P2699 Identification Guide to Adult Mosquitoes in Mississippi

Total Page:16

File Type:pdf, Size:1020Kb

P2699 Identification Guide to Adult Mosquitoes in Mississippi Identification Guide to Adult Mosquitoes in Mississippi es Identification Guide to Adult Mosquitoes in Mississippi By Wendy C. Varnado, Jerome Goddard, and Bruce Harrison Cover photo by Dr. Blake Layton, Mississippi State University Extension Service. Preface Entomology, and Plant Pathology at Mississippi State University, provided helpful comments and Mosquitoes and the diseases they transmit are in- other supportIdentification for publication and ofGeographical this book. Most Distri- creasing in frequency and geographic distribution. butionfigures of used the inMosquitoes this book of are North from America, Darsie, R. North F. and As many as 1,000 people were exposed recently ofWard, Mexico R. A., to dengue fever during an outbreak in the Florida Mos- Keys. “New” mosquito-borne diseases such as quitoes of, NorthUniversity America Press of Florida, Gainesville, West Nile and Chikungunya have increased pub- FL, 2005, and Carpenter, S. and LaCasse, W., lic awareness about disease potential from these , University of California notorious pests. Press, Berkeley, CA, 1955. None of these figures are This book was written to provide citizens, protected under current copyrights. public health workers, school teachers, and other Introduction interested parties with a hands-on, user-friendly guide to Mississippi mosquitoes. The book’s util- and Background ity may vary with each user group, and that’s OK; some will want or need more detail than others. Nonetheless, the information provided will allow There has never been a systematic, statewide you to identify mosquitoes found in Mississippi study of mosquitoes in Mississippi. Various au- with a fair degree of accuracy. For more informa- thors have reported mosquito collection records tion about mosquito species occurring in the state as a result of surveys of military installations in and diseases they may transmit, contact the ento- the state and/or public health malaria inspec- mology staff at the Mississippi State Department of tions. The first published mosquito records from Health or the medical entomologist at Mississippi MississippiAnopheles resulted crucians from an anophelineAn. punctipennis surveyAn. State University. pseudopunctipennis(malaria-related) in 1927An. in quadrimaculatuswhich the authors Acknowledgements reported , , , and (Car- An.ley andquadrimaculatus Balfour 1929).An. Two punctipennis years later, anotherAn. This publication would not have been possible malariacrucians study in the Mississippi Delta reported without the help and support of several individu- , , andAnopheles als and state and federal governmental funding (Perez 1930). A paper published in 1940 sources. Dr. Sally Slavinski, formerly with the by the State Board of Health discussed Mississippi State Department of Health (MSDH), population densities in Mississippi but reported helped first establish the West Nile virus surveil- no specific species names (Bradley, Bellamy et al. lance program in 2001. Tim Darnell, Office of Envi- 1940). During the 1940s, several military-related ronmental Health, MSDH, supported the mosquito studies in Mississippi provided further records of survey and identification project from inception, as mosquitoes (King and Bradley 1941; King, Roth et did Dr. Ed Thompson (former state health officer, al. 1943; Middlekauff and Carpenter 1944; Car- MSDH) and Dr. Mary Currier (current state health penter, Chamberlain et al. 1945; Miles and Rings officer, MSDH). Partial funding came from a grant 1946; Michener 1947; Rings and Richmond 1953). from the Centers for Disease Control and Preven- Michener’s work was the most complete, revealing tion to the Mississippi State Department of Health 47 species from the Camp Shelby (Hattiesburg) titled “Epidemiology and Laboratory Capacity for vicinity of South Mississippi (Michener 1947). In Infectious Diseases (West Nile surveillance por- addition, a studyPsorophora on chemical confinnis controlcolumbiae of rice field tion),” U50\CCU416826-03. A health department mosquitoes in 1952 and 1953 in Bolivar County contract mosquito surveillance technician, M’Lee mentioned (as ) Hoyt Loe, collected several thousand specimens (Mathis et al. 1954). Later, the results of these from around the state from 2001 to 2003. Joe earlier records were summarized and provided a MacGown, Dr. Blake Layton, and Dr. Scott Willard, total of 53 species occurring in Mississippi (King et Department of Biochemistry, Molecular Biology, al. 1960). 3 Unusual Mosquito In 1969, the U.S. Department of Agriculture Records from Mississippi conducted mosquito surveillance in Hancock County as part of a pest-monitoring program. All collections were made in February and March and There are several unusualAe. stimulansmosquito collection yielded only 10 relatively common species (USDA records from Mississippi. King et al. (1960) men- 1969). In the mid-1960s, Harden and Poolson tioned a record of two from Electric (1969) published a study to determine the season- Mills in Kemper County, Mississippi. Finding these ality of mosquitoes in Hancock County. During a two specimens several hundred miles south of 4-year collection period (1964–1968), a total of 33 their normal range is quite strange; however, the species was recorded. Almost all records from the record has been confirmed and acceptedAe. asdorsalis a valid 1970s, 1980s, and early 1990s resulted from col- Mississippi record (Goddard and Harrison 2005). lections made by U.S. Air Force personnel at instal- Aedes Ther dorsalise is also a collection record of lations in Harrison and Lowndes counties (USAF from Como, Mississippi (Miles and Rings 1946). 1971; USAF 1975; USAF 1977; USAF 1978; USAF is ordinarily only found in the 1979; USAF 1980; USAF 1981; USAF 1983; USAF western United States. Even though we have no 1984; USAF 1986; USAF 1987; AedesUSAF 1988).albopictus voucher available, the specimen was apparently Records from 1989 show the first known pres- identified by Alan Stone, one of the foremost dip- ence of the introduced species in tera experts in the country, so we mustPs. pygmeaaccept this Mississippi (USAF 1989). A master’s thesis in 1974 as a valid Mississippi record. by Harry Fulton determined the seasonality of Harden et al. (1967) mentioned mosquitoes in Clay, Lowndes, and Oktibbeha coun- from Horn Island, Mississippi. Again, we have no ties. A total of 39 species was collected from March specimen available. Goddard and Harrison (2005) 1972Anopheles to November walkeri 1973Orthopodomyia during his study. alba SomeCulex of addressed this issue and determined that since pilosusthe most interestingCx. peccator findings in his survey includ- this species is restricted to southern Florida and ed , , no voucher specimen is available,Ae. nigromaculis the record must , and (Fulton 1974;Wyeomyia Fulton et al. be deleted. 1974). In 1977 and 1983, Bradshaw published two smithii There is oneAe. record nigromaculis of from papers on the pitcher-plant mosquito Harrison County, Mississippi (USAF 1990). The in Mississippi, with both papers reporting distribution of borders the west- collections fromSarracenia George County. purpurea He noted that the ern edge of Mississippi (Darsie and Ward 2005), so mosquito was found associated with the purple finding this species in Mississippi is certainly pos- pitcher-plant, , and its hybrids sible. Nonetheless, we have no voucher specimen (Bradshaw and Lounibos 1977; Bradshaw 1983). and thus no positive verification of this species In 1982, Nelson conducted a small study at Mays from Mississippi. Lake in Jackson, Mississippi, to determine the Mosquito Taxonomy and relative abundance and species composition of the mosquito population (Nelson et al. 1985). During Reclassification Issues the months of March through September 1982, a total of 13 species from five genera were recorded. In the late 1990s, research was conducted in For mosquito identification/surveillance, we use northeast Mississippi to determine arbovirus ac- the illustrations in Carpenter and LaCasse (1955) tivity in the adult mosquito population. Traps were and the keys of Darsie and Ward (2005),Aedes Slaff and set in a wetland in Tishomingo County to collect Apperson (1989), and Darsie and Morris (2000). mosquitoes for arboviral testing and to determine OchlerotatusWe have accepted the recent changes in species diversity. A total of 23 species was col- nomenclature by Reinert (2000)Aedes and recognize lected (Cupp et al. 2004). as the genus for certain species that were formerlyAnopheles in the quadrimaculatus genus . Abbreviations for genera follow Reinert (2001). As for species complex, s.l., we have 4 acceptedAn. thediluvialis ReinertAn. et inundatusal. (1997) classificationAn. maverlius representing 57 of the 61 species discussed are An.that quadrimaculatus there are five species An.in this smaragdinus complex consist- deposited in the Mississippi Entomological Muse- ing of An., maverlius An., quadrimacula-, um or in the Smithsonian Institution. Nine species tus An. smaragdinus, and . Three have been reported for which specimens have not of these species ( , been examined by the authors or verified as valid. , and ) have been recorded from Basic Mosquito RecentMississippi (Reinert Mosquito et al. 1997). Biology and Ecology Work in Mississippi Mosquitoes undergo complete metamorphosis, having egg, larval, pupal, and adult stages. Larvae In 2000, the Mississippi State Department of are commonly referred to as “wigglers” and pupae Health received a West Nile surveillance grant as “tumblers.” Larvae and pupae of mosquitoes
Recommended publications
  • Twenty Years of Surveillance for Eastern Equine Encephalitis Virus In
    Oliver et al. Parasites & Vectors (2018) 11:362 https://doi.org/10.1186/s13071-018-2950-1 RESEARCH Open Access Twenty years of surveillance for Eastern equine encephalitis virus in mosquitoes in New York State from 1993 to 2012 JoAnne Oliver1,2*, Gary Lukacik3, John Kokas4, Scott R. Campbell5, Laura D. Kramer6,7, James A. Sherwood1 and John J. Howard1 Abstract Background: The year 1971 was the first time in New York State (NYS) that Eastern equine encephalitis virus (EEEV) was identified in mosquitoes, in Culiseta melanura and Culiseta morsitans. At that time, state and county health departments began surveillance for EEEV in mosquitoes. Methods: From 1993 to 2012, county health departments continued voluntary participation with the state health department in mosquito and arbovirus surveillance. Adult female mosquitoes were trapped, identified, and pooled. Mosquito pools were tested for EEEV by Vero cell culture each of the twenty years. Beginning in 2000, mosquito extracts and cell culture supernatant were tested by reverse transcriptase-polymerase chain reaction (RT-PCR). Results: During the years 1993 to 2012, EEEV was identified in: Culiseta melanura, Culiseta morsitans, Coquillettidia perturbans, Aedes canadensis (Ochlerotatus canadensis), Aedes vexans, Anopheles punctipennis, Anopheles quadrimaculatus, Psorophora ferox, Culex salinarius, and Culex pipiens-restuans group. EEEV was detected in 427 adult mosquito pools of 107,156 pools tested totaling 3.96 million mosquitoes. Detections of EEEV occurred in three geographical regions of NYS: Sullivan County, Suffolk County, and the contiguous counties of Madison, Oneida, Onondaga and Oswego. Detections of EEEV in mosquitoes occurred every year from 2003 to 2012, inclusive. EEEV was not detected in 1995, and 1998 to 2002, inclusive.
    [Show full text]
  • Mosquito Species Identification Using Convolutional Neural Networks With
    www.nature.com/scientificreports OPEN Mosquito species identifcation using convolutional neural networks with a multitiered ensemble model for novel species detection Adam Goodwin1,2*, Sanket Padmanabhan1,2, Sanchit Hira2,3, Margaret Glancey1,2, Monet Slinowsky2, Rakhil Immidisetti2,3, Laura Scavo2, Jewell Brey2, Bala Murali Manoghar Sai Sudhakar1, Tristan Ford1,2, Collyn Heier2, Yvonne‑Marie Linton4,5,6, David B. Pecor4,5,6, Laura Caicedo‑Quiroga4,5,6 & Soumyadipta Acharya2* With over 3500 mosquito species described, accurate species identifcation of the few implicated in disease transmission is critical to mosquito borne disease mitigation. Yet this task is hindered by limited global taxonomic expertise and specimen damage consistent across common capture methods. Convolutional neural networks (CNNs) are promising with limited sets of species, but image database requirements restrict practical implementation. Using an image database of 2696 specimens from 67 mosquito species, we address the practical open‑set problem with a detection algorithm for novel species. Closed‑set classifcation of 16 known species achieved 97.04 ± 0.87% accuracy independently, and 89.07 ± 5.58% when cascaded with novelty detection. Closed‑set classifcation of 39 species produces a macro F1‑score of 86.07 ± 1.81%. This demonstrates an accurate, scalable, and practical computer vision solution to identify wild‑caught mosquitoes for implementation in biosurveillance and targeted vector control programs, without the need for extensive image database development for each new target region. Mosquitoes are one of the deadliest animals in the world, infecting between 250–500 million people every year with a wide range of fatal or debilitating diseases, including malaria, dengue, chikungunya, Zika and West Nile Virus1.
