<<

EUROPEAN European 7th Framework COMMISSION Research Area Programme

Aeronautics and Air Transport Research 7th Framework Programme 2007-2013

Project Synopses - Volume 1 Calls 2007 & 2008

Project information Interested in European research? Research*eu is our monthly magazine keeping you in touch with main developments (results, programmes, events, etc.). It is available in English, French, German and Spanish. A free sample copy or free subscription can be obtained from: European Commission Directorate-General for Research Communication Unit B-1049 Brussels Fax (32-2) 29-58220 E-mail: [email protected] Internet: http://ec.europa.eu/research/research-eu

EUROPEAN COMMISSION Directorate-General for Research Directorate H – Transport Unit H3 – Aeronautics Contact: Unit H3 – Aeronautics European Commission Offi ce CDMA 04/166 B-1049 Brussels EUROPEAN COMMISSION

Aeronautics and Air Transport Research 7th Framework Programme 2007-2013

Project Synopses – Volume 1 Calls 2007 & 2008

Directorate-General for Research 2010 Cooperation/Transport (including Aeronautics) EUROPE DIRECT is a service to help you fi nd answers to your questions about the European Union

Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed

LEGAL NOTICE Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information. The views expressed in this publication are the sole responsibility of the author and do not necessarily refl ect the views of the European Commission. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu). Cataloguing data can be found at the end of this publication. Luxembourg: Publications Offi ce of the European Union, 2010 ISBN 978-92-79-14287-1 doi 10.2777/83373 © European Union, 2010 Reproduction is authorised provided the source is acknowledged. Printed in Belgium

PRINTED ON WHITE CHLORINE-FREE PAPER have oriented our work programmes in AAT on the recommendations of the Advisory Council for Aeronautics Research (ACARE) Strategic Research Agenda1. Our work pro-

gramme is now focused around: Greening Foreword of Air Transport, Increasing Time Effi ciency, Ensuring Customer Satisfaction and Safety, Improving Cost Effi ciency, Protection of Air- craft and Passengers, and Pioneering the Air Transport of the Future. But we also support cross-cutting activities including, for example, Greetings from the Commissioner for support to SMEs and stimulation of interna- Science and Research (2004-2009) tional cooperation. ‘Making the European Union the world’s This book provides you with a concise over- most competitive and dynamic knowl- view of the projects selected for funding in edge-based economy’: these goals, set by the fi rst two FP7 Calls for Proposals, with a European leaders in the Lisbon Strategy in cumulative indicative budget of €430 million. March 2000, were certainly visionary. They are In addition to these projects, new major initia- still fully relevant today. Much has changed in tives have been introduced on the landscape 10 years; the European Union has gained of EU-funded research. In 2008, the Direc- 12 more Member States, we have been hit by torate-General for Research also launched a global economic crisis, and our impact on the Clean Sky Joint Technology Initia- the globe is reaching unsustainable propor- tive2, a public private partnership with a total tions. But as we refl ect on our vision from here indicative budget of €1.6 billion (€800 million to 2020, it is clear that the knowledge-based coming from the European Commission). economy must underpin it. Clean Sky focuses on the demonstration The creation of a seamless European of green technologies capable of reducing Research Area, in which knowledge, ideas the impact of aviation on the environment. 3 and creativity can circulate freely, is there- The SESAR Joint Undertaking is working 3 fore becoming ever-more pertinent. ERA towards harmonisation of air traffi c manage- will continue to be the overarching aim of ment in Europe and supporting the associ- European research policy and of our Frame- ated research. This is now in its development work Programme for Research and Techno- phase (2008-2014) under the guidance of the logical Development which currently covers Commission’s Directorate-General for Trans- 38 countries. port and Energy. Launched in 2007 to span seven years, the These are serious responses to serious chal- Seventh Framework Programme (FP7, lenges, and we must maintain our efforts as 2007-2013) has given a €50 billion boost to the challenges grow. Continuously increas- the Lisbon Strategy. On a yearly basis, the ing air traffi c and the associated pres- FP7 budget has almost doubled compared to sure exerted on the environment, strong the FP6 budget. But if we are serious about dependence on oil, the emergence of new reaching the target of 3% of GDP invested in strong economic regions and worldwide research, it will require a similar commitment competition are the challenges we must from all stakeholders, in particular from Mem- engage with in developing Europe’s Air Trans- ber States and industry. port System of the future. The largest part of the FP7 budget is dedi- cated to the ‘Cooperation’ specifi c pro- gramme (more than €32 billion over the seven years). In FP7, Aeronautics and Air Trans- port (AAT) is part of the ‘Transport’ theme and the budget for Collaborative Research over seven years is close to €1 billion. To make sure that this money is invested in Janez Potočnik the most relevant and promising research, we European Commissioner for Science and Research

1 Strategic Research Agenda 2, www.acare4Europe.com 2 www.cleansky.eu 3 www.sesarju.eu

Aeronautics and Air Transport Research in the Seventh Framework Programme

The Aeronautics Unit of the Directorate- The last section is a collection of policy- General for Research is pleased to provide related actions to support, for example, the you with a short description of more than participation of SMEs, international coopera- 80 projects funded in the fi rst two Calls for tion in research, etc. Proposals of the Seventh Framework Pro- To help with your research, an index is also gramme in the fi eld of Aeronautics and Air provided based on the following technical Transport.

disciplines: Contents of this volume The book starts with an introduction which - Flight Physics; gives an overview of the Aeronautics and Air - Aero-structures; Transport sector plus useful information on - Propulsion; the drafting process of the Call for Proposal - Systems and Equipment; Work Programmes, the FP7 instruments, the - Avionics; proposal evaluation and selection procedure - Design Systems and Tools; as well as statistics on the two fi rst Calls for - Production; Proposals. A short note on the Clean Sky and - Maintenance; SESAR joint undertakings is also provided. - Flight Management; - Airports; For each project you will then fi nd a short - Human Factors. description of the state of the art, the objec- tives, the work planned during the project At the end of the book, indexes by acronyms, and the expected results. The contact details partners and instruments are also provided. of the project coordinator and the partner- Contact details of the National Contact 5 ship are also provided. We hope that this Points, whose role is to relay the informa- information will be helpful to research policy- tion on the Seventh Framework Programme makers, project proposers who are looking in the European Union Member States, are to achieve an exhaustive state of the art, and also given. Finally, contact details of the peo- stakeholders in the research community who ple involved in the following up the projects in want to identify ongoing research projects of the European Commission are also provided. interest to them or to identify potential part- As the editor of this publication, and on ners for future collaboration. behalf of all my colleagues in the Aeronautics The research projects are grouped by the Unit, I wish you a fruitful co-operation in the activities of the Work Programme: Seventh Framework Programme. - The Greening of Air Transport; The Editor - Increasing Time Effi ciency; - Ensuring Customer Satisfaction and Safety; - Improving Cost Effi ciency; - Protection of Aircraft and Passengers; - Pioneering the Air Transport of the Future. Rémy Dénos

Table of contents

Introduction 9

Index by Activities 21

Index by Technical Fields 25 Table of contents Table Description of Projects Classifi ed by Activities 29

The Greening of Air Transport 31

Increasing Time Effi ciency 91

Ensuring Customer Satisfaction and Safety 101

Improving Cost Effi ciency 141

Protection of Aircraft and Passengers 211

Pioneering the Air Transport of the Future 225

Cross Cutting Activities 243

Index by Acronyms 283 7 Index by Instruments 287

Index by Partners 291

List of National Contact Points 315

European Commission Staff Contact List 323 Table of contents 2 1 (>100 seats,excluding freighters) hasbeen 2016, anaverageof1213aircraft deliveries To answertheseneeds,intheperiod2007- compared tobusinesstravelisalsogrowing. [6]). Therefore, theimportanceofleisure travel from 3%to16%infi ve years(2001-2006, ers whichhaveincreased their share offl ights of thetraffi c isgoingtothelow-costaircarri- and 2004(EU-25,[5]).Agrowing proportion increased about5%annuallybetween1995 The numberofintra-EUairpassengers transport needs Society’s growing andchangingair ing to European gross domesticproduct amount- activities (2005,[2])withacontributiontothe can beattributedtoair-transport-related the direct jobs,about2.6millionindirect jobs in othersectorsliketourism.Inadditionto (2006, [1])andalsoplaysanimportantrole Air Transport provides 407000direct jobs inresearchof itsturnover anddevelopment. a research intensivesectorinvesting~12% exports ~60%ofitstotalproduction andis European aeronautics manufacturing but italsogenerateswealthandjobs. ensure thatpeopleandgoodsmovearound player alloverEurope. Notonlydoesit service providers, isanimportanteconomic industry, airports,airlinesandairnavigation includes theaeronautics manufacturing The AirTransport System (ATS), which System inEurope Importance ofAirTransport and AirTransport System European Aeronautics CodeNACE 63:Supportingand auxiliarytransportactivities; activitiesof travel agencies CodeNACE 62:AirTransport - 793 millionpassengerstransported - 4 200passengeraircraft inservice - - 2.6 millionindirect jobs(2005 - - 407 000direct jobsinairtransport - (EU-27) The European AirTransport System (2007, [2]) (12/2008, [4]) (2006 € 241 billion(2006,[3]). 1 , [1]) 2 , [2]) minimise NO consumption, combustiontechnologycan events. required toadapttheseunpredictable situation suddenly, andalotoffl exibility is more recent fi nancial crisismaychangethe 11/09/2001, fl uctuating oilpricesandthe such as,forexample,theterrorist attackof ing ATS shouldnothidethefactthatevents This generaltrend ofacontinuouslygrow- America: 27%,[7]). in theAsia-Pacifi c region (Europe: 24%,North predicted, 31%ofwhichwouldbedelivered Emissions Trading Scheme(ETS)[8]. Directive toincludeaviation intheexistingEU European Commissionhas alsopublisheda Aeronautics andAirTransport theme. The ing ofAirTransport' asthefi rst priority inits In response tothis,FP7has putthe‘Green- 10% [10]. day eveningnight)contourwillgrow byabout exposed peopleintheLden55dB(A)(Level to 2010,itisprojected thatthenumberof disturbances around EUairports.From 2006 in traffi c results inanoverallincrease innoise also, inspiteofquieteraircraft, theincrease lations livinginthevicinityofairports.Here Noise from aircraftforpopu- isalsoaconcern ment (~12%ofacompany’s turnover). technological progress andhighR&Dinvest- in traffi c (seeFigure 1),inspiteofconstant have notsucceededinoffsetting theincrease the transportsector, andinparticularaviation, bilising orevendecreasing theiremissions, intensive sectorsthathavesucceededinsta- the order of18%.Incontrasttootherenergy- while theroad transportsector’s share isof greenhouse gas(GHG)emissionsin2006, was estimatedtobe3%oftheEU’s total The share ofdirect emissionsfrom aviation understood andquantifi ed. as contrails(watervapour)are notyetfully The impactofotheraircraft emissionssuch sions likeCO on theuseofhydrocarbon fuels.Whileemis- Aircraft propulsion relies almostexclusively environmental concerns Aircraft-related emissionsand x emissionsandsootproduction. 2 are directly coupledtofuel

9 Introduction 10 Introduction 2006, aRegulationwasadoptedwhich allows and cost-effectiveness ofthesystem.In ment thatwillenhancetheeffi ciency, safety for decision-makingandoperational improve- Europe. Itaimstoputin place aframework uniformly highsafetystandards throughout airspace, increasing capacitywhileensuring a more rationalorganisationofEuropean pean Sky'.Thisinitiativeseekstopromote step increating theso-called'SingleEuro- adopted apackageoflegislationasthefi rst maintain ahighlevelofsafety. In2004,theEU works inanenlargedEurope, itisimportantto and interconnecting ofnationaltransportnet- increasing traffiWith c andtheopeningup Safety andsecurity tant role. SESAR JointUndertakingwillplayanimpor- defi nitely anarea forimprovement where the in viewofthehighincrease intraffi c. Thisis stant in2007,whichisanencouragingresult air transportpunctualitystayednearlycon- tinual deteriorationbetween2003and2006, (22% ofarrivaldelays>15min).Afteracon- schedule) remained atalowlevelin2007 tuality (on-timeperformancewithrespect to Review Report2007[9],airtransportpunc- Based ontheEurocontrol Performance Time effi index 100=1990 EU greenhouse gasemissionsbysectorreferred toyear1990levels 100 120 140 160 180 60 80 9019 9219 9419 9619 9819 0020 022003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 ciency Figure 1: Year Framework Programme under theSeventh Transport Research Aeronautics andAir pean Parliament.In FP7,theAeronautics and procedure involving theCouncilandEuro- Commission andadoptedviaaCo-decision prepared and proposed bytheEuropean Framework Programme (2007-20103) was the formofapilotprogramme. TheSeventh Second FrameworkProgramme (FP2),in level wasfi rst introduced in1989,underthe Specifi c aeronautics research atEuropean Programmes Research intheFramework Aeronautics andAirTransport for ahighlevelofsecurity. last fewyearshavealsoemphasisedtheneed The repeated threats ofterrorist attacksinthe within European airspace. passengers orcargointheEUtooperate to beunsafeandtherefore notpermittedtofl y sion hascompiledalistofairlinesconsidered ered tobeunsafe.Sincethen,theCommis- airspace free from airlinesandaircraft consid- the European CommissiontokeepEuropean Transport Total (withoutLUCF) Waste Agriculture Industrial Processes Energy Int aviation P (1987-1991): - FP2 nifivalues: cant with modestbeginningstoreach today’s sig- budget fi gures, aeronautics research started As canbeseenfrom thefollowingindicative port' thematicpriority. Air Transport theme(AAT) ispartofthe'Trans- - FP6 (2002-2006), (1998-2002): - FP5 - FP4(1994-1998): - FP3 (1991-1994): air transport; competitiveness andsustainablegrowth of to aspecifi c keyactionaimedatindustrial interest; ing emphasisonsubjectsofwidepublic industrial competitivenesswithincreas- technical areas; a consolidationphasewithemphasisonkey collaboration; phase aimedatstimulatingEuropean torates-General forResearch (DGRTD) ity (thisincludedbudgetsfrom bothDirec- the ‘Aeronautics andSpace’thematicprior- Figure 2:Budgetevolution ofspecificaeronautics research FP4: 1994-1998 in theFrameworkProgrammes. InFP7,anadditional (245) € 49 350 millionsupporttheSESARJointUndertaking Average budgetperyear (Overall FP, inmillion

€ € € € € 900 millionasapartof 71 milliondedicatedto 245 millionfocusedon 700 milliondedicated 35 millionforapilot FP5: 1998-2002 (700) 140

½ ) FP6: 2002-2006 (900) 180

- up to are some30projects withlargertotalcosts, between most oftheresearch projects variestypically € total costofabout 450 projects representing workfora RTD Since FP2,theEUhasfundedsome

2 billioninECfunding).Thetotalcostof fi nancing theSESARJointUndertaking. € Transportsame DGRTD budget,another to FP6(seeFigure 2).Notethatfrom this considerable increase infundingcompared ronmental aspects.Overall,thisresults ina Initiative CleanSky, alsofocusingonenvi- million isdedicatedtotheJointTechnology of theairtransportsystem.Another on theeffi ciency, competitivenessandsafety environmental impactofaviation,aswell rative Research focusedonreducing the FP7 (2007-2013), industrial competitiveness;and equal focusonissuesofpublicinterest and and EnergyTransport, DGTREN),with 350 millionhasbeencontributedtowards € 100 million(IntegratedProjects). FP7: 2007-2013 € 2 and (960) (800) 137 114 €

