Guidelines for Arbovirus Surveillance Programs in the United States

Total Page:16

File Type:pdf, Size:1020Kb

Guidelines for Arbovirus Surveillance Programs in the United States GUIDELINES FOR ARBOVIRUS SURVEILLANCE PROGRAMS IN THE UNITED STATES C.G. Moore, R.G. McLean, C.J. Mitchell, R.S. Nasci, T.F. Tsai, C.H. Calisher, A.A. Marfin, P.S. Moore, and D.J. Gubler Division of Vector-Borne Infectious Diseases National Center for Infectious Diseases Centers for Disease Control and Prevention Public Health Service U.S. Department of Health and Human Services Fort Collins, Colorado April, 1993 TABLE OF CONTENTS INTRODUCTION ........................................................................ 1 Purpose of The Guidelines ........................................................... 1 General Considerations ............................................................. 1 Seasonal Dynamics ................................................................ 2 Patch Dynamics and Landscape Ecology ................................................ 2 Meteorologic Data Monitoring ........................................................ 2 Vertebrate Host Surveillance ......................................................... 3 Domestic chickens .......................................................... 4 Free-ranging wild birds ...................................................... 5 Equines .................................................................. 5 Other domestic and wild mammals ............................................. 5 Mosquito Surveillance .............................................................. 6 Human Case Surveillance ........................................................... 6 Laboratory Methods to Support Surveillance by Local and State Health Units ................... 11 Human serum ............................................................. 11 Bird and wild mammal sera .................................................. 12 Virus identification ........................................................ 12 SURVEILLANCE RECOMMENDATIONS ................................................... 14 General Considerations ............................................................ 14 Eastern equine encephalitis ......................................................... 14 La Crosse encephalitis ............................................................. 15 St. Louis encephalitis .............................................................. 15 Western equine encephalitis ......................................................... 16 EASTERN EQUINE ENCEPHALOMYELITIS ................................................ 17 Introduction ..................................................................... 17 Meteorologic Data Monitoring ....................................................... 17 Vector Surveillance ............................................................... 18 Aedes albopictus .......................................................... 18 Aedes canadensis .......................................................... 18 Aedes sollicitans .......................................................... 18 Aedes vexans ............................................................. 19 Coquillettidia perturbans .................................................... 20 Culex nigripalpus .......................................................... 20 Culex salinarius ........................................................... 20 Culiseta melanura ......................................................... 21 Vertebrate Host Surveillance ........................................................ 22 Introduction ..................................................................... 24 Meteorologic Data Monitoring ....................................................... 25 Vector Surveillance ............................................................... 25 Aedes canadensis .......................................................... 25 Aedes communis ........................................................... 25 Aedes dorsalis ............................................................ 25 Aedes melanimon .......................................................... 25 Aedes stimulans ........................................................... 25 Aedes triseriatus .......................................................... 26 Culiseta inornata .......................................................... 27 Vertebrate Host Surveillance ........................................................ 27 ST. LOUIS ENCEPHALITIS .............................................................. 29 2 Introduction ..................................................................... 29 Meteorologic Data Monitoring ....................................................... 29 Culex pipiens-borne St Louis encephalitis ................................. 29 Culex tarsalis-borne St Louis encephalitis ....................................... 30 Vector Surveillance ............................................................... 30 Culex restuans ............................................................ 30 Culex salinarius ........................................................... 31 Culex nigripalpus .......................................................... 31 Culex pipiens complex ...................................................... 31 Culex tarsalis ............................................................. 33 Vertebrate Host Surveillance ........................................................ 33 WESTERN EQUINE ENCEPHALOMYELITIS ................................................ 36 Introduction ..................................................................... 36 Meteorologic Data Monitoring ....................................................... 