Marine Insects

Total Page:16

File Type:pdf, Size:1020Kb

Marine Insects UC San Diego Scripps Institution of Oceanography Technical Report Title Marine Insects Permalink https://escholarship.org/uc/item/1pm1485b Author Cheng, Lanna Publication Date 1976 eScholarship.org Powered by the California Digital Library University of California Marine Insects Edited by LannaCheng Scripps Institution of Oceanography, University of California, La Jolla, Calif. 92093, U.S.A. NORTH-HOLLANDPUBLISHINGCOMPANAY, AMSTERDAM- OXFORD AMERICANELSEVIERPUBLISHINGCOMPANY , NEWYORK © North-Holland Publishing Company - 1976 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,without the prior permission of the copyright owner. North-Holland ISBN: 0 7204 0581 5 American Elsevier ISBN: 0444 11213 8 PUBLISHERS: NORTH-HOLLAND PUBLISHING COMPANY - AMSTERDAM NORTH-HOLLAND PUBLISHING COMPANY LTD. - OXFORD SOLEDISTRIBUTORSFORTHEU.S.A.ANDCANADA: AMERICAN ELSEVIER PUBLISHING COMPANY, INC . 52 VANDERBILT AVENUE, NEW YORK, N.Y. 10017 Library of Congress Cataloging in Publication Data Main entry under title: Marine insects. Includes indexes. 1. Insects, Marine. I. Cheng, Lanna. QL463.M25 595.700902 76-17123 ISBN 0-444-11213-8 Preface In a book of this kind, it would be difficult to achieve a uniform treatment for each of the groups of insects discussed. The contents of each chapter generally reflect the special interests of the contributors. Some have presented a detailed taxonomic review of the families concerned; some have referred the readers to standard taxonomic works, in view of the breadth and complexity of the subject concerned, and have concentrated on ecological or physiological aspects; others have chosen to review insects of a specific set of habitats. Nevertheless, each has presented a general picture of the group of insects under discussion, their nature, ecology, life histories, special adaptations to marine environments, and a comprehensive review of the literature. It is difficult to draw a line between the sea and dry land, or between marine and fresh waters. The word ‘marine’ is broadly interpreted here as referring to any more or less saline waters, and a ‘marine insect’ as one that spends at least part of its life in association with the marine environment. Chapters in the first part of this book are predominantly ecological in the broad sense, while the rest of the chapters deal with major groups of insects found in marine environments. It has been impossible to cover all the orders or families of insects with marine representatives. There is no chapter here dealing with Hymenoptera, which include several genera of tiny wasps parasitic on marine Canaceidae, etc., as well as the more familiar ants which help to clear up crumbs and debris on the beaches. There are no chapters dealing with the Dermaptera, which include a marine earwig, Anisolabis littorea (White), known so far only from New Zealand; or the Homoptera, though some discussions of saltmarsh aphids can be found in Ch. 2; or the Neuroptera, although the larvae of at least two species of Sisyridae, Climacia areolaris (Hagen) and Sisyra vicaria (Walker), are quite common in two brackish water sponges (Vincent Resh, personal communication). Nor are there chapters on the Orthoptera or the Lepidoptera. Several families of Diptera with marine representatives, notably Dolichopodidae, Canaceidae, and [ V] VI Tipulidae, are discussed only with respect to their respiratory adaptations (see Ch. 3). A number of topics of general interest have been excluded because of insufficient knowledge. In particular, we might mention the evolutionary and genetic aspects of marine insect distributions, which present challenging problems relating, for instance, to dispersal to new territories, gene exchange from ocean to ocean across or around continental land masses, and patterns of gene flow in coastal species whose territories are virtually linear or one-dimensional - several thousand kilometres long yet