8 million.However, there

€ € 960 millionforCollabo- 4 billion(i.e.atleast Years

€ 800 11 Introduction 12 Introduction - 80% reduction inNO - - 50% cutinCO Strategic Research Agenda(SRA-1,[12]): goals fortheperiod2000-2020,initsfi rst In 2002,ACAREsetsomeoftheambitious Commission. academia, Eurocontrol andthe European ports, regulators, research establishments, States, manufacturingindustry, airlines,air- wide rangeofstakeholderssuchasMember 2020.ACAREincludesa objectives ofVision which were identifi ed ascriticaltofulfi l the a roadmap forresearch intonewtechnologies tains aStrategicResearch Agenda(SRA)i.e. Since then,ACAREhasdefi ned andmain- for Aeronautics Research inEurope (ACARE). calls forthesettingupofanAdvisoryCouncil tics couldbetterservesociety'sneeds,andit a reorganisation oftheresearch inaeronau- report presents athoughtfulanalysisofhow Aeronautics, for2020’[11].The aVision Busquin, issuedareport entitled'European then CommissionerforResearch, Philippe In 2000,a‘Group ofPersonalities’ledbythe Strategic Research Agenda 2020andtheACARE Vision progress isunderlined,includinginternational mechanism thatcanspeeduptechnological fuels.Theimportanceofa of usingalternative again withaspecifi c focuson thepossibility of environmental impactisemphasisedyet lutions. Inthisdocument,theimportance published totakeintoaccountrecent evo- In 2008,anAddendum[14]toSRA-2 was - Ultra secure. Ultra green; and - Highly costeffi- cient; Highly timeeffi- cient; Highly customeroriented; - European AirTransport System: ing HighLevelTarget Conceptsforthefuture Research Agenda(SRA-2,[13])setthefollow- In 2004,thesecondissueofStrategic 99% offl- ights departingandarrivingwithin An airtraffi- c systemcapableofhandling16 Five-fold reduction inaccidentrates; - Halving perceived aircraft noise; - kilometre; 15 minutesofscheduledtimes. million fl ights peryear; and 2 emissionsperpassenger x emissions; Undertakings. gies betweentheCleanSkyandSESAR Joint scene. Advantageistakenofpossible syner- Research andTechnological Development adapted Callaftertothe changing The contentoftheWork Programme is research. tion. FP7doesnotfundmilitaryaeronautics ation, knowledgetransferandSMEparticipa- co-oper-general issues,suchasinternational ment andairportoperationsanumberof ground-based elementsofairtraffi c manage- and ponents. Italsoencompassesairborne rotorcraft, includingtheirsystemsandcom- aircraft toregional andbusinessaircraft and cial transportaircraft, rangingfrom largecivil ronment. Theprogramme coverscommer- on theinfrastructure oftheoperationalenvi- improvement ofaircraft technologiesbutalso mercial aviation,focusingnotonlyonthe encompassing, globalapproach tocom- The AAT Work Programme followsanall- to FP7. the MemberStatesandAssociated Programme Committeewhichrepresents comments andreceives theapproval ofthe Finally, theWork Programme integratesthe independentAdvisoryGroup. an external consultation. TheCommissionalsoconsults Directorates-General viaaninter-service within thevariousEuropean Commission’s tres, universitiesandindustry. Itisdiscussed the observationsprovided byresearch cen- the Work Programme alsotakesintoaccount Strategic Research Agenda2.Thecontentof in linewiththerecommendations ofACARE’s The structure oftheFP7Work Programme is nautics andAirTransport (AAT). many ofthestakeholdersinfi eld ofAero- of abroad consultationprocess thatinvolves technical contentofeachCall.Itistheresult document thatsetsouttheobjectivesand for Proposals. TheWork Programme isakey pean Commissionare implementedviaCalls The research actionsfundedbytheEuro- Programme Elaboration andscopeoftheWork a longer-term perspective. co-operation andcallsforthedevelopmentof organisation ofconferences, etc. co-operation,supportforthe international medium-sized enterprises(SMEs),improved fi eld of,forexample,supporttosmalland port theprogramme’s implementationinthe deal withresearch bythemselvesbutsup- The CallalsoincludesTopics thatdonot - Human Factors. - Airports - Flight Management - Maintenance - Production Design SystemsandTools- - Avionics Systems andEquipment - - Propulsion - Aero-structures - Flight Physics where research 'Topics' are proposed: ing non-exhaustivelistoftechnicaldomains one orseveraltopicsmainlyinthefollow- projects orcoordination actionswhichanswer gramme callsforproposals forresearch thesesixActivities, theWork Pro-Within 6. PioneeringtheAirTransport oftheFuture 5. Protection ofAircraft andPassengers 4. Improving CostEffi ciency 3. EnsuringCustomerSatisfactionandSafety Effi2. Increasing Time ciency 1. TheGreening ofAirTransport poses sixactivitylines: Under FP7,theAAT Work Programme pro- Main research areas procedure whereby anideaisfi rst investi- cessive phases.Figure 3illustrates apossible available onthemarketrequires manysuc- The pathfrom anideato aproduct made development anddemonstration Research, technological and Implementation Programme: Instruments Seventh Framework nology ReadinessLevel,asdescribedin[15]. tion commonlyusedinindustryistheTech- several years.Anothermeasure ofthisevolu- cated inFigure 3,thisevolutionusuallytakes to demonstrationbutnotbeyond.Asindi- research andtechnologicaldevelopmentup normally confi ned tothesupportactivitiesof of product development,publicfundsare Since thenextphaseusuallyseesstart called ademonstrator. simultaneously inanexperimentalensemble an ensembleoftechnologiesisoftentested complete system.Inthefi eld ofaeronautics, environment thatismore representative ofthe next step:validatingthetechnologyinan to beused.Thisenablesadvancingthe complete systeminwhichthetechnologyis plifi ed environment andinisolationfrom the a proof ofconcept,usuallytestedinasim- development. Thisdevelopmentwillleadto application whichrequires atechnological then followedbyaproposal ofapossible Basic principlesare observedandreported gated attheleveloffundamentalresearch. (CP-FP orCP-IP) Collaborative Projects range ofinstruments. gramme proposes theuseoffollowing The Aeronautics andAirTransport Work Pro- Instruments FP7 Collaborativeresearch in FP6. cifi c Targeted Research Projects (STREPs) € typically below20andthetotalcost below The numberofpartnersinsuchaproject is grated andvalidatedatahighersystem level. technologies whichcouldeventually beinte- technology basewithproven conceptsand upstream research activitiesistoimprove the experimental means.Theobjectiveofthese ate environment through analyticaland/or ponent orsub-systemlevelintheappropri- research tothevalidationofconceptsatcom- development activitiesthatrangefrom basic This comprisesresearch andtechnology Focused Projects (CP-FPorLevel1) 10 million.Thisinstrumentissimilar to Spe- 13 Introduction 14 Introduction as similartoIntegratedProjects (IP)inFP6. and ners withatotalcostrangingbetween such projects involvespossibly20to60part- scale ofasystem.Atypicalpartnership tions thatworkreliably inintegrationatthe is toproduce proven multidisciplinarysolu- these focuseddownstream research activities test bedsand/orsimulators).Theobjectiveof environment (large-scalefl ight and/orground operations atasystemlevelintheappropriate integration andvalidationoftechnologies ogy readiness, centred onthemultidisciplinary development activitiesuptohighertechnol- This comprisesresearch andtechnology Integrated Projects (CP-IPorLevel2) in theappropriate operational environment combination ofsystemsandthefi nal proof est technologyreadiness, focusingonthe ogy developmentactivitiesuptothe high- This comprisestheresearch andtechnol- Joint UndertakingsorLevel 3 Fundamental knowledge FP7 CP-Focussed-Level1 1 50yas+5 years 0 -5 -10 Research andtechnologyacquisition Research andtechnologicaldevelopmentproduct development € 100 million.Thisinstrumentcanbeseen COLLABORATIVE PROJECTS(CP) Framework Programme (Applied Research) Technology development FP7 CP-Integrating-Level2 JTI, JU-Level3 Technology validation Demonstrators Figure 3: € 10 Product definition nautics, twowere selected: ECATS (Environ- was introduced inFP6.Inthefi eld ofaero- A NetworkofExcellenceisaninstrument that Network ofExcellence(NoE) along thedevelopmentline. In Figure 3,theseinstrumentsare positioned not describedintheAAT Work Programme. published byCleanSkyandSESARare for Proposals fortheseactivitiesare directly 1 andLevel2),where appropriate. TheCalls of lowertechnologyreadiness levels(i.e.Level Sky’ andSESARalsocoverresearch activities Sky AirTraffi c ManagementResearch. ‘Clean Transport’, andtoSESAR,SingleEuropean Work Programme activity‘TheGreening of Air Technology Initiative relevant mainlytothe pose inspecifi c areas: the‘CleanSky’Joint nerships especiallyestablishedforthispur- undertaken inlarge-scalepublic-privatepart- full-system technologiesdemonstrationare grated systemofsystems.Theseactivities of thecomprisedtechnologiesinafullyinte- Competitiveness -Innovation Prototypes Product development Product development Product demonstration Production (CSA-CA orCSA-SA) Coordination andSupportActions the participants’complementaryresources. Joint Programme ofActivitiesshouldcombine with oftheproject lasting48-60months.The mended numberofpartnersisthree toseven, of research inadedicatedfi eld. Therecom- the viewofcreating aEuropean virtualcentre tion ofresearch activitiesandcapacitieswith instrument seeksforasustainableintegra- These FP6projects are describedin[16].This EWA Tunnel (European Wind Association). mental CompatibleAirTransport System)and posals are planned. Programme (2007-2013), sixCallsforPro- thedurationofSeventhFramework Within Call forProposals FP7 implementation (Euroturbo 8),etc. organisation ofconferences atEuropean level (ICPC, e.g.Aerochina2), andtosupportthe CooperationPartnerCountries International Aeroportal), toimprove theco-operationwith SMEs intheFrameworkProgramme (e.g. port), actionstosupporttheparticipationof increase thepossibilitiesoffered byairtrans- FUSETRA, onthepotentialofseaplanesto of activities.Thesecanbestudies(e.g. The CSA-SAcancoverabroad spectrum Support Actions(CSA-SA) of combustionorX3Noisein[16]). FP6 (see,forexample,ELECT-AE, inthefi eld seen assimilartoCoordination Actions(CA)in for CP-FP(Level1).Thisinstrumentcanbe instrument canbeusedformostofthetopics in thefi eld ofaircraft waketurbulence).This see furtherinthisbookWakenet3-Europe, in order tofi ll theresearch gaps(forexample, scape andrecommends aresearch strategy updated stateoftheartresearch land- many cases,theconsortiummaintainsan research activitiesandresearch policies.In The aimoftheCSA-CAistocoordinate Coordination Actions(CSA-CA) involve research actions. Coordination andSupportActionsdonot - - FP7-AAT-2008-RTD-1: - FP7-AAT-2007-TREN-1: - FP7-AAT-2007-RTD-1: in Aeronautics andAirTransport (AAT) were: The indicativebudgetsforthetwofi rst Calls available forCSA-SAwasabout For eachofthesetwofi rst Calls,thebudget cordis.europa.eu). There wasnoCallin2009. available from theCORDISwebsite(http:// Detailed documentationfortheseCallsis uation criteria,which havebeenpublished: evaluators, againstthree predetermined eval- evaluated independentlybyatleast three eachpanel,everyproposal isinitially Within cross-cutting issues. treated inaseparatepanel dealingwiththe competences. TheCSA-SAproposals are cepts) includingevaluatorswiththe relevant and disposal,Breakthrough andNovelCon- Aero-structures and Materials,Maintenance Equipments, DesignTools andProduction, Factors andAirports,Noise,Systems Flight Physics,Propulsion, Avionics-Human posals are assignedtotechnicalpanels(e.g. The eligibleCP-FP(Level1)andCSA-CApro- recognised expertsintherelevant fi elds. evaluated byindependentevaluatorswhoare not beexceeded.Theeligibleproposals are example, amaximumECfundingthatcan- conditions are speltoutintheCalltext–for a fi rst eligibilitycheckisperformed.Eligibility Following thedeadlineofaCallforProposals, The evaluationandselectionprocess € funding rangingbetweenabout The nextCallswillrunonayearlybasiswith Transport. ber Statesinthefi eld ofAeronautics andAir the nationalfundingproposed bytheMem- project inaneffort tocoordinate someof Call, there wasalsoatopicforanERA-NET 1) andCP-IP(Level2)projects. Inthe2008 shared almostequallybetweenCP-FP(Level The remaining mainpartofthebudgetwas FP7-ERA-NET–2008-RTD: FP7-ERA-NET–2008-RTD: 160 millionforDGRTD. torate-General forResearch) torate-General forEnergyandTransport); torate-General forResearch); torate- General forResearch) € € 210 million(Direc- 220 million(Direc- € 4 million,(Direc- € 2 million(Direc- € € 3 million. 100 and 15 Introduction 16 Introduction fi ve tosevenevaluatorsassesseachpro- For theCP-IPprojects (Level2),panelsof co-ordinator. Reports (ESR),tobesentlatertheproposal which thenbecometheEvaluationSummary minor adjustmentscanbemadetotheCRs ing theoutcomeoffi nal panelmeeting, top oneswill,ineffect, befunded.Follow- enough tofundalltheprojects, soonlythe However, thebudgetavailable isoftennot grade ofatleast10are eligibleforfunding. individual thresholds andhaveanoverall a rankedlist.Allprojects thathavepassed posals from allthepanelsare itemisedtogive to participateinaFinalPanelwhere allthepro- Representatives ofeachpanelare then invited sus isfoundinafairway. views canbeexpressed freely andaconsen- representative whoensures thatthedifferent This meetingismoderatedbyaCommission to benotedintheConsensusReport(CR). agree onthecommonmarksandcomments meeting where theyshare their views and completed, theevaluatorsholdaconsensus Once theindividualevaluationshavebeen an IndividualEvaluationReport(IER). funding. Eachevaluatorregisters hismarksin total marksbelow10/15are alsorejected for considered forfunding.Proposals withoverall old of3belowwhichtheproject willnotbe The marksrangefrom 0and5withathresh- - Potentialimpactthrough thedevelopment, Quality andeffi- ciency oftheimplementation Scientifi- c andtechnologicalexcellence; Table 1:Somestatisticsontheresults ofthefi S-A11 . .%2.2 0.389 0.5% 433.0 1.3% 25.0 2.2 3.9 5.8 46% 1% 52% 18% 82 200.3 1 15 224.7 10% 71% 8 TOTAL CSA-CA 58 CSA-SA CP-IP (Level2) CP-FP (Level1) dissemination anduseoftheproject results. and management; rjcsSae%Recommended Share % Projects EC Funding(M as stimulationmeasures. research policyandcanactasacatalyseror ally provide asignifi cant contributiontothe centage oftheECfunding(1.3%)butusu- The CSA-SAprojects represent asmall per- of theoverallECcontribution. contribution of The eightCP-IPprojects haveanaverageEC million. EC contributionforthistypeofproject is and bution allowedwas the evaluation.WhilemaximumECcontri- 52% oftheECfundingrecommended after are themostnumerous andrepresent about criteria properly. TheCP-FP(Level1)projects ity andaddress eachofthethree evaluation must becomprehensive, ofverygoodqual- between theproposers andtheevaluators,it submitted. Astheproposal textistheonlylink the order ofoneproposal fundedoutofseven the successrateintwofi rst Callswas of the twofi rst AAT Calls.ForCP-FP(Level1), Table 1givesanoverviewoftheresults off Call results are formulated. ranked listisestablishedandthefi nal ESRs together forthefi nal meetingduringwhichthe fi nal CR.Representatives ofeachpanelcome questions, afterwhichthepanelagrees onthe co-ordinators are invitedtoahearing onthose clarifi cation andsenttotheconsortium. The threshold, questionscanbeformulatedfor If themarksforproposal are abovethe wards, thepanelagrees onapreliminary CR. posal, fi rst individuallydraftingtheirIER.After- € 6 millioninthesecondCall,average rsttwoAAT Calls € ) € 25 millionandrepresent 46% hr Average Funding Share € 8 millioninthefi rst Call (M € ) € 3.9 from ICPCcountries. EC contributioninsuccessfulproposals came ~1.6%oftherequestedCall isconcerned, As farasICPCparticipationinthesecond Programme. research actionswithEUpartnersintheWork tifi cation offi and China,whichhaveresulted intheiden- elds ofmutualinterest for from Europe, Eastern CentralAsianstates place recently withRussia,othercountries A numberofstimulationactionshavetaken tional co-operationinareas ofmutualbenefi t. The Work Programme encouragesinterna- without FP7funding). ('developed' countriescanparticipatebut tries are entitledtoreceive fundingfrom FP7 countries canparticipateandwhichcoun- each Work Programme thatidentifi es which Countries (ICPC).Alistispublishedwithin CooperationPartner so-called International exclude thepossibilitytoco-operatewith constituted theFP7Members.Thisdoesnot ated MemberStateswhich,atthattime, the 27MemberStatesand11Associ- (see CORDISFP7-AAT-2008-RTD-1) lists The GuideforApplicantsofthesecondCall co-operation International organisations). education establishments,andresearch profi t publicbodies,secondaryandhigher raised from 50%to75%(similarlyfornon- activities (excludingdemonstration)was FP7, thefundingrateforSMEsresearch (see Figure 4).NotethatbetweenFP6and increasingly successfulresponse from SMEs Successive Work Programmes haveseenan their wayinFP7. provided supporttoSMEshelpthemfi nd project descriptionorwww.aeroportal.eu) has The Specifi c SupportActionAeroportal (see strongly encouragedintheWork Programme. SME participationinFP7research projects is Small andmedium-sizedenterprises contribution from industry(mostlyinkind), With ECfundingof With European AirTransport System. the integrationof'green' technologiesinthe tive 'CleanSky'withtheaimofaccelerating nautics industryintheJointTechnology Initia- 2008 betweentheCommissionandaero- public-private partnershipwaslaunchedin the impactofaviationonenvironment, a In order toanswerincreasingabout concerns ‘Clean Sky’JointUndertaking Aeronautics AirTransport Other initiativesrelevant to industry partnerswithaworkshare of The ITDsare mainlycoordinated bylarge technology evaluator. tal impact,willbeassessedbytheso-called ticular withrespect toreducing environmen- The achievementsoftheplatforms,inpar- - Eco-Design. Systems forGreen Operations;and - Sustainable andGreen Engines; - - Green Rotorcraft; Green RegionalAircraft; - Aircraft; Smart FixedWing - Technology Demonstrators(ITD): Clean Skyisstructured intosixIntegrated ing 2008-2017[17]. workdur-600 millionwillbeinvestedinRTD Calls canbefoundatwww.cleansky.eu. More information andannouncementofthe institutions through openCallsforProposals. additional partnersfrom industryandresearch lion CSJUfundingwillbemadeavailablefor tribution. Finally, activitiesfor RTD i.e. tribution isabout the CleanSkyWork Programme. Theircon- bers were alsoselectedtohelpimplement contributions. Numerous AssociateMem- from CleanSkyJointUndertaking(CSJU) million, ofwhich50%,i.e. € 200 millioncomingfrom theCSJUcon- € € 400 million,50%ofthis 800 millionandanequal € 400 millioncomes € 200 mil- € 800 € 1 17 Introduction 18 Introduction 10 15 20 25 30 10 15 20 25 0 5 0 5 % % 6.2% P- P- P- P- P- P- P- FP7-2 FP7-1 FP6-3 FP6-2 FP6-1 FP5-3 FP5-2 FP5-1 P- P- P- P- P- P- P- FP7-2 FP7-1 FP6-3 FP6-2 FP6-1 FP5-3 FP5-2 FP5-1 2.8% Requested ECFunding Participation 9.9% 5.6% Evolution intheparticipationofSMEs 11.4% 6.2% 17.1% Figure 4: 8.6% 17.9% 9.4% 11.9% 19.4% 18.6% 21.7% 12.4% (FP6 Eq.) 20.4% 18.8% 12.6% (FP6 Eq.)

between different programmes. research soastoavoidpossibleduplications air transportsystem,andmanagesallATM sistent system-wideapproach fortheentire research activitiesinorder tomaintainacon- SESAR programme withotheraeronautical Treaty. ThisJointUndertakingcoordinates the a CouncilRegulationunderArticle171ofthe Joint Undertaking(SESARJU),establishedby undertaken andimplementedbytheSESAR the SeventhFrameworkProgramme willbe fi c Management(ATM)-related research in and industrialimplementation,allAirTraf- research sothatitleadstoactualoperational In order torationaliseandorganiseATM air transport. ronmentally friendlydevelopmentofEurope's will enablethesafe,cost-effi cient andenvi- air traffi c managementinfrastructure which andhighlyeffito developamodernised cient the technologicalpillarofSESandaims initiative (SES).Thisprogramme represents an integratedpartoftheSingleEuropean Sky Research) programme hasbeenlaunched as The SESAR(SingleEuropean SkyATM Research Air Traffi SESAR –SingleEuropean Sky 4. TheEconomicandSocialBenefi 3. ts ofAir PanoramaofTransport, Eurostat, 2009. 2. 1. EU Energyand Transport inFigures, References . Performance ReviewReport,Eurocontrol, 9. Directive 2008/101/EC amendingDirec- 8. Global-MarketForecast, Airbus,2007. 7. European Low-CostCarriersWhitePaper, 6. Climate foraTransport Change, European 5. Transport 2008,ATAG. port, 2009. Directorate-General forEnergyandTrans- http://ec.europa.eu/transport/publications/ 2008. Community, 19/11/2008. gas emissionallowancetradingwithin the activities intheschemeforgreenhouse tive 2003/87/ECsoastoincludeaviation OAG report, 2006. Environment AgencyReport,2008. statistics/statistics_en.htm cManagement(ATM) 1. Defi nition phase(2005-2008),whichdeliv- phases: The SESARprogramme comprisesthree found atwww.sesarju.eu. works programme). More informationcanbe € Thematic Priority(includingAeronautics) and 2007-2013 ( gramme’s developmentphaseovertheperiod tion of The ECwillprovide amaximumtotalcontribu- 3. Deployment phase(2013-2020), through 2. Development phase(2008-2013),which 17. Council RegulationEC71/2008settingup 16. FP6 Aeronautics Research 2002-2006 15. Technology ReadinessLevel,aWhite 14. 2008 AddendumtotheStrategic 13. Strategic Research Agenda2,ACARE, 12. Strategic Research Agenda1,ACARE, 11. European Aeronautics: for2020; AVision 10. Report from theCommissiontoCoun- 350 millionfrom theTrans-European Net- air transportactivitiesinEurope. nents whichguaranteehigh-performance fully harmonisedandinteroperable compo- management infrastructure, composedof and implementationofthenewairtraffi c which there willbelarge-scaleproduction basis ofthedefi nition phasefi ndings. develops thenecessaryelementson the necessaryelementsforitsrealisation. generation ofATM systemsandidentifying beyond, defi ning thecontentofnext ered anATM MasterPlanfor2020and the CleanSkyJointUndertaking. and 2(2008). Projects, Project SynopsesVol. 1(2006) Paper, J.C.Mankins,NASA,1995. Research Agenda,ACARE,2008. 2004. 2002. Report oftheGroup ofPersonalities,2001 COM (2008)66,2008. Operation RestrictionsatEUAirports, cil andtheEuropean Parliament:Noise € 700 milliontoSESARJUforthepro- € 350 millionfrom theTransport 19 Introduction

Index by Activities

The Greening of Air Transport

AAS Integrated Airport Apron Safety Fleet Management 49

ACFA 2020 Active Control of Flexible 2020 Aircraft 88 Index by Activities ATAAC Advanced Turbulence Simulation for Aerodynamic Application 31 Challenges COSMA Community Oriented Solutions to Minimise aircraft noise 72 Annoyance DESIREH Design, Simulation and Flight Reynolds-Number Testing for 35 Advanced High-Lift Solutions DREAM valiDation of Radical Engine Architecture systeMs 52

ELUBSYS Engine LUBrication SYStem technologies 56

ERICKA Engine Representative Internal Cooling Knowledge and 59 Applications FLOCON Adaptive and Passive Flow Control for Fan Broadband Noise 75 Reduction FUTURE Flutter-Free Turbomachinery Blades 63 21 GreenAir Generation of Hydrogen by Kerosene Reforming via Effi cient 43 and Low-Emission New Alternative, Innovative, Refi ned Technologies for Aircraft Application KIAI Knowledge for Ignition, Acoustics and Instabilities 66

OPENAIR Optimisation for Low Environmental Noise Impact Aircraft 78

REACT4C Reducing Emissions from Aviation by Changing Trajectories 37 for the Benefi t of Climate SADE Smart High Lift Devices for Next-Generation Wings 40

TECC-AE Technology Enhancements for Clean Combustion 69

TEENI Turboshaft Engine Exhaust Noise Identifi cation 82

VALIANT VALidation and Improvement of Airframe Noise prediction 85 Tools WakeNet3-Europe European Coordination Action for Aircraft Wake Turbulence 46 Increasing Time Effi ciency

ALICIA All Condition Operations and Innovative Cockpit Infrastructure 91 ASSET Aeronautic Study on Seamless Transport 95 TITAN Turnaround Integration in Trajectory and Network 98 Ensuring Customer Satisfaction and Safety

Index by Activities ADDSAFE Advanced Fault Diagnosis for Safer Flight Guidance and 101 Control DANIELA Demonstration of Anemometry InstrumEnt based on LAser 104 DELICAT DEmonstration of LIdar-based Clear Air Turbulence detection 106 GREEN-WAKE Demonstration of LIDAR-based wake vortex detection 108 system incorporating an Atmospheric Hazard Map HISVESTA High Stability Vertical Separation Altimeter Instruments 111 HUMAN Model-Based Analysis of Human Errors During Aircraft 126 Cockpit System Design iSPACE innovative Systems for Personalised Aircraft Cabin 123 Environment MISSA More Integrated System Safety Assessment 138 ODICIS One DIsplay for a Cockpit Interactive Solution 129 22 ON-WINGS ON-Wing Ice DetectioN and MonitorinG System 114 PICASSO Improved Reliability Inspection of Aeronautic Structure 135 through Simulation Supported POD SCARLETT SCAlable and Reconfi gurabLe Electronics plaTforms and 117 Tools SUPRA Simulation of UPset Recovery in Aviation 132

VISION Immersive Interface Technologies for Life-Cycle Human- 120 Oriented Activities in Interactive Aircraft-Related Virtual Products

Improving Cost Effi ciency

ACCENT Adaptive Control of Manufacturing Processes for a New 169 Generation of Jet Engine Components ADMAP-GAS Unconventional (Advanced) Manufacturing Processes for 172 Gas-engine turbine components ADVITAC ADVance Integrated Composite Tail Cone 144 AISHA II Aircraft Integrated Structural Health Assessment II 198 ALEF Aerodynamic Load Estimation at Extremes of the Flight 141 Envelope COALESCE2 Cost Effi cient Advanced Leading Edge Structure 2 175 CREAM Innovative Technological Platform for Compact and Reliable 156 Electronic integrated in Actuators and Motors CRESCENDO Collaborative and Robust Engineering using Simulation 178 Capability Enabling Next Design Optimisation DAPHNE Developing Aircraft Photonic Networks 159 EXTICE EXTreme ICing Environment 183 FANTOM Full-Field Advanced Non-Destructive Technique for Online 201 Thermo-Mechanical Measurement on Aeronautical Structures FFAST Future Fast Aeroelastic Simulation Technologies 186 Index by Activities FLEXA Advanced Flexible Automation Cell 189 glFEM Generic Linking of Finite Element based Models 195 IAPETUS Innovative Repair of Aerospace Structures with Curing 204 Optimisation and Life-cycle Monitoring Abilities IMac-Pro Industrialisation of Manufacturing Technologies for Composite 146 Profi les for Aerospace Applications INFUCOMP Simulation Based Solutions for Industrial Manufacture of 192 Large Infusion Composite Parts LAYSA Multifunctional Layers for Safer Aircraft Composite Structures 149 MAAXIMUS More Affordable Aircraft through eXtended, Intergrated and 152 Mature nUmerical Sizing SANDRA Seamless Aeronautical Networking through integration of 162 Data links, Radios and Antennas TAUPE Transmission in Aircraft on Unique Path wirEs 166 23 TRIADE Development of Technology Building Blocks for Structural 207 Health-Monitoring Sensing Devices in Aeronautics Protection of Aircraft and Passengers

ATOM Airport detection and Tracking Of dangerous Materials by 221 passive and active sensors arrays BEMOSA Behavioral Modeling for Security in Airports 218 FLY-BAG Blastworthy Textile-Based Luggage Containers for Aviation 211 Safety

HIRF SE HIRF Synthetic Environment research programme 214 Pioneering the Air Transport of the Future

ALFA-BIRD Alternative Fuels and Biofuels for Aircraft Development 227 FAST20XX Future High-Altitude High-Speed Transport 20XX 230 LAPCAT-II Long-term Advanced Propulsion Concepts and Technologies II 234 PLASMAERO Useful Plasma for Aerodynamic control 237 PPlane Personal Plane: Assessment and Validation of Pioneering 239 Index by Activities Concepts for Personal Air Transport Systems SAFAR Small Aircraft Future Avionics ARchitecture 225

Cross Cutting Activities

AERO-UKRAINE Stimulating Ukraine–EU Aeronautics Research Co-operation 260

AEROAFRICA-EU Promoting European-South African Research Co-operation in 262 Aeronautics and Air Transport AEROCHINA2 Prospecting and Promoting Scientifi c Co-operation between 243 Europe and China in the Field of Multi-Physics Modelling, Simulation, Experimentation and Design Methods in Aeronautics AEROPORTAL Support for European aeronautical SMEs 246 AirTN-FP7 Air Transport Net (AirTN) as one of the key enablers for the 265 24 prosperous development of Aeronautics in Europe CEARES Central European Aeronautical Research Initiative 249 COOPAIR-LA Guidelines for Cooperation of Latin American Countries in 268 European Aeronautics and Air Transport Research CREATE CREating innovative Air transport Technologies for Europe 252 E-CAERO European Collaborative Dissemination of Aeronautical 271 Research and Applications EUROTURBO 8 Support to Eighth European Conference on Turbomachinery 255 Fluid dynamics and thermodynamics, Graz, March 2009 FUSETRA Future Seaplane Traffi c - Transport Technologies for the 274 Future ICOA.10.09 International Conference on Airports, October 2009, Paris 258 MONITOR Monitoring System of the Development of Global Aviation 277 REStARTS Raising European Student Awareness in Aeronautical 280 Research Through School labs Index by Technical Fields

Flight Physics

ACFA 2020 Active Control of Flexible 2020 Aircraft 88 ALEF Aerodynamic Load Estimation at Extremes of the Flight 141 Envelope ATAAC Advanced Turbulence Simulation for Aerodynamic 31 Application Challenges DESIREH Design, Simulation and Flight Reynolds-Number Testing 35

for Advanced High-Lift Solutions Fields Index by Technical REACT4C Reducing Emissions from Aviation by Changing 37 Trajectories for the Benefi t of Climate SADE Smart High Lift Devices for Next-Generation Wings 40

Aerostructures and Materials

ADVITAC ADVance Integrated Composite Tail Cone 144 FLY-BAG Blastworthy Textile-Based Luggage Containers for 211 Aviation Safety IMac-Pro Industrialisation of Manufacturing Technologies for 146 Composite Profi les for Aerospace Applications LAYSA Multifunctional Layers for Safer Aircraft Composite 149 25 Structures MAAXIMUS More Affordable Aircraft through eXtended, Intergrated 152 and Mature nUmerical Sizing

Systems and Equipment

ADDSAFE Advanced Fault Diagnosis for Safer Flight Guidance and 101 Control CREAM Innovative Technological Platform for Compact and 156 Reliable Electronic integrated in Actuators and Motors DANIELA Demonstration of Anemometry InstrumEnt based on 104 LAser DAPHNE Developing Aircraft Photonic Networks 159 DELICAT DEmonstration of LIdar-based Clear Air Turbulence 106 detection GreenAir Generation of Hydrogen by Kerosene Reforming via 43 Effi cient and Low-Emission New Alternative, Innovative, Refi ned Technologies for Aircraft Application GREEN-WAKE Demonstration of LIDAR-based wake vortex detection 108 system incorporating an Atmospheric Hazard Map HIRF SE HIRF Synthetic Environment research programme 214 HISVESTA High Stability Vertical Separation Altimeter Instruments 111 iSPACE innovative Systems for Personalised Aircraft Cabin 123 Environment ON-WINGS ON-Wing Ice DetectioN and MonitorinG System 114 SANDRA Seamless Aeronautical Networking through integration of 162 Data links, Radios and Antennas SCARLETT SCAlable and Reconfi gurabLe Electronics plaTforms and 117 Tools TAUPE Transmission in Aircraft on Unique Path wirEs 166 VISION Immersive Interface Technologies for Life-Cycle Human- 120 Oriented Activities in Interactive Aircraft-Related Virtual

Index by Technical Fields Index by Technical Products WakeNet3-Europe European Coordination Action for Aircraft Wake 46 Turbulence

Avionics, Human Factors and Airports

AAS Integrated Airport Apron Safety Fleet Management 49 ALICIA All Condition Operations and Innovative Cockpit 91 Infrastructure ASSET Aeronautic Study on Seamless Transport 95 ATOM Airport detection and Tracking Of dangerous Materials by 221 passive and active sensors arrays 26 BEMOSA Behavioral Modeling for Security in Airports 218 HUMAN Model-Based Analysis of Human Errors During Aircraft 126 Cockpit System Design ODICIS One DIsplay for a Cockpit Interactive Solution 129 SAFAR Small Aircraft Future Avionics ARchitecture 225 SUPRA Simulation of UPset Recovery in Aviation 132 TITAN Turnaround Integration in Trajectory and Network 98

Propulsion

ALFA-BIRD Alternative Fuels and Biofuels for Aircraft Development 227 DREAM valiDation of Radical Engine Architecture systeMs 52 ELUBSYS Engine LUBrication SYStem technologies 56 ERICKA Engine Representative Internal Cooling Knowledge and 59 Applications FUTURE Flutter-Free Turbomachinery Blades 63 KIAI Knowledge for Ignition, Acoustics and Instabilities 66 TECC-AE Technology Enhancements for Clean Combustion 69 Noise and Vibration

COSMA Community Oriented Solutions to Minimise aircraft noise 72 Annoyance FLOCON Adaptive and Passive Flow Control for Fan Broadband 75 Noise Reduction OPENAIR Optimisation for Low Environmental Noise Impact Aircraft 78 TEENI Turboshaft Engine Exhaust Noise Identifi cation 82 VALIANT VALidation and Improvement of Airframe Noise prediction 85 Tools Index by Technical Fields Index by Technical Design Tools and Production

ACCENT Adaptive Control of Manufacturing Processes for a New 169 Generation of Jet Engine Components ADMAP-GAS Unconventional (Advanced) Manufacturing Processes for 172 Gas-engine turbine components COALESCE2 Cost Effi cient Advanced Leading Edge Structure 2 175 CRESCENDO Collaborative and Robust Engineering using Simulation 178 Capability Enabling Next Design Optimisation EXTICE EXTreme ICing Environment 183 FFAST Future Fast Aeroelastic Simulation Technologies 186 FLEXA Advanced Flexible Automation Cell 189 27 glFEM Generic Linking of Finite Element based Models 195 INFUCOMP Simulation Based Solutions for Industrial Manufacture of 192 Large Infusion Composite Parts MISSA More Integrated System Safety Assessment 138

Maintenance and Disposal

AISHA II Aircraft Integrated Structural Health Assessment II 198 FANTOM Full-Field Advanced Non-Destructive Technique for 201 Online Thermo-Mechanical Measurement on Aeronautical Structures IAPETUS Innovative Repair of Aerospace Structures with Curing 204 Optimisation and Life-cycle Monitoring Abilities PICASSO Improved Reliability Inspection of Aeronautic Structure 135 through Simulation Supported POD TRIADE Development of Technology Building Blocks for Structural 207 Health-Monitoring Sensing Devices in Aeronautics Breakthrough and Novel Concepts

FAST20XX Future High-Altitude High-Speed Transport 20XX 230 LAPCAT-II Long-term Advanced Propulsion Concepts and 234 Technologies II PLASMAERO Useful Plasma for Aerodynamic control 237 PPlane Personal Plane: Assessment and Validation of Pioneering 239 Concepts for Personal Air Transport Systems Index by Technical Fields Index by Technical

28 ed by Activities Description of Projects Classifi Description of Projects

29

ATAAC Advanced Turbulence Simulation for Aerodynamic Application Challenges

State of the Art - Background nolds Average Navier-Stokes (RANS) models, including Scale-Adaptive Simulation (SAS), Substantial resources have been invested Wall-Modelled LES, and different hybrid over the years into Computational Fluid RANS-LES coupling schemes. The project Dynamics (CFD). These investments (many resources will concentrate exclusively on of them made in the framework of European fl ows for which current models fail to provide programmes) have resulted in a remark- suffi cient accuracy, e.g. stalled fl ows, high lift able progress in the use of Computational applications, swirling fl ows (delta wings, trail- Fluid Dynamics (CFD) for the design of new

ing vortices) or buffet. The assessment and of Air Transport The Greening aircraft by the European airframe industry, improvement process will follow thoroughly signifi cantly reducing the reliance on wind- conceived roadmaps linking practical goals tunnel and fl ight tests. This trend has resulted with corresponding industrial application in the progressive shift of CFD priorities from challenges and with modelling issues through numerics to fl ow physics and, ultimately, to ‘stepping stones’ represented by appropriate turbulence modelling, which has become the generic test cases. weakest link in the CFD-based design chain. This is highlighted by the fact that, on the one The fi nal goals are: hand, the theoretical capabilities for simulating - to recommend one or at most two ‘best’ full aircraft confi gurations with deployed fl aps DRSM for conventional RANS and Unsteady and landing gear are available, while, on the RANS; other hand, maximum-lift prediction of much - to provide a small set of hybrid RANS-LES 31 simpler confi gurations or fl ow and noise pre- and SAS methods that can be used as ‘ref- dictions for an isolated landing gear fail due to erence’ turbulence-resolving approaches in turbulence modelling defects. It is clear that future CFD design tools; strengthening this link is crucial to satisfying - to formulate best practice guidelines for the the urgent needs of the European aerospace recommended models with clear indications industries. CFD-aided design procedures for of areas of applicability and uncertainty for the analysis of turbulent aerodynamic fl ows aerodynamic applications in industrial CFD. must be improved to a level that is suffi cient to resolve numerous problems directly related Description of Work to the ‘Green Aircraft Challenge’, e.g. reliable The project consists of four work packages evaluation of innovative drag and noise reduc- (WP). ing concepts, and high lift systems allowing steeper take-off and landing. WP1 is dedicated to managing the project and dissemination and exploitation activities. Objectives This WP also includes the management of the website, which hosts the database and is also ATAAC aims at improving the current turbu- used for the management, communication lence modelling/simulation approaches avail- and dissemination processes. The remaining able in CFD methods for aerodynamic fl ows. three work packages deal with scientifi c and As Large Eddy Simulation (LES) will not be technical work. affordable for the high Reynolds numbers typical of real-life fl ows in the next decades, WP2 is dedicated to the work on the different ATAAC focuses on approaches below the types of models under consideration and their LES level, namely Differential Reynolds Stress improvement in terms of both physics and Models (DRSM), advanced Unsteady Rey- numerical effi ciency. 32 The Greening of Air Transport Detached EddySimulationofThree-Element Airfoilshowingturbulentstructures set ofbestpracticeguidelines. the different modelstrandsandtoaconcise of ‘standard’ or‘reference’ approaches from project results leadingtotherecommendation will guaranteeasoundfi nal assessmentofall tion andminimisationofuncertainties.Thusit to qualityguidelines,aswelltheidentifi ca- assessment process inWP3,theadherence ensuring alsothecriticalsupervisionof will runoverthecompletetimeofproject results ofWP2andWP3.Thisworkpackage and theappraisalofmodelsbasedon vation oftheknowledgegainedinproject WP4 isdedicatedtothegatheringandpreser- both aerodynamics andaero-acoustics. and challengingapplicationsfrom thefi elds of roadmaps byemployingsmallsetsofbasic models andtheirimprovement basedonthe WP3 servestheassessmentofchosen well astoimproving costeffi ciency. greener aircraft (Greening ofAirTransport) as directly contributetothedevelopmentof trust inreliable prediction, ATAAC willthus at alaterpointinthecycle.Increasing the ments withasignifi cantly reduced frequency numerical simulationandtoperformexperi- to basetheirdesigncyclesmuchmore upon the cleartendencyofairframeindustry sation. Thisisofutmostimportancedueto predictive capabilitiesindesignandoptimi- ATAAC willthushaveadirect impactonthe Contributing toreliable industrialCFDtools, practice guidelines. tainty, whichwillbedocumentedinthebest and theirrangeofapplicabilityuncer- mented byrecommendations fortheirusage CFD designtools.Thesewillbesupple- turbulence-resolving approaches infuture SAS methodsthatcanbeusedas‘reference’ well asasmallsetofhybridRANS-LESand conventional RANSandUnsteadyRANS,as most two)‘best’Reynolds-Stress modelsfor with themainresults ofATAAC are one(orat improved turbulencemodelsandapproaches Besidesasetofcriticallyassessedand ExpectedResults DE37073Göttingen DeutschesZentrumfürLuft-undRaumfahrte.V. Bunsenstr. 10 Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: nvriyo acetr UK DE DE DE RU BE FR UniversityofManchester FR DE Technische Universität Darmstadt DE FR Technische Universität Berlin CH NL Rolls-RoyceDeutschlandLtd&Co KG Offi ce Nationald’Études etdeRecherche Aérospatiales SE SA NumericalMechanicsApplicationsInternational DE UK NewTechnologies andServicesLLC IT StichtingNationaalLucht-enRuimtevaartlaboratorium InstitutNationalPolytechniquedeToulouse ImperialCollegeofScience,Technology andMedicine Eurocopter DeutschlandGmbH EADSDeutschlandGmbH LFK-Lenkfl DassaultAviation SA ChalmersTekniska HögskolaAB CFSEngineeringSA Totalförsvarets SE ANSYSGermanyGmbH AleniaAeronautica S.p.A. ugkoerpersysteme CN DE Forskningsinstitut Tsinghua GmbH University +49(0)5517092271 +49(0)55170912416 FP7–AAT–2008–RTD–1 cer: [email protected] http://www.ataac.cfdtm.org ibsU t UK AirbusUKLtd 36 months ATAAC 5653950 Mr. DietrichKnoerzer CP–FP Dr. DieterSchwamborn 31.03.2012 01.04.2009 3791012 233710 Flight Physics Advanced Turbulence SimulationforAerodynamic ApplicationChallenges € € 33 The Greening of Air Transport DESIREH Design, Simulation and Flight Reynolds-Number Testing for Advanced High-Lift Solutions

State of the Art - Background DeSiReH. This will facilitate an improved industrial design process in terms of product Laminar wings offer a signifi cant potential for quality, effi ciency and reduced development advancing aerodynamic performance and costs with respect to the high-lift systems. thus improving the environmental accept- ance of future aircraft. While offering a large DeSiReH addresses the following quantifi ed The Greening of Air Transport The Greening fuel saving potential, laminar wings for large objectives: transport aircraft still suffer from incompatible - reducing the industrial aircraft development high-lift leading edge systems. Natural lami- costs by 5% through less and more effi cient nar fl ow (NLF) technology poses new design wind tunnel testing; constraints and adds further design param- - decreasing the time-to-market by 4% by eters to the design space. Hence, the design improving the aerodynamic design turn- space of a NLF high-lift system must be wider around time; compared to the design space of a high-lift - improving the industrial high-lift design system for a transport aircraft with turbulent process effi ciency by 15%; wings. Exploring a wider design space calls - designing a compatible high-lift system ena- for automated optimisation algorithms for bling the NLF-potential of reducing aircraft 34 which, however, code developers often lack drag by 5%. the specifi c knowledge. Description of Work In the industrial design process of high-lift systems, the wind tunnels play a very impor- Existing and validated high-fi delity numerical tant role as they allow a reliable analysis of tools will be developed for an effi cient high-lift the design variations with respect to aircraft design and optimisation process chain, which performance. Pressurised cryogenic wind is able to explore the design space of a typical tunnels are able to simulate almost any fl ight multi-objective optimisation problem. condition so these tunnels are very important These strategies and tools are applied to the in minimising the uncertainties. An improve- aerodynamic design of a high-lift system for ment in the testing effi ciency, by applying the NLF wing. The key objective of the design simultaneously different state-of-the-art activity is to achieve the required high-lift per- measurement techniques under cryogenic formance in take-off and landing whilst facing conditions, provides the potential to decrease the constraint to maintain NLF at cruise to the the development costs within the industrial best possible extent. The matured methods design process. are benchmarked against the aerodynamic high-lift design by applying today’s indus- Objectives trial design approach. This benchmark is an DeSiReH supports the realisation of Vision important activity for the targeted qualifi cation 2020 by improving the aerodynamics of the of the high-fi delity optimisation process and high-lift system. This will be achieved by strategies for industrial implementation. considering the numerical design methodol- A further important work package focuses on ogy and the measurement techniques for the improvement of the experimental meas- cryogenic conditions for an advanced lami- urement technique for cryogenic testing. The nar high-lift wing design to be performed in be ready andavailableforbeingintegrated also prepared inDeSiReH.Theresults will enhanced testingstrategiesandtechnologies experimental specialists.Thelatterwillusethe close jointactionbetweenthenumericaland The designwillbetestedintheETWa lift designsystemforalaminar-fl ow wing. be appliedfordesigningandtestingahigh- fi delity numericaldesignprocess whichwill DeSiReHintendstoprovide aneffi cient, high- ExpectedResults equipped withthehigh-liftsystem. high ReynoldsnumbersontheHARLSmodel techniques are fi nally appliedintheETWat quality onthehigh-liftperformance.These analyse theinfl uence ofthemodelsurface deformation measurement) inparallel,andto techniques (e.g.transitionmeasurement and ate thecapabilitytoapplydifferent important ment accuracyoftheresults andtogener- objectives here are toenhancethemeasure- numerical design programmes methodology HELIX EUROLIFT I+II programs high-lift

NACRE AEROSHAPE 2000-2008 2000-2008 2009-2012 wind tunnel technology DeSIReII programs TELFONA FLIRET quantifi- cation oftheenvironmental andeco- advanced experimentalmeasurement tech- - an improved high-liftdesignmethodologyin - an optimisedlaminarwinghigh-liftsystem; - The results include,butare notlimitedto: dinating Action. workshops, forinstanceintheKATnet IICoor- dissemination withinrespective papersand results willalsobepromoted byanintensive Joint Technology Initiative‘CleanSky’.The into theSmartFixed-wingAircraft partofthe targets. nomical benefi t inrelation totheACARE niques atcryogenicconditions; aerodynamic high-liftsystemsolutions; an industrialcontextandevaluationofthe TELFONA HYLTEC HYLDA LARA ELFIN I+II laminar wing technology programs

1990-2008 35 The Greening of Air Transport 36 The Greening of Air Transport Partners: ECOffi Fax: Tel: E-mail: Coordinator: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: nttt ainld énc eosail ES DE BE FR FR IT DE NL IT FR Offi ce Nationald’ÉtudesetdeRecherche Aérospatiales InstitutoNacionaldeTécnicaAeroespacial NL StichtingNationaalLucht-enRuimtevaartlaboratorium ES Centro ItalianoRicerche Aerospaziali S.C.p.A. IBKIngenieurbüro Hauptsitz European Transonic GmbH Windtunnel Aircraft DevelopmentandSystemsEngineering B.V. ASCOIndustriesN.V. Totalförsvarets SE PiaggioAero IndustriesS.p.A. DassaultAviation SA EADS-ConstruccionesAeronáuticas S.A. AirbusFranceSAS Forskningsinstitut DE38108Braunschweig DLR-DeutschesZentrumfürLuft-undRaumfahrte.V. Lilienthalplatz, 7 zob eoatclCnutn DE IT DE IT DziombaAeronautical Consulting UniversitàdegliStudidiPadova UniversitàdegliStudidiNapoli‘Federico II’ Technische Universität Braunschweig +49(0)5312953336 +49(0)5312952320 FP7–AAT–2008–RTD–1 cer: [email protected] ibsDushadGb DE AirbusDeutschlandGmbH 48 months DESIREH 7078821 Mr. DietrichKnoerzer CP–FP Dr.-Ing. JochenWild 28.02.2013 01.03.2009 4992335 233607 Flight Physics

High-Lift Solutions Design, SimulationandFlightReynolds-NumberTesting forAdvanced nttt ae fe rf ..Zuosy RU Institute namedafterProf. N.E. Zhukovsky Federal StateUnitaryEnterprise-TheCentralAerohydrodynamic € € REACT4C Reducing Emissions from Aviation by Changing Trajectories for the Benefi t of Climate

State of the Art - Background project REACT4C will address those inef- fi ciencies which exist in the aviation system Despite the signifi cant progress that has been with respect to fuel consumption and emis- made in reducing the specifi c emissions of sions by investigating the potential of alterna- aircraft, in particular CO , the absolute emis- 2 tive fl ight routing for lessening the atmospheric sions have been increasing rapidly during the

impact of aviation. of Air Transport The Greening recent decades and are projected to continue to grow. Furthermore, aviation substantially Hence, the main objectives of REACT4C are: impacts upon the climate through non-CO2 - to explore the feasibility of adopting fl ight effects such as ozone formation and methane altitudes and fl ight routes that lead to destruction from aviation’s NOx emissions, the reduced fuel consumption and emissions, formation of contrails and contrail cirrus, the and lessen the environmental impact, and emission of H 2 O at high altitudes, emission - to estimate the overall global effect of such of aerosols (e.g. soot) and aerosol precur- ATM measures in terms of climate change. sors (e.g. SOx), which are directly radiatively The objective of REACT4C is to demonstrate active and which modify cloudiness and cloud that environmentally-friendly fl ight routing is micro-physical and radiative properties. feasible, but does not address the opera- 37 Current fl ight planning is performed with the tional implementation of such advanced Air objectives of achieving maximum punctuality Traffi c Management (ATM) procedures. The or minimizing the operational costs, whereas latter would require much more time than is the target of minimal fuel consumption, mini- available during the present project. How- mal CO2 emissions or minimal climate impact ever, REACT4C will deliver substantial scien- has a lower priority. tifi c foundation and operational specifi cation for novel ATM procedures, which might be Impact of aircraft non-CO emissions on the 2 explored in a later phase of the SESAR JU. atmospheric composition and on the climate Analogously, REACT4C will deliver fundamen- depends on the altitude and location of the tal concepts of aircraft that are better suited emissions. Therefore climate impact via NO , x for environmental fl ight routing, which will contrails and contrails cirrus can be reduced, have the potential to enter the Clean Sky JTI for example, by fl ying lower and avoiding con- in a later phase. trail regions. On the other hand this results in a higher fuel burn and hence in higher CO 2 Description of Work emissions. We plan to achieve the objectives of The project REACT4C will perform an opti- REACT4C mainly by a numerical approach, misation approach for alternative or environ- which combines atmospheric models of dif- mental fl ight planning in order to assess the ferent complexity, ATM tools of planning potential for reducing fuel consumption, CO2 fl ight trajectories, including models to calcu- emissions and climate impact from aviation. late aircraft emissions, and tools for aircraft pre-design. Objectives The work plan of REACT4C is structured into In order to reduce aviation’s emissions and nine Work Packages (WPs) such that each improve its environmental compatibility, the 38 The Greening of Air Transport showing workpackages Graphical presentation of project structure, - An initialscopingstudyofexpandingan Theexpectedresults are: ExpectedResults the abovestructure. agement oftheproject (WP9)complement coordination andexploitation(WP8)man- design andresearch (WP7).Specifi c WPson to recommendations forfuture ATM, aircraft The fi ndings oftheproject willbeaggregated ing isstudied(WP6). respect toenvironmentally friendlyfl ight rout- and howaircraft designcanbeoptimizedwith effect ofaviationare furtherexplored (WP5) The potentialformitigatingtheatmospheric ated anduncertaintiesare estimated(WP4). jectories (WP3).Finally, theresults are evalu- emissions andclimateimpactalongthesetra- environmentally-friendly fl ight trajectoriesand then fedintoafl ight planningtooltocalculate mined fortheseweathersituations(WP2)and tions (WP1).Climatecostfunctionsare deter- We beginwiththeselectionofweathersitua- effi cient aspossible(seealsofi gure). work packagescanbekeptassimpleand possible andthatinterfacesamongdifferent individual workpackageisascompact and interaction tion againstcriteriaoffuelconsumptionand operational fl ight planningtool byoptimisa- Coordination Exploitation WP8 & Green aircraft & enginedata Requirements Performance airframe engine WP6 WP7 Recommendationsforfuture flightconcepts rcia ue Gaps,obstacles Practical rules WP3 Environmental flightplanning (2) fuelconsumption (1) flightdistance optimising WP1 Definitionofcasestudies Optimised trajectories,emissions, radiative forcing, climate impact Evaluation ofmitigationeffort WP2 Climatecostfunctions Climate CostFunctions including uncertainties archetype situations Meteorological data Evaluation, impact, - Cooperation willbeinstigatedbetween Theproject willallowtheformulationofspe- - For thefi- rst time,4Dclimatecostfunctions - The project will,forthefi rst time,quantify uncertainties Clean SkyJTIandSESARJU. potential toinitiatefollow-upjointworkin ronmental fl ight planning,whichhasthe complementary expertsrequired forenvi- future green aircraft; fl ight planning,aircraft andenginedesignfor cifi c recommendations forstakeholderson zon (theGlobalTemperature Potential); temperature changeafteragiventimehori- Kyoto metricGlobalWarming Potential)and ginal RadiativeForcing RF(inanalogytothe change, targetsbeingtimeintegratedmar- rely ondifferent emissionmetricsofclimate weather situations.Thesecostfunctionswill and time)willbecalculatedforrealistic (as functionsoflatitude,longitude,altitude on aregional andglobalscale. tories underrealistic atmosphericconditions impact duetonon-conventionalfl ight trajec- to fuelconsumption,emissionsandclimate cies intheairtransportsystemwithrespect the potentialforimprovements ofineffi cien- to climateimpact; mentally friendlyfl ight planningwithrespect climate costfunctionswillenableenviron- emissions willbeperformed;theinclusionof WP4 (4) climateimpact (3) emissions mitigation studies Mitigation options Simplified WP5 Management WP9 DE82234Wessling Dr. SigrunMatthes InstitutfürPhysikderAtmosphäre DeutschesZentrumfürLuft-undRaumfahrte.V. (DLR) Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: nvriyo edn UK IT UK BE UniversityofReading UniversitadegliStudideL’Aquila UK TheManchesterMetropolitan University EUROCONTROLExperimentalCentre MET OFFICE +49(0)8153282524 +49(0)8153281841 FP7–AAT–2008–RTD–1 cer: [email protected] http://www.react4c-project.eu ibsOeain .. FR AirbusOperationsS.A.S 36 months REACT4C 4165587 Mr. MichailKyriakopoulos CP–FP Prof. RobertSausen 31.12.2012 01.01.2010 3195555 233772 Flight Physics

of Climate Reducing Emissionsfrom Aviation byChangingTrajectories fortheBenefi t so(IEO NO Oslo (CICERO) ClimateandEnvironmentalCenter forInternational Research - € € 39 The Greening of Air Transport SADE Smart High Lift Devices for Next-Generation Wings

Objectives SADE aims at a major step forward in the development and evaluation of the potential of morphing airframe technologies and con- tributes to the research work on the reduc- tion of carbon dioxide and nitrogen oxide emissions through new intelligent low-weight

The Greening of Air Transport The Greening structures. State of the Art - Background The project objectives are: All aerodynamic concepts for signifi cant - Develop and investigate the morphing high reduction of drag such as laminarisation lift devices ‘smart leading edge’ and ‘smart require slim high-aspect-ratio wings. How- single-slotted fl ap’; ever, state-of-the-art high lift systems will suf- - Enhance morphing structure concepts fer from the reduced construction space and and develop solutions which cope with do not cope with the required surface quality. the requirements of real aircraft and Thus, SADE will develop suitable ‘morphing’ industrialisation; high lift devices. The seamless ‘smart lead- - Increase technological readiness of mor- ing-edge device’ is an indispensable enabler phing structures and verify experimentally; for laminar wings and offers great benefi t for 40 - Perform multidisciplinary design and assess reducing acoustic emissions; the ‘smart sin- benefi ts for the overall system and for all gle-slotted fl ap’ with active camber capabil- individual disciplines; ity permits a further increased lift. Thanks to - Reduce system complexity and mass; their ability to adapt the wing’s shape, both - Enable seamless high lift devices and there- devices also offer aerodynamic benefi ts for fore enable laminar wings; cruise fl ight. - Increase lift-over-drag in take-off thus ena- Morphing devices imply the integration of bling steeper climb and reducing noise drive systems into tailored lightweight struc- footprint; tures and therefore reduce complexity and - Increase maximum lift in approach referring mass. Furthermore, focusing on electric actu- to conventional droop-nose devices; ators can diminish the energy consumption, - Reduce noise emissions in approach com- which directly reduces the aircraft operational pared to high lift systems containing slats; costs as well as the environmental impact. - Reduce power consumption following the more-electric-aircraft concept; However, the high elasticity required for effi - - Concentrate European experts on mor- cient adaptability of the morphing structure is phing. Create a roadmap itemising further diametrically opposed to the structural targets research until the fi rst experimental fl ight of conventional wing design like stiffness and can take place with full-scale morphing wing strength. To fi nd the optimum compromise, devices. precise knowledge on target shapes for maxi- mum high lift performance and sizing loads is mandatory.

- Wind tunneltestsatTsAGIWind 101. - Static anddynamictestswiththewind-tun- - Manufacture andassemblyoftestbed - - Multidisciplinary analysisofbothselected - Design amodularwind-tunneltestbed - Detailed structuraldesignofbothtargeted - Component development,manufactur- - Calculate theaerodynamic targetshapes - Initialise acommondatabasewithrefer- The workincludes: realising morphinghighliftdevices. but focusesonthestructuralchallengeof state-of-the-art virtualdevelopmentplatform, investigation ofmorphingwings,operatesa comprises allrelevant disciplinesforthe the structuralsystemisoptimisedfor. SADE lenge results from theaero-elastic condition ments offull-scalesystems.Anotherchal- smart structures towards thespecialrequire- misation ofavailablepromising conceptsfor today isthetechnologicalrealisation andopti- Themostessentialchallengeformorphing DescriptionofWork

nel functionalmodel. morphing devices. and designedsmarthighliftdevices. based onafi xed wing-boxconcept. of actuatorsandcontrol concepts. smart highliftdevicesandthedevelopment structure). ing andtesting(skins,actuation,frame and thesmartsingle-slottedfl ap. design studiesforthesmartleadingedge for themorphingstructures andstructural infrastructure. and establishacentraldatamanagement ence geometryrelated toprevious projects phing wings. until full-scalefl ight teststakeplacewithmor- map itemisingthefurtherresearch required at aircraft level.Theproject willopenaroad- phing componentsandassessesthebenefi t morphing technologies,therealisation ofmor- SADE encompassesthedevelopmentof high liftsystemswillbeavailable. for thefi rst time, DOCs relative tomorphing are alltakenintoaccountintheDOC.Thus, maintenance complexity, purchase price,etc. impact, andtheimpactonfueleffi ciency, The cumulativeeffects ofthetotalweight economic feasibilityofacandidateconcept. costs are considered asameasure forthe ered fortheweightimpact.Direct operating to thebaselineandaddedliftisbeconsid- relation betweenaddedweightascompared direct operatingcost(DOC)impact.Theinter- combined basisoftheweightimpactand performance potentialwillbemeasured ona change inthehighliftsystem’s design.The to compare theperformanceimpactofa will beselected.Thisreference willbeused a baselinereference from aprevious project ent morphinghighliftsystemsonreal aircraft Inorder tocompare theeffect ofthediffer- Expected Results SADE smarthighliftconfi gurations

© DLR 41 The Greening of Air Transport 42 The Greening of Air Transport Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: ef nvriyo ehooy NL RU CZ IT CH DE SE GB Aeronautical Research andTest InstituteLtd DelftUniversityofTechnology IT CentralAerohydrodynamic Institute SMREngineering&DevelopmentSA PiaggioAero IndustriesS.p.A. DE SwedishDefenceResearch Agency EADSDeutschlandGmbH Centro ItalianoRicerche Aerospaziali S.C.p.A. RWTH Aircraft Research AssociationLtd Cranfi Aachen DE38108Braunschweig GB InstitutfürFaserverbundleichtbauunAdaptronik DeutschesZentrumfürLuft-undRaumfahrte.V.eld Lilienthalplatz University 7 +49(0)5312952314 +49(0)5312952876 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.smr.ch/sade/ ibsDushadGb DE AirbusDeutschlandGmbH 48 months SADE 7087841 Mr. PabloPérez Illana CP–FP Mr. HansPeterMonner 30.04.2012 01.05.2008 4969975 213442 Flight Physics Smart HighLiftDevicesforNext-GenerationWings € € GreenAir Generation of Hydrogen by Kerosene Reforming via Effi cient and Low-Emission New Alternative, Innovative, Refi ned Technologies for Aircraft Application

State of the Art - Background fuel cells on board an aircraft will be to gener- ate hydrogen from the onboard kerosene fuel. Europe is an important player as far as climate of Air Transport The Greening change is concerned. Following this line, the For this purpose various processes, e.g. aeronautic industry aim at ‘greener’ aircraft autothermal or catalytic partial oxidation, have and a ‘greener’ air transport’ system. already been investigated. GreenAir deals with two alternatives, which promise to be Another topic thoroughly investigated is the better suited to aircraft application. improvement in new aircraft architectures, in particular simplifying the secondary onboard Objectives energy systems. In the future, the three sys- tems presently on aircraft, i.e. hydraulic, GreenAir will elaborate the fundamentals pneumatic and electric, shall be ultimately of two unconventional methods to gener- reduced to just an electric one. ate hydrogen from kerosene for continuous operation of a fuel-cell system on board an 43 One option of these advanced aircraft archi- aircraft: partial dehydrogenation (PDh) and tectures is that the engines are primarily used plasma-assisted reforming (PAF). to produce thrust, and additional onboard electric power is generated by a separate The main objectives include the defi nition autonomous unit, for which fuel cells are a of requirements and the elaboration of con- promising candidate. cepts for their implementation into aircraft. The proof of concept will be carried out with Despite the widespread discussion about a breadboard systems in the power range of 1 hydrogen economy, kerosene will remain the kW (PDh) to 5 kW (PAF) – big enough to allow one and only aviation fuel for the coming dec- a judgement of the technology with respect to ades. However, the key problem of applying its viability and scaling-up and small enough to be cost effective.

Plasma Assisted Reforming (PAF) fuel Plasma steam autothermal air section reformate

“CnH2n+2 + H2O + O2 (air) CO + CO2 + H2”

H2-generation from kerosene by plasma- subsequent shift reaction: CO + H2O CO2 + H2 assisted reforming (PAF) © EFCECO 2008 44 The Greening of Air Transport conditions. ing ofbreadboard systemsatsimulatedfl ight SP3 consistsoftheconstructionand test- - modelling ofprocesses inorder toassist - experimental determinationofmethodsfor - adaptation ofplasma-assisted reforming development ofpartialdehydrogenation by - ing mainactivities: the ‘technicalhardware’ basedonthefollow- SP2 isthemainsub-project anddealswith processing technology. integration, specifi cally withrespect tofuel SP1 willinvestigatetheissueofaircraft projects (SP). Theproject isdividedintothree technicalsub- DescriptionofWork

and facilitatehardware development. the fractionationofkerosene; about the5kWlevel; by developmentandperformancetestsat level; lowed byanup-scalingtoaboutthe1kW lab-scale catalystperformancetests,fol- dehydrogenation (PDh) H2-generation from kerosene bypartial kerosene from tank fuel cellsystem Expected Results - evaluation of aircraft applicabilityforboth - simulated fl ight testsforbothbreadboard - proof ofconceptforplasma-assisted basic proof- ofconceptforpartialdehydro- aircraft requirements,- interfaces,safetyand Themajordeliverablesoftheproject are: PDh andPAF. systems; reforming (PAF); genation (PDh); integration concepts; H 2 -depleted kerosene totank (only PDh) H 2 -generator H 2 tofuelcell

© EFCECO 2008 DE85521Ottobrunn EADSDeutschlandGmbH Willy-Messerschmitt-Strasse

Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: ono ate l UK JohnsonMattheyplc laMtrSuirm-Uiest iBlga IT AlmaMaterStudiorum-Universitàdi Bologna UK QinetiQ Ltd r rc rl DE IT DE FR InstytutMaszynPrzep NL Dr. ErichErdle DeutschesZentrumfürLuft-undRaumfahrte.V. Centre NationaldelaRecherche Scientifi que ConsiglioNazionaledelleRicerche HyGear B.V. +49(0)8960723006 +49(0)8960722716 FP7–AAT–2008–RTD–1 cer: [email protected] opñaEpñl eSsea eoátcs ES CompañíaEspañoladeSistemasAeronáuticos 36 months GreenAir 7795134 Mr. FrancescoLorubbio CP–FP Dr. ChristianWolff 31.08.2012 01.09.2009 5057658 233862 SystemsandEquipment

Application Innovative,RefiEmission NewAlternative, ned Technologies forAircraft Generation ofHydrogen byKerosene ReformingviaEffi cient andLow- Instytut NiskichTemperatur iBada W on eerhCnr Pte) NL Joint Research Centre (Petten) Commission oftheEuropean Communities-Directorate General ł diiraTzbaosig osijAaei ak PL odzimierza Trzebiatowskiego PolskiejAkademiiNauk € € ł wwc osijAaei ak PL ywowych -PolskiejAkademiiNauk ń Strukturalnychim. 45 The Greening of Air Transport WakeNet3-Europe European Coordination Action for Aircraft Wake Turbulence

State of the Art - Background dedicated aircraft classes (Light, Medium and Heavy) depending on aircraft maximum take- A fl ying aircraft generates a turbulent wake off weight. Some regulating national authori- as a direct consequence of its aerodynamic ties have introduced modifi ed regulations to lift generation. This wake consists of a high refl ect their specifi c experience obtained over amplitude of swirling air fl ow velocities con- the years. centrated in a region of relatively small spatial extent trailing behind the generator aircraft. Today’s wake turbulence separations have

The Greening of Air Transport The Greening Another aircraft entering into this wake may basically been established in the 1970s. be signifi cantly impacted by the vortex fl ow. They are generally regarded as safe since the number of wake encounter incidents by com- In order to prevent hazardous wake encoun- mercial aircraft is very small as long as they are ters, minimum separations behind medium applied. But they are also regarded as overly and heavy aircraft are maintained by air traf- conservative under many circumstances, for fi c control and pilots. This allows wakes to example in conditions of high atmospheric decay to non-hazardous levels as they age turbulence or strong crosswinds. and are moving out of the fl ight path of fol- lowing aircraft. Aircraft wake turbulence in general and the associated separations have received The International Civil Aviation Organization increased interest again during the last dec- (ICAO) has defi ned ‘Minimum Wake Turbu- 46 ade for a number of reasons: lence Separations’ for worldwide applica- tion. These separations are based on three

Concepts ANSPs Airports & Airlines UÊ"«iÀ>̈œ˜>ÊVœ˜Vi«Ìà Regulators UÊ,iV>Ìi}œÀˆÃ>̈œ˜ Aircraft manufacturers UÊ >«>VˆÌÞÊ>˜>ÞÈÃ

Safety Technologies

Research institutes UÊ->viÌÞÊÀiµÕˆÀi“i˜Ìà UÊ"«iÀ>̈œ˜>ÊÜ>ŽiÊۜÀÌiÝʓœ`iÃ Equipment UÊ,i}Տ>̜ÀÞÊvÀ>“iܜÀŽ Regulators UÊ7>ŽiÊۜÀÌiÝÊÃi˜ÃœÀÃÊEÊ>`ۈÜÀÞÊ manufacturers UÊ->viÌÞÊ>ÃÃiÃÓi˜Ìà ANSPs ÊÊÊÃÞÃÌi“à Aircraft manufacturers Aircraft manufacturers UÊ i>˜ÃʜvÊVœ“«ˆ>˜Vi Research institutes UÊ7>ŽiÊ>iۈ>̈œ˜ UʘVˆ`i˜Ìʓœ˜ˆÌœÀˆ˜}Ê Pilot unions UÊ7i>Ì iÀÊ«Ài`ˆV̈œ˜Ê>˜`ʓœ˜ˆÌœÀˆ˜} ÊÊÊ>˜`Ê>˜>ÞÈà UÊ ˜VœÕ˜ÌiÀʓiV >˜ˆÃ“ÃÊEÊȓՏ>̈œ˜ © Airbus Deutschland GmbH

WN3-E Coordination Areas - Airborne wakeencounter avoidance&alle- Airborne - Wake vortexalleviationatthesource; - Wake vortexadvisorysystems; - - Real-time detection,monitoringandchar- Automated analysisoffl- ight datarecordings Wake encounterincidentreporting; - - Weather prediction, monitoringand Probabilistic modellingofwakeencounters; - Safety assessmentsofwakeencountersby - - Probabilistic prediction ofwakevortex - Improved understandingandcharacterisa- - Regulatory frameworkandmeansof New operationalconcepts; - related topics,includingthefollowing: They address awideandcomplexrangeof to safelyreduce waketurbulenceseparations. these needsandopportunitiesinorder activities havebeenlaunchedinresponse to Many different research anddevelopment New technologiesare emergingandenter-- - Traffi c densityisincreasing ingeneral, New aircraft typesare enteringintoservice. - - More andmore airportsare operatingat viation systems; sensors; based andairborne acterisation ofaircraft wakes byground- for wakeencounters; statistics; fl ight testsandsimulation; behaviour; tion ofaircraft wakevortices; compliance; wake encounterrisk. mation allowfornewsolutionstoaddress new decisionmakingtoolsandhigherauto- sharing, newandmore capablesensors, ing intooperation.Increased information encounters. potentially increasing theriskfrom wake ing inclosevicinitytoeachotherandthus leading tomore andmore aircraft operat- increased varietyinaircraft sizes. changing withsomeairportsexperiencing Furthermore, thefl eet mixesthemselvesare new aircraft classeslikeverylightjets(VLJ). Boeing 747-8andtheAirbusA380,butalso This includesnewandlargeraircraft likethe factor forrunwaythroughput. turbulence separationsare oftenthelimiting ing todelaysandincreasedWake fuelburn. their capacitylimitduringpeakhours,lead- many stakeholdersare concerned. In linewiththelargenumberofrelated topics, as wellofadaptedregulations. solutions developedforoperationalschemes, Europe andfortheimplementation ofthe dations forfuture wakevortexresearch in WakeNet3-Europe establishrecommen- Based ontheseactivitiesthemembers of organised. key topicswithexpertsandstakeholdersare In addition,specifi c workshopsaddressing exchange andnetworking. community, promoting globalinformation shops opentothewholewakevortex WakeNet3-Europe provides annualwork- eNet USAandWakeNet Russia). to USandothernon-EUactivities(e.g.Wak- fessional groups andotherprojects aswell links toexistinglocalstakeholdergroups, pro- addressing specifi c topicsplusdedicated Concepts) withsecondleveltaskgroups coordination areas (Technologies, Safetyand The project isstructured according tothree represent allmajorrelated disciplines. efi ciaries plusthird party, Eurocontrol. They WakeNet3-Europe iscomposedof12ben- DescriptionofWork - and togiverecommendations forfuture to helpmakingnewtechnologiesusable for - togiverecommendations, whichare agreed - todevelopashared viewonhowtoaddress - - To beaforumpromoting multidisciplinary ThemainobjectivesofWakeNet3-Europe are: Objectives users’ needs. research, inorder tosupportoperational operational purposes; regulations relative towakevortex; operational concepts,procedures andnew and operations,onhowtosupportnew between allrelevant stakeholdersfrom R&T by waketurbulence; safety andcapacityrelated issuescaused seminate relevant information; fi eld ofaircraft waketurbulenceandtodis- exchange betweenspecialistsactiveinthe 47 The Greening of Air Transport 48 The Greening of Air Transport Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: to aircraft waketurbulencethrough dedicated and harmonizedapproaches ontopicsrelated tering multi-disciplinaryinformationexchange the ACAREgoalsandFP7objectivesbyfos- WakeNet3-Europe willcontributetoachieving ExpectedResults WN3E.eu. the project’s siteaccessibleatwww. internet Results are communicatedtothepublicvia uoenCcptAscain DE UK DE DE BE DE NL Technische Universität Braunschweig FR DE European CockpitAssociation Technische Universität Berlin UniversitécatholiquedeLouvain NATS En-RoutePlc. Offi ce Nationald’ÉtudesetRecherches Aérospatiales DFSDeutscheFlugsicherung NationaalLucht-enRuimtevaartlaboratorium DeutschesZentrumfürLuft-undRaumfahrt FR Thales DE21129Hamburg AIRBUSDeutschlandGmbH Avionics Kreetslag 10 +33(0)561182752 +33(0)561184325 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.WN3E.eu hlsArSses FR ThalesAirSystems 36 months WakeNet3-Europe 1069866 Mr. DietrichKnoerzer CSA–CA Mr. Andreas Reinke 31.03.2011 01.04.2008 900 000 213462 SystemsandEquipment European Coordination ActionforAircraft Wake Turbulence € € ated societalbenefi ts. increase incapacitytogetherwiththeassoci- enables areduction ofdelaysaswellan tion distancesbetweenaircraft, whichinturn solutions allowingtosafelyreduce separa- It isdirectly contributingtoestablishingnew research needsreports, andpositionpapers. means likepublicandspecialistsworkshops, AAS Integrated Airport Apron Safety Fleet Management

State of the Art - Background ods, thus helping to reduce the number of vehicles and equipment which is considered One of the main challenges in the apron area is necessary to maintain a high level of serv- that due to many different companies operat- ice. Actual reports on these running times ing on an airport apron, each business brings would allow a good long-term budget plan, in the vehicles and equipment it requires to by showing how many vehicles or pieces of sustain operations. This causes high levels of equipment are actually needed to support congestion in ramp areas, which increases daily operations. By monitoring the vehicles, the accident rate, and the chances of vehicles of Air Transport The Greening unnecessary running times can be avoided, and equipment being misused. thus reducing costs and the environmental By gaining telematic data on the running times impact. This type of information can lead to of the various vehicle categories, detailed considerable savings in investment and daily real-time statistics can be created. This would operational costs, and a reduction in vehicles allow advanced fl eet management and effec- and equipment required, thus reducing con- tive maintenance planning in off-peak peri- gestion and enhancing safety in these areas.

AAS system layout 49 © TSB Innovation Agency Berlin / FAV – Transport Technology Systems Network Berlin, id praxis GmbH Technology – Transport © TSB Innovation Agency Berlin / FAV 50 The Greening of Air Transport operations centre. munication betweenGSEvehiclesandthe GPRS, willbeinvestigatedforwireless com- (IEEE802.11a)and technologies, likeWi-Fi apron-based equipmentinreal time.Different via GPS/EGNOS),theactualsituationofother well asadigitalairportmap(geo-referencing detect, byusingnavigationandtelematicsas units inthedifferent vehicles,whichcan Theproject willintegrateGSE-basedonboard DescriptionofWork thecommunicationsystemwillbebasedon - - the systemwillbeembeddedintoamap- - the implementationofaGPS/EGNOS- to deliverintegratedknowledgeformainte- - - to improve airportoperationsbyreducing to enhancethetechniquesforcost-effi- cient - to deliveranadvancedfl eet management The mainobjectivesare: the apron area. port Equipment(GSE)vehiclemovementsin monitoring andcontrolling ofallGround Sup- efi cial high-techsystemforcomprehensive the implicationsofacostandsafety-ben- AASwilldevelop,implementandinvestigate Objectives different GPRS. modes:Wi-Fi, geo-fencing; ping andpositioningsystem,basedon Overlay System)locationdevice; based (European GeostationaryNavigation panies operatingontheapron; nance andinvestmentplanningtothecom- damage repair costs; the numberofaccidentsandGSE/aircraft agement System(RMS); from GSEvehiclesintotheResource Man- by automaticallypassingtheinformation passenger andluggagefl ow, andeffi ciency GSE vehicles; concept bymaximisingtheutilisationof Sky JTI. SESAR JointUndertakingandtheClean Making (CDM).Theproject isframedbythe (A-SMGCS) andCollaborativeDecision Movement GuidanceandControl System and R&DactivitieslikeAdvancedSurface towards existingairportoperationalsystems This willbeasystemwithopeninterfaces return oninvestmentinlessthanfi- ve years. - enhancing safety, reducing thenumberof - reducing costsbyeffi cient passengerand - maximising theutilisationofGSEvehicles Themainresults ofAASare: ExpectedResults - Berlin: amedium-sized,overcrowded air- Porto: anew, notovercrowded, small-sized - categories are thefollowing: tem underrealistic conditions.Theunderlying strating newtechnologiesliketheAASsys- Both airportsare appropriate sitesfordemon- the airportsinBerlin(TXL)andPorto(OPO). The systemwillbetestedduringoperationsat and apron vehicles. fl ight schedulesandpositionsoftheaircraft airport databaseinorder tosynchronise the units willbeconnectedtotheRMSof ing (availability, downtime,etc.).Theonboard under whichstatusthevehiclesare operat- vehicles are tobeusedforwhichtasks,and The describedapproach willidentifywhich costs; accidents andGSE/aircraft damagerepair luggage fl ow; me cars,stairs,towingvehicles; buses, Ground PowerUnits(GPU),follow- at airports,e.g.baggagetugs,passenger uled forcompletionin2011). Airport(sched- Brandenburg International port andpredecessor tothenewBerlin airport;

DE10623Berlin Fasanenstraße 85 Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: RMTC evcsGb AT IT AT FI DE PT ES PT AT BRIMATECH ServicesGmbH INESCInovação,InstitutodeNovas Tecnologias LappeenrantaUniversityofTechnology ConsorzioFerraraRicerche IngenieríayEconomíadelTransporte, S.A. DE UniversityofSalzburg DE HiTec –Vereinigung HighTech Marketing ANA,SAAeroportos dePortugal Euro Telematik AG InstituteforOperationsResearch and ManagementGmbH Siemens AG +49(0)3046302561 +49(0)3046302588 FP7-AAT-2007-TREN-1 cer: [email protected] http://www.aas-project.eu lbGon elnGb DE GlobeGround BerlinGmbH 36 months AAS 3543313 Katarzyna Gryc CP–FP Mr. ThomasMeißner 30.04.2011 01.05.2008 2363004 213061 Avionics, HumanFactorsandAirports Integrated AirportApron SafetyFleetManagement Network Berlin TSB InnovationAgencyBerlin/FAV –Transport Technology Systems € € 51 The Greening of Air Transport DREAM valiDation of Radical Engine Architecture systeMs

State of the Art - Background Objectives The DREAM project is the response of the The objectives are to reduce:

aero-engine community to commercial and - CO2 by 9 % over and above the FP7 Inte- environmental pressures that have come grated Project VITAL or the FP5 Technol- about mainly as a result of two main factors: ogy Platform EEFAE Technology Readiness

- The political pressure to reduce CO2 emis- Level (TRL) 4/5 (7 % better than ACARE or sions has increased considerably since the 27 % better than year 2000 engine),

The Greening of Air Transport The Greening publication of the ACARE goals (ACARE: - Noise by 3 dB per operation point (~ –9dB Advisory Council for Aeronautics Research cumulated on 3 certifi cation points) versus in Europe). the year 2000 engine references at TRL4 - Hydrocarbon fuel ressources are fi nite; with improved methods, materials and recent fuel prices suffered from large oscilla- techniques developed on past and existing tions with an overall trend upwards. noise programmes, - NOX will be reduced accordingly with Consequently DREAM is studying a range engine specifi c fuel burn reduction. of completely novel designs for both contra- rotating open rotors and turbofans developing Description of Work novel engine systems on top of the tech- nologies issued from the EU funded EEFAE, DREAM comprises of 6 sub-programmes:- 52 NEWAC and VITAL projects and validating the Management and dissemination use of alternative fuels in these aero engines Ensures the overall programme management to demonstrate green house gas emission and dissemination reduction. © Eric Forterre - Snecma © Eric Forterre SP3 open rotor - Validate theadvanced aero conceptsona - Defi ne anadvanced high-speedlowpres- Develop themostinnovativefeatures ofthe - Acquire bothacousticandperformancetest - Defi- ne severaladvancedpropfans including Specifi- es theenginearchitecture open rotor Development oftheadvanceddirect drive Direct DriveOpenRotor Design thehotrear supportstructure - - Develops anOptimisedPowerTurbine - Examines arangeofmechanicaldesign - Performs theparametricstudieswith Test- bladesrigtestedinbothhighandlow Specifi- es theenginearchitecture rotor conceptinapusherconfi guration Development ofanadvancedgeared open Geared OpenRotor - Considers both specifi cation andassess- Assessesthebenefi- ts oftheDREAMengine Ensures- theoverall consistency ofDREAM Defi- nes theaircraft applicationcontext tecture concept Specifi cation and assessmentofeacharchi- Whole EngineArchitecture one stagerig rotor engine sure compressor dedicatedtotheopen stator-less counter-rotating turbine speed conditionsinwindtunnels data oftheabovepropfans atlowandhigh one reference for testrigcalibration ance predictions. tion includingrigtestingtosupportperform- module forthegeared openrotor confi gura- with thesystem. the integrationofcontrol mechanism options forvariablepitchopenrotors and again captured andanalysed. data willbegenerated,withacoustic and ‘installed’aerodynamic andacoustic addition ofapylon.Comparable‘isolated’ tion ofbothaerodynamic andacousticdata speed windtunnelstoenabletheacquisi- mental andtechnicalobjectives common pointofviewaircraft environ- ment ofeacharchitecture concept,from the objectives forfuelconsumption the potentialtogobeyondACARE technologies andarchitectures thathave results - - Demonstrates theperformanceofanexist- - aircraftused inmodern andengines fuelscanbe Demonstrates thatalternative FuelsDemonstration Alternative - Closed-loop activeclearancecontrol to Activeboundarylayercontrol forhighspeed - Innovative midturbineframeconfi- gurations Elastomer dampingringsforpassivevibra- - - Active vibrationcontrol enginestructure for turbines: innovative functionalityandactivesolutions effi ciency improvement of0.5%byadding and lowcostfuture enginesleadingtoan Provides enablingtechnologiesforlowweight Innovative Systems - - - - Themainresult willbe ExpectedResults - - noise achieve acceptablelevelsofcommunity following requirements: fuels from algaeorJatropha) matchingthe ing availablefuel(XTLtypeor3rd generation clearances improve thelowpressure turbinerunning sure turbines fl ow toimprove theeffi ciency oflowpres- mechanics andmaterials with optimizedaerodynamics, structural tion control andcosteffi ciency with piezoactuatordampingsystems to greatly reduce CO Demonstrate thepotentialofopen rotor native fuels. The demonstrationoftheoperation alter- tures andactivecontrol). Novel concepts(vibrationdamping,struc- turbine). nisms, high-speedturbine,contra-rotating technologies (blades,pitchchangemecha- The initialdevelopmentofnewopenrotor sion toaero-engines engine togetherwithapaperworkexten- Performs ademonstrationonturbo-shaft (NO Advantages onemissionsofpollutants engine isneeded No signifi cant modifi cation ofaircraft or compared withstandard aviationfuel) (CO Reduction ofgreen housegasemissions 2 x O C,sos) ,CO,HCs,soots emissionswillbemeasured and 2 emissionsandstill 53 The Greening of Air Transport 54 The Greening of Air Transport Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: ehpc eoS BE UK SE FR DE UK DE Techspace Aero SA AT FR FR GEAviation SystemsLtd Volvo Aero Corporation AB DE PL DE Technische Universität Berlin ES InstitutSupérieurdel’Aéronautique et del’Espace Politechnika AirbusFranceSAS FR Dowty MTUAero EnginesGmbH FR Slaska Technische UniversitätGraz Rolls-RoyceDeutschlandLtd&Co ARTTIC Technische UniversitätDarmstadt Snecma IndustriadeTurbo Propulsores SA Turbomeca SA SA DerbyDE248BJ-England MailboxML52-POBox31 RollsRoyceplc hlesTkik ösoaA SE UK NL ChalmersTekniska HögskolaAB StichtingNationaalLucht-enRuimtevaartlaboratorium UniversityofSouthampton +44(0)1332249842 +44(0)1332249646 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.dream-project.eu/ Ai ... IT Avio S.p.A. 36 months DREAM 40200000 Mr. RémyDénos CP–IP Mr. DavidBone 28.02.2011 01.02.2008 25000 211861 Propulsion valiDation ofRadicalEngineArchitecture systeMs nttt ae fe rf ..Zuvk RU Institute namedafterProf. N.E.Zhuovsky Federal StateUnitaryEnterprise-The CentralAerohydrodynamic € € asMkn t TR DE IT DE Technische UniversitätDarmstadt AT UK DE TheChancellor, MastersandScholarsoftheUniversityCambridge RU ParsMakinaLtd BE Technische IT UniversitätDresden BE ES PolitecnicodiMilano IT FR Cranfi CH MagnaSteyrFahrzeugtechnikAG&Co.KG CH UK UK UniversitätderBundeswehrMünchen Eurocopter CentralInstituteofAviation Motors DE Von KarmanInstituteforFluidDynamics Vibro-Meter FR Centre deRecherche enAéronautique asbl eld DE Universität ES IT EcolePolytechniqueFédéraledeLausanne SAS UniversidadPolitécnicadeMadrid UK UniversitaDegliStudiDiFirenze SA PolitecnicoDiTorino University Progesa Stuttgart FR DeutschesZentrumfürLuft-UndRaumfahrte.V. FundaciónCentro DeTecnologías Aeronáuticas SCITEKConsultantsLtd Offi ce Nationald’ÉtudesetdeRecherche Aérospatiales Vibratec S.R.L. ISVR 55 The Greening of Air Transport ELUBSYS Engine LUBrication SYStem technologies

State of the Art - Background - reduce the oil quantity rejected overboard by 60%, thus reducing both the consump- In aeronautics, gas turbine engines need tion of oil, which is a non-renewable energy, the assistance of systems that guarantee and the associated atmospheric pollution by performance throughout the whole fl ight introducing high performance brush seals envelope of the aircraft for which they are and improving the supply pump capability; designed. One of these systems is the lubri- - optimise the architecture of lubrication cation system and its role is twofold: fi rstly to systems by reducing their complexity and remove (via heat exchangers) the heat gen- mass. This will be done by integrating erated in the highly loaded rolling bearings several lubrication functions into one sin-

The Greening of Air Transport The Greening and gears found in the power and accessory gle component and by re-designing other gearboxes; secondly to lubricate these parts. external components; The current trend of developing aircraft tur- - develop solutions to improve the monitoring bine engines that consume less fuel increases of engine oil quality with a particular focus the cooling requirements from the lubrication on the anti-coking capabilities of the lubri- systems due to higher speeds, loads and cation system. This will allow higher oil tem- temperatures in engines, as well as the inte- peratures to be sustained for longer periods gration of high-power gearboxes and high- of time, and contribute towards higher power starter-generators. Current lubrication engine turbine inlet temperatures. systems in turbine engines are based on architectures and technologies that have not Description of Work 56 signifi cantly evolved over the last 30 years. The proposed work is divided into fi ve techni- Despite improvements and advances made cal work packages (WP). on the components of these systems, the technological limit is being reached. In other WP1 will address the sealing element of the words, new technologies are required to face bearing chambers by: the challenge of future engine requirements - investigating the performance of advanced (higher cooling, higher thermal effi ciency, brush seals for the bearing chamber sealing; lower specifi c fuel consumption (SFC) impact, - studying the two-phase fl ow behaviour, heat same high-level of reliability, improved mass). transfer and pressure loss in the scavenge pipe when brush seals are used and the Objectives vent pipes removed; - investigating the effect on the bearing cham- The overall objective of ELUBSYS is to ber’s thermal behaviour to the reduced air research, develop and validate a new archi- fl ow anticipated through the brush seals, tectural approach towards the design of high compared to the labyrinth, and optimising performance aircraft lubrication systems with the bearing chamber thermal design. the aim of reducing fuel and oil consumption. There are four key goals: WP2 aims at a better understanding and

- reduce engine SFC and CO 2 emissions modelling of the complex two-phase fl ows in by signifi cantly reducing (target: 60%) the bearing chambers, scavenge and vent ports, requirement for bleed air from the engine and adjacent pipes. to pressurise the bearing chambers via the The objective of WP3 is to produce rules for introduction of new high performance seals the different parts of the oil system (supply and by improving thermal management of and scavenge systems and all the related housings (and ports) by adapting these to components) in order to improve or opti- the presence of high performance seals; mise their performance and adapt them to - a setofdesignrulesdescribingthe method - - a simplifi ed architecture forenginelubrica- - the developmentofdesignrules interms Theanticipatedresults are: ExpectedResults using aglobal0Dmodel(WP5). every singleimprovement willbeperformed The overallassessmentoftheintegration coating. in theengineanddevelopananti-coking a methodanddevicetomonitoroilhealth complex aero-transmission systems,develop and predicting oilageinganddegradationin date numericalmethodsofcharacterising The objectiveofWP4istodevelopandvali- proposed inWP1andWP2. the advancedbearingchamberarchitectures ELUBSYS impacts Lube system bers, ventandscavenge pipes,sealsand of developingmore effi cient bearingcham- nents andreduced mass; tion systemsthatresults in fewercompo- seals inaircraft enginelubricationsystems; will leadtotheimplementationofadvanced equipmentsthat and associatedexternal of housingarchitecture, heatmanagement Key factors upgrade Lube system Engine upgrade/ dependable equipments Scavenge system simplification Lighter andmore Pumps study O euto F Oilconsumption SFC DOC reduction New externals technology New externals Major objectives:Ecology, Economy, Safety Scavenge piping (brush seals,ventlesshousings) ELUBSYS rationale sealing technology Pump capacity Advanced heat management Vent portstudy/ aircraft enginesandcheaper airtravel. enable, thusoffering more reliable andsafer savings onoperatingcoststhat they will because oftheimproved technologiesand of Europe’s aviationindustryandairlines advances willincrease thecompetitiveness needs offuture enginegenerations.These for aircraft engineswhichwillfullysupportthe nological advancesinthearea oflubrication These results willproduce signifi cant tech- validated methodstopredict anddetectoil - - accurate rulesforthedesignofexter- accurate methodsandrulestopredict heat - coking. ing tightseals; advanced housingarchitectures incorporat- nal system(pipes,pumps)compliantwith sis onbearingchambers; lubrication systemwithaparticularempha- transfer from thehotenginepartsinside system; elementsofthelubrication other external Housing heatmanagement Oil cokingstudy Advanced architecture Oil residency time (Open rotor, GTF) performance Seal 57 The Greening of Air Transport 58 The Greening of Air Transport nvriyo hf l UK UK FR DE BE BE FR BE UniversityofSheffi eld UniversityofNottingham ES UniversitätKarlsruhe(Technische Hochschule) UniversitédeBordeaux I InstitutNationaldesSciencesAppliquées deLyon Fundación Centre deRecherche enAéronautique a.s.b.l. UniversitéLibre deBruxelles CY inBrusselss.p.r.l. ARTTIC Tekniker Scholai Frederickou Partners: ECOffi Fax: Tel: E-mail: Coordinator: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: nuti eTroPousrsSA ES DE IndustriadeTurbo Propulsores S.A. FR FR Rolls-RoyceDeutschlandLtd&Co.KG Wytwórnia UK Turbomeca SNECMA Rolls-Royce Sprz BE4041MilmortHerstal RoutedeLiers121 S.A. Techspace Aero S.A. SA plc +32(0)42788420 +32(0)42788494 FP7–AAT–2008–RTD–1 cer: [email protected] T eoEgnsGb DE MTUAero EnginesGmbH 36 months ELUBSYS 6799256 Mr. EricLecomte CP–FP Mr. Jérômed’Agruma 31.05.2012 01.06.2009 4499895 233651 Propulsion Engine LUBricationSYStemtechnologies € € ę uKmnkcjeoPL-RezwSA PL tu KomunikacyjnegoPZL-RzeszówS.A. ERICKA Engine Representative Internal Cooling Knowledge and Applications

State of the Art - Background layer or fi lm of air between the hot gas and the component. As the use of external cooling The fuel effi ciency of a gas turbine used for mechanisms (such as fi lm cooling) is associ- aircraft propulsion depends on the perform- ated with aerodynamic losses, the improve- ance of many key engine components. One ment and optimisation of internal cooling of the most important is the turbine, whose systems have been the prime focus of turbine effi ciency has a large infl uence on the engine cooling advancement over the last decade. fuel consumption and, hence, its carbon diox- Several technologies are used to enhance ide emissions. of Air Transport The Greening HTCs in internal passages. These devices The high-pressure turbine stage must oper- are typically used in combination to achieve ate at high effi ciency in the most hostile envi- acceptable component temperatures. The ronment in the engine. The turbine is subject most popular methods can be summarised to the engine’s most aggressive heat loads as follows: because the working fl uid supplied to this - Turbulence generators, such as ribs, cast stage is at the peak cycle temperature, and into the walls of the internal passages; the work generation process in the turbine - Devices, such as pin fi ns or pedestals, accelerates the fl ow, which results in enor- which increase both internal surface area mous heat fl ows. The gas swept components and turbulence intensity; are made from high temperature alloys which - Impingement cooling; resist oxidation, creep and crack propagation - Application of serpentine systems that 59 following thermal cycling. The turbine used include U-bends with associated high in civil aircraft engines are designed to oper- HTCs; ate effi ciently for thousands of hours before - Swirling fl ow systems. requiring any replacement. The thermal pro- tection systems include low conductivity Objectives coatings and tiny ducts which feed cooling The goal of ERICKA is to directly contribute air through the components. The cooling air to reducing aircraft specifi c fuel consump- removes heat by convection from the inner tion (SFC) with a targeted reduction of 1% in surface of the cooling passages, and this air fuel consumption relative to engines currently is often then used to produce a protective in service. ERICKA will provide the means of

The RHR and containment (lhs) and detail of Perspex model (rhs). 60 The Greening of Air Transport sages by: coolingofrotatinginternal turbineblade pas- a signifi cant progress inunderstandingthe ERICKA willresearch thetechnologytomake - The problems associatedwithpredict- The diffi- culty ofgathering experimentaldata tainties becauseofseveralfactors: turbine coolingdesignsincludesmanyuncer- turbine operation.Thetechnologyusedin ing isakeyenablerintheoptimisationof The detailedunderstandingofturbinecool- through bettercoolingtechnology. fl ow. Bothnewengineshavereduced SFC and linebanenginewithreduced cooling engine withincreased operatingtemperature bine bladecoolingfl ow. Lineashowsnew engine operatingwithacertainTETandtur- in Figure 1indicatestheSFCofanexisting ture (TET)tobeincreased. Theyellow circle to bereduced ortheturbineentrytempera- cooling technologyenablesthefl ow therefore improving engineeffi ciency. Better improving turbinebladecoolingtechnology, technology onSFC.Theyellowcircle isabaselineengine. Figure 1Schematicdiagramindicatingthebenefi ts ofimproved cooling codes. secondary fl ows notmodelledinexisting forces often combinetoproduce complex codes. NotethatCoriolisandbuoyancy ing coolingperformanceusingcomputer ing turbineblades; from coolingpassagesinrotat- theinternal Cooling flowx0.5 Cooling flowx1.5 Cooling flow E-0 E TET+50K TET TET-50K SFC+1% fer predictions. leading tomore accuratefl ow andheattrans- puter methodstobeevaluatedand refi ned, geometries. Thedatasetwillenable com- base forenginerepresentative ribbedradial WP3 willprovide anexperimental data- WP3 Radialpassagesenginegeometry: systems. application toHighPressure turbinecooling performance ofimpingementsystemsfor will alsoevaluateandimprove thecooling database forimpingementsystems.WP2 geometry: Thiswillprovide anexperimental WP2 Leadingedgeimpingementengine and fi nally testthenew passageshapes. methods toenginerepresentative problems optimisation methods,thenitwillapplythe industrial requirements offuture numerical components. ThisWPwillfi rst provide the WP1 Optimisationofturbinecoolingsystem Packages (WPs): ERICKAiscomposedofthefollowingWork DescriptionofWork - Developing computercodeswhichare cali- - - Gathering highqualityexperimentaldata, brated withthesedata. and b SFC-1% a UKSW1E6AT London RollsRoycePLC Buckingham Gate develop exploitationplansandmanageIPRs. WP6 Dissemination:Thiswilldisseminateand strategies. 4 andwillcompare thedifferent simulation for applicationsencountered inWP2,3and Dynamics (CFD)simulationmethodologies WP5 willprovide optimalComputationalFluid WP5 ComputationalFluidDynamicStudies: Pressure turbines. cooling passagesofHighPressure andLow code validationandcalibrationfortheU-bend provide anexperimentaldatabaseforCFD WP4 U-bendandradialpassage:will ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: +44(0)1332247 732 +44(0)1332261 319 FP7–AAT–2008–RTD–1 cer: [email protected] http://www.ericka.eu 48 months ERICKA 7029628 Daniel Chiron CP–FP Prof. Peter Ireland 30.06.2013 01.07.2009 4702268 233799 Propulsion Engine RepresentativeCoolingKnowledgeandApplications Internal € € 1.Newsimulationandoptimisationsoftware 3. Measurementcoolingfl ininternal ow chan- 2. Thetestconditionsachievedinarotat- Expected Results tems tobestudied. Pressure andLowPressure coolingsys- enable thefl ow andheattransferforHigh nels athighandlowReynoldsnumberswill radial passagesisunique. impingement coolingandhighaspectratio facility withthiscapabilitytothestudyof and heattransfer. Theapplication ofatest dimensionless groups thatdeterminefl ow ing rigwillsimulatealloftheimportant ments ineachoftheexperimentalWPs. geometries willbeconsidered forexperi- tions forcoolingproblems. Theresulting will bedevelopedtoidentifyoptimalsolu- 61 The Greening of Air Transport 62 The Greening of Air Transport nvriàdgiSuid iez IT ES UK DE BE DE UniversidadPolitécnicadeMadrid ES DE UniversitàdegliStudidiFirenze BE SA NumericalMechanicsApplicationsInternational Universität IT CambridgeFlowSolutionsLtd Centre deRecherche enAéronautique ASBL-Cenaero FR Rolls-RoyceDeutschlandLtd&CoKG Stuttgart MTUAero EnginesGmbH EnginSoft IndustriadeTurbo Propulsores SA IT Snecma SpA Avio SA S.p.A Partners: Ati FR Arttic ltm(cwi)A CH Alstom(Schweiz)AG Instytut MaszynPrzep UK FR The Chancellor, Mastersand ScholarsoftheUniversityOxford Offi ce Nationald’ÉtudesetdeRecherches Aérospatiales osijAaei ak PL Polskiej AkademiiNauk ł ywowych - FUTURE Flutter-Free Turbomachinery Blades

State of the Art - Background lightweight components. On the other hand, analysis techniques have evolved consider- Flutter denotes a self-excited and self-sus- ably and allow for a detailed breakdown of tained vibration phenomenon of turboma- unsteady aerodynamic phenomena. The fore- chinery blades that can lead to failure unless most reason for still having these simple crite- properly damped. The present trends in tur- ria in use today is the lack of proper validation bomachinery design to increase component data addressing complex 3D fl ows involving loading while reducing structural weight can non-linear viscous effects, and real engine lead to critical situations from a fl utter point- multi-row environments. of-view. Articles from literature report that although 90% of the potential high cycle Objectives of Air Transport The Greening fatigue (HCF) problems are covered dur- ing development testing, the remaining few One of the main objectives of FUTURE is to problems account for nearly 30% of the improve and validate the current state-of-the- total development cost and are responsible art prediction tools. Secondly, the underlying for over 25% of all engine-distress events. reasons and vital parameters for the incep- Problems related to fl utter therefore impose tion of fl utter are neither completely identifi ed large costs and programme delays since they nor fully understood - knowledge that within are encountered late in development when FUTURE will be gained through a combined engines are tested at full power or in fl ight experimental and numerical effort, including conditions. extensive free-fl utter experiments. With the goal to obtain a comprehensive view of the 63 Today, fundamental blade design with respect main fl utter physics in both the compressor to fl utter is still based to a large degree on and turbine modules, the FUTURE project has relatively simple empirical criteria. These rules been designed with structural, cascade and are mostly over-conservative and therefore rotating rig experiments for these two modules. not applicable to modern, highly loaded, 64 The Greening of Air Transport - Establish ‘ExperimentalBestPractice Establish ‘CFDBest PracticeGuidelines’for - - Establish aworldwideuniquedatabase Develop andvalidatestate-of-the-artmeas- - Defi- ne designrulesandcriteriaforaggres- - Improve understandingoffl utter basedon of theFUTUREproject are thefollowing: In detail,thescientifi c andtechnicalobjectives with combinedstructuralandunsteady aero- experiments. Furthermore, auniquedatabase implemented asback-uptothefree-fl utter and twonewexcitationmechanismswillbe measuring techniquewillbebeingdeveloped, status, asophisticated,notyetavailable, In theprocess toreach thisuniqueknowledge ena inturbomachines. physical understandingofthefl utter phenom- will leadtoamore coherent viewandabetter Results from alltheactivitiesinproject - These experimentswillbecombinedwith Eight interconnected turbine andcompres- - marised as: chines. Thedifferent activitiescan besum- state-of-the-art ofaero-elasticity inturboma- to giveacoherent andclearprogress ofthe ferent workpackagesthatare interconnected TheFUTUREproject isorganisedintofourdif- DescriptionofWork Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: compressors. Guidelines’ foraero-elasticity inturbinesand aero-elasticity inturbinesandcompressors; results; with highqualityexperimentalaero-elastic experiments; urement techniquesforaeromechanic sive lightweightbladings; evant experiments; state-of-the-art componentandenginerel- ing withthevibratingstructure. together withthesurrounding fl ow interfer- numerical modellingofvibratingblades rigs) willbeperformed; sor experiments(usingrotating andstatic FUTURE 10669089 CP–FP 213414 Flutter-Free Turbomachinery Blades € the partnersaccesstoexperimentaldata participating intheproject. Theproject willgive and stationarygasturbinesmanufacturers ness fortheEuropean aero-engine module will haveastrong impactonthecompetitive- reduced time-to-markettheproject outcomes maintained safety. Incombinationwitha friendly aero enginesandgasturbineswith factor forhigheffi ciency, environmentally sive lightweightbladedesignare anenabling design aeromechanical methodsforaggres- In thelongerterm,improved analysisand occurring inenginesservice. ability foreffi ciently managingfl utter problems and thusfuelconsumption,anincreased current engineprogrammes, reduced weight fi ts intermsofdecreased developmentcostin FUTURE project willleadtoshort-termbene- prediction capabilitiesanddesignrules,the Byadvancingthestate-of-the-artinfl utter ExpectedResults available inanyothercompanythe world. world. data thananyotherexistingdatabaseinthe the project, containsignifi cantly more detailed cal aero-elastic expertsthatare gathered for combined efforts ofexperimentalandnumeri- the partners.Thisdatabasewill,through the available forfurtherdisseminationamong dynamic results willbeestablishedandmade Cascade fl utter testfacilityatKTH not

© KTH SE10044Stockholm KungligaTekniska Högskolan Brinellvägen Valhallavaegen 68 Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Partners: ECOffi Fax: Tel: E-mail: oienc iTrn IT FR DE IT ES UK UK CH Technische Universität Darmstadt BE ES ImperialCollegeofScience,Technology andMedicine ES ÉcoleCentraledeLyon UK PolitecnicodiTorino UniversitàdeglistudidiFirenze ZA UK FR UniversidadPolitécnicadeMadrid DE ÉcolePolytechniqueFédéraledeLausanne FundaciónCentro deTecnologías Aeronáuticas Offi ce Nationald’ÉtudesetdeRecherche Aérospatiales ZA Centro deTecnologías Aeronáuticas CouncilforScientifi ES c andIndustrialResearch Stellenbosch DE DeutschesZentrumfürLuft-undRaumfahrte.V. PCAEngineersLtd SE Techspace Aero SA AlstomPowerLtd University FR FR RollsRoyceplc IndustriadeTurbopropulsores S.A. SiemensIndustrialTurbomachinery AB IT Turbomeca MTUAero EnginesGmbH Snecma Avio SA SA S.p.A. +46(0)87907475 +46(0)8204161 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.future-project.eu ov eoCroainA SE Volvo Aero CorporationAB 48 months Mr. RémyDénos Prof. Torsten Fransson 30.06.2012 01.07.2008 6996196 Propulsion cetfiqe FR Scientifi que Centre Européen deRecherche etdeFormation Avancée enCalcul € 65 The Greening of Air Transport KIAI Knowledge for Ignition, Acoustics and Instabilities

State of the Art - Background into service before 2020 with the necessary reliability, safety and economical viability. The engine emissions issue is addressed by the evolution of the relevant international reg- As already demonstrated by past and ongo-

ulations (e.g. ICAO CAEP2 standards) and by ing studies and European projects, low NOx ambitious technological objectives agreed by technologies lead to crucial unsteady phe- the European aeronautics industry described nomena that are neither controlled nor pre- in Vision 2020 of the 2nd version of the dictable at the moment.

The Greening of Air Transport The Greening ACARE Strategic Research Agenda (SRA2). Directly linked to a better understanding and The availability of clean engines not only has a prediction of these unsteady phenomena, the huge environmental impact, but it is now vital scientifi c objectives of KIAI are: that every manufacturer tries to maintain a - To predict the coupling between the acous- position within world competition for the sus- tics and the fl ame; tainable growth of aviation transport. - To determine the acoustic boundary condi- tions of multi-perforated plates surrounding For the time being, the European engine the combustion chamber; industry does not have the methodologies - To account for non-premixed spray fl ows in adapted to predict behaviour of low NO x the combustion process; combustors. Consequently, and in order to - To explore aerodynamic unsteadiness in be able to set up the development of low 66 strutted pre-diffusers adapted to high mass NO technologies, KIAI will deliver unstation- x fl ow injectors and develop a liquid fi lm ary Computational Fluid Dynamics (CFD) tools break-up model for an injector; which will allow a deeper comprehension of - To evaluate the sensitivity of Large Eddy unsteady phenomena. Simulation (LES) predictors to small techno- Results from previous European projects logical variations of geometry. on conventional and lean combustion tech- nologies are the basis of the KIAI project. Description of Work They have adapted CFD methodologies to To address the weaknesses introduced by design conventional combustors and are the lean low Nox combustion technology, KIAI now preparing for paths to deal with low NO x is structured into four main technical sub- combustors. projects (SPs): Objectives SP2: Prediction method for thermoacoustics. The main objective of the KIAI project is to provide reliable methodologies to predict the The main implication of low NO x technolo- gies is an increased sensitivity to combustion stability of industrial low NOx combustors, as well as their ignition process from spark to instabilities. These instabilities come from a annular combustion. When used at an early tight coupling between pressure fl uctuations introduced by the fl ame and the backward stage in the conception cycle of low NOx com- bustors, KIAI CFD methodologies will play a infl uence of the acoustics of the chamber. key role and accelerate the delivery process In SP2, KIAI will integrate the impact of the of lean combustion technology considerably fl ame on the thermoacoustic behaviour of combustors. with a proven capability to reach the 80% NOx emission reduction required for introduction State oftheartmethodologiesaddressing processes forlowNO When dealingwithlowNO SP5: Unsteadyaero-dynamics ininjection. phase fl ows andhigh altitudeconditions. descriptions, re-circulated gases,two burnt itself byconsideringtabulatedchemistry process. InSP4,KIAIwillworkonthefl ame annular combustorisacomplex,unsteady and thenfrom onesectortothetotalityof fl ame from sparktothecombustionchamber, applications. Theearlypropagation ofthe essential issuesforaeronautical gasturbine ignition andespeciallyaltitudere-ignition are For evidentoperationalandsafetyreasons, SP4: Ignitionandre-ignition. forated platestoincidentacousticwaves. KIAI willdeterminetheinfl uence ofmulti-per- acoustic behaviourofcombustors.InSP3, tions isessentialtodeterminethecorrect The knowledgeofacousticboundarycondi- trial combustors. SP3: Multiperforatedplatesissueinindus- subprojects, theadditional subproject SP1 Sustaining thefour aforementioned technical ated bypre-diffusers andinjectors. tion aswellontheunsteadyfl ows gener- In SP5,KIAIwillshedlightonspray atomisa- instability sources thathavetobecontrolled. Thus, pre-diffusers andinjectorsbecome ence theunsteadybehaviourof fl ame. upstream fl ow conditions cangreatly infl u- x combustors,the to reach the80%NO bustion technologywithaproven capability accelerate thedeliveryprocess ofleancom- ologies willplayakeyrole andconsiderably and economicviability needed. 2020 aswellthenecessaryreliability, safety required forintroduction intoservicebefore of lowNO used atanearlystageintheconceptioncycle projects liketheTECC-AEFP7project. When emerging from technologicallyorientated KIAI willsecure theinnovativedevelopments - An estimationofthereliability ofLESwith A liquidfi- lm break upmodel; - A tabulatedchemicaldescriptionofnon- An acousticdescriptionofmulti-perforated - Acoustictoolsabletoprovide stabilitymaps - ThemainexpectedoutputsofKIAIare: ExpectedResults project results. monitoring, disseminationandexploitationof – KIAICoordination willfocusontheproject both isothermalandreactive fl ows. technological variationsofgeometryfor respect toitscapacityaccountforsmall premixed spraycombustion; chambers; plates widelyencountered incombustion the fl ame; of thecombustorsincludinginfl uence of x combustion x combustors,KIAICFDmethod- x emissionsreduction 67 The Greening of Air Transport 68 The Greening of Air Transport Partners: ECOffi Tel: E-mail: Coordinator: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: F-ntttfaçi uptoe FR DE UK FR FR DE FR IFP-Institutfrançaisdupétrole Technische UniversitätMünchen UniversitédePauetdesPaysl’Adour Centre nationaldelarecherche scientifi que (CNRS) InstitutNationaldesSciencesAppliquéesdeRouen IT RollsRoyceplc Rolls-RoyceDeutschlandLtd&CoKG Avio FR77550MoissyCramayel RondPointReneRavaud S.p.A SNECMA SA nvriàdgiSuid iez IT FR DE DE FR UniversitätKarlsruhe(Technische Hochschule) UniversitàdegliStudidiFirenze Microturbo ARTTIC DeutschesZentrumfürLuft-undRaumfahrtev UK Sa Loughborough University +33(0)160597169 FP7–AAT–2008–RTD–1 cer: [email protected] TroeaS FR Turbomeca SA 48 months KIAI 8005293 Mr. RémyDénos CP–FP Mr. SebastienRoux 30.04.2013 01.05.2009 5399 005 234009 Propulsion Knowledge forIgnition,AcousticsandInstabilities nClu cetfiqe FR en CalculScientifi que Centre Européen deRecherche etdeFormation avancée FR Offi ce Nationald’ÉtudesetdeRecherches Aérospatiales € € TECC-AE Technology Enhancements for Clean Combustion

State of the Art - Background toward its maximum potential regarding NO emission reductions. In particular the Over the next 20 years, air traffi c is expected x targets are: to grow annually by 3% for passengers and - to provide full combustor operability in 9-10% for freight volume (ACARE ‘average’ terms of ignition, altitude relight and weak scenario). This traffi c growth will continue to extinction performance; affect the environment with: - to suppress the occurrence of thermo- - increased greenhouse effects (CO 2 acoustic instabilities by reducing the com- emissions); of Air Transport The Greening bustor sensitivity to unsteady features to - degradation of local air quality (NO , but also x such a level that instabilities will not happen; particulates and CO emissions as well as - to ensure injection system robustness with UHCs – un-burnt hydrocarbons). respect to coking that can appear during The engine emissions issue is addressed by transient operations of the engine; the evolution of the corresponding interna- - to develop, demonstrate and validate tional regulations (e.g. ICAO CAEP standards) design rules, CFD capabilities and scaling and by ambitious technological objectives laws; agreed by the European aeronautics industry, - to provide knowledge for global optimisation as described in Vision 2020 and the second of the multiplicity of combustion parameters version of the ACARE Strategic Research of lean combustion systems to achieve Agenda . lower fl ame temperatures and thus lower 69 thermal NO formation (e.g. homogene- The availability of clean engines would not x ous fuel-air mixtures, cooling and unsteady only have a huge environmental impact, but behaviour optimisation). has also become a vital stake for every manu- facturer to remain as a player within the world 2. To look even further ahead and to over- competition for sustainable growth of aviation come the complexity issues inherent in transport. Developing combustion technolo- staged lean combustors. The TECC-AE gies for clean engines is consequently man- project will also aim to design and assess datory to comply with the ambitious ACARE an innovative, compact, lighter and simpli- 2020 targets and future ICAO standards, to fi ed lean combustion combustor concept, gain new markets and to remain competitive. and to develop a compact Ultra Low NO x (ULN) injection system. Despite several ambitious R&T projects addressing engine emissions over the years, Description of Work these technologies have not yet been brought to the level required for introduction into serv- To achieve an 80% reduction in NOx emis- ice with the necessary reliability, safety and sions for a commercial engine by 2020 with- proven economical viability. out compromising operability and CO/UHC emissions it is also necessary to address Objectives in parallel the industrialisation of the sys- tem. This means there is a need to take into The scientifi c and technological objectives account weight, simplifi cation and cost issues are: to deliver a solution that is easy to produce 1. To solve the main limitations identifi ed and then maintain. during past and ongoing projects which appear when lean combustion is pushed 70 The Greening of Air Transport available knowledge,willthenbeestablished. best combustor, taking into accountallthe and themainprinciplesonhowtodesign as welltheTECC-AEoutputs.Thestrategy into accounttheresults ofprevious projects ACARE 2020objectiveswillbedonebytaking assessment ofleancombustionregarding the the exploitation,completesynthesisand exploitation andthedissemination.Regarding ment oftheproject, andthelasttwoto the fi rst willbededicatedtothemanage- Three additionalworkpackagesare included: - Innovative technologies. Sensitivity tounsteadyfeatures; - - Thermal management; - Enhanced operabilityforstagedinjection technical workpackages: TECC-AE hasbeendividedintofourmain 2. theoveralldesignofcombustorand 1. thedevelopmentoftechnologytoguar- parallel: The TECC-AEapproach willbeworkedin systems; tion system. lighter andmore economicleancombus- injection systemtoachieveasimpler, antee an80%reduction inNO x emissions; Expected Results - an increase ofthetechnologyrobust- - knowledge andmaterialforoptimisingthe an accelerationtowards theentryintoserv- - tiveness asitwillprovide: and long-termenginemanufacturer competi- TECC-AEwillhaveamajorimpactonshort - an extensionoftheacquired knowledge knowledge andmulti-physicsCFDmethod- - sions/NO transient operations/coking,CO-UHCemis- emissions reduction/combustor durability, ness regarding somevitaltrade-off (NO tation costsatmarketacceptancelevels; and environmental) whilemaintainingexploi- excellent performance(bothoperational developed duringtheR&Tphasetogain relevance ofthetechnologicalstrategy staged injectionsystems; ice forleantechnologiesbasedoninternally ronmental objectiveperformance). and willfullymeetitsoperationalenvi- designed withintheshortestpossibletime, ensuring thatthecombustionsystemwillbe system, (whichisofvitalimportancefor embodiment intoamore orlessautomatic to theproblem ofleancombustionandits operational performance; uct willhaveoptimalenvironmental and combustion system,ensuringthattheprod- out performanceoptimisationforthewhole ology forscalingtechnologyandcarrying x emissions); x

FR77550MoissyCramayel 2RondPointRenéRavaud SociétéNationaled’ÉtudeetdeConstructionMoteursd’Aviation SNECMA - Coordinator: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: nvriyo eo IT UK DE FR DE IT DE UK UniversityofGenoa FR Centre deRecherche etdeFormation avancéeencalculscientifi que DE BrandenburgischeTechnische Universität UniversityofSheffi eld UniversityofKarlsruhe ARTTIC UK TheChancellor, MastersandScholarsoftheUniversityCambridge FR DE UniversitàdegliStudidiFirenze DeutschesZentrumfürLuft-undRaumfahrte.V Offi ce Nationald’ÉtudesetdeRecherches Aerospatiales UK MTUAero Engines Loughborough IT RollsRoyceplc RollsRoyceDeutschlandLtd&CoKG University Avio S.p.A. +33(0)160597695 +33(0)160597712 FP7-AAT-2007-RTD-1 cer: [email protected] TroeaS A FR Turbomeca S.A. 48 months TECC-AE 11912597 Mr. RémyDénos CP–FP Mr. MichelCazalens 30.06.0012 01.07.0008 7999 303 211843 Propulsion Technology EnhancementsforCleanCombustion CORIA FR Institut NationaldesSciencesAppliquéesdeRouen-UMR6614 € € 71 The Greening of Air Transport COSMA Community Oriented Solutions to Minimise aircraft noise Annoyance

State of the Art - Background Within the framework of a unique approach, COSMA will: The SEFA EC-funded project (02/2004- - improve the understanding of noise annoy- 06/2007) was the fi rst, and so far unique, ance effects from aircraft in the airport approach to applying sound engineering community through fi eld studies and psy- practices to external aircraft noise, i.e. reduc- chometric testing; ing noise (annoyance), not just by lowering - use these fi ndings to set up optimised air- levels but also by improving the character- craft noise shapes; The Greening of Air Transport The Greening istics of aircraft noise signatures. Regarding - develop techniques for realistic synthesis of lowering the level, related to an analysis of sin- aircraft noise around airports; gle events, it was a breakthrough in its innova- - validate the optimised aircraft noise shapes tive concept and performance. and their associated engineering guidelines; In addressing the other, within innovative fi eld - put in place a knowledge management for and laboratory annoyance studies, COSMA design practices and scientifi c information will continue the successful collaboration on an aircraft’s exterior noise annoyance amongst aircraft noise engineers, sound effects. designers and the noise-effects experts. The scientifi c research results will be used for It provides the best possible paradigm for reducing the noise annoyance at source, by ensuring that the work on noise effects is technological or operational means, through 72 clearly targeted at improving aircraft design an improved understanding of the effects and operations, and therefore is already tak- of aircraft noise in the surrounding airport ing into account the ultimate goal described community. above. The COSMA objectives bring together three Description of Work different scientifi c and engineering domains: 1. COSMA will use recent and ongoing - the noise annoyance psychometrics research on airport community fi eld stud- domain; ies by setting up an Aviation Noise Impact - the sound engineering domain; Knowledge Base to collect all avail- - the aircraft noise engineering domain. able data and methods on annoyance This innovative and collaborative approach measurements. aims to reduce perceived noise annoyance by 2. Psychometric testing will be carried out in 50% by 2020. the fi eld, as it is the only experimental para- digm to collect relevant data on acute and Objectives long-term annoyance. COSMA aims to develop engineering criteria 3. Data will be collected within the virtual for aircraft design and operations in order resident platform VRes, which started in to reduce the annoyance of exterior aircraft SEFA. The VRes tool is going to simulate noise within airport communities. Such cri- the human subjective perception and long- teria do not currently exist since aircraft term annoyance. Mathematical algorithms noise engineering has historically focused on will be developed to identify and describe achieving ever-lower noise levels for individual the input audio data by identifying the deci- events and at close distance from the runway. sive annoyance factors of aircraft noise. 6. Optimised future airportnoisescenarios 5. Optimised scenarioswillbesynthesised 4. Aircraft engineerswillmodifyandoptimise COSMA workconcept defi ned. for aircraft designandoperationswillbe and from theseengineeringguidelines noise scenariosbylaboratoryexperiments will bevalidatedtotypicalcurrent airport and enginemanufacturers. along withfuture noisescenariosataircraft nologies andoperationswillbeconsidered and operations.Actuallownoisetech- with engineeringcriteriaforaircraft designs path dataandautomaticallyassociated based onsource componentsandfl ight acteristic effects. level, duration,frequency andsoundchar- future airportnoisescenariosintermsof Dissemination Publication 34 2 1 6 Understanding and modelling ofaicraft Noise effects domain Psychometric field noise annoyance studies allocating studies validating Psychometric lab community noise Knowledge data annoyance data base forairport around airports the optimised field studies scenarios factors designs andoperations. terms asbeingabletoinfl uence future aircraft – willbedescribedinscientifi c and technical sion oftheultimategoalfornoiseresearch friendliness –thatisoftenusedasanexpres- efi t isthattheloosenotionofenvironmental of decibels,butanimportantexpectedben- assess thesatisfactionofobjectivesinterms nature ofthisproject makesit diffi cult to ability attheendofproject. Thespecifi c really beassociatedwiththeireffective avail- tools, sothatthemeasure ofitssuccesswill Thisproject willproduce designcriteriaand Expected Results 7 5 operation guidelines optimised scenarios of noiseannoyance operations interms Aicraft designand engineering domain aicraft designand Aircraft andsound Optimisation of Synthesize Exploitation

© COSMA Consortium 73 The Greening of Air Transport 74 The Greening of Air Transport nvriyo otapo UK SE FR IT IT FR UniversityofSouthampton UniversitàdegliStudidiNapoli‘Federico II’ KungligaTekniska Högskolan UniversityofCergyPontoise UniversitàdegliStudiRomaTre Teuchos DE ForschungsgesellschaftfürArbeitsphysiologie undArbeitsschutze.V. SA Partners: ECOffi Fax: Tel: E-mail: Coordinator: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Iru rneSS FR IT BE DE DE InstitutfürTechnische undAngewandtePhysikGmbH SASSAccousticResearch andDesign GmbH AleniaAeronautica S.p.A. AIirbusFranceSAS FR NV LMSInternational 01dB-Metravib DE85521Ottobrunn SAS EADSDeutschlandGmbH Willy-Messerschmitt-Strasse Innovation 1 Works etce etu ü ut n amar .. DE NL FR InstitutNationaldeRecherche surles Transports etleurSécurité StichtingNationaalLucht-enRuimtevaartlaboratorium DeutschesZentrumfürLuft-undRaumfahrt e.V. Budapesti M +49(0)8960721674 +49(0)8960723067 FP7–AAT–2008–RTD–1 cer: [email protected] SEM A FR SNECMA SA 36 months COSMA 5913945 Mr. EricLecomte CP–FP Dr. MichaelBauer 31.05.2012 01.06.2009 4096 034 234118 NoiseandVibration Community OrientedSolutionstoMinimiseaircraft noiseAnnoyance ini o eEgnai PT Cientifi cos deEngenharia Projecto, Empreendimentos, DesenvolvimentoeEquipamentos Sozialforschung DE Zeus GmbH-ZentrumfürAngewandtePsychologie,Umwelt-und € € ű zk sGzaátdmniEytm HU szaki esGazdaságtudomanyiEgyetem FLOCON Adaptive and Passive Flow Control for Fan Broadband Noise Reduction

State of the Art - Background (summed up over the three noise certifi cation conditions), the reduction of fan broadband Air traffi c is predicted to grow by 5% per year noise has the maximum effect on aero engine in the short and medium term. Technology noise reduction. To fulfi l future demands in advances are required to facilitate this growth aircraft noise reduction, the reduction of fan with acceptable levels of noise. FLOCON broadband noise by design (e.g. tip speed or addresses this requirement by delivering the blade shape) is expected to be insuffi cient, technology to reduce fan noise at source thus new concepts involving fl ow control have through the development of innovative con- of Air Transport The Greening to be developed. cepts based on fl ow control technologies. Due to the continuously increased bypass Objectives ratios of aero engines and the fact that in Previous attempts at reducing broadband the past noise reduction efforts have been noise have been inhibited by a limited under- focused mainly on tone noise, today’s engines standing of the dominant mechanisms and are generally designed in a way that the tone by a lack of high-fi delity numerical models. noise does not signifi cantly emerge from the These issues are addressed in the ongoing broadband noise fl oor. A quantitative assess- PROBAND FP6 project. In FP7, FLOCON ment shows that if all tones are removed from moves beyond the scope of PROBAND to the total engine noise spectrum, the result- the development of specifi c concepts for 75 ing EPNL (Effective Perceived Noise Level) at reducing broadband noise in aero-engine fan approach is reduced by only 2.2 EPNdB for a stages. turbo-fan engine with a bypass ratio (BPR) of 5, and by 1.5 EPNdB for a geared fan engine FLOCON will demonstrate methods capable with an extremely high BPR of 16. As most of of reducing fan broadband noise from aero this broadband noise is generated by the fan engines at source by 5dB at approach and takeoff conditions, contributing to the Euro- pean objective of reducing aircraft external noise per operation by 10dB by 2020. To achieve this, FLOCON will: - design noise-reduction concepts and asso- ciated devices able to reduce fan broad- band noise from aero engines; - assess the noise reduction concepts by conducting lab-scale experiments; - complement the experiments by numerical simulations that are assessing the capabil- ity of currently available numerical tools to design low broadband noise treatments and confi gurations; - develop understanding of the mechanisms involved and extrapolate the results to the aero engine environment using state-of-the- © German Aerospace Center © German Aerospace art numerical methods; Example result of an advanced large-eddy-simulation of broadband rotor-stator interaction noise 76 The Greening of Air Transport tics’ globalcompetitiveness. transport, andenhanceEuropean aeronau- needs formore environmentally friendlyair reduced noisefrom aircraft tomeetsociety’s European aerospace industries’objectivesfor doing soitwillcontributetowards achieving to reduce broadband noiseatsource. In engine industrywithdemonstratedmethods FLOCONwillprovide theEuropean aero- ExpectedResults technologies willalsobeidentifi ed. scale. Anydevelopmentsrequired inenabling further validationatindustrialrigorfullengine- new enginedesignsandwhichwillrequire as towhichconceptscouldbeintegratedinto formance). Recommendationswillbemade (weight, complexityandaerodynamic per- assessed, includinganyassociatedpenalties The potentialbenefi t ofeachconceptwillbe trol mechanisms. ics andbroadband noisegenerationandcon- increase theunderstandingoffl ow phys- tone noise.Generallyspeaking,FLOCONwill broadband noisereduction features onfan- as welltheside/complementaryeffect of evant operatingconditionswillbeassessed, The impactofscalingfrom lab-toengine-rel- laboratory scaletoreal-engine application. validation andtoextrapolatetheresults from to optimisetheconceptsforexperimental a cascade.Numericalmethodswillbeused detailed measurements onasingleairfoiland ing rigs,supportedwhere possiblebymore Experiments willbeperformedontworotat- Partly linedstatorvanes. - - Rotor andstatorleadingtrailing-edge Rotor overtiptreatments; - Rotor tipvortexsuction; - Rotor trailingedgeblowing; - validation): ogy ReadinessLevel4(laboratory-scale be considered anddevelopedtoTechnol- InFLOCON,awiderangeofconceptswill DescriptionofWork selectthebestconcepts by balancingnoise - treatments; benefi t andintegrationimpact. mechanical complexity. weight, aerodynamic performance,stress or initial assessmentofanypenaltiesrelated to engine scale,willbegiven,inadditiontoan extrapolation toexpectedperformanceatfull- effi cacy ofthemethod, togetherwithan In particular, theexperimentallydetermined recommended noise-reduction methods. ther developmentandexploitationofthe contain allthenecessaryinformationforfur- Recommendations willbeproduced which for developmenttoengine-ready level. laboratory scale)andrecommend asubset Technology ReadinessLevel4(validationat FLOCON itselfwillbringeachconceptupto also applicabletocore compressor designs. determined withintheprogramme) willbe designs. Asubsetofthemethods(tobe cable tothefanstageofallnewaero-engine developed inFLOCONwillbebroadly appli- The broadband noisereduction concepts DLR laboratory-scalefanrigforbroadband noise investigations

© German Aerospace Center DE51147Cologne DeutschesZentrumfürLuft-undRaumfahrte.V. Linder Hoehe Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: ad .Cntni F RO NL DE FR SE NL SE UK DE SanduM.ConstantinPF DE Microfl own Technologies BV NationaalLucht-enRuimtevaartlaboratorium Technische Universität Berlin ChalmersUniversityofTechnology FR FR EcoleCentraledeLyon UK DE Research, InstituteofSoundandVibration UniversityofSouthampton Offi ce Nationald’ÉtudesetRecherches Aérospatiales IT Fluorem Volvo Aero Corporation Universität MTUAero EnginesGmbH EADSInnovationWorks RollsRoyceplc Avio SAS Siegen S.p.A +49(0)3067055139 +49(0)3067055126 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.xnoise.eu Sem FR Snecma 36 months FLOCON 5311013 Mr. EricLecomte CP–FP Ms.ChristineZöllter 31.08.2011 01.09.2008 3562 536 213411 NoiseandVibration Adaptive andPassiveFlowControl forFanBroadband NoiseReduction € € 77 The Greening of Air Transport OPENAIR Optimisation for Low Environmental Noise Impact Aircraft

ered as a good result given the 10 dB ACARE objectives for 2020. Among the SILENCE(R) technologies, there

© Snecma were also a few future generation or «genera- tion 2» technologies, like the «Active Stator», which were tested succesfully, but did not yet achieve the full technology readiness status. The Greening of Air Transport The Greening State of the Art - Background These, and other «generation 2» technologies are now further developed in OPENAIR. In the view of reducing aircraft noise for peo- ple living around airports, several options Objectives are available, as outlined in ICAO’s balanced approach: By adopting a whole aircraft approach based - Noise reduction at the source; on the latest developments in active/adap- - Low noise operational procedures; tive technologies, fl ow control techniques - Land use management; and advances in computational aero-acous- - Operational restrictions. tics applied to the major causes of noise at source, OPENAIR aims to deliver a 2,5 dB Since «operational restrictions» have a severe step change in noise reduction, beyond the 78 economic impact, the focus of the solutions SILENCE(R) achievements. The plan supports should be to work in parallel on the other realistic exploitation of promising design con- 3 options. OPENAIR focusses on the fi rst cepts driven by noise reduction and should approach: «Source noise reduction», which result in the development and validation of in practice means lower noise emissions from up to TRL 5 of ‘2nd Generation’ technology the aircraft’s engines, landing gear and wing. solutions. Several European research projects working on these subjects have already been per- Description of Work formed: In 2001, the SILENCE(R) project gath- OPENAIR’s multidisciplinary approach and ered the preparation activities from FP3 and composition is suited to the projected inte- FP4, which had resulted in a large number of grated, lightweight solutions. The proc- technologies achieving TRL 3-4. SILENCE(R) ess includes a down-selection at half life of then took these efforts to a TRL6-7 level by the project. The selected technologies will performing ground and fl ight tests on engines be subjected to scaled rig tests, and the and aircraft. Full scale TRENT and CFM56 resulting data will support assessment of engines as well as A320 and A340 aircraft the noise reduction solutions on powerplant took part in this validation exercise that ended and airframe confi gurations across the cur- in 2007. A technology evaluation exercise at rent and future European range of products. the end of this project, showed that these The project exploitation plan is expected to «generation 1» technologies, when applied to include proposals for further demonstration a future fl eet would improve the noise impact in the Clean Sky JTI. The verifi cation of the by 3 dB. Taking into account also improved technologies’ applicability will be assured by operational procedures that were developed addressing identifi ed integration and envi- in parallel in other projects, a total improve- ronmental tradeoffs (performance, weight, ment of 5 dB was achieved. This is consid- emissions). © Snecma/EADS current fl eet noiselevelsthrough retrofi tting. meet theACAREnoisegoalsandimproving eration 1effort, enablingfuture products to a signifi cant role, alongwiththeprevious Gen- OPENAIRwilldevelopsolutionsthatcanplay ExpectedResults Nameofproposal: Acronym: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: FP7–AAT–2008–RTD–1 http://www.xnoise.eu/index.php?id=387 48 months OPENAIR 30134670 CP–IP 31.03.2013 01.04.2009 18273829 234313 NoiseandVibration Optimisation forLowEnvironmental NoiseImpactAircraft € € research agendaoftheEU. while addressing theglobalenvironmental traffi c growth andenvironmental constraints, market requirements inallsegments,global ity neededtosimultaneouslyaccommodate This capabilityiskeytoproviding thefl exibil- 79 The Greening of Air Transport 80 The Greening of Air Transport ol oc l UK DE SE PL IT NL RollsRoyceplc ES Rolls-RoyceDeutschlandLtd&Co KG BE UK DE UK StichtingNationaalLucht-enRuimtevaartlaboratorium FR NasTech srl-Novel Aerospace Technologies Microtechspolkaakcyjna International DE Qinetiq KungligaTekniska Högskolan CH FR DE IndustriadeTurbo Propulsores SA Messier-Dowty GknAerospace ServicesLimited Limited Free FieldTechnologies SA IT EADSDeutschlandGmbH FR ÉcolePolytechniqueFédéraledeLausanne DeutschesZentrumfürLuft-undRaumfahrtev DassaultAviation SA SA AssociationpourlesTransferts deTechnologies duMans PFWAerospace AG Centro ItalianoRicerche Aerospaziali SCpA Partners: ECOffi Fax: Tel: E-mail: Coordinator: ibsU iie UK RU FR EG FR DE FR IT AinShamsUniversity, FacultyofEngineering Andreyev AcousticsInstitute FR Avio AirbusUKLimited Atmostat AirbusFranceSAS AirbusDeutschlandGmbH ARTTIC Aircelle S.p.A FR75724Paris 2BvdduGeneralMartial-Valin 15 SA SNECMA SA +33(0)160597527 +33(0)160598753 cer: [email protected] CArsa A RO SCAerostar SA Mr. RémyDénos Mr. EugeneKors DélégationGénéralepourl’Armement/Centre d’essaisdespropulseurs o ihTmeaue a RU FR Offi ce nationald’étudesetderecherches aerospatiales EL for HighTemperatures Ras Institution oftheRussianAcademySciencesJointInstitute INASCO -IntegratedAerospace SciencesCorporationo.e. RO Institutul NationaldeCercetare-Dezvoltare Turbomotoare -COMOTI FR nvriadgiSuiRm r IT SE ES FI EL UK SE UK FR FR UniversitadegliStudiRomaTre UniversidadPolitecnicadeMadrid Valtion teknillinentutkimuskeskus UK Volvo Aero Corporationab UniversityofSouthampton Centre nationaldelarecherche scientifi que (cnrs) UniversityofPatras ImperialCollegeofScience,Technology andMedicine Chalmerstekniskahögskolaab SnecmaPropulsion Solide ShortBrothers plc h hnelr atr n coaso h nvriyo abig UK The Chancellor, Mastersand ScholarsoftheUniversityCambridge RU Institute namedafterprof. n.e.Zhukovsky Federal StateUnitaryEntreprise theCentralAerohydrodynamic 81 The Greening of Air Transport TEENI Turboshaft Engine Exhaust Noise Identifi cation

State of the Art - Background Though, in order to comply with ACARE SRA2 objectives, this attenuation has to be Helicopters can generate a large amount maximised for the most dominant engine of external noise, which can be perceived noise source in fl ight requiring a better knowl- as aggressive by citizens; a helicopter’s tra- edge of the exhaust sound-source balance. ditional missions – rescue, medical, law Broadband noise at a turboshaft exhaust – enforcement – are normally very close to pop- generally called core noise – is assumed to be ulated areas. As emphasised in the ACARE a mix between combustion and turbine noise. The Greening of Air Transport The Greening Strategic Research Agenda 2 (SRA2), the tendency to increase rotorcraft missions in the Objectives public vicinity should not lead to an increase of public disturbance. TEENI deals with understanding aeronautical noise, in particular helicopter noise, with the The main exterior noise sources on heli- goal of noise reduction. As engine noise is a copters include the main rotor, tail rotor and main contributor to the entire exterior noise engine. The turboshaft engine is known to at take-off, and because exhaust noise still be a major contributor to exterior noise at needs an increased attenuation, this project take-off. focuses on understanding exhaust noise Former projects (Hortia, Silence(R)), or ongo- sources. 82 ing ones (Friendcopter) have managed to The main aim is to determine on which noise reduce signifi cantly the noise coming out source a turboshaft exhaust liner should be of the exhaust of the engine, and show the optimised. Four objectives can be summa- industrial evidence that a liner can viably be rised as follows: installed on the exhaust.

Determine the most Industrial prominent noise source in TEENI’s Objective flight for further lining Final Goal optimisation work

TEENI’s Discriminate Turboshaft engine Objectives exhaust noise sources Basic Research Studies Develop sensors for fluctuating quantities Understand noise adapted to Turboshaft generation and engine constraints propagation Develop measurement characteristics techniques for identifying engine Tools modules responsibility Development in exhaust noise - The smallspaceavailableonthis kind of - The severe environmental conditionsin The complexityofthephysicsinvolved; - Tackling thisbroadband noiseidentifi cation Developandapplynoise-source breakdown - Understandhowthebroadband noiseprop- - - Develop and testsensors,adaptedto - Discriminate theorigin of thesoundfi eld - New noise-source breakdown techniques, Innovativesensordevelopment,from design - includes: mentioned fourobjectives,TEENI’s workplan ation. Therefore, toachievethepreviously answered inorder tomaximiseliner attenu- Theseimportantchallengesneedtobe DescriptionofWork engine. instrumentation; the exhaustwhichprevent usingstandard problem isanambitiousgoal,dueto: noise originfrom insidetheenginecasings. techniques whichare abletolocatethe agates through turbinebladerows; environment (temperature, grazingfl ow); fl uctuations, etc.)andresistant totheengine pressure, acousticvelocity, temperature fl uctuating quantities(suchasacoustic noise source infl ight; optimisation onthemostprominent engine and highlighttheprioritiesforexhaustliner radiated from aturboshaftengine’s exhaust and far-fi eld arrays,withnewlydeveloped includes theuseofbothacousticnear-fi eld with respect toeachenginemodule.This to helpdiscriminatethefar-fi eld noiseorigin conditions; to laboratorytestinrepresentative engine - Using thisnewtool,andtheTEENI Study thedevelopmentinHELENA(numeri- - - New instrumentationandsource-break- - Basic studies,includingrigexperiments, - A rankingofexhaust-noisesources, witha - - A comprehensive full-scaleengine-test A thorough understanding ofnoisegenera- - A noisebreakdown techniqueselectedout - - A setofsensorsformeasuringunstation- be: ThemostimportantTEENIdeliverableswill ExpectedResults noise source, whichshouldbereduced. Friendcopter outputs,estimatetheengine- the source-breakdown capability; cal platformdevelopedinFriendcopter)of scale enginetest; down techniqueswillbeappliedtoafull- algorithms; to verifynoise-breakdown techniquesand These studieswillalsogiveanopportunity of broadband noisethrough bladerows. to understandthepropagation effects into noisegenerationfrom theexterior; algorithms thatshouldprovide aninsight reduced. recommendation onthenoisesource tobe database; exhaust; tion, propagation andradiationthrough the treatment oftheengine-noisedatabase; of apanelmethodsduetoanadapted C);

State of the Art - Background ity and diversity of broadband turbulent AFN sources makes that prediction and subse- The overall noise radiated by modern aircraft quent reduction with present numerical tools has two sources which are quite balanced at extremely challenging. approach: the engine and the airframe. The airframe noise (AFN) has a broadband charac- Objectives ter and is mainly due to the interaction of the turbulent airfl ow with the high-lift devices (slats VALIANT is tackling this challenge by generat-

and fl aps) and landing gears, and to a lesser ing new experimental data, and validating and of Air Transport The Greening extent to cavities, spoilers and to boundary improving numerical tools for predicting AFN layers developing along the fuselage. generated from landing gears, slats, fl aps and local separation regions. One of the major ACARE objectives is a reduction in perceived noise level of fi xed- Due to the extremely complex physical nature wing aircraft by 50% by 2020 compared to of the phenomenon and the high cost of com- 2001. In achieving this required breakthrough puting full aircraft confi gurations on the one towards quieter aircraft, reducing AFN is very hand, and the lack of a reliable experimental important now and will become even more database on the other, VALIANT focuses on important in the future, especially for large air- key generic test cases revealing the basic craft, due to the already anticipated develop- mechanisms of AFN generated by the most ment of quieter engines. ‘noise-dangerous’ elements of a real aircraft: 85 - turbulent fl ow over a gap; With the clearly expressed tendency of the - fl ow past an airfoil with a fl ap; modern airframe industry towards virtual - fl ow past an airfoil with a slat; prototyping and the increasing reliability of - fl ow past two struts (landing gear). the design cycles on numerical simulations with the experimental verifi cations performed These four generic fl ows actually ‘cover’ the only at later stages of the design cycle, it is most important sources of AFN generated by a of utmost importance to increase the trust real aircraft and therefore their study provides a in noise predictions. However, the complex- suffi cient basis for evaluation and improvement of the Computational Aero Acoustic (CAA) tools aimed at predicting AFN. On the other hand, these fl ows are ‘simple’ in the sense that their accurate simulation and noise generation are computationally affordable. For all these confi gurations, the components of the noise prediction chain (for the turbulent/ source region, and near- and far-fi eld propa- gation domains) and their mutual interactions are evaluated and avenues of improvement developed. Description of Work © SILENCE(R)

Example of AFN source localisations of a landing A340 with The project is divided into four technical work high-lift device and landing gears (from fl ight test campaign) packages (WP). 86 The Greening of Air Transport industrial processes inthefuture. AFN prediction toolsto be integratedinto approaches andidentifi es the best-suited improvements inthenumericalandanalytical WP4 assessestheinfl uence ofthesuccessive pretation ofthenumericalresults. Perceived NoiseinDecibels)andtohelpinter- around airportsintermofEPNdB(Effective of signifi cant importancetoassessthenoise at improving theanalyticalmethodswhichare and far-fi eld noisepredictions. WP3aimsalso of turbulencerepresentation andnear-, mid- CAA approaches willbeimproved interms Based ontheremedies proposed inWP2,the within WP3. of furtherimprovements ontheweakpoints numerical approaches andsuggestavenues highlight bothstrong andweakpointsofthe mental data.Thissystematiccomparisonwill both witheachotherandtheexperi- of turbulenceandacousticsbycomparing currently availableCAAapproaches interms WP2 isaimedatathorough assessmentof wind tunnel. be performedinacheaplargeaerodynamic and directivities. Acousticmeasurements will source localisationandfar-fi eld noisespectra unsteady aerodynamic data,aswellnoise- listed above.Expectedresults are steadyand tion purposesforthefourgenerictestcases reliable experimentaldatabaseforvalida- WP1 focusesongeneratingadetailedand High-lift devicebroadband noisemechanismstobeinvestigatedwithinVALIANT

Expected Results complementary expertise inaero-acoustics. collaboration withRussia,relying ontheir ation PartnerCountriesbybuilding a strong of organisationsfromCo-oper- International Finally, VALIANT willpromote theparticipation nologies byreliable numericalpredictions. testing andoptimisingAFNreduction tech- extremely expensiveexperimentsaimedat tion andbyallowingapartialreplacement of prediction toolsintermsofCPUtimereduc- This willbeachievedbyproviding efficient AFN reducing thedesignanddevelopmentcosts. VALIANT willalsoimprove costeffi ciency by - identifying thebestsuitedAFNprediction - validating andimproving Computational - providing ahighqualityexperimentaldata- their optimisation,impactstheEUdirectly by: new effi cient AFNreduction conceptsand Thisproject, beinganessentialsteptowards (compared to2000stateoftheart). 3 -5dBoverallAFNgainduringapproach technologies expectedtoresult inafurther future, fordesigningeffi cient AFNreduction integrated intoindustrialprocesses inthe tools whichmayhavethepotentialtobe numerical database; accuracy of1dB,andgeneratingadetailed band AFNprediction withinanexpected Fluid Dynamics(CFD)/CAAtoolsforbroad- AFN mechanisms; resentative ofthemost‘noise-dangerous’ associated withgenericconfi gurations rep- base forvalidationonbroadband noise BE1640Rhode-Saint-Genèse ChausséedeWaterloo 72 Von KarmanInstituteforFluidDynamics Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: M nentoa V BE RU BE FR DE DE ES NV LMSInternational NL S.A. NumericalMechanicsApplicationInternational NewTechnologies andServicesLLC CentredeMètodesNumèricsenEnginyeria Internacional DeutschesZentrumfürLuft-undRaumfahrte.V. FR StichtingNationaalLucht-enRuimtevaartlaboratorium Offi ce Nationald’ÉtudesetdeRecherches Aérospatiales Technische UniversitätBerlin EcoleCentraledeLyon +32(0)23599615 +32(0)23599600 FP7–AAT–2008–RTD–1 cer: [email protected] http://www.vki.ac.be nttt o ahmtclMdligRS RU InstituteforMathematicalModellingRAS 36 months VALIANT 3661682 Mr. EricLecomte CP–FP Dr. ChristopheSchram 31.08.2012 01.09.2009 2700 000 233680 NoiseandVibration VALidation andImprovement ofAirframeNoiseprediction Tools nttt ae fe rf ..Zuosy RU Institute namedafterProf. N.E. Zhukovsky Federal StateUnitaryEnterprise-TheCentralAerohydrodynamic € € 87 The Greening of Air Transport ACFA 2020 Active Control of Flexible 2020 Aircraft

State of the Art - Background ated by the complex active control system for BWB-type aircrafts has been identifi ed, but Blended wing-body (BWB) type aircraft not yet addressed in the European projects confi gurations, i.e. generally tailless aircraft VELA and NACRE. The aspects of ride com- confi gurations with aerodynamic wing/fuse- fort and loads alleviation under consideration lage blending, are highly promising concern- of the fl exible aircraft structure are of particular ing improved low fuel consumption. This is interest. mainly achieved by reduced structural weight The Greening of Air Transport The Greening and through a minimum wetted area which Objectives is signifi cantly lower for BWB-type aircraft compared to other confi gurations. Major The ACFA 2020 project addresses two main design issues of such BWB-type aircraft have objectives, namely: already been solved or are currently under 1. To provide solutions for the active control investigation in the European funded projects system for BWB-type aircrafts to sup- VELA and NACRE. The fuel effi ciency of the ply the required handling qualities and, in so-called 750-passenger NACRE fl ying-wing particular, to alleviate gust and manoeuvre confi guration is comparable to the 1990s loads, as well as to improve ride comfort. BWB concepts in the US. However, the big- BWB-type aircraft set completely new chal- gest market share in long haul fl ights today lenges in regards to complexity of control 88 is taken by mid-size aircraft (400-500 pas- algorithms, control design and optimisa- sengers). Therefore, there is an urgent need tion, as well as control system architecture. to exploit the advances from the VELA and Instead of various single-channel or single- NACRE projects for the pre-design of a mar- input-single-output (SISO) controllers, a ketable European mid-size fl ying-wing aircraft highly coupled multi-channel or multiple- with a high fuel effi ciency. The challenge cre- input-multiple-output (MIMO) controller is 2. To provide apre-design foramarketable hand, andgust manoeuvre loadsonthe and unwantedrigidbodymotionson theone systems istoreduce structural vibrations The mainobjectiveofthedesigned control ers incontrol designfrom Europe andIsrael. VELA projects, aswell additional keyplay- munity ofpartnersinvolvedintheNACRE and for BWB-typeaircraft are designedbyacom- cepts’, where MIMOactivecontrol systems opment &evaluationofactivecontrol con- core oftheACFA 2020project isWP3‘Devel- nical subsequentworkpackages(WP).The 2020, theworkisorganisedintofourtech- Inorder toachievetheobjectivesofACFA DescriptionofWork ACFA 2020blendedwing-bodyaircraft design aircraft confi gurations ofsimilarsize. sumption compared tocurrent standard at leasthalfofthe50%reduced fuelcon- craft confi guration’s airframewillaimfor the structuralweight.TheACFA 2020air- of thefl exible aircraft inorder tominimise achieved loadsreduction byactivecontrol ture willbefi nally sizedaccording tothe ACFA 2020aircraft confi guration struc- – theACFA 2020aircraft confi guration. The European ultra-effi cient fl ying-wing aircraft be takenintoaccount. between control andsystemaspectswill required. Moreover, thehighinteraction their earlyavailability. ROM oftheNACREfl ying-wing aircraft dueto tive MIMOcontrol algorithmswillstartwiththe BWB. Theinvestigationsonthemulti-objec- fl ying-wing aircraft, aswelltheACFA 2020 state-space models(ROM)oftheNACRE generates parameterisedreduced-order down-selection’. WP2‘Dynamicmodelling’ in WP1‘Aircraft confi gurations defi nition and 2020 aircraft confi guration’ whichisdesigned for theultra-effi cient 450-passengerACFA formed inWP4‘Assessmentsandintegration are thebasisforastructuralresizing per- other. Thereduced staticanddynamicloads future aircraft confi gurations. Thus themain also incorporateactivestructuralcontrol into and handlingqualities.Itisself-evident to well asfortheimprovement ofridecomfort means forthereduction of criticalloads,as Such activecontrol systemsare animportant in theGermannationalproject MODYAS. the European AWIATOR project, aswell for conventionalaircraft confi gurations in manoeuvre loadshavebeeninvestigated structural vibrationsaswellofgustand Active control systemsforthealleviationof trol forBWB-typeaircraft. Deliverable I:SolutionsforactiveMIMOcon- Thekeydeliverablesoftheproject are: ExpectedResults

© ACFA 2020 Consortium 89 The Greening of Air Transport 90 The Greening of Air Transport Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: oped inACFA 2020willbeappliedtothisnew The activeMIMOcontrol strategiesdevel- effi cient 450-passengerBWBtypeaircraft. tion consistinginthepre-design ofanultra Deliverable II:ACFA 2020aircraft confi gura- control ofBWB-typeaircraft. well asadaptiveMIMOarchitectures foractive deliverable ofACFA 2020willberobust as ilso ehia nvriy PL CZ AT GR DE SE IL IT GR DE BialystokTechnical University NationalTechnical UniversityofAthens CzechTechnical University Technische Universität Wien Technische Universität München FR SwedischDefenceResearch Agency Offi ce Nationald’ÉtudesetdeRecherche Aérospatiales -ONERA IsraelAerospace IndustriesLtd HellenicAerospace IndustrySA AleniaAeronautica S.p.A. DLR DE85521Munich EADSDeutschlandGmbH Willy-Messerschmitt-Strasse +49(8)8960727011 +49(8)8960723067 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.acfa2020.eu ibsFac A FR AirbusFranceSAS 42 months ACFA 2020 4558372 Mr. PabloPérez Illana CP–FP Dr. RudolfMaier 31.08.2011 01.03.2008 3124 968 213321 Flight Physics Active Control ofFlexible2020Aircraft € € integrated activecontrol ofthefl exible aircraft. the potentialweightbenefi t achievedwithan tion structure willberesized todemonstrate reduction theACFA 2020aircraft confi gura- dling qualities.Basedontheachievedload well asforimproved ridecomfortandhan- 450-passenger aircraft forloadreduction as SESAR programme. ACO andthosebeingdevelopedwithinthe duction ofaseriesnewconceptssuchas cockpit designwillbestressed bytheintro- the certaintythatwithinnextdecade for thenewcockpitarchitecture of isborne ing crew situationalawareness. Therationale workload whilstenhancingsafetyandimprov- applications capableofdrivingdowncrew introduction ofnewcockpittechnologiesand be anewcockpitarchitecture facilitatingthe second keyarea oftechnologicaladvancewill wider rangeofdegradedfl ight conditions.The capable ground-based approach aids,ina bility, allowingaircraft touseairportswithless delivering robust worldwideoperationscapa- tions Operations(ACO)systemcapableof technological advancewillbeanAllCondi- situation awareness. Thetwokeyareas of mission performancewhilstalsoenhancing pit conceptscapableofproviding improved traffi c management(SESAR)withnewcock- ALICIA willcouplethelatestthinkinginair taneously drivingdownairtransportdelays. fl y closertogetheratlowerrisk,whilstsimul- ate inalmostallweatherconditionsandto systems whichwillpermitaircraft tooper- The aimwithinALICIAistodevelopnew aircraft movementsthanispossibletoday. pit systemsthatcandeliversignifi cantly more tion systemdirectly bydevelopingnewcock- improved timeeffi ciency intheairtransporta- ALICIAaddresses 2020goalof theVision StateoftheArt-Background Innovative CockpitInfrastructure AllConditionOperationsand ALICIA - Delivering arobust worldwideoperations 1. ThedevelopmentofanACOcapability to Thetwooverarching project objectivesare: Objectives with lesscapableground basedapproach capability, allowingaircraft touse airports reduce weather-related delaysby20%. - Delivering thearchitecture toenablethe - Delivering seamlessintegrationofinnova- - Delivering acompetitive,scalablecore 2. Developmentofanewcockpitarchitecture Delivering improved punctualitywhilesimul- - Delivering more autonomousaircraft opera- - lowest through lifecost. operational requirements, whilstachievingthe duction ofabroad andexpanding rangeof will bedefi ned thatfacilitatetheeffi cient intro- concepts applicabletoallnewfl ight-decks port this.Accordingly, withinALICIA,newcore architecture mustbefl exible enoughtosup- in thenextgenerationcockpitand diverse rangeofnewsystemsthatwillarrive ditions Operationsisjustoneelementofa lenge thecockpitdesign.However, AllCon- the implementationofthissystemwillchal- because thetechnologyintegrationimplicitin the project willbeAllConditionsOperations cockpit design.Theapplicationfocuswithin work togethertowards anewapproach to nity formanykeystakeholdersinEurope to TheALICIAprogramme provides anopportu- DescriptionofWork next steptowards singlecrew operation. operation; respond tothenewchallengesofaircraft tions suchasAllConditionsOperationsto tive avionicstechnologiesandnewapplica- types; cockpit architecture applicabletoallaircraft taneously enhancingsafety. perturbations in-fl ight orontheground; of weatherdisturbancesandotherpossible tion, includinganticipationandavoidance conditions; aids, inawiderrangeofdegradedfl ight ogies andapplications. facilitating theintroduction ofnewtechnol- 91 Increasing Time Effi ciency 92 Increasing Time Effi ciency vide thecriticalbuildingblocksnecessaryto cloud andpoorvisibility. ALICIAaimstopro- almost 50%ofarrivaldelaysare duetolow visibility conditions,andinsomemajorairports were cancelledin2007Europe duetolow It hasbeenestimatedthat16800airlinefl ights disruptive factorsinEuropean aviationtoday. near toorontheground isoneofthemost Lowvisibilityinthecriticalphasesofafl ight ExpectedResults 6)Dissemination andExploitation 5)Evaluation inCockpitSimulators 4)Application Development 3)Technology Selection/Refi nement 2)Concept Generation 1)Requirements Capture cal areas: a structure coveringthefollowingsixtechni- The ALICIAactivitieswillbeperformedwithin - Robust Worldwide Operationsindemand- - Enhanced Navigation; - Strategic SurveillanceoftheAircraft board functionsperforming: illustrate thefeasibilityofhighlyintegratedon thetic environments andbenchtestingto will bedemonstratedusingsimulation/syn- The utilityandscalabilityofthenewconcept Technology Integration Approach ing FlightConditions. Environment; Technologies Displays/3D DVI/DVO Auditory Audio Haptic Devices Head Mounted Displays State-of-the-Art HFITools/Processes Multimodal InterfaceTechnologies Holistic Integration/Optimisation Display Technologies ALICIA Cursor Control 3D Displays Large Area Displays Devices - Enhanced navigationtechniques. - High integrityarchitectures anddatabases; - - Improved sensortechnologiessupporting Novel display,- control andaudioconcepts, - Enhanced useofsyntheticenvironments - Integration withthefