The Mosquitoes of Alaska

Total Page:16

File Type:pdf, Size:1020Kb

The Mosquitoes of Alaska LIBRAR Y ■JRD FEBE- Î961 THE U. s. DtPÁ¡<,,>^iMl OF AGidCÜLl-yí MOSQUITOES OF ALASKA Agriculture Handbook No. 182 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE U < The purpose of this handbook is to present information on the biology, distribu- tion, identification, and control of the species of mosquitoes known to occur in Alaska. Much of this information has been published in short papers in various journals and is not readily available to those who need a comprehensive treatise on this subject ; some of the material has not been published before. The information l)r()UKlit together here will serve as a guide for individuals and communities that have an interest and responsibility in mosquito problems in Alaska. In addition, the military services will have considerable use for this publication at their various installations in Alaska. CuUseta alaskaensis, one of the large "snow mosquitoes" that overwinter as adults and emerge from hiber- nation while much of the winter snow is on the ground. In some localities this species is suJBBciently abundant to cause serious annoy- ance. THE MOSQUITOES OF ALASKA By C. M. GJULLIN, R. I. SAILER, ALAN STONE, and B. V. TRAVIS Agriculture Handbook No. 182 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE Washington, D.C. Issued January 1961 For «ale by the Superintendent of Document«. U.S. Government Printing Office Washington 25, D.C. - Price 45 cent» Contents Page Page History of mosquito abundance Biology—Continued and control 1 Oviposition 25 Mosquito literature 3 Hibernation 25 Economic losses 4 Surveys of the mosquito problem. 25 Mosquito-control organizations 5 Mosquito surveys 25 Life history 5 Engineering surveys 29 Eggs_". 6 Methods of mosquito control 29 Larvae 6 Control of larvae 30 Pupae 6 Environmental control-., 30 Adults 6 Control with insecticides. 31 Distribution 7 Protection against adults 32 Abundance 11 Personal protection 33 Predicting abundance 12 Insecticides 34 Effects of weather on mos- Control of resistant mosqui- quito activity 14 toes 39 Biology 16 Technique for mosquito collection Larval habitats 16 and survey 39 Habitat preferences and Identification of species 42 relative economic im- portance of species 21 Keys and notes for identification. 42 Water temperature of Genus Aedes Meigen 45 larval habitats 22 Genus Culiseta Felt 71 Adult food habits 23 Genus Anopheles Meigen 77 Longevity 23 Genus Culex Linnaeus 79 Flight range 23 Literature cited 81 Mating 24 Appendix 87 n THE MOSQUITOES OF ALASKA By C. M. GJULLIN, R. I. SAILER. ALAN STONE, and B. V. TRAVIS.^ entomologists, Entomology Research Division, Agricultural Research Service History of Mosquito Abundance and Control The mosquito problem in Alaska fever. The traveler who exposes his seems to have changed very little bare eyes or face here loses his natural since it was first recorded by early appearance; his eyelids swell up and close, and his face becomes one mass of travelers and explorers. The first lumps and fiery pimples. Mosquitoes reconnaissance of Alaska after its torture the Indian dogs to death, espe- purchase from Russia in 1867 was cially if one of these animals, by mange made by Raymond (94.) ^ of the or otherwise, loses an inconsiderable portion of its thick hairy covering, and U.S. Army Engineer Corps in 1869. even drive the bear and the deer into During his voyage up the Yukon the water. River by steamboat, mosquitoes During a military reconnaissance were present in large numbers. He of the Copper River Valley in 1898 wrote : under the direction of Abenjrombie The swarms of mosquitoes and gnats (i), captain of the Second U.S. which abound on the river during the Infantry, a party led by Rafferty months of June and July proved a very serious annoyance. When the boat was (91) investigated the route from not in motion, we were obliged to wear Valdez to Copper Center on the face nets and gloves; and on one occa- Klutina River. His party camped sion an attempt to make sextant obser- for several days at Copper Center. vations failed completely from this cause. The mosquitoes are much larger He described the mosquito situation than those met with in lower latitudes. at that time (June 9-13) as follows : Petrof (89), while investigating The long-expected pests, the mosqui- toes, were out in full force during the the population and resources of stay at this camp, and the men were com- Alaska m 1880, found mosquitoes to pelled to wear veils day and night, with be a severe annoyance in the lower gloves to protect the hands. The feroc- Kuskokwim Valley. He wrote : ity of these mosquitoes I regard as some- thing remarkable. The species found There is another feature in this coun- here is not the large, singing sort seen try which, though insignificant on pa- in the States, but a small, silent, busi- per, is to the traveler the most terrible ness-like insect, sharp of bill, who touches and poignant infliction he can be called the tender spot in a surprisingly short upon to bear in a new land. I refer to time after alighting. After making their the clouds of bloodthirsty mosquitoes, ac- ~ appearance they never left the expedi- companied by a vindictive ally in the tion for a day. shape of a small poisonous black fly, under the stress of whose persecution the The conditions described by these strongest man with the firmest will must early travelers do not prevail in all either feel depressed or succumb to low parts of Alaska with equal inten- sity, nor are they always as severe ' Now with the Department of Ento- mology, Cornell University, Ithaca, N.T. in the same locality from year to ' Italic numbers in parentheses refer to year. However, Stefansson (JOl) Literature Cited, p. 81. after many years of travel and ex- AGR. HANDBOOK 182, U.S. DEPT. OF AGRICULTURE ploration in the North considered during 1947-48. Work in this area mosquitoes one of the principal ob- was carried on mainly during the stacles to the development of this summer and was handicapped by region. huge swanns of mosquitoes, which The first information on the spe- emerged after the spring thaw and cies of mosquitoes that are such a persisted until the first frost. Four severe pest in many places in Alaska species wei-e present. Neither fuel may have been obtained by Trevor oil alone nor fuel oil and DDT Kincaid (Coquillett i?(9) of theHar- gave satisfactory control in air- riman Alaska Expedition in 1899. plane applications against larvae, He collected large numbers of in- but DDT-fuel oil applications sects, including two species of mos- against adults markedly reduced quitoes. Mosquito collections have the mosquito population for a few also been made by J. S. Hine of the days. National Geographic's Mount Kat- The need for protective measures mai expedition in 1917, as well as against the hordes of biting insects by H. G. Dyar in 1917 and J. M. in the arctic and subarctic became Aldrich in 1921. more urgent with the increased mil- The habits, biology, and methods itary interest in these regions after of control of mosquitoes in Alaska 1941. As a result of a discussion were first investigated in the sum- of these problems by workers in the mer of 1931 in a cooperative project U.S. Department of Agriculture between the U.S. Bureau of Ento- and the office of the Surgeon Gen- mology and the U.S. Smelting and eral, U.S. Department of the Army, Mining Co. The investigations a project was outlined by the for- were carried on by Tidloch {106) mer to obtain basic information for at Fairbanks, Alaska. Fifteen insect control. This project was species were collected in the area approved by the Surgeon General during the summer. Recommenda- in 1946, and the Department of tions for control of mosquitoes af- Agriculture was designated as the fecting the men employed in gold- resjoonsible agency. Specialists dredging operations there included were assigned from the various burning of the dead vegetation to agencies concerned. Quarters and facilitate evaporation of partially subsistence for the men and all sup- covered pools, minor drainage, and plies and equipment were furnished spraying of breeding areas adja- by the military except microscopes cent to the mining operations with and a limited amount of similar diesel oil. equipment, which were provided by Additional information on the the Department of Agriculture. distribution, abundance, and species An advance party of five arrived of mosquitoes in Alaska was ob- in Alaska on May 4, 1947. In all, tained by Stage in 1943 {99). 21 persons were employed on the Chamberlin also added considerable project during 1947, and the num- infomiation to our knowledge of ber was increased to 40 during 1948. Culicidae during 1943-Í5 {99). U.S. Air Force pilots were assigned During 1956 in northeastern Alaska as needed, and 19 enlisted men were Ehrlich {9a) collected several spe- attached to the project for varying cies of mosquitoes not previously periods during the summer. In reported from beyond the tree line. 1949, 10 men carried on the work; Studies of the biology and control pilots and several enlisted men were of arctic mosquitoes were made for again assigned as needed. In 1950 the U.S. Navy installations at the party was limited to six men, in TTmiat. Alaska, by Jachowski and addition to the plane pilots and Schultz {75) and by Knight {80) four enlisted men. THE MOSQUITOES OF ALASKA The U.S. Public Health Service, fauna, reared specimens were col- which assigned several men to the lected for taxonomic purposes, and project in 194:8-49, has since main- experiments were conducted on the tained a permanent staff of three control of mosquitoes with ground entomologists on mosquito and and aerial equipment.