only a few metres wide. (However, some genetic studies on Coelopa frigida (Fabricius) are given in Ch. 16.) We hope such omissions will not be regarded as demerits of this book, but rather as incentives to others to study some of the less familiar kinds of marine insects. We have considered in this volume not only true insects, including the Collembola (Ch. 7), and insect parasites of marine birds and mammals (Ch. 4), but also other kinds of intertidal air-breathing arthropods (Ch. 6), notably spiders, scorpions, mites, centipedes and millipedes, which live and feed with, or even on, the insects of marine habitats. We have also included a chapter on migratory and other insects at sea (Ch. 5), even if they are blown seaward only sporadically and probably involuntarily! Clearly there is vast scope for studies on marine insects at present. List of contributors Andersen, N. Møller Universitetets Zoologiske Museum, Universitetsparken 16, Kobenhavn, Den- mark Axtell, Richard C. Department of Entomology, North Carolina State University, Raleigh, N.C. 26707, U.S.A. Bowden, John Rothamsted Experimental Station, Harpenden, Herts, England Brown, Wynne L. Department of General Biology, University of Arizona, Tucson, Ariz. 85721, U.S.A. Cheng, Lanna Scripps Institution of Oceanography, University of California at San Diego, La Jolla, Calif. 92093, U.S.A. Dobson, Terry Department of Genetics, University of Aarhus, Aarhus 8999, Denmark Doyen, John T. Department of Entomology, University of California, Berkeley, Calif. 94720, U.S.A. Foster, William D. Department of Zoology, University of Cambridge, Downing Street, Cambridge, England Hashimoto, Hiroshi General Education Department, Shizuoka University, Shizuoka, Japan Hinton, Howard E. Department of Zoology, Bristol University, Bristol, England Johnson, C.G. Rothamsted Experimental Station, Harpenden, Herts, England Joosse, Els N.G. Biologisch Laboratorium, Vrije Universiteit, Amsterdam, The Netherlands [VII] VIII Leader, John Department of Physiology, Otago Medical School, P.O.Box 913, Dunedin, New Zealand Legner, E.F. Department of Entomology, University of California, Riverside, Calif. 92502, U.S.A. Linley, John R. Florida Medical Entomology Laboratory, P.O. Box 520, Vero Beach, Fla. 32960, U.S.A. Moore, Ian Department of Entomology, University of California, Riverside, Calif. 92502, U.S.A. Murray, M.D. Division of Animal Health, McMaster Laboratory, CSIRO, Glebe, N.S.W. 2037, Aus- tralia O’Meara, George F. Florida Medical Entomology Laboratory, P.O.Box 520, Vero Beach, Fla. 32960, U.S.A. Polhemus, John T. 3115 South York, Englewood, Colo. 80110, U.S.A. Roth, Vincent D. Southwestern Research Station, American Museum of Natural History, Portal, Ariz. 85632, U.S.A. Scudder, Geoffrey G.E. Department of Zoology, University of British Columbia, Vancouver 8, B.C., Canada Simpson, Karl W. Division of Laboratories and Research, State of New York Department of Health, New Scotland Avenue, Albany, N.Y. 12201, U.S.A. Treherne, John E. Department of Zoology, University of Cambridge, Cambridge, England Acknowledgements No multi-authored book could be compiled without cooperation between the contributors and the editor. I would like to thank the contributors not only for the time and effort they devoted to their chapters, but also for generously considering and accepting many suggestions from their colleagues as well as from the editor. To all those who have helped in one way or another during the editorial process of this book, I offer my sincere thanks; in particular to Donna DeCamp, Virginia L. DeCamp and Vickie Gillespie for their skillful transformation of scribbled and cut-and-pasted pages into flawless typescripts; to Chi-ling Liu and Gayle M. Kidder for assistance in compiling the indexes; and to the following for all kinds of helpful suggestions and unpublished observations and comments: Dru Binney, Martin C. Birch, Linda Birch, Ted H. Bullock, Eric B. Edney, K.C. Emerson, John D. Isaacs, B.C. Nelson, Dietrich Neumann, Lester J. Newman, William A. Newman, Vincent Resh, Richard A. Schwartzlose, Eric Shulenberger, Gerry L. Wick and, of course, Ralph A. Lewin. The preparation of this book was partly supported by the National Sea Grant Program NOAA, Department of Commerce, under grant number 04-5-158-20 to the Scripps Institution of Oceanography. I should also like to thank the following for permission to reproduce figures: 4.3, Pacific Coast Entomological Society; 7.14 & 7.16, C.N.R.S., Paris; 7.4–7.13, Akademische Verlagsgesellschaft Geest & Portig, Leipzig; 7.28, 7.29, Faun.