………………………………xii ACKNOWLEDGEMENTS………………….…………………………………………xiv CHAPTER I. An introduction to the biting flies of Parris Island and the use of aerial spray technologies in their control……………………………………………..1 Biology of biting midges .....……..……………………………………………..1 Culicoides as nuisance pests and vectors……………………………3 Biology of mosquitoes…………………………………………………………..5 Mosquitoes as nuisance pests and vectors…………………………..6 Integrated pest management…………………………………………………..7 Physical barriers…………………………………………………………8
    [Show full text]
  • The Effect of Insects on Seed Set of Ozark Chinquapin, Castanea Ozarkensis" (2017)
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2017 The ffecE t of Insects on Seed Set of Ozark Chinquapin, Castanea ozarkensis Colton Zirkle University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Botany Commons, Entomology Commons, and the Plant Biology Commons Recommended Citation Zirkle, Colton, "The Effect of Insects on Seed Set of Ozark Chinquapin, Castanea ozarkensis" (2017). Theses and Dissertations. 1996. http://scholarworks.uark.edu/etd/1996 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected], [email protected]. The Effect of Insects on Seed Set of Ozark Chinquapin, Castanea ozarkensis A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology by Colton Zirkle Missouri State University Bachelor of Science in Biology, 2014 May 2017 University of Arkansas This thesis is approved for recommendation to the Graduate Council. ____________________________________ Dr. Ashley Dowling Thesis Director ____________________________________ ______________________________________ Dr. Frederick Paillet Dr. Neelendra Joshi Committee Member Committee Member Abstract Ozark chinquapin (Castanea ozarkensis), once found throughout the Interior Highlands of the United States, has been decimated across much of its range due to accidental introduction of chestnut blight, Cryphonectria parasitica. Efforts have been made to conserve and restore C. ozarkensis, but success requires thorough knowledge of the reproductive biology of the species. Other Castanea species are reported to have characteristics of both wind and insect pollination, but pollination strategies of Ozark chinquapin are unknown.
    [Show full text]
  • Odonatological Abstract Service
    Odonatological Abstract Service published by the INTERNATIONAL DRAGONFLY FUND (IDF) in cooperation with the WORLDWIDE DRAGONFLY ASSOCIATION (WDA) Editors: Dr. Martin Lindeboom, Landhausstr. 10, D-72074 Tübingen, Germany. Tel. ++49 (0)7071 552928; E-mail: [email protected] Dr. Klaus Reinhardt, Dept Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK. Tel. ++44 114 222 0105; E-mail: [email protected] Martin Schorr, Schulstr. 7B D-54314 Zerf, Germany. Tel. ++49 (0)6587 1025; E-mail: [email protected] Published in Rheinfelden, Germany and printed in Trier, Germany. ISSN 1438-0269 test for behavioural adaptations in tadpoles to these dif- 1997 ferent levels of predation. B. bombina tadpoles are sig- nificantly less active than B. variegata, both before and after the introduction of a predator to an experimental 5748. Arnqvist, G. (1997): The evolution of animal ge- arena; this reduces their vulnerability as many preda- nitalia: distinguishing between hypotheses by single tors detect prey through movement. Behavioural diffe- species studies. Biological Journal of the Linnean So- rences translate into differential survival: B. variegata ciety 60: 365-379. (in English). ["Rapid evolution of ge- suffer higher predation rates in laboratory experiments nitalia is one of the most general patterns of morpholo- with three main predator types (Triturus sp., Dytiscus gical diversification in animals. Despite its generality, larvae, Aeshna nymphs). This differential adaptation to the causes of this evolutionary trend remain obscure. predation will help maintain preference for alternative Several alternative hypotheses have been suggested to breeding habitats, and thus serve as a mechanism account for the evolution of genitalia (notably the lock- maintaining the distinctions between the two species." and-key, pleiotropism, and sexual selection hypothe- (Authors)] Address: Kruuk, Loeske, Institute of Cell, A- ses).
    [Show full text]
  • Butterflies of North America
    Insects of Western North America 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University, Fort Collins, CO 80523-1177 2 Insects of Western North America. 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa by Boris C. Kondratieff, Luke Myers, and Whitney S. Cranshaw C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 August 22, 2011 Contributions of the C.P. Gillette Museum of Arthropod Diversity. Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523-1177 3 Cover Photo Credits: Whitney S. Cranshaw. Females of the blow fly Cochliomyia macellaria (Fab.) laying eggs on an animal carcass on Fort Sill, Oklahoma. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, 80523-1177. Copyrighted 2011 4 Contents EXECUTIVE SUMMARY .............................................................................................................7 SUMMARY AND MANAGEMENT CONSIDERATIONS
    [Show full text]
  • Carya Eral Roots
    VIEWPOINT HORTSCIENCE 51(6):653–663. 2016. nut (seed) has hypogeal germination and forms a dominate taproot with abundant lat- Carya eral roots. Leaves are odd-pinnately com- Crop Vulnerability: pound with 11–17 leaflets, borne in alternate L.J. Grauke1 arrangement, with reduction in leaflet number, size, and pubescence as the tree matures. USDA–ARS Pecan Breeding and Genetics, 10200 FM 50, Somerville, TX Seedlings have long juvenility (5–12 years) 77879 and bear imperfect flowers at different loca- tions on the tree. Male and female flowers Bruce W. Wood mature at different times (dichogamy). Male USDA–ARS Southeastern Fruit and Tree Nut Research Laboratory, 21 flowers are borne on staminate catkins in Dunbar Road, Byron, GA 31008 fascicles of three, with catkin groups formed on opposite sides of each vegetative bud, Marvin K. Harris sometimes with a second pair above, borne Department of Entomology (Professor Emeritus), Texas A&M University, opposite each other, at 90° to the first. The College Station, TX 77843 catkins are borne at the base of the current season’s growth or from more distal buds of Additional index words. Carya illinoinensis, germplasm, diversity, breeding, repository, the previous season whose vegetative axis characterization aborts after pollen shed. This pattern of catkin formation is characteristic of all members of Abstract. Long-established native tree populations reflect local adaptations. Represen- section Apocarya, but is distinct from the other tation of diverse populations in accessible ex situ collections that link information on sections of the genus (Figs. 2–4). Pollen is phenotypic expression to information on spatial and temporal origination is the most produced in very large quantities and is carried efficient means of preserving and exploring genetic diversity, which is the foundation of by wind.
    [Show full text]