36 Vector Surveillance ............................................................... 37 Aedes melanimon .......................................................... 37 Culex tarsalis ............................................................. 37 Vertebrate Host Surveillance ........................................................ 39 APPENDIX I CASE DEFINITIONS AND SURVEILLANCE SYSTEMS FOR ARBOVIRAL ENCEPHALITIS ... 41 APPENDIX II TECHNIQUES AND EQUIPMENT FOR ADULT MOSQUITO SURVEYS .................... 46 Resting Populations ............................................................... 46 Non-attractant traps ............................................................... 46 Animal baits, attractants and landing/biting collections .................................... 46 Light traps ...................................................................... 47 Oviposition traps ................................................................. 48 APPENDIX III VERTEBRATE SURVEILLANCE SYSTEMS .......................................... 50 Types of Surveillance Systems ....................................................... 50 Examples of Vertebrate Surveillance Programs .......................................... 50 Examples of Vertebrate Species Used in Surveillance Programs .............................. 52 INDEX ............................................................................... 54 REFERENCES ......................................................................... 64 CHAPTER 1 INTRODUCTION Purpose of The Guidelines single agency. It is extremely important that the Approaches to arbovirus surveillance in the United various data-collecting agencies actively States vary from state to state (see Appendix I), and communicate and exchange information. surveillance data are rarely comparable. Standardized data collected in a standardized fashion The impact of prevention or control can document regional patterns in the spatial and measures on the course of a potential epidemic is temporal dynamics of disease activity. That diminished by even the smallest delays. Biologic information can be used to predict and help prevent and ecologic factors influence the temporal pattern major epidemics. and intensity of arbovirus cycles. Optimal environmental conditions allow rapid increase of Our purpose is to provide guidelines for vectors and virus amplification in vertebrate hosts. standardization of surveillance for mosquito-borne It is urgent, therefore, that a well-organized viral encephalitis. We emphasize predictive, surveillance program be in place well in advance of proactive, and efficient methods whenever possible. the virus transmission season. Virus isolation and Following a general discussion of the philosophy of identification techniques are rapid and new sampling surveillance and the range of available surveillance methods can quickly define the vector situation. tools we present, in Chapter 2, recommended Still, these procedures require considerable time and surveillance methods for each of the common effort. encephalitides found in the U.S. In Chapters 3-6, we provide brief reviews of the biology and behavior of Enzootic virus transmission may occur only the vectors and vertebrate hosts of the major at a low intensity among certain vertebrate host and encephalitides. In the reviews we discuss only those mosquito species within specific habitats in rural or biological and behavioral characteristics that are suburban environments. Thus, transmission may important to the surveillance effort. We also have remain undetected by most monitoring programs. tried to identify important research questions and However, when low host immunity and an areas where data are lacking. Finally, several abundance of vertebrate hosts and mosquitoes are appendices provide supplementary information on synchronized with favorable weather conditions, case definitions, techniques and equipment for transmission may
Recommended publications
  • Health Risk Assessment for the Introduction of Eastern Wild Turkeys (Meleagris Gallopavo Silvestris) Into Nova Scotia
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Canadian Cooperative Wildlife Health Centre: Wildlife Damage Management, Internet Center Newsletters & Publications for April 2004 Health risk assessment for the introduction of Eastern wild turkeys (Meleagris gallopavo silvestris) into Nova Scotia A.S. Neimanis F.A. Leighton Follow this and additional works at: https://digitalcommons.unl.edu/icwdmccwhcnews Part of the Environmental Sciences Commons Neimanis, A.S. and Leighton, F.A., "Health risk assessment for the introduction of Eastern wild turkeys (Meleagris gallopavo silvestris) into Nova Scotia" (2004). Canadian Cooperative Wildlife Health Centre: Newsletters & Publications. 48. https://digitalcommons.unl.edu/icwdmccwhcnews/48 This Article is brought to you for free and open access by the Wildlife Damage Management, Internet Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Canadian Cooperative Wildlife Health Centre: Newsletters & Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Health risk assessment for the introduction of Eastern wild turkeys (Meleagris gallopavo silvestris) into Nova Scotia A.S. Neimanis and F.A. Leighton 30 April 2004 Canadian Cooperative Wildlife Health Centre Department of Veterinary Pathology Western College of Veterinary Medicine 52 Campus Dr. University of Saskatchewan Saskatoon, SK Canada S7N 5B4 Tel: 306-966-7281 Fax: 306-966-7439 [email protected] [email protected] 1 SUMMARY This health risk assessment evaluates potential health risks associated with a proposed introduction of wild turkeys to the Annapolis Valley of Nova Scotia. The preferred source for the turkeys would be the Province of Ontario, but alternative sources include the northeastern United States from Minnesota eastward and Tennessee northward.
    [Show full text]
  • MDHHS BOL Mosquito-Borne and Tick-Borne Disease Testing
    MDHHS BUREAU OF LABORATORIES MOSQUITO-BORNE AND TICK-BORNE DISEASE TESTING MOSQUITO-BORNE DISEASES The Michigan Department of Health and Human Services Bureau of Laboratories (MDHHS BOL) offers comprehensive testing on clinical specimens for the following viral mosquito-borne diseases (also known as arboviruses) of concern in Michigan: California Group encephalitis viruses including La Crosse encephalitis virus (LAC) and Jamestown Canyon virus (JCV), Eastern Equine encephalitis virus (EEE), St. Louis encephalitis virus (SLE), and West Nile virus (WNV). Testing is available free of charge through Michigan healthcare providers for their patients. Testing for mosquito-borne viruses should be considered in patients presenting with meningitis, encephalitis, or other acute neurologic illness in which an infectious etiology is suspected during the summer months in Michigan. Methodologies include: • IgM detection for five arboviruses (LAC, JCV, EEE, SLE, WNV) • Molecular detection (PCR) for WNV only • Plaque Reduction Neutralization Test (PRNT) is also available and may be performed on select samples when indicated The preferred sample for arbovirus serology at MDHHS BOL is cerebral spinal fluid (CSF), followed by paired serum samples (acute and convalescent). In cases where CSF volume may be small, it is recommended to also include an acute serum sample. Please see the following document for detailed instructions on specimen requirements, shipping and handling instructions: http://www.michigan.gov/documents/LSGArbovirus_IgM_Antibody_Panel_8347_7.doc Michigan residents may also be exposed to mosquito-borne viruses when traveling domestically or internationally. In recent years, the most common arboviruses impacting travelers include dengue, Zika and chikungunya virus. MDHHS has the capacity to perform PCR for dengue, chikungunya and Zika virus and IgM for dengue and Zika virus to confirm commercial laboratory arbovirus findings or for complicated medical investigations.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Arbovirus Discovery in Central African Republic (1973-1993): Zika, Bozo
    Research Article Annals of Infectious Disease and Epidemiology Published: 13 Nov, 2017 Arbovirus Discovery in Central African Republic (1973- 1993): Zika, Bozo, Bouboui, and More Jean François Saluzzo1, Tom Vincent2, Jay Miller3, Francisco Veas4 and Jean-Paul Gonzalez5* 1Fab’entech, Lyon, France 2O’Neill Institute for National and Global Health Law, Georgetown University Law Center, Washington, DC, USA 3Department of Infectious Disease, Health Security Partners, Washington, DC, USA 4Laboratoire d’Immunophysiopathologie Moléculaire Comparée-UMR- Ministère de la Défense3, Institute de Recherche pour le Développement, Montpellier, France 5Center of Excellence for Emerging and Zoonotic Animal Disease, Kansas State University, Manhattan, KS, USA Abstract The progressive research on yellow fever and the subsequent emergence of the field of arbovirology in the 1950s gave rise to the continued development of a global arbovirus surveillance network with a specific focus on human pathogenic arboviruses of the tropical zone. Though unknown at the time, some of the arboviruses studies would emerge within the temperate zone decades later (e.g.: West Nile, Zika, Chikungunya). However, initial research by the surveillance network was heavily focused on the discovery, isolation, and characterization of numerous arbovirus species. Global arboviral surveillance has revealed a cryptic circulation of several arboviruses, mainly in wild cycles of the tropical forest. Although there are more than 500 registered arbovirus species, a mere one third has proved to be pathogenic to humans (CDC, 2015). Indeed, most known arboviruses did not initially demonstrate a pathogenicity to humans or other vertebrates, and were considered “orphans” (i.e. without known of vertebrate hosts). As a part of this global surveillance network, the Institut Pasteur International Network has endeavored to understand the role played by arboviruses in the etiology of febrile syndromes of unknown origin as one of its research missions.
    [Show full text]
  • Potential Arbovirus Emergence and Implications for the United Kingdom Ernest Andrew Gould,* Stephen Higgs,† Alan Buckley,* and Tamara Sergeevna Gritsun*
    Potential Arbovirus Emergence and Implications for the United Kingdom Ernest Andrew Gould,* Stephen Higgs,† Alan Buckley,* and Tamara Sergeevna Gritsun* Arboviruses have evolved a number of strategies to Chikungunya virus and in the family Bunyaviridae, sand- survive environmental challenges. This review examines fly fever Naples virus (often referred to as Toscana virus), the factors that may determine arbovirus emergence, pro- sandfly fever Sicilian virus, Crimean-Congo hemorrhagic vides examples of arboviruses that have emerged into new fever virus (CCHFV), Inkoo virus, and Tahyna virus, habitats, reviews the arbovirus situation in western Europe which is widespread throughout Europe. Rift Valley fever in detail, discusses potential arthropod vectors, and attempts to predict the risk for arbovirus emergence in the virus (RVFV) and Nairobi sheep disease virus (NSDV) United Kingdom. We conclude that climate change is prob- could be introduced to Europe from Africa through animal ably the most important requirement for the emergence of transportation. Finally, the family Reoviridae contains a arthropodborne diseases such as dengue fever, yellow variety of animal arbovirus pathogens, including blue- fever, Rift Valley fever, Japanese encephalitis, Crimean- tongue virus and African horse sickness virus, both known Congo hemorrhagic fever, bluetongue, and African horse to be circulating in Europe. This review considers whether sickness in the United Kingdom. While other arboviruses, any of these pathogenic arboviruses are likely to emerge such as West Nile virus, Sindbis virus, Tahyna virus, and and cause disease in the United Kingdom in the foresee- Louping ill virus, apparently circulate in the United able future. Kingdom, they do not appear to present an imminent threat to humans or animals.