-Okol.¨ mitt., Kiel.; 9.1, 9.2, 9.6, 9.7, 9.9, 9.10, University of California Press; 9.5 & 9.11, Bishop Museum Press; 9.8, Smithsonian Institution; 9.13, Entomological Society of America; 9.3, Royal Entomological Society, London. [IX] Contents For a detailed list of contents the reader is referred to the opening page of each chapter Preface V List of contributors VII Acknowledgements IX Contents Chapter 1 Insects in marine environments, by Lanna Cheng 1 Topics of general interest Chapter 2 Insects of marine saltmarshes: problems and adaptations, by 5 William A. Foster and John E. Treherne Chapter 3 Respiratory adaptations of marine insects, by Howard E. 43 Hinton Chapter 4 Insect parasites of marine birds and mammals, by M.D. 79 Murray Chapter 5 Migrating and other terrestrial insects at sea, by John 97 Bowden and C.G. Johnson Chapter 6 Other intertidal air-breathing arthropods, by Vincent D. Roth 119 and Wynne L. Brown Reviews of major groups of marine insects Chapter 7 Littoral apterygotes (Collembola and Thysanura), by Els 151 N.G. Joosse XI XII Chapter 8 Water-striders (Hemiptera: Gerridae, Veliidae, etc.) by Nils 187 Møller Anderson and John T. Polhemus Chapter 9 Shore bugs (Hemiptera: Saldidae, etc.) by John T. Polhemus 225 Chapter 10 Water-boatmen of saline waters (Hemiptera: Corixidae) by 263 Geoffrey G.E. Scudder Chapter 11 Marine caddis flies (Trichoptera: Philanisidae) by John P. 291 Leader Chapter 12 Saltmarsh mosquitoes (Diptera: Culicidae) by George F. 303 O’Meara Chapter 13 Biting midges of mangrove swamps and saltmarshes 335 (Diptera: Ceratopogonidae) by John R.
Recommended publications
  • Reviews of the Genera Schaefferia Absolon, 1900, Deuteraphorura
    TAR Terrestrial Arthropod Reviews 5 (2012) 35–85 brill.nl/tar Reviews of the genera Schaefferia Absolon, 1900, Deuteraphorura Absolon, 1901, Plutomurus Yosii, 1956 and the Anurida Laboulbène, 1865 species group without eyes, with the description of four new species of cave springtails (Collembola) from Krubera-Voronya cave, Arabika Massif, Abkhazia Rafael Jordana1, Enrique Baquero1*, Sofía Reboleira2 and Alberto Sendra3 1Department of Zoology and Ecology, University of Navarra, 31080 Pamplona, Spain e-mails: [email protected]; [email protected] *Corresponding author. 2Department of Biology, Universidade de Aveiro and CESAM Campus Universitário de Santiago, 3810-193 Aveiro, Portugal e-mail: [email protected] 3Museu Valencià d’Història Natural (Fundación Entomológica Torres Sala) Paseo de la Pechina 15. 46008 Valencia, Spain e-mail: [email protected] Received on November 4, 2011. Accepted on November 21, 2011 Summary Krubera-Voronya cave and other deep systems in Arabika Massif are being explored during many speleological expeditions. A recent Ibero-Russian exploration expedition (summer of 2010) took place in this cave with the aim of providing a study of the biocenosis of the deepest known cave in the world. Four new species of Collembola were found at different depths: Schaefferia profundissima n. sp., Anurida stereoodorata n. sp., Deuteraphorura kruberaensis n. sp., and Plutomurus ortobalaganensis n. sp., the last one at -1980 m deep. The identification and description of the new species have required the careful study of all congeneric species, implying a revision of each genus. As a result of this work tables and keys to all significant characters for each species are presented.