    [Show full text]
  • Health Risk Assessment for the Introduction of Eastern Wild Turkeys (Meleagris Gallopavo Silvestris) Into Nova Scotia
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Canadian Cooperative Wildlife Health Centre: Wildlife Damage Management, Internet Center Newsletters & Publications for April 2004 Health risk assessment for the introduction of Eastern wild turkeys (Meleagris gallopavo silvestris) into Nova Scotia A.S. Neimanis F.A. Leighton Follow this and additional works at: https://digitalcommons.unl.edu/icwdmccwhcnews Part of the Environmental Sciences Commons Neimanis, A.S. and Leighton, F.A., "Health risk assessment for the introduction of Eastern wild turkeys (Meleagris gallopavo silvestris) into Nova Scotia" (2004). Canadian Cooperative Wildlife Health Centre: Newsletters & Publications. 48. https://digitalcommons.unl.edu/icwdmccwhcnews/48 This Article is brought to you for free and open access by the Wildlife Damage Management, Internet Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Canadian Cooperative Wildlife Health Centre: Newsletters & Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Health risk assessment for the introduction of Eastern wild turkeys (Meleagris gallopavo silvestris) into Nova Scotia A.S. Neimanis and F.A. Leighton 30 April 2004 Canadian Cooperative Wildlife Health Centre Department of Veterinary Pathology Western College of Veterinary Medicine 52 Campus Dr. University of Saskatchewan Saskatoon, SK Canada S7N 5B4 Tel: 306-966-7281 Fax: 306-966-7439 [email protected] [email protected] 1 SUMMARY This health risk assessment evaluates potential health risks associated with a proposed introduction of wild turkeys to the Annapolis Valley of Nova Scotia. The preferred source for the turkeys would be the Province of Ontario, but alternative sources include the northeastern United States from Minnesota eastward and Tennessee northward.
    [Show full text]
  • HEALTHINFO H E a Lt H Y E Nvironment T E a M Eastern Equine Encephalitis (EEE)
    H aldimand-norfolk HE a LT H U N I T HEALTHINFO H e a lt H y e nvironment T E a m eastern equine encephalitis (EEE) What is eastern equine encephalitis? Eastern Equine Encephalitis (EEE), some- times called sleeping sickness or Triple E, is a rare but serious viral disease spread by infected mosquitoes. How is eastern equine encephalitis transmitted? The Eastern equine encephalitis virus (EEEv) can infect a wide range of hosts including mammals, birds, reptiles and amphibians. Infection occurs through the bite of an infected mosquito. The virus itself is maintained in nature through a cycle between Culiseta melan- ura mosquitoes and birds. Culiseta mel- anura mosquitoes feed almost exclusively on birds, so they are not considered an important vector of EEEv to humans or other mammals. Transmission of EEEv to humans requires mosquito species capable of creating a “bridge” between infected birds and uninfected mammals. Other species of mosquitoes (including Coquiletidia per- Coast states. In Ontario, EEEv has been ticipate in outdoor recreational activities turbans, Aedes vexans, Ochlerotatus found in horses that reside in the prov- have the highest risk of developing EEE sollicitans and Oc. Canadensis) become ince or that have become infected while because of greater exposure to potentially infected when they feed on infected travelling. infected mosquitoes. birds. These infected mosquitoes will then occasionally feed on horses, humans Similar to West Nile virus (WNv), the People of all ages are at risk for infection and other mammals, transmitting the amount of virus found in nature increases with the EEE virus but individuals over age virus.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Identification Key for Mosquito Species