    [Show full text]
  • Catalogo De Los Diptera De Nicaragua. 4. Culicidae (Nematocera)
    Rev Rev. Nica. Ent., (1990) 14:19-39. CATALOGO DE LOS DIPTERA DE NICARAGUA. 4. CULICIDAE (NEMATOCERA). Por Jean-Michel Maes * & Pedro Rivera Mendoza.** Resumen. Este catálogo presenta las 40 especies de Culicidae (Diptera : Nematocera) reportadas de Nicaragua. Para cada especie se cita la sinonimia, la distribución geográfica, los hospederos, las enfermedades transmitidas y los enemigos naturales. La bibliografía conocida está agregada. Abstract. This catalogue presents the 40 species of Culicidae (Diptera : Nematocera) reported from Nicaragua. The geographical distribution, synonyms, hosts, diseases transmitted and natural enemies are given for each species. A bibliography of the Nicaraguayan species is included. * Museo Entomológico, A.P. 527, León, Nicaragua. ** Director del Departamento de Entomología Médica del Centro Nacional de Higiene y Epidemiología, Villa Ruben Darío M-254, Managua - 14, Nicaragua. file:///C|/My%20Documents/REVISTA/REV%2014A/14A%20Culicidae.htm (1 of 25) [20/12/2002 03:34:12 p.m.] Rev Introducción. Los Culicidae forman una familia numerosa de Diptera Nematocera. Las larvas son acuáticas, los adultos pueden ser identificados por la venacion alar presentando escamas y la proboscis larga. Son importantes a nivel medico por ser vectores de muchas enfermedades tropicales. Las larvas de zancudos se encuentran en muchos tipos de aguas, por ejemplo en charcos, huecos o recipientos artificiales, cada especie tiene un tipo de agua característico donde se reproduce. Los huevos son dejados en paquetes sobre la superficie del agua. Las larvas comen algas y materia vegetal en decomposición. Las larvas respiran principalmente a la superficie, ayudandose muchas veces de un sifón. La pupas son acuáticas y al contrario de los otros insectos, son bastante activas.
    [Show full text]
  • Florida Arbovirus Surveillance Week 13: March 28-April 3, 2021
    Florida Arbovirus Surveillance Week 13: March 28-April 3, 2021 Arbovirus surveillance in Florida includes endemic mosquito-borne viruses such as West Nile virus (WNV), Eastern equine encephalitis virus (EEEV), and St. Louis encephalitis virus (SLEV), as well as exotic viruses such as dengue virus (DENV), chikungunya virus (CHIKV), Zika virus (ZIKV), and California encephalitis group viruses (CEV). Malaria, a parasitic mosquito-borne disease is also included. During the period of March 28- April 3, 2021, the following arboviral activity was recorded in Florida. WNV activity: No human cases of WNV infection were reported this week. No horses with WNV infection were reported this week. No sentinel chickens tested positive for antibodies to WNV this week. In 2021, positive samples from two sentinel chickens has been reported from two counties. SLEV activity: No human cases of SLEV infection were reported this week. No sentinel chickens tested positive for antibodies to SLEV this week. In 2021, no positive samples have been reported. EEEV activity: No human cases of EEEV infection were reported this week. No horses with EEEV infection were reported this week. No sentinel chickens tested positive for antibodies to EEEV this week. In 2021, positive samples from one horse and 14 sentinel chickens have been reported from four counties. International Travel-Associated Dengue Fever Cases: No cases of dengue fever were reported this week in persons that had international travel. In 2021, one travel-associated dengue fever case has been reported. Dengue Fever Cases Acquired in Florida: No cases of locally acquired dengue fever were reported this week. In 2021, no cases of locally acquired dengue fever have been reported.
