Testing Effects of Aerial Spray Technologies on Biting Flies

Total Page:16

File Type:pdf, Size:1020Kb

Testing Effects of Aerial Spray Technologies on Biting Flies TESTING EFFECTS OF AERIAL SPRAY TECHNOLOGIES ON BITING FLIES AND NONTARGET INSECTS AT THE PARRIS ISLAND MARINE CORPS RECRUIT DEPOT, SOUTH CAROLINA, USA. A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Mark S. Breidenbaugh December 2008 Dissertation written by Mark S. Breidenbaugh B.S., California State Polytechnic University, Pomona 1994 M.S., University of California, Riverside, 1997 Ph.D., Kent State University, 2008 Approved by _____________________________, Chair, Doctoral Dissertation Committee Ferenc A. de Szalay _____________________________, Members, Doctoral Dissertation Committee Benjamin A. Foote _____________________________ Mark W. Kershner _____________________________ Scott C. Sheridan Accepted by ______________________________, Chair, Department of Biological Sciences James L. Blank ______________________________, Dean, College of Arts and Sciences John R.D. Stalvey ii TABLE OF CONTENTS Page LIST OF FIGURES……………………………………………………………………viii LIST OF TABLES………………………………………………………………………xii ACKNOWLEDGEMENTS………………….…………………………………………xiv CHAPTER I. An introduction to the biting flies of Parris Island and the use of aerial spray technologies in their control……………………………………………..1 Biology of biting midges .....……..……………………………………………..1 Culicoides as nuisance pests and vectors……………………………3 Biology of mosquitoes…………………………………………………………..5 Mosquitoes as nuisance pests and vectors…………………………..6 Integrated pest management…………………………………………………..7 Physical barriers…………………………………………………………8 Cultural control of midges and mosquitoes…………………………..8 Biological control………………………………………………………...9 Chemical control……………………………………………………….10 Biting fly adulticides applied by aircraft……………………...11 Content and scope of dissertation…………………………………………...13 References cited……………………………………………………………….14 iii Page CHAPTER II. Seasonal and diel patterns of biting midges (Ceratopogonidae) and mosquitoes (Culicidae) on the Marine Corps Recruit Depot, Parris Island, SC……………………………………………………………………….22 Abstract………………………………………………………………………....22 Introduction……………………………………………………………………..23 Methods…………………………………………………………………………26 Research site description……………………………………………..26 Seasonal biting fly abundance……………………………………….26 Diel activity of biting flies……………………………………………...28 Results………………………………………………………………………….29 Seasonal patterns of biting fly abundance………………………….29 Diel activity of biting flies……………………………………………...33 Discussion……………………………………………………………………...34 Management implications…………………………………………….37 Acknowledgements……………………………………………………………39 References cited…………………………………………………………….…39 CHAPTER III. Characterization of a new ultra-low volume fuselage spray configuration on Air Force C-130H aircraft used for adult mosquito control…….63 Abstract………………………………………………………………...............63 iv Page Introduction……………………………………………………………………..64 Methods…………………………………………………………………………67 Study site description………………………………………………….67 Field characterization of droplet size………………………….…..…67 AGDISP computer model…………………………………………..…70 Results……………………………………………………………………….…71 AGDISP computer model predictions and field-trial results…….…72 Discussion………………………………………………………………………74 References cited……………………………………………………………….79 CHAPTER IV. Efficacy of aerial spray applications with fuselage booms on Air Force C-130 aircraft against mosquitoes ( Culicidae) and biting midges (Ceratopogonidae)…………………………………………………………………….96 Abstract………………………………………………………………...............96 Introduction……………………………………………………………………..97 Methods…………………………………………………………………………99 Study site descriptions………………………………………………...99 Bioassays…………………………………………………….............100 Aircraft applications…………………………………………..………101 Craney Island trials…………………………………………….