    ‘Reverse’ identification key for mosquito species More and more people are getting involved in the surveillance of invasive mosquito species Species name used Synonyms Common name in the EU/EEA, not just professionals with formal training in entomology. There are many in the key taxonomic keys available for identifying mosquitoes of medical and veterinary importance, but they are almost all designed for professionally trained entomologists. Aedes aegypti Stegomyia aegypti Yellow fever mosquito The current identification key aims to provide non-specialists with a simple mosquito recog- Aedes albopictus Stegomyia albopicta Tiger mosquito nition tool for distinguishing between invasive mosquito species and native ones. On the Hulecoeteomyia japonica Asian bush or rock pool Aedes japonicus japonicus ‘female’ illustration page (p. 4) you can select the species that best resembles the specimen. On japonica mosquito the species-specific pages you will find additional information on those species that can easily be confused with that selected, so you can check these additional pages as well. Aedes koreicus Hulecoeteomyia koreica American Eastern tree hole Aedes triseriatus Ochlerotatus triseriatus This key provides the non-specialist with reference material to help recognise an invasive mosquito mosquito species and gives details on the morphology (in the species-specific pages) to help with verification and the compiling of a final list of candidates. The key displays six invasive Aedes atropalpus Georgecraigius atropalpus American rock pool mosquito mosquito species that are present in the EU/EEA or have been intercepted in the past. It also contains nine native species. The native species have been selected based on their morpho- Aedes cretinus Stegomyia cretina logical similarity with the invasive species, the likelihood of encountering them, whether they Aedes geniculatus Dahliana geniculata bite humans and how common they are.
    [Show full text]
  • Updated Information Regarding Mosquito Repellents.PDF
    Updated Information regarding Mosquito Repellents May 8, 2008 Repellents are an important tool to assist people in protecting themselves from mosquito-borne diseases. CDC recommends the use of products containing active ingredients which have been registered by the U.S. Environmental Protection Agency (EPA) for use as repellents applied to skin and clothing. EPA registration of repellent active ingredients indicates the materials have been reviewed and approved for efficacy and human safety when applied according to the instructions on the label. Repellents for use on skin and clothing: CDC evaluation of information contained in peer-reviewed scientific literature and data available from EPA has identified several EPA registered products that provide repellent activity sufficient to help people avoid the bites of disease carrying mosquitoes. Products containing these active ingredients typically provide reasonably long-lasting protection: • DEET (Chemical Name: N,N-diethyl-m-toluamide or N,N-diethly-3-methyl- benzamide) • Picaridin (KBR 3023, Chemical Name: 2-(2-hydroxyethyl)-1- piperidinecarboxylic acid 1-methylpropyl ester ) • Oil of Lemon Eucalyptus* or PMD (Chemical Name: para-Menthane-3,8- diol)the synthesized version of oil of lemon eucalyptus • IR3535 (Chemical Name: 3-[N-Butyl-N-acetyl]-aminopropionic acid, ethyl ester) EPA characterizes the active ingredients DEET and Picaridin as “conventional repellents” and Oil of Lemon Eucalyptus, PMD, and IR3535 as “biopesticide repellents”, which are derived from natural materials. For more information on repellent active ingredients see http://www.epa.gov/pesticides/health/mosquitoes/ai_insectrp.htm ). Published data indicate that repellent efficacy and duration of protection vary considerably among products and among mosquito species and are markedly affected by ambient temperature, amount of perspiration, exposure to water, abrasive removal, and other factors.