    [Show full text]
  • Wing Variation in Culex Nigripalpus (Diptera: Culicidae) in Urban Parks
    de Carvalho et al. Parasites & Vectors (2017) 10:423 DOI 10.1186/s13071-017-2348-5 RESEARCH Open Access Wing variation in Culex nigripalpus (Diptera: Culicidae) in urban parks Gabriela Cristina de Carvalho1, Daniel Pagotto Vendrami2, Mauro Toledo Marrelli1,2 and André Barretto Bruno Wilke1* Abstract Background: Culex nigripalpus has a wide geographical distribution and is found in North and South America. Females are considered primary vectors for several arboviruses, including Saint Louis encephalitis virus, Venezuelan equine encephalitis virus and Eastern equine encephalitis virus, as well as a potential vector of West Nile virus. In view of the epidemiological importance of this mosquito and its high abundance, this study sought to investigate wing variation in Cx. nigripalpus populations from urban parks in the city of São Paulo, Brazil. Methods: Female mosquitoes were collected in seven urban parks in the city of São Paulo between 2011 and 2013. Eighteen landmark coordinates from the right wing of each female mosquito were digitized, and the dissimilarities between populations were assessed by canonical variate analysis and cross-validated reclassification and by constructing a Neighbor-Joining (NJ) tree based on Mahalanobis distances. The centroid size was calculated to determine mean wing size in each population. Results: Canonical variate analysis based on fixed landmarks of the wing revealed a pattern of segregation between urban and sylvatic Cx. nigripalpus, a similar result to that revealed by the NJ tree topology, in which the population from Shangrilá Park segregated into a distinct branch separate from the other more urban populations. Conclusion: Environmental heterogeneity may be affecting the wing shape variation of Cx.
    [Show full text]
  • Presence of Dirofilaria Immitis in Mosquitoes in Southeastern Georgia
    Georgia Southern University Digital Commons@Georgia Southern University Honors Program Theses 2019 Presence of Dirofilaria immitis in mosquitoes in Southeastern Georgia Angelica C. Tumminello Georgia Southern University Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/honors-theses Part of the Laboratory and Basic Science Research Commons, Other Animal Sciences Commons, Parasitology Commons, Small or Companion Animal Medicine Commons, and the Veterinary Infectious Diseases Commons Recommended Citation Tumminello, Angelica C., "Presence of Dirofilaria immitis in mosquitoes in Southeastern Georgia" (2019). University Honors Program Theses. 495. https://digitalcommons.georgiasouthern.edu/honors-theses/495 This thesis (open access) is brought to you for free and open access by Digital Commons@Georgia Southern. It has been accepted for inclusion in University Honors Program Theses by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. Presence of Dirofilaria immitis in mosquitoes in Southeastern Georgia An Honors Thesis submitted in partial fulfillment of the requirements for Honors in the Department of Biology by Angelica C. Tumminello Under the mentorship of Dr. William Irby, PhD ABSTRACT Canine heartworm disease is caused by the filarial nematode Dirofilaria immitis, which is transmitted by at least 25 known species of mosquito vectors. This study sought to understand which species of mosquitoes are present in Bulloch County, Georgia, and which species are transmitting canine heartworm disease. This study also investigated whether particular canine demographics correlated with a greater risk of heartworm disease. Surveillance of mosquitoes was conducted in known heartworm-positive canine locations using traditional gravid trapping and vacuum sampling. Mosquito samples were frozen until deemed inactive, then identified by species and sex.
    [Show full text]
  • August 2019 in St
    Monthly Report AUGUST 2019 From the Director: The late summer month of August is the time of the year when South Loui- sianans are most at risk of infection from an arthropod-borne virus (arbovi- rus). Every year thousands of residents are bitten by mosquitoes infected with Eastern equine encephalitis virus (EEE), St. Louis encephalitis virus (SLE), and West Nile virus (WNV). All three endemic arboviruses in the region are primarily amplified by birds and transmitted by mosquitoes among birds, and incidentally to humans and other hosts. Fortunately, most of these infectious bites cause no or minor pathology and symptoms in humans. For the unfortunate minority, this trio of arboviral pathogens can be life-al- tering and life ending in some tragic cases. Eastern equine encephalitis virus (EEE) Eastern equine encephalitis virus is the rarest and most dangerous of the three arboviruses. Nearly a third of people that develop neurological symp- toms from EEE die from the infection. Culiseta melanura mosquitoes, a freshwater swamp species that primarily feeds on birds, are the primary Kevin A. Caillouet, Ph.D., M.S.P.H. vectors of EEE. Culiseta melanura are difficult to find in nature, as they rear Director their larvae in cryptic habitats in forested swamps. Adult Cs. melanura do not readily enter mosquito traps. Though most mosquitoes infected with EEE are Cs. melanura, occasionally other species may bite an infected bird and pose a more significant risk to humans. A single pool (or group) of EEE-infected Culex quinquefasciatus mosquitoes was collected from Fairview Riverside State Park on August 28th.