Recommended publications
  • Mosquito Species Identification Using Convolutional Neural Networks With
    www.nature.com/scientificreports OPEN Mosquito species identifcation using convolutional neural networks with a multitiered ensemble model for novel species detection Adam Goodwin1,2*, Sanket Padmanabhan1,2, Sanchit Hira2,3, Margaret Glancey1,2, Monet Slinowsky2, Rakhil Immidisetti2,3, Laura Scavo2, Jewell Brey2, Bala Murali Manoghar Sai Sudhakar1, Tristan Ford1,2, Collyn Heier2, Yvonne‑Marie Linton4,5,6, David B. Pecor4,5,6, Laura Caicedo‑Quiroga4,5,6 & Soumyadipta Acharya2* With over 3500 mosquito species described, accurate species identifcation of the few implicated in disease transmission is critical to mosquito borne disease mitigation. Yet this task is hindered by limited global taxonomic expertise and specimen damage consistent across common capture methods. Convolutional neural networks (CNNs) are promising with limited sets of species, but image database requirements restrict practical implementation. Using an image database of 2696 specimens from 67 mosquito species, we address the practical open‑set problem with a detection algorithm for novel species. Closed‑set classifcation of 16 known species achieved 97.04 ± 0.87% accuracy independently, and 89.07 ± 5.58% when cascaded with novelty detection. Closed‑set classifcation of 39 species produces a macro F1‑score of 86.07 ± 1.81%. This demonstrates an accurate, scalable, and practical computer vision solution to identify wild‑caught mosquitoes for implementation in biosurveillance and targeted vector control programs, without the need for extensive image database development for each new target region. Mosquitoes are one of the deadliest animals in the world, infecting between 250–500 million people every year with a wide range of fatal or debilitating diseases, including malaria, dengue, chikungunya, Zika and West Nile Virus1.
    [Show full text]
  • Operations and Disease Surveillance
    VECTOR CONTROL DISTRICT COUNTY OF SANTA CLARA MONTHLY REPORT MAY 2020 SAVE WATER. NOT MOSQUITOES. DON’T CREATE MOSQUITO HABITAT BY ACCIDENT. Over watering lawns and plants is a large contributor to mosquito breeding. Help fight the bite by: • Fixing leaky faucets and broken sprinklers. • Only apply as much waster as your plants and soil need. Visit SCCVector.org for more information. IN THIS ISSUE MANAGER'S MESSAGE 2 SERVICES AVAILABLE 3 OPERATIONS DATA 4 - 6 WEST NILE 7 - 8 SURVEILLANCE PUBLIC SURVICE 9 REQUESTS VECTOR CONTROL DISTRICT COUNTY OF SANTA CLARA CONSUMER & ENVIRONMENTAL PROTECTION AGENCY PAGE 2 | OPERATIONS AND SURVEILLANCE REPORT MESSAGE FROM THE MANAGER Warm weather is here and that means vectors such as ticks are more active. May was Lyme Disease Awareness Month, and the County of Santa Clara Vector Control District celebrated by participating and advertising the Centers for Disease Control and Prevention’s Lyme Disease Awareness Month Lunch and Learn Series. The weekly series offered interactive presentations on tick surveillance, tick collection, tick bite prevention, and other activities. The District reminds the public to practice preventative measures to avoid coming into contact with ticks. Use insect repellent approved by the Environmental Protection Agency, avoid areas with high grass, and check gear, pets, and children for ticks during and after being in tick habitat. Warm months also mean other vectors such as mosquitoes are more active as well. The District is hard at work monitoring for diseases, such as West Nile virus and Nayer Zahiri eliminating mosquito breeding in areas like marshes, neglected pools, curbs, catch basins, and ponds.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Identification Key for Mosquito Species