    [Show full text]
  • The Mosquitoes of Alaska
    LIBRAR Y ■JRD FEBE- Î961 THE U. s. DtPÁ¡<,,>^iMl OF AGidCÜLl-yí MOSQUITOES OF ALASKA Agriculture Handbook No. 182 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE U < The purpose of this handbook is to present information on the biology, distribu- tion, identification, and control of the species of mosquitoes known to occur in Alaska. Much of this information has been published in short papers in various journals and is not readily available to those who need a comprehensive treatise on this subject ; some of the material has not been published before. The information l)r()UKlit together here will serve as a guide for individuals and communities that have an interest and responsibility in mosquito problems in Alaska. In addition, the military services will have considerable use for this publication at their various installations in Alaska. CuUseta alaskaensis, one of the large "snow mosquitoes" that overwinter as adults and emerge from hiber- nation while much of the winter snow is on the ground. In some localities this species is suJBBciently abundant to cause serious annoy- ance. THE MOSQUITOES OF ALASKA By C. M. GJULLIN, R. I. SAILER, ALAN STONE, and B. V. TRAVIS Agriculture Handbook No. 182 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE Washington, D.C. Issued January 1961 For «ale by the Superintendent of Document«. U.S. Government Printing Office Washington 25, D.C. - Price 45 cent» Contents Page Page History of mosquito abundance Biology—Continued and control 1 Oviposition 25 Mosquito literature 3 Hibernation 25 Economic losses 4 Surveys of the mosquito problem. 25 Mosquito-control organizations 5 Mosquito surveys 25 Life history 5 Engineering surveys 29 Eggs_".
    [Show full text]
  • Thompson-Nicola Regional District Nuisance Mosquito
    THOMPSON-NICOLA REGIONAL DISTRICT NUISANCE MOSQUITO CONTROL PROGRAM 2011 YEAR-END REPORT Prepared by: ___________________________ Burke Phippen, BSc., RPBio. Project Manager ___________________________ Cheryl Phippen, BSc., RN Field Coordinator NOVEMBER, 2011 BWP CONSULTING INC. 6211 Meadowland C res S, Kamloops, BC V2C 6X3 2011 Thompson-Nicola Regional District Mosquito Control Program Table of Contents LIST OF FIGURES ............................................................................................................... IV LIST OF TABLES .................................................................................................................. V EXECUTIVE SUMMARY ....................................................................................................... 1 1.0 INTRODUCTION ............................................................................................................. 3 1.1. RESOURCES AVAILABLE FOR MOSQUITO CONTROL PROGRAM ................................. 5 2.0 ENVIRONMENTAL FACTORS ......................................................................................... 5 2.1. SNOW PACK .............................................................................................................. 5 2.1. TEMPERATURE AND PRECIPITATION .......................................................................... 7 2.2. FLOW LEVELS ............................................................................................................ 9 3.0 LARVICIDING PROGRAM ...........................................................................................
    [Show full text]
  • MOSQUITOES of the SOUTHEASTERN UNITED STATES
    L f ^-l R A R > ^l^ ■'■mx^ • DEC2 2 59SO , A Handbook of tnV MOSQUITOES of the SOUTHEASTERN UNITED STATES W. V. King G. H. Bradley Carroll N. Smith and W. C. MeDuffle Agriculture Handbook No. 173 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE \ I PRECAUTIONS WITH INSECTICIDES All insecticides are potentially hazardous to fish or other aqpiatic organisms, wildlife, domestic ani- mals, and man. The dosages needed for mosquito control are generally lower than for most other insect control, but caution should be exercised in their application. Do not apply amounts in excess of the dosage recommended for each specific use. In applying even small amounts of oil-insecticide sprays to water, consider that wind and wave action may shift the film with consequent damage to aquatic life at another location. Heavy applications of insec- ticides to ground areas such as in pretreatment situa- tions, may cause harm to fish and wildlife in streams, ponds, and lakes during runoff due to heavy rains. Avoid contamination of pastures and livestock with insecticides in order to prevent residues in meat and milk. Operators should avoid repeated or prolonged contact of insecticides with the skin. Insecticide con- centrates may be particularly hazardous. Wash off any insecticide spilled on the skin using soap and water. If any is spilled on clothing, change imme- diately. Store insecticides in a safe place out of reach of children or animals. Dispose of empty insecticide containers. Always read and observe instructions and precautions given on the label of the product. UNITED STATES DEPARTMENT OF AGRICULTURE Agriculture Handbook No.