    [Show full text]
  • Review of the Systematics, Biology and Ecology of Lice from Pinnipeds and River Otters (Insecta: Phthiraptera: Anoplura: Echinophthiriidae)
    Zootaxa 3630 (3): 445–466 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3630.3.3 http://zoobank.org/urn:lsid:zoobank.org:pub:D8DEB0C1-81EF-47DF-9A16-4C03B7AF83AA Review of the systematics, biology and ecology of lice from pinnipeds and river otters (Insecta: Phthiraptera: Anoplura: Echinophthiriidae) MARIA SOLEDAD LEONARDI1 & RICARDO LUIS PALMA2 1Laboratorio de Parasitología, Centro Nacional Patagónico (CONICET), Puerto Madryn, Provincia de Chubut, Argentina 2Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand Abstract We present a literature review of the sucking louse family Echinophthiriidae, its five genera and twelve species parasitic on pinnipeds (fur seals, sea lions, walruses, true seals) and the North American river otter. We give detailed synonymies and published records for all taxonomic hierarchies, as well as hosts, type localities and repositories of type material; we highlight significant references and include comments on the current taxonomic status of the species. We provide a summary of present knowledge of the biology and ecology for eight species. Also, we give a host-louse list, and a bibliography to the family as complete as possible. Key words: Phthiraptera, Anoplura, Echinophthiriidae, Echinophthirius, Antarctophthirus, Lepidophthirus, Proechi- nophthirus, Latagophthirus, sucking lice, Pinnipedia, Otariidae, Odobenidae, Phocidae, Mustelidae, fur seals, sea lions, walruses, true seals, river otter Introduction Among the sucking lice (Anoplura), the family Echinophthiriidae is the only family with species adapted to live on pinnipeds—a mammalian group that includes fur seals and sea lions (Otariidae), walruses (Odobenidae), and true seals (Phocidae) (Durden & Musser 1994a 1994b)—as well as on the North American river otter (Kim & Emerson 1974).
    [Show full text]
  • The Pentatomidae, Or Stink Bugs, of Kansas with a Key to Species (Hemiptera: Heteroptera) Richard J
    Fort Hays State University FHSU Scholars Repository Biology Faculty Papers Biology 2012 The eP ntatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera) Richard J. Packauskas Fort Hays State University, [email protected] Follow this and additional works at: http://scholars.fhsu.edu/biology_facpubs Part of the Biology Commons, and the Entomology Commons Recommended Citation Packauskas, Richard J., "The eP ntatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera)" (2012). Biology Faculty Papers. 2. http://scholars.fhsu.edu/biology_facpubs/2 This Article is brought to you for free and open access by the Biology at FHSU Scholars Repository. It has been accepted for inclusion in Biology Faculty Papers by an authorized administrator of FHSU Scholars Repository. 210 THE GREAT LAKES ENTOMOLOGIST Vol. 45, Nos. 3 - 4 The Pentatomidae, or Stink Bugs, of Kansas with a key to species (Hemiptera: Heteroptera) Richard J. Packauskas1 Abstract Forty eight species of Pentatomidae are listed as occurring in the state of Kansas, nine of these are new state records. A key to all species known from the state of Kansas is given, along with some notes on new state records. ____________________ The family Pentatomidae, comprised of mainly phytophagous and a few predaceous species, is one of the largest families of Heteroptera. Some of the phytophagous species have a wide host range and this ability may make them the most economically important family among the Heteroptera (Panizzi et al. 2000). As a group, they have been found feeding on cotton, nuts, fruits, veg- etables, legumes, and grain crops (McPherson 1982, McPherson and McPherson 2000, Panizzi et al 2000).