    ‘Reverse’ identification key for mosquito species More and more people are getting involved in the surveillance of invasive mosquito species Species name used Synonyms Common name in the EU/EEA, not just professionals with formal training in entomology. There are many in the key taxonomic keys available for identifying mosquitoes of medical and veterinary importance, but they are almost all designed for professionally trained entomologists. Aedes aegypti Stegomyia aegypti Yellow fever mosquito The current identification key aims to provide non-specialists with a simple mosquito recog- Aedes albopictus Stegomyia albopicta Tiger mosquito nition tool for distinguishing between invasive mosquito species and native ones. On the Hulecoeteomyia japonica Asian bush or rock pool Aedes japonicus japonicus ‘female’ illustration page (p. 4) you can select the species that best resembles the specimen. On japonica mosquito the species-specific pages you will find additional information on those species that can easily be confused with that selected, so you can check these additional pages as well. Aedes koreicus Hulecoeteomyia koreica American Eastern tree hole Aedes triseriatus Ochlerotatus triseriatus This key provides the non-specialist with reference material to help recognise an invasive mosquito mosquito species and gives details on the morphology (in the species-specific pages) to help with verification and the compiling of a final list of candidates. The key displays six invasive Aedes atropalpus Georgecraigius atropalpus American rock pool mosquito mosquito species that are present in the EU/EEA or have been intercepted in the past. It also contains nine native species. The native species have been selected based on their morpho- Aedes cretinus Stegomyia cretina logical similarity with the invasive species, the likelihood of encountering them, whether they Aedes geniculatus Dahliana geniculata bite humans and how common they are.
    [Show full text]
  • A Mosquito Psorophora Ciliata (Fabricius) (Insecta: Diptera: Culicidae)1 Ephraim V
    EENY-540 A Mosquito Psorophora ciliata (Fabricius) (Insecta: Diptera: Culicidae)1 Ephraim V. Ragasa and Phillip E. Kaufman2 Introduction For additional information on mosquitoes, see http://edis. ifas.ufl.edu/IN652. Psorophora ciliata (Fabricius) is a large mosquito (Cutwa and O’Meara 2005) that has developed an outsized reputa- tion because of its relatively intimidating heft and persistent Synonymy biting behavior (Gladney and Turner 1969), including Psorophora ciliata (Fabricius 1794) anecdotal historical accounts of its legendary aggressiveness Culex ciliata Fabricius (1794) (Wallis and Whitman 1971) and ‘frightening appearance’ Culex conterrens Walker (1856) (King et al. 1960). The ‘gallinipper’ or ‘shaggy-legged Culex molestus Weidemann (1820) gallinipper’ was used as a common name for Psorophora Culex rubidus Robineau-Desvoidy (1827) ciliata in various published reports (Ross 1947; King et al. Psorophora boscii Robineau-Desvoidy (1827) 1960; Breeland et al. 1961; Goddard et al. 2009). The term Psorophora ctites Dyar (1918) was mentioned much earlier by Flanery (1897) describing (From ITIS 2011) the mosquito as ‘the little zebra-legged thing—the shyest, slyest, meanest, and most venomous of them all’ [sic] but Distribution did not specify what species it was. The word gallinipper Psorophora ciliata usually is associated with other flood- originated as a vernacular term in the southeastern region water mosquitoes, including many species from the Aedes of the United States referring to ‘a large mosquito or other genera (Breeland et al. 1961), and has a wide distribution insect that has a painful bite or sting’ and has appeared in the New World. Floodwater mosquitoes often lay in folk tales, traditional minstrel songs, and a blues their eggs in low-lying areas with damp soil and grassy song referencing a large mosquito with a ‘fearsome bite’ overgrowth.