    [Show full text]
  • Ana Kurbalija PREGLED ENTOMOFAUNE MOČVARNIH
    SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU I INSTITUT RUĐER BOŠKOVI Ć, ZAGREB Poslijediplomski sveučilišni interdisciplinarni specijalisti čki studij ZAŠTITA PRIRODE I OKOLIŠA Ana Kurbalija PREGLED ENTOMOFAUNE MOČVARNIH STANIŠTA OD MEĐUNARODNOG ZNAČENJA U REPUBLICI HRVATSKOJ Specijalistički rad Osijek, 2012. TEMELJNA DOKUMENTACIJSKA KARTICA Sveučilište Josipa Jurja Strossmayera u Osijeku Specijalistički rad Institit Ruđer Boškovi ć, Zagreb Poslijediplomski sveučilišni interdisciplinarni specijalisti čki studij zaštita prirode i okoliša Znanstveno područje: Prirodne znanosti Znanstveno polje: Biologija PREGLED ENTOMOFAUNE MOČVARNIH STANIŠTA OD ME ĐUNARODNOG ZNAČENJA U REPUBLICI HRVATSKOJ Ana Kurbalija Rad je izrađen na Odjelu za biologiju, Sveučilišta Josipa Jurja Strossmayera u Osijeku Mentor: izv.prof. dr. sc. Stjepan Krčmar U ovom radu je istražen kvalitativni sastav entomof aune na četiri močvarna staništa od me đunarodnog značenja u Republici Hrvatskoj. To su Park prirode Kopački rit, Park prirode Lonjsko polje, Delta rijeke Neretve i Crna Mlaka. Glavni cilj specijalističkog rada je objediniti sve objavljene i neobjavljene podatke o nalazima vrsta kukaca na ova četiri močvarna staništa te kvalitativno usporediti entomofau nu pomoću Sörensonovog indexa faunističke sličnosti. Na području Parka prirode Kopački rit utvrđeno je ukupno 866 vrsta kukaca razvrstanih u 84 porodice i 513 rodova. Na području Parka prirode Lonjsko polje utvrđeno je 513 vrsta kukaca razvrstanih u 24 porodice i 89 rodova. Na području delte rijeke Neretve utvrđeno je ukupno 348 vrsta kukaca razvrstanih u 89 porodica i 227 rodova. Za područje Crne Mlake nije bilo dostupne literature o nalazima kukaca. Velika vrijednost Sörensonovog indexa od 80,85% ukazuje na veliku faunističku sličnost između faune obada Kopačkoga rita i Lonjskoga polja. Najmanja sličnost u fauni obada utvrđena je između močvarnih staništa Lonjskog polja i delte rijeke Neretve, a iznosi 41,37%.
    [Show full text]
  • Biology of Mosquitoes
    Chapter 2 Biology of Mosquitoes Regarding their special adaptational mechanisms, as rain-water drums, tyres, cemetery vases, small clay mosquitoes are capable of thriving in a variety of envi- pots, etc. ronments. There is hardly any aquatic habitat anywhere Furthermore, their capacity to adapt to various in the world that does not lend itself as a breeding site climatic factors or changing environmental conditions for mosquitoes. They colonise the temporary and per- is fascinating. For instance, Ae. albopictus, the Asian manent, highly polluted as well as clean, large and tiger mosquito is originally a tropical species. In the small water bodies; even the smallest accumulations course of a climate-related evolutionary adaption it such as water-filled buckets, flower vases, tyres, hoof developed a photoperiodic sensitivity. When days are prints and leaf axes are potential sources. shorter, the photoperiodically sensitive female inhabit- In temporarily flooded areas, along rivers or lakes ing a temperate climate, lays eggs that are different with water fluctuations, floodwater mosquitoes such as from the eggs that she lays when days are longer. Eggs Aedes vexans or Ochlerotatus sticticus develop in large laid during shorter days, are dormant and do not hatch numbers and with a flight range of several miles, until the following season, ensuring the species’ sur- become a tremendous nuisance even in places located vival through the winter. far away from their breeding sites (Mohrig 1969; This ability to adapt to moderate climatic condi- Becker and Ludwig 1981; Schäfer et al. 1997). tions and the fact that the eggs are resistant to desic- In swampy woodlands, snow-melt mosquitoes such cation and survive for more than a year, including the as Oc.
    [Show full text]