    [Show full text]
  • Checklist of the Mallophaga of North America (North of Mexico), Which Reflects the Taxonomic Studies Published Since That Date
    The Genera and Species of Mallopbaga of North America (North of Mexico) Part II. Suborder AMBLYCERA by K. C. Emerson, PhD. SKgT-SSTcTS'S-? SWW TO M"7-5001 PREFACE This volume is essentially a revision of my 1964 publication, Checklist of the Mallophaga of North America (north of Mexico), which reflects the taxonomic studies published since that date. Host criteria for the birds has been expanded to include consideration of all species listed in The A. 0. U. Checklist of North American Birds. Fifth Edition (1957). A few species of birds definitely known to be extinct are omitted from the listings of probable hosts, even though new species may still be found on museum skins. Mammal hosts considered remain those recorded in Millsr and Kellogg, List of North American Recent Mammals (1955), as; being found north of Mexico. Dr. Theresa Clay, British Museum (Natural History), ar.d especially Dr. Roger D. Price, University of Minnesota, during the last few years, have reviewed several genera of the Menoporidae; however, several of the larger genera are still in need of review. Unfortunately this volume could not be delayed until work on these genera is completed. CONTENTS BOOPIDAE Heterodoxus GYROPIDAE Gliricola Gyropus Macrogyropus Pitrufquenia LAEMOBOTHRIIDAE Laemobothrion MENOPONIDAE A ctornitbophi.lus Arnyrsidea Ancistrona Ardeiphilus Austromenopon Bonomiella Ciconiphilus Clayia Colpocephalum Comatomenopon Cuculiphilus Dennyus Eidmanniella Eucolpocephalum Eureum Fregatiella Gruimenopon Heleonomus Hohorstiella Holomenopon Kurodaia Longimenopon Machaerilaemus Menacanthus Menopon Myrsidea Nosopon Numidicola - Osborniella Piagetiella Plegadiphilus Procellariphaga Pseudomenopon Somaphantus Trinoton RICINIDAE Ricinus Trochiliphagus Trochiloectes TRIMENOPONIDAE Trimenopon Suborder AMBLYCERA Family BOOPIDAE Genus HETERODOXUS Heterodoxus LeSouef and Bullen. 1902. Vict.
    [Show full text]
  • Taxonomy of Iberian Anisolabididae (Dermaptera)
    Acta Zoologica Academiae Scientiarum Hungaricae 63(1), pp. 29–43, 2017 DOI: 10.17109/AZH.63.1.29.2017 TAXONOMY OF IBERIAN ANISOLABIDIDAE (DERMAPTERA) Mario García-París Museo Nacional de Ciencias Naturales, MNCN-CSIC c/José Gutiérrez Abascal, 2, 28006, Madrid. Spain. E-mail: [email protected] An update on the taxonomy and geographic distribution of Iberian Anisolabididae (Der- maptera) is provided. Former catalogues reported in the Iberian Peninsula three genera of Anisolabididae: Aborolabis, Anisolabis, and Euborellia. A revision of 487 specimens of Iberian and North African Anisolabidoidea permit to exclude the genus Aborolabis from the Iberian fauna, the re-assignation of inland Euborellia annulipes Iberian records to Euborellia moesta, and the exclusion of Aborolabis angulifera from Northwestern Africa. Examination of type materials of Aborolabis mordax and Aborolabis cerrobarjai allows to propose the treatment of A. cerrobarjai as a junior synonym of A. mordax. The diagnostic characters of Euborellia his- panica are included within the local variability found in E. moesta. I propose that E. hispanica should be treated as a junior synonym of E. moesta. Key words: earwigs, systematics, Mediterranean region, Spain, Morocco, NW Africa. INTRODUCTION The Iberian fauna of Dermaptera, including Anisolabididae Verhoeff, 1902, has been the subject of diverse revisionary (Bolívar 1876, 1897, Lapeira & Pascual 1980, Herrera Mesa 1980, Bivar de Sousa 1997) and compilatory works (Herrera Mesa 1999). These revisions together with the monograph of the Fauna of France (Albouy & Caussanel 1990) and the on-line information included in Fauna Europaea (Haas 2010), rendered the image of Dermaptera as a well known group in continental western Europe.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • 2019 # the Author(S) 2019
    Parasitology Research https://doi.org/10.1007/s00436-019-06273-2 ARTHROPODS AND MEDICAL ENTOMOLOGY - ORIGINAL PAPER Antarctophthirus microchir infestation in synanthropic South American sea lion (Otaria flavescens) males diagnosed by a novel non-invasive method David Ebmer1 & Maria José Navarrete2 & Pamela Muñoz2 & Luis Miguel Flores2 & Ulrich Gärtner3 & Anja Taubert1 & Carlos Hermosilla1 Received: 29 December 2018 /Accepted: 18 February 2019 # The Author(s) 2019 Abstract Antarctophthirus microchir is a sucking louse species belonging to the family Echinophthiriidae and has been reported to parasitize all species of the subfamily Otariinae, the sea lions. Former studies on this ectoparasite mainly required fixation, immobilization, or death of host species and especially examinations of adult male sea lions are still very rare. Between March and May 2018, adult individuals of a unique Burban^ bachelor group of South American sea lions (Otaria flavescens)living directly in the city of Valdivia, Chile, were studied regarding their ectoparasite infestation status. For first time, a non-invasive method in the form of a lice comb screwed on a telescopic rod and grounded with adhesive tape was used for sample taking process. Overall, during combing different stages of A. microchir were detected in 4/5 O. flavescens individuals, especially at the junction between the back and hind flippers. Our findings represent the first report of A. microchir infesting individuals of this synanthropic colony and fulfilling complete life cycle in a sea lion group despite inhabiting freshwater and in absence of females/ pups. Our Btelescopic lice comb apparatus^ offers a new strategy to collect different stages of ectoparasites and a range of epidermal material, such as fur coat hair and superficial skin tissue for a broad spectrum of research fields in wildlife sciences in an unmolested and stress reduced manner.
    [Show full text]
  • Influence of Plant Parameters on Occurrence and Abundance Of
    HORTICULTURAL ENTOMOLOGY Influence of Plant Parameters on Occurrence and Abundance of Arthropods in Residential Turfgrass 1 S. V. JOSEPH AND S. K. BRAMAN Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, 1109 Experiment Street, GrifÞn, GA 30223-1797 J. Econ. Entomol. 102(3): 1116Ð1122 (2009) ABSTRACT The effect of taxa [common Bermuda grass, Cynodon dactylon (L.); centipedegrass, Eremochloa ophiuroides Munro Hack; St. Augustinegrass, Stenotaphrum secundatum [Walt.] Kuntze; and zoysiagrass, Zoysia spp.], density, height, and weed density on abundance of natural enemies, and their potential prey were evaluated in residential turf. Total predatory Heteroptera were most abundant in St. Augustinegrass and zoysiagrass and included Anthocoridae, Lasiochilidae, Geocoridae, and Miridae. Anthocoridae and Lasiochilidae were most common in St. Augustinegrass, and their abundance correlated positively with species of Blissidae and Delphacidae. Chinch bugs were present in all turf taxa, but were 23Ð47 times more abundant in St. Augustinegrass. Anthocorids/lasiochilids were more numerous on taller grasses, as were Blissidae, Delphacidae, Cicadellidae, and Cercopidae. Geocoridae and Miridae were most common in zoysiagrass and were collected in higher numbers with increasing weed density. However, no predatory Heteroptera were affected by grass density. Other beneÞcial insects such as staphylinids and parasitic Hymenoptera were captured most often in St. Augustinegrass and zoysiagrass. These differences in abundance could be in response to primary or alternate prey, or reßect the inßuence of turf microenvironmental characteristics. In this study, SimpsonÕs diversity index for predatory Heteroptera showed the greatest diversity and evenness in centipedegrass, whereas the herbivores and detritivores were most diverse in St. Augustinegrass lawns. These results demonstrate the complex role of plant taxa in structuring arthropod communities in turf.