    [Show full text]
  • Geospatial Risk Analysis of Mosquito-Borne Disease Vectors in the Netherlands
    Geospatial risk analysis of mosquito-borne disease vectors in the Netherlands Adolfo Ibáñez-Justicia Thesis committee Promotor Prof. Dr W. Takken Personal chair at the Laboratory of Entomology Wageningen University & Research Co-promotors Dr C.J.M. Koenraadt Associate professor, Laboratory of Entomology Wageningen University & Research Dr R.J.A. van Lammeren Associate professor, Laboratory of Geo-information Science and Remote Sensing Wageningen University & Research Other members Prof. Dr G.M.J. Mohren, Wageningen University & Research Prof. Dr N. Becker, Heidelberg University, Germany Prof. Dr J.A. Kortekaas, Wageningen University & Research Dr C.B.E.M. Reusken, National Institute for Public Health and the Environment, Bilthoven, The Netherlands This research was conducted under the auspices of the C.T. de Wit Graduate School for Production Ecology & Resource Conservation Geospatial risk analysis of mosquito-borne disease vectors in the Netherlands Adolfo Ibáñez-Justicia Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus, Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 1 February 2019 at 4 p.m. in the Aula. Adolfo Ibáñez-Justicia Geospatial risk analysis of mosquito-borne disease vectors in the Netherlands, 254 pages. PhD thesis, Wageningen University, Wageningen, the Netherlands (2019) With references, with summary in English ISBN 978-94-6343-831-5 DOI https://doi.org/10.18174/465838
    [Show full text]
  • Thompson-Nicola Regional District Nuisance Mosquito
    THOMPSON-NICOLA REGIONAL DISTRICT NUISANCE MOSQUITO CONTROL PROGRAM 2011 YEAR-END REPORT Prepared by: ___________________________ Burke Phippen, BSc., RPBio. Project Manager ___________________________ Cheryl Phippen, BSc., RN Field Coordinator NOVEMBER, 2011 BWP CONSULTING INC. 6211 Meadowland C res S, Kamloops, BC V2C 6X3 2011 Thompson-Nicola Regional District Mosquito Control Program Table of Contents LIST OF FIGURES ............................................................................................................... IV LIST OF TABLES .................................................................................................................. V EXECUTIVE SUMMARY ....................................................................................................... 1 1.0 INTRODUCTION ............................................................................................................. 3 1.1. RESOURCES AVAILABLE FOR MOSQUITO CONTROL PROGRAM ................................. 5 2.0 ENVIRONMENTAL FACTORS ......................................................................................... 5 2.1. SNOW PACK .............................................................................................................. 5 2.1. TEMPERATURE AND PRECIPITATION .......................................................................... 7 2.2. FLOW LEVELS ............................................................................................................ 9 3.0 LARVICIDING PROGRAM ...........................................................................................
    [Show full text]
  • Ana Kurbalija PREGLED ENTOMOFAUNE MOČVARNIH
    SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU I INSTITUT RUĐER BOŠKOVI Ć, ZAGREB Poslijediplomski sveučilišni interdisciplinarni specijalisti čki studij ZAŠTITA PRIRODE I OKOLIŠA Ana Kurbalija PREGLED ENTOMOFAUNE MOČVARNIH STANIŠTA OD MEĐUNARODNOG ZNAČENJA U REPUBLICI HRVATSKOJ Specijalistički rad Osijek, 2012. TEMELJNA DOKUMENTACIJSKA KARTICA Sveučilište Josipa Jurja Strossmayera u Osijeku Specijalistički rad Institit Ruđer Boškovi ć, Zagreb Poslijediplomski sveučilišni interdisciplinarni specijalisti čki studij zaštita prirode i okoliša Znanstveno područje: Prirodne znanosti Znanstveno polje: Biologija PREGLED ENTOMOFAUNE MOČVARNIH STANIŠTA OD ME ĐUNARODNOG ZNAČENJA U REPUBLICI HRVATSKOJ Ana Kurbalija Rad je izrađen na Odjelu za biologiju, Sveučilišta Josipa Jurja Strossmayera u Osijeku Mentor: izv.prof. dr. sc. Stjepan Krčmar U ovom radu je istražen kvalitativni sastav entomof aune na četiri močvarna staništa od me đunarodnog