    [Show full text]
  • MI Weekly Arbovirus Summary, 2020
    Arbovirus* Activity, Including West Nile Virus and Eastern Equine Encephalitis: Weekly Summary, Michigan 2020 *Arboviruses are viruses transmitted by mosquitoes or other insects Updated: August 20, 2020 12Mosquito pools testing 2 Human1 cases of West Birds testing positive for positive for West Nile West Nile virus infection Nile virus or other virus infection arboviruses reported 2020 Michigan Arbovirus Surveillance (click links below to see map** of cases by county) Highlights West Nile virus Positive Mosquito Pools 12 • EEE has been reported in 2 horses, from Clare and Montcalm County. Total Number of Mosquito Pools Tested 272 • For 2020, West Nile Virus (WNV) has been reported in 2 birds from Lapeer County and Total Number of Mosquitoes Tested 5323 Oakland County, and mosquito pools in Kent, Human WNV cases 0 Oakland, and Saginaw Counties. • One human case of Jamestown Canyon Human California Group virus cases 1 virus(a California Group virus) has been reported in a resident of Ottawa County. WNV asymptomatic, viremic blood donor 0 • In 2019, Michigan experienced its largest ever Equine/Other Animal WNV cases reported 0 outbreak of Eastern Equine encephalitis (EEE). Ten Michigan residents (1 Barry, 2 Berrien, 1 Avian WNV cases reported 2 Calhoun, 2 Cass, 3 Kalamazoo, and 1 Van Buren) were infected, with 6 fatalities; 50 EEE Human Eastern Equine Encephalitis cases reported 0 positive animals were also reported. Animal Eastern Equine Encephalitis cases reported 2 **data in linked maps may lag behind this report by 1-2 business days.
    [Show full text]
  • Mosquito and Arbovirus Activity During 1997–2002 in a Wetland in Northeastern Mississippi
    VECTOR-BORNE DISEASES,SURVEILLANCE,PREVENTION Mosquito and Arbovirus Activity During 1997–2002 in a Wetland in Northeastern Mississippi E. W. CUPP,1 K. J. TENNESSEN,2, 3 W. K. OLDLAND,2 H. K. HASSAN,4 G. E. HILL,5 6 4 C. R. KATHOLI, AND T. R. UNNASCH J. Med. Entomol. 41(3): 495Ð501 (2004) ABSTRACT The species composition and population dynamics of adult mosquitoes in a wetland near Iuka, MS, were analyzed over a 6-yr period (1997Ð2002)and reverse transcription-polymerase chain reaction (PCR)detection rates of arboviruses determined during Þve of those years. Blood meals of three likely vector species were identiÞed using a PCR-based method that allows identiÞcation of the host to species. Culex erraticus (Dyar & Knab)composed 51.9% of the population during the 6-yr period with 295 females collected per trap night. Eastern equine encephalomyelitis (EEE)virus was detected in six genera of mosquitoes [Coquillettidia perturbans (Walker), Culex restuans Theobald, Culex salinarius Coquillett, Culex erraticus (Dyar & Knab), Anopheles crucians Wiedemann, Anopheles quadrimaculatus Say, Aedes vexans (Meigen), Ochlerotatus triseriatus Say, and Psorophora ferox Hum- boldt)with positive pools occurring in 1998, 1999, and 2002. Culiseta melanura Coquillett occurred at a low level (Ͻ1%)and was not infected. Saint Louis encephalitis virus was detected once in a single pool of Cx. erraticus in 1998. Neither West Nile virus nor LaCrosse virus was found. Minimum infection rates per 1000 females tested of competent vectors of EEE virus were variable and ranged from 0.14 for Cx. erraticus to 40.0 for Oc. triseriatus. Thirty-nine species of birds were identiÞed in the focus with blood-engorged mosquitoes found to contain meals (n ϭ 29)from eight avian species.
    [Show full text]