    [Show full text]
  • Türleri Chewing Lice (Phthiraptera)
    Kafkas Univ Vet Fak Derg RESEARCH ARTICLE 17 (5): 787-794, 2011 DOI:10.9775/kvfd.2011.4469 Chewing lice (Phthiraptera) Found on Wild Birds in Turkey Bilal DİK * Elif ERDOĞDU YAMAÇ ** Uğur USLU * * Selçuk University, Veterinary Faculty, Department of Parasitology, Alaeddin Keykubat Kampusü, TR-42075 Konya - TURKEY ** Anadolu University, Faculty of Science, Department of Biology, TR-26470 Eskişehir - TURKEY Makale Kodu (Article Code): KVFD-2011-4469 Summary This study was performed to detect chewing lice on some birds investigated in Eskişehir and Konya provinces in Central Anatolian Region of Turkey between 2008 and 2010 years. For this aim, 31 bird specimens belonging to 23 bird species which were injured or died were examined for the louse infestation. Firstly, the feathers of each bird were inspected macroscopically, all observed louse specimens were collected and then the examined birds were treated with a synthetic pyrethroid spray (Biyo avispray-Biyoteknik®). The collected lice were placed into the tubes with 70% alcohol and mounted on slides with Canada balsam after being cleared in KOH 10%. Then the collected chewing lice were identified under the light microscobe. Eleven out of totally 31 (35.48%) birds were found to be infested with at least one chewing louse species. Eighteen lice species were found belonging to 16 genera on infested birds. Thirteen of 18 lice species; Actornithophilus piceus piceus (Denny, 1842); Anaticola phoenicopteri (Coincide, 1859); Anatoecus pygaspis (Nitzsch, 1866); Colpocephalum heterosoma Piaget, 1880; C. polonum Eichler and Zlotorzycka, 1971; Fulicoffula lurida (Nitzsch, 1818); Incidifrons fulicia (Linnaeus, 1758); Meromenopon meropis Clay ve Meinertzhagen, 1941; Meropoecus meropis (Denny, 1842); Pseudomenopon pilosum (Scopoli, 1763); Rallicola fulicia (Denny, 1842); Saemundssonia lari Fabricius, O, 1780), and Trinoton femoratum Piaget, 1889 have been recorded from Turkey for the first time.
    [Show full text]
  • High Tunnel Pest Management - Aphids
    Published by Utah State University Extension and Utah Plant Pest Diagnostic Laboratory ENT-225-21-PR March 2021 High Tunnel Pest Management - Aphids Nick Volesky, Vegetable IPM Associate • Zachary Schumm, Arthropod Diagnostician Winged Aphids Quick Facts • Aphids are small, pear-shaped insects with Thorax green; no abdominal Thorax darker piercing-sucking mouthparts that feed on plant dorsal markings; large (4 mm) than abdomen tissue. They can be found inside high tunnels all season long. • Various species of aphids have a broad host range and can vector several viruses. Potato Aphid Therefore, management in high tunnels can be Macrosipu euphorbiae challenging. • Monitor for aphids in high tunnels by visually inspecting plants for colonies and feeding symptoms. Irregular patch on No abdominal patch; dorsal abdomen; abdomen light to dark • Aphids can be managed in high tunnels through antennal tubercles green; small (<2 mm) cultural, mechanical, biological, and chemical swollen; medium to practices. large (> 3 mm) phids are a common pest that can be found on high Atunnel crops such as fruits, vegetables, ornamentals, Melon Cotton Aphid grasses, and weeds. Four aphid species commonly Aphis gossypii Green Peach Aphid found in Utah in high tunnels are green peach aphid Myzus persicae (Myzus persicae), melon aphid (Aphis gossypii), potato Wingless Aphids aphid (Macrosiphum euphorbiae), and cabbage aphid (Brevicoryne brassicae) (Fig. 1). Cornicles short (same as Cornicles longer than cauda); head flattened; small cauda; antennal insertions (2 mm), rounded body DESCRIPTION developed; medium to large (> 3mm) Aphids are small plant feeding insects in the order Hemiptera (the “true bugs”). Like all true bugs, aphids Melon Cotton Aphid have a piercing-sucking mouthpart (“proboscis”) that Aphis gossypii is used for feeding on plant structures.