značenja u Republici Hrvatskoj. To su Park prirode Kopački rit, Park prirode Lonjsko polje, Delta rijeke Neretve i Crna Mlaka. Glavni cilj specijalističkog rada je objediniti sve objavljene i neobjavljene podatke o nalazima vrsta kukaca na ova četiri močvarna staništa te kvalitativno usporediti entomofau nu pomoću Sörensonovog indexa faunističke sličnosti. Na području Parka prirode Kopački rit utvrđeno je ukupno 866 vrsta kukaca razvrstanih u 84 porodice i 513 rodova. Na području Parka prirode Lonjsko polje utvrđeno je 513 vrsta kukaca razvrstanih u 24 porodice i 89 rodova. Na području delte rijeke Neretve utvrđeno je ukupno 348 vrsta kukaca razvrstanih u 89 porodica i 227 rodova. Za područje Crne Mlake nije bilo dostupne literature o nalazima kukaca. Velika vrijednost Sörensonovog indexa od 80,85% ukazuje na veliku faunističku sličnost između faune obada Kopačkoga rita i Lonjskoga polja. Najmanja sličnost u fauni obada utvrđena je između močvarnih staništa Lonjskog polja i delte rijeke Neretve, a iznosi 41,37%.
    [Show full text]
  • The Alameda County Mosquito Abatement District Control Program
    THTHEE ALAMEDA CCOUNTYOUNTY MOSQMOSQUITO ABATEMENT DISTRICT CONTROL PROGRAM September 2011 Alameda County Mosquito Abatement District 23187 Connecticut Street Hayward, California 94545-1605 THE ALAMEDA COUNTY MOSQUITO ABATEMENT DISTRICT CONTROL PROGRAM Key Staff John Rusmisel - District Manager Bruce Kirkpatrick - Entomologist Erika Castillo - Environmental Specialist Patrick Turney - Field Supervisor Phone: 510-783-7744 Fax: 510-783-3903 email: [email protected] TABLE OF CONTENTS Mission and Vision Statement ......................................................................................................................................... 5 General Information about the District........................................................................................................................... 6 Location of the District ....................................................................................................................... 7 District Powers.................................................................................................................................... 7 The Value of an Organized Mosquito Control District ....................................................................... 8 District Goals and Services ................................................................................................................. 9 Service Calls ....................................................................................................................................... 10 District Finances ................................................................................................................................
    [Show full text]
  • North American Wetlands and Mosquito Control
    Int. J. Environ. Res. Public Health 2012, 9, 4537-4605; doi:10.3390/ijerph9124537 OPEN ACCESS International Journal of Environmental Research and Public Health ISSN 1660-4601 www.mdpi.com/journal/ijerph Article North American Wetlands and Mosquito Control Jorge R. Rey 1,*, William E. Walton 2, Roger J. Wolfe 3, C. Roxanne Connelly 1, Sheila M. O’Connell 1, Joe Berg 4, Gabrielle E. Sakolsky-Hoopes 5 and Aimlee D. Laderman 6 1 Florida Medical Entomology Laboratory and Department of Entomology and Nematology, University of Florida-IFAS, Vero Beach, FL 342962, USA; E-Mails: [email protected] (R.C.); [email protected] (S.M.O.C.) 2 Department of Entomology, University of California, Riverside, CA 92521, USA; E-Mail: [email protected] 3 Connecticut Department of Energy and Environmental Protection, Franklin, CT 06254, USA; E-Mail: [email protected] 4 Biohabitats, Inc., 2081 Clipper Park Road, Baltimore, MD 21211, USA; E-Mail: [email protected] 5 Cape Cod Mosquito Control Project, Yarmouth Port, MA 02675, USA; E-Mail: [email protected] 6 Marine Biological Laboratory, Woods Hole, MA 02543, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-772-778-7200 (ext. 136). Received: 11 September 2012; in revised form: 21 November 2012 / Accepted: 22 November 2012 / Published: 10 December 2012 Abstract: Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems.