…….101 Parris Island trials………………………………………………….…103 Dibrom applications………………………………………….103 v Page Anvil applications……………………………………………………..103 Statistical analyses…………………………………………………..104 Results………………………………………………………………………...105 Craney Island trials………………………………………………..…105 Parris Island trials…………………………………………………….106 Dibrom applications………………………………………….106 Anvil applications……………………………………………..107 Discussion…..………………………………………………………………...108 Craney Island trials…………………………………………………..108 Parris Island trials…………………………………………………….110 References……………………………………………………………………113 CHAPTER V. Effects of Aerial Applications of Naled on Nontarget Insects at Parris Island, South Carolina………………………………………………………..131 Abstract……………………………………………………………….............131 Introduction……………………………………………………………………132 Methods…………………………………………………………………….…135 Insect trapping methods……………………………………………..136 Experimental design…………………………………………………137 Statistical analyses…………………………………………………..138 Results………………………………………………………………………..140 vi Page Nontarget species……………………………………………………140 Target species………………………………………………………..141 Discussion…………………………………………………………………….142 Acknowledgements…………………………………………………………..149 References cited……………………………………………………………..149 CHAPTER VI. General Discussion and Conclusions…………………………….169 General discussion and conclusions……………………………………….169 General conclusions…………………………………………………………176 References cited……………………………………………………………..177 vii LIST OF FIGURES Page CHAPTER II. Seasonal and diel patterns of biting midges (Ceratopogonidae) and mosquitoes (Culicidae) on the Marine Corps Recruit Depot, Parris Island, SC Figure 1. The Marine Corps Recruit Depot on Parris Island, South Carolina…..49 Figure 2. Seasonal abundance of Culicoides furens at Parris Island …..………50 Figure 3. Seasonal abundance of Culicoides hollensis at Parris Island………...51 Figure 4. Seasonal abundance of Culicoides melleus at Parris Island…………..52 Figure 5. Seasonal abundance of Aedes taeniorhynchus at Parris Island……..53 Figure 6. Seasonal abundance of Aedes sollicitans at Parris Island……………54 Figure 7. Seasonal abundance of Culex salinarius at Parris Island……………..55 Figure 8. Seasonal abundance of Aedes vexans at Parris Island……………….56 Figure 9. Seasonal abundance of Culex quinquefasciatus at Parris Island…….57 Figure 10. Correlations between Culicoides numbers and meteorological data. A. Culicoides furens vs. air temperature B. C. hollensis vs. air temperature C. C. melleus vs. air temperature D. Culicoides furens vs. rainfall E. C. hollensis vs. rainfall……...……………………………………………………………………58-59 Figure 11. Correlations between Culicidae numbers and meteorological data. A. Aedes taeniorhynchus vs. temperature B. Ae. taeniorhynchus vs. rainfall C. Culex salinarius vs. Palmer's Drought Severity Index (PDSI)………………..60 viii Page Figure 12. Diel activity patterns of Culicoides furens, C. hollensis, and C. melleus…………………………………………………………………………………61 Figure 13. Diel activity patterns of Aedes spp. and Culex spp………………….. 62 CHAPTER III. Characterization of a new ultra-low volume fuselage spray configuration on Air Force C-130H aircraft used for adult mosquito control Fig. 1. View of field trial location at Avon Park Air Force Range, Florida……….84 Fig. 2. Drop size distribution for droplet spectra produced by 8001 and 8005 flat- fan nozzles……………………………………………………………………………..85 Fig. 3. Distribution of drop sizes in spray cloud from A) 8001 nozzles; B) 8005 nozzles……………………………………………………………………...................86 Fig. 4. Average droplet size recovered from USAF C-130 fuselage sprays using 8005 flat-fan nozzles…………………………………………………………………..87 Fig. 5. Predicted deposition from AGDISP model of droplets sprayed with C-130 fuselage booms released at (A) 46 m and (B) 91 m above ground………………88 Fig. 6. AGDISP model predicted trajectory of an A) 22.3 µm droplet (DV10 ); B) 54.3 µm droplet (DV50); and C) 104.7 µm droplet (DV90) from 46 m release height………………………………………………………………………………..89-90 Fig. 7. AGDISP model predicted trajectory of an A) 22.3 µm droplet (DV10 ); B) 54.3 µm droplet (DV50); and C) 104.7 µm droplet (DV90) from 91 m release height………………………………………………………………………………..91-92 ix Page CHAPTER IV. Efficacy of aerial spray applications with fuselage booms on Air Force C-130 aircraft against mosquitoes ( Culicidae) and biting midges (Ceratopogonidae) Fig. 1. Overview of experimental design for USAF C-130 single-pass Dibrom sprays………………………………………………………………………………….119 Fig. 2. Diagrammatic representation of flight path, sampling line, and wind direction on a magnetic grid for A. June 3-trial 1. B. June 3-trial 2. C. October 6 D. October 7, 2004……………………………………………………………..……120 Fig. 3. Relationship between (A) droplet density and mortality (B) droplet size and mortality (B) determined from bioassay cages…………………………124-125 Fig. 4. Relationship between mosquito mortality and distance downwind from pesticide release point following Dibrom applications…………………………….126 Fig 5. Relative numbers of Culicoides spp. before and after Anvil sprays on Parris Island and a no-spray area……………………………………………………..……127 Fig. 6. Flight path of aircraft (black lines) while making an Anvil insecticide application……...…………………………………………………………………128-129 Fig. 7. Daily biting midge density monitored on Parris Island and a no-spray area……………………………………………………………………………………..130 CHAPTER V. Effects of Aerial Applications of Naled on Nontarget Insects at Parris Island, South Carolina x Page Fig. 1. Map of study area showing Malaise, pan, and CDC trap locations on the Parris Island Marine Corps Recruit Depot, South Carolina………………...156-157 Fig. 2. Mean total nontarget insect abundance collected in pan traps before and after a single naled application in 2005……………………………………………166 Fig. 3. Number of target pests 5 days before and 1 day after naled sprays
Recommended publications
  • Mosquito Species Identification Using Convolutional Neural Networks With
    www.nature.com/scientificreports OPEN Mosquito species identifcation using convolutional neural networks with a multitiered ensemble model for novel species detection Adam Goodwin1,2*, Sanket Padmanabhan1,2, Sanchit Hira2,3, Margaret Glancey1,2, Monet Slinowsky2, Rakhil Immidisetti2,3, Laura Scavo2, Jewell Brey2, Bala Murali Manoghar Sai Sudhakar1, Tristan Ford1,2, Collyn Heier2, Yvonne‑Marie Linton4,5,6, David B. Pecor4,5,6, Laura Caicedo‑Quiroga4,5,6 & Soumyadipta Acharya2* With over 3500 mosquito species described, accurate species identifcation of the few implicated in disease transmission is critical to mosquito borne disease mitigation. Yet this task is hindered by limited global taxonomic expertise and specimen damage consistent across common capture methods. Convolutional neural networks (CNNs) are promising with limited sets of species, but image database requirements restrict practical implementation. Using an image database of 2696 specimens from 67 mosquito species, we address the practical open‑set problem with a detection algorithm for novel species. Closed‑set classifcation of 16 known species achieved 97.04 ± 0.87% accuracy independently, and 89.07 ± 5.58% when cascaded with novelty detection. Closed‑set classifcation of 39 species produces a macro F1‑score of 86.07 ± 1.81%. This demonstrates an accurate, scalable, and practical computer vision solution to identify wild‑caught mosquitoes for implementation in biosurveillance and targeted vector control programs, without the need for extensive image database development for each new target region. Mosquitoes are one of the deadliest animals in the world, infecting between 250–500 million people every year with a wide range of fatal or debilitating diseases, including malaria, dengue, chikungunya, Zika and West Nile Virus1.
    [Show full text]
  • Wild Species 2010 the GENERAL STATUS of SPECIES in CANADA
    Wild Species 2010 THE GENERAL STATUS OF SPECIES IN CANADA Canadian Endangered Species Conservation Council National General Status Working Group This report is a product from the collaboration of all provincial and territorial governments in Canada, and of the federal government. Canadian Endangered Species Conservation Council (CESCC). 2011. Wild Species 2010: The General Status of Species in Canada. National General Status Working Group: 302 pp. Available in French under title: Espèces sauvages 2010: La situation générale des espèces au Canada. ii Abstract Wild Species 2010 is the third report of the series after 2000 and 2005. The aim of the Wild Species series is to provide an overview on which species occur in Canada, in which provinces, territories or ocean regions they occur, and what is their status. Each species assessed in this report received a rank among the following categories: Extinct (0.2), Extirpated (0.1), At Risk (1), May Be At Risk (2), Sensitive (3), Secure (4), Undetermined (5), Not Assessed (6), Exotic (7) or Accidental (8). In the 2010 report, 11 950 species were assessed. Many taxonomic groups that were first assessed in the previous Wild Species reports were reassessed, such as vascular plants, freshwater mussels, odonates, butterflies, crayfishes, amphibians, reptiles, birds and mammals. Other taxonomic groups are assessed for the first time in the Wild Species 2010 report, namely lichens, mosses, spiders, predaceous diving beetles, ground beetles (including the reassessment of tiger beetles), lady beetles, bumblebees, black flies, horse flies, mosquitoes, and some selected macromoths. The overall results of this report show that the majority of Canada’s wild species are ranked Secure.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • A Mosquito Psorophora Ciliata (Fabricius) (Insecta: Diptera: Culicidae)1 Ephraim V
    EENY-540 A Mosquito Psorophora ciliata (Fabricius) (Insecta: Diptera: Culicidae)1 Ephraim V. Ragasa and Phillip E. Kaufman2 Introduction For additional information on mosquitoes, see http://edis. ifas.ufl.edu/IN652. Psorophora ciliata (Fabricius) is a large mosquito (Cutwa and O’Meara 2005) that has developed an outsized reputa- tion because of its relatively intimidating heft and persistent Synonymy biting behavior (Gladney and Turner 1969), including Psorophora ciliata (Fabricius 1794) anecdotal historical accounts of its legendary aggressiveness Culex ciliata Fabricius (1794) (Wallis and Whitman 1971) and ‘frightening appearance’ Culex conterrens Walker (1856) (King et al. 1960). The ‘gallinipper’ or ‘shaggy-legged Culex molestus Weidemann (1820) gallinipper’ was used as a common name for Psorophora Culex rubidus Robineau-Desvoidy (1827) ciliata in various published reports (Ross 1947; King et al. Psorophora boscii Robineau-Desvoidy (1827) 1960; Breeland et al. 1961; Goddard et al. 2009). The term Psorophora ctites Dyar (1918) was mentioned much earlier by Flanery (1897) describing (From ITIS 2011) the mosquito as ‘the little zebra-legged thing—the shyest, slyest, meanest, and most venomous of them all’ [sic] but Distribution did not specify what species it was. The word gallinipper Psorophora ciliata usually is associated with other flood- originated as a vernacular term in the southeastern region water mosquitoes, including many species from the Aedes of the United States referring to ‘a large mosquito or other genera (Breeland et al. 1961), and has a wide distribution insect that has a painful bite or sting’ and has appeared in the New World. Floodwater mosquitoes often lay in folk tales, traditional minstrel songs, and a blues their eggs in low-lying areas with damp soil and grassy song referencing a large mosquito with a ‘fearsome bite’ overgrowth.
    [Show full text]
  • Austroconops Wirth and Lee, a Lower Cretaceous Genus of Biting Midges
    PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, NY 10024 Number 3449, 67 pp., 26 ®gures, 6 tables August 23, 2004 Austroconops Wirth and Lee, a Lower Cretaceous Genus of Biting Midges Yet Living in Western Australia: a New Species, First Description of the Immatures and Discussion of Their Biology and Phylogeny (Diptera: Ceratopogonidae) ART BORKENT1 AND DOUGLAS A. CRAIG2 ABSTRACT The eggs and all four larval instars of Austroconops mcmillani Wirth and Lee and A. annettae Borkent, new species, are described. The pupa of A. mcmillani is also described. Life cycles and details of behavior of each life stage are reported, including feeding by the aquatic larvae on microscopic organisms in very wet soil/detritus, larval locomotion, female adult biting habits on humans and kangaroos, and male adult swarming. Austroconops an- nettae Borkent, new species, is attributed to the ®rst author. Cladistic analysis shows that the two extant Austroconops Wirth and Lee species are sister species. Increasingly older fossil species of Austroconops represent increasingly earlier line- ages. Among extant lineages, Austroconops is the sister group of Leptoconops Skuse, and together they form the sister group of all other Ceratopogonidae. Dasyhelea Kieffer is the sister group of Forcipomyia Meigen 1 Atrichopogon Kieffer, and together they form the sister group of the Ceratopogoninae. Forcipomyia has no synapomorphies and may be paraphyletic in relation to Atrichopogon. Austroconops is morphologically conservative (possesses many plesiomorphic features) in each life stage and this allows for interpretation of a number of features within Ceratopogonidae and other Culicomorpha. A new interpretation of Cretaceous fossil lineages shows that Austroconops, Leptoconops, Minyohelea Borkent, Jordanoconops 1 Royal British Columbia Museum, American Museum of Natural History, and Instituto Nacional de Biodiversidad.
    [Show full text]
  • The Mosquitoes of Minnesota
    Technical Bulletin 228 April 1958 The Mosquitoes of Minnesota (Diptera : Culicidae : Culicinae) A. RALPH BARR University of Minnesota Agricultural Experiment Station ~2 Technirnl Rull!'lin :z2g 1-,he Mosquitoes of J\ilinnesota (Diptera: Culicidae: Culicinae) A. llALPII R\lm University of Minnesota Agricultural Experiment Station CONTENTS I. Introduction JI. Historical Ill. Biology of mosquitoes ................................ Zoogeography Oviposition ......................................... Breeding places of larvae ................................... I) Larrnl p;rowth ....................................... Ill ,\atural factors in the control of larvae .................. JI The pupal stage ............................................... 12 .\lating .................................... _ ..... 12 Feeding of adults ......................................... 12 Hibernation 11 Seasonal distribution II I\ . Techniques Equipment Eggs ............................... · .... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Larvae Pupae Adults Colonization and rearing . IB \. Systematic treatment Keys to genera Adult females . l'J \fale terminalia . 19 Pupae ······················································· .... ········ 2.'i Larvae ····················································· ..... ········ 2S :-n Anopheles ········································· ··························· Anopheles (Anopheles) barberi .................... · · · · · · · · · · · · · · · · · · · · · · · · earlei ...•......................... · · · · ·
    [Show full text]
  • Pesticide Discharge Management Plan
    Pesticide Discharge Management Plan 1. PDMP Team a. Person(s) responsible for managing pests in relation to pest management area: All operational and biological support staff along with the Director of Mosquito Management Services (Wade Brennan, 5531 Pinkney Ave. Sarasota, FL. 34233) b. Person(s) responsible for developing and revising PDMP John Eaton, Operations Supervisor, and Wade Brennan Environmental Scientist III, are the individuals responsible for monitoring changes in Federal and State regulatory agencies that govern mosquito control operations. c. John Eaton, and Wade Brennan, are the individuals responsible for developing, revising and implementing corrective actions and other effluent requirements d. Person(s) responsible for pesticide applications Persons (supervisors and above) who direct applicators these include: All Operational staff employed by Sarasota County Mosquito Management Services that hold a Public Health Pest Control License administered by Florida Department of Agriculture and Consumer Services are directly responsible for pesticide applications (because they can oversee uncertified applicators) additionally, Sarasota County’s awarded Contractors must have required state certification (s). 2. Pest Management Area Description Overview Sarasota County Mosquito Management Services (SCMMS) has been mitigating pestiferous nuisance host seeking mosquitoes of public health importance for over 60 years. A total of forty- four mosquito species are found in Sarasota County of which a dozen are in need of management through a typical peak mosquito season, April through November. When intervention action plans are developed and implemented more than one species is usually involved. Past and current mitigation strategies for both larval and adult mosquitoes have always been in full compliance with FIFRA conditions which have met water quality standards.
    [Show full text]
  • A Synopsis of the Mosquitoes of Missouri and Their Importance from a Health Perspective Compiled from Literature on the Subject
    A Synopsis of The Mosquitoes of Missouri and Their Importance From a Health Perspective Compiled from Literature on the Subject by Dr. Barry McCauley St. Charles County Department of Community Health and the Environment St. Charles, Missouri Mark F. Ritter City of St. Louis Health Department St. Louis, Missouri Larry Schaughnessy City of St. Peters Health Department St. Peters, Missouri December 2000 at St. Charles, Missouri This handbook has been prepared for the use of health departments and mosquito control pro- fessionals in the mid-Mississippi region. It has been drafted to fill a perceived need for a single source of information regarding mosquito population types within the state of Missouri and their geographic distribution. Previously, the habitats, behaviors and known distribution ranges of mosquitoes within the state could only be referenced through consultation of several sources - some of them long out of print and difficult to find. It is hoped that this publication may be able to fill a void within the literature and serve as a point of reference for furthering vector control activities within the state. Mosquitoes have long been known as carriers of diseases, such as malaria, yellow fever, den- gue, encephalitis, and heartworm in dogs. Most of these diseases, with the exception of encephalitis and heartworm, have been fairly well eliminated from the entire United States. However, outbreaks of mosquito borne encephalitis have been known to occur in Missouri, and heartworm is an endemic problem, the costs of which are escalating each year, and at the current moment, dengue seems to be making a reappearance in the hotter climates such as Texas.
    [Show full text]
  • (Neuroptera) from the Upper Cenomanian Nizhnyaya Agapa Amber, Northern Siberia
    Cretaceous Research 93 (2019) 107e113 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Short communication New Coniopterygidae (Neuroptera) from the upper Cenomanian Nizhnyaya Agapa amber, northern Siberia * Vladimir N. Makarkin a, Evgeny E. Perkovsky b, a Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia b Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, ul. Bogdana Khmel'nitskogo 15, Kiev, 01601, Ukraine article info abstract Article history: Libanoconis siberica sp. nov. and two specimens of uncertain affinities (Neuroptera: Coniopterygidae) are Received 28 April 2018 described from the Upper Cretaceous (upper Cenomanian) Nizhnyaya Agapa amber, northern Siberia. Received in revised form The new species is distinguished from L. fadiacra (Whalley, 1980) by the position of the crossvein 3r-m 9 August 2018 being at a right angle to both RP1 and the anterior trace of M in both wings. The validity of the genus Accepted in revised form 11 September Libanoconis is discussed. It easily differs from all other Aleuropteryginae by a set of plesiomorphic 2018 Available online 15 September 2018 character states. The climatic conditions at high latitudes in the late Cenomanian were favourable enough for this tropical genus, hitherto known from the Gondwanan Lebanese amber. Therefore, the Keywords: record of a species of Libanoconis in northern Siberia is highly likely. © Neuroptera 2018 Elsevier Ltd. All rights reserved. Coniopterygidae Aleuropteryginae Cenomanian Nizhnyaya Agapa amber 1. Introduction 2. Material and methods The small-sized neuropteran family Coniopterygidae comprises This study is based on three specimens originally embedded in ca.
    [Show full text]
  • MOSQUITOES of the SOUTHEASTERN UNITED STATES
    L f ^-l R A R > ^l^ ■'■mx^ • DEC2 2 59SO , A Handbook of tnV MOSQUITOES of the SOUTHEASTERN UNITED STATES W. V. King G. H. Bradley Carroll N. Smith and W. C. MeDuffle Agriculture Handbook No. 173 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE \ I PRECAUTIONS WITH INSECTICIDES All insecticides are potentially hazardous to fish or other aqpiatic organisms, wildlife, domestic ani- mals, and man. The dosages needed for mosquito control are generally lower than for most other insect control, but caution should be exercised in their application. Do not apply amounts in excess of the dosage recommended for each specific use. In applying even small amounts of oil-insecticide sprays to water, consider that wind and wave action may shift the film with consequent damage to aquatic life at another location. Heavy applications of insec- ticides to ground areas such as in pretreatment situa- tions, may cause harm to fish and wildlife in streams, ponds, and lakes during runoff due to heavy rains. Avoid contamination of pastures and livestock with insecticides in order to prevent residues in meat and milk. Operators should avoid repeated or prolonged contact of insecticides with the skin. Insecticide con- centrates may be particularly hazardous. Wash off any insecticide spilled on the skin using soap and water. If any is spilled on clothing, change imme- diately. Store insecticides in a safe place out of reach of children or animals. Dispose of empty insecticide containers. Always read and observe instructions and precautions given on the label of the product. UNITED STATES DEPARTMENT OF AGRICULTURE Agriculture Handbook No.
    [Show full text]
  • ABSTRACT Title of Thesis: IMPROVING the SURVEILLANCE and CONTROL of VECTOR MOSQUITOES in HETEROGENEOUS LANDSCAPES Kaitlin
    ABSTRACT Title of Thesis: IMPROVING THE SURVEILLANCE AND CONTROL OF VECTOR MOSQUITOES IN HETEROGENEOUS LANDSCAPES Kaitlin Michelle Saunders, Master of Science, 2020 Thesis Directed By: Paul T. Leisnham, Associate Professor, Department of Environmental Science and Technology Mosquitoes are often called the deadliest animals on earth, posing major public health issues in the United States and worldwide. The most common mosquito species in urban areas in the eastern United States are Aedes albopictus and Culex pipiens , which are vectors of numerous diseases including West Nile virus. Surveillance and management of Ae. albopictus and Cx. pipiens is particularly challenging due to the heterogeneity of urban landscapes, which change on relatively small spatial scales because of underlying social factors such as socioeconomic status (SES) and related infrastructure. As a result, mosquito habitat and distribution varies at correspondingly fine scales. The overall goal of my thesis is to assess relationships between SES and its associated environmental variables with Aedes and Culex mosquitoes in urban landscapes. The results of my research provide recommendations for integrated pest management strategies and highlight environmental justice issues related to disease transmission in low income areas. IMPROVING THE SURVEILLANCE AND CONTROL OF VECOR MOSQUITOES IN HETEROGENEOUS URBAN LANDSCAPES by Kaitlin Michelle Saunders Thesis submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Master of Science 2020 Advisory Committee: Dr. Paul T. Leisnham, Chair Dr. Mitchell Pavao-Zuckerman Dr. Lance Yonkos © Copyright by Kaitlin Michelle Saunders 2020 Acknowledgements Many thanks to my thesis advisor, Dr.
    [Show full text]
  • North American Wetlands and Mosquito Control
    Int. J. Environ. Res. Public Health 2012, 9, 4537-4605; doi:10.3390/ijerph9124537 OPEN ACCESS International Journal of Environmental Research and Public Health ISSN 1660-4601 www.mdpi.com/journal/ijerph Article North American Wetlands and Mosquito Control Jorge R. Rey 1,*, William E. Walton 2, Roger J. Wolfe 3, C. Roxanne Connelly 1, Sheila M. O’Connell 1, Joe Berg 4, Gabrielle E. Sakolsky-Hoopes 5 and Aimlee D. Laderman 6 1 Florida Medical Entomology Laboratory and Department of Entomology and Nematology, University of Florida-IFAS, Vero Beach, FL 342962, USA; E-Mails: [email protected] (R.C.); [email protected] (S.M.O.C.) 2 Department of Entomology, University of California, Riverside, CA 92521, USA; E-Mail: [email protected] 3 Connecticut Department of Energy and Environmental Protection, Franklin, CT 06254, USA; E-Mail: [email protected] 4 Biohabitats, Inc., 2081 Clipper Park Road, Baltimore, MD 21211, USA; E-Mail: [email protected] 5 Cape Cod Mosquito Control Project, Yarmouth Port, MA 02675, USA; E-Mail: [email protected] 6 Marine Biological Laboratory, Woods Hole, MA 02543, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-772-778-7200 (ext. 136). Received: 11 September 2012; in revised form: 21 November 2012 / Accepted: 22 November 2012 / Published: 10 December 2012 Abstract: Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems.
    [Show full text]