    [Show full text]
  • MOSQUITOES of the SOUTHEASTERN UNITED STATES
    L f ^-l R A R > ^l^ ■'■mx^ • DEC2 2 59SO , A Handbook of tnV MOSQUITOES of the SOUTHEASTERN UNITED STATES W. V. King G. H. Bradley Carroll N. Smith and W. C. MeDuffle Agriculture Handbook No. 173 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE \ I PRECAUTIONS WITH INSECTICIDES All insecticides are potentially hazardous to fish or other aqpiatic organisms, wildlife, domestic ani- mals, and man. The dosages needed for mosquito control are generally lower than for most other insect control, but caution should be exercised in their application. Do not apply amounts in excess of the dosage recommended for each specific use. In applying even small amounts of oil-insecticide sprays to water, consider that wind and wave action may shift the film with consequent damage to aquatic life at another location. Heavy applications of insec- ticides to ground areas such as in pretreatment situa- tions, may cause harm to fish and wildlife in streams, ponds, and lakes during runoff due to heavy rains. Avoid contamination of pastures and livestock with insecticides in order to prevent residues in meat and milk. Operators should avoid repeated or prolonged contact of insecticides with the skin. Insecticide con- centrates may be particularly hazardous. Wash off any insecticide spilled on the skin using soap and water. If any is spilled on clothing, change imme- diately. Store insecticides in a safe place out of reach of children or animals. Dispose of empty insecticide containers. Always read and observe instructions and precautions given on the label of the product. UNITED STATES DEPARTMENT OF AGRICULTURE Agriculture Handbook No.
    [Show full text]
  • Türleri Chewing Lice (Phthiraptera)
    Kafkas Univ Vet Fak Derg ARTICLE IN PRESS RESEARCH ARTICLE xx (x): xxx-xxx, 2011 Chewing Lice (Phthiraptera) Species Found On Birds Along the Aras River, Iğdır, Eastern Turkey Bilal DIK * Çağan Hakkı ŞEKERCIOĞLU ** Mehmet Ali KIRPIK *** * University of Selçuk, College of Veterinary Medicine, Department of Parasitology, Alaaddin Keykubat Kampüsü, TR-42075 Konya - TURKEY ** Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, 84112 Utah - USA ** KuzeyDoga Society, İstasyon Mah., İsmail Aytemiz Cad., No. 161, TR--36200, Kars -TURKEY *** Kafkas University, Faculty of Science and Arts, Deparment of Biology, TR-36200 Kars -TURKEY Makale Kodu (Article Code): KVFD-2011-4075 Summary Chewing lice were sampled from the birds captured and ringed between September-October 2009 at the Aras River (Yukarı Çıyrıklı, Tuzluca, Iğdır) bird ringing station in eastern Turkey. Eighty-one bird specimens of 23 species were examined for lice infestation. All lice collected from the birds were placed in separate tubes with 70% alcohol. Louse specimens were cleared in 10% KOH, mounted in Canada balsam on glass slides and identified under a binocular light microscope. Sixteen out of 81 birds examined (19,75%) were infested with at least one chewing louse specimens. A total of 13 louse species were found on birds. These were: Austromenopon durisetosum (Blagoveshtchensky, 1948), Actornithophilus multisetosus (Blagoveshtchensky, 1940), Anaticola crassicornis (Scopoli, 1763), Cummingsiella ambigua (Burmeister, 1838), Menacanthus alaudae (Schrank, 1776), Menacanthus curuccae (Schrank, 1776), Menacanthus eurysternus (Burmeister, 1838), Menacanthus pusillus (Niztsch, 1866), Meromenopon meropis (Clay&Meinertzhagen, 1941), Myrsidea picae (Linnaeus, 1758), Pseudomenopon scopulacorne (Denny, 1842), Rhynonirmus scolopacis (Denny, 1842), and Trinoton querquedulae (Linnaeus, 1758).
    [Show full text]