    [Show full text]
  • Diptera: Culicidae) in Chaharmahal and Bakhtiari Province, Iran
    International Journal of Epidemiologic Research Archivedoi:10.34172/ijer.2020.15 of SID 2020 Spring;7(2):74-91 http://ijer.skums.ac.ir Original Article Vertical Distribution, Biodiversity, and Some Selective Aspects of the Physicochemical Characteristics of the Larval Habitats of Mosquitoes (Diptera: Culicidae) in Chaharmahal and Bakhtiari Province, Iran Seyed-Mohammad Omrani1* ID , Shahyad Azari-Hamidian2 ID 1Medical Parasitology Department, Shahrekord University of Medical Sciences, Shahrekord, Iran. 2Department of Health Education, Research Center of Health and Environment, School of Health, Guilan University of Medical Sciences, Rasht, Iran. *Corresponding Author: Abstract Dr. Seyed-Mohammad Omrani, Assistant Professor, Background and aims: Mosquitoes (Diptera: Culicidae) are still a focus of research because of their role Medical Parasitology in the transmission of diseases and annoying biting behavior. Source reduction is an effective measure Department, Shahrekord to control mosquito populations, which is based on good knowledge of larval habitats. This study was University of Medical Sciences, Shahrekord, conducted to obtain that basic knowledge in Chaharmahal and Bakhtiari province. Iran, P.O. Box: 3391, Methods: This study was carried out in 2011 and 2012. Geographical coordinates, altitude, pH, Shahrekord, Iran, Tel: 0098 383 33335635, E-mail: temperature, and the dissolved oxygen level of larval habitats were recorded by relevant devices, [email protected] followed by documenting physical attributes by direct observation. In addition, the indices of biodiversity were calculated to analyze the vertical biodiversity of species. Finally, the affinity index was calculated to elucidate species co-occurrence. Received: 17 Mar. 2020 Results: Eighteen species were recovered from 92 larval habitats. Low- (≤ 1400 m), mid- (1401–2000 Accepted: 18 May 2020 ePublished: 28 June 2020 m), and high- (≥ 2001 m) altitudes lodged 7, 17, and 14 species, respectively.
    [Show full text]
  • Higher-Level Phylogeny of Mosquitoes (Diptera: Culicidae): Mtdna Data Support a Derived Placement for Toxorhynchites
    Higher-level phylogeny of mosquitoes (Diptera: Culicidae): mtDNA data support a derived placement for Toxorhynchites ANDREW MITCHELL, FELIX A. H. SPERLING and DONAL A. HICKEY Insect Syst Evol Mitchell, A., Sperling, F. A. H. & Hickey, D. A.: Higher-level phylogeny of mosquitoes · · (Diptera: Culicidae): mtDNA data support a derived placement for Toxorhynchites. Insect Syst. Evol. 33: 163-174. Copenhagen, July 2002. ISSN 1399-560X. We assess the potential of complete coding sequences of the mitochondrial cytochrome oxi­ dase genes (COl and COil) and the intervening tRNA-Leucine gene for use in mosquito high­ er-level systematics, and apply this data to an outstanding question: the phylogenetic affinities of Toxorhynchites. Traditionally placed in its own subfamily and regarded as sister group to Culicinae, recent morphological data instead have suggested that this distinctive genus belongs well within the Culicinae. Published molecular systematic studies seemingly conflict with this new morphological data or are ambiguous. The mitochondrial gene data that we pres­ ent show good potential for elucidating suprageneric relationships in Culicidae, and strongly support the placement of Toxorhynchites well within the Cnlicinae. Reexamination of pub­ lished data sets suggests that there is no substantive conflict among data sets on this issue. Andrew Mitchell, School of Molecular and Cellular Biosciences, University of Natal, Private Bag XOl, Scottsville, 3209, South Africa ([email protected]). Felix A. H. Sperling, Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada ([email protected]). Donal A. Hickey, Department of Biology, University .of Ottawa, Ottawa, Ontario, KlN 6N5, Canada ([email protected]). Introduction tionships among subfamilies by Harbach & Mosquito taxonomy has received intense attention Kitching ( 1998).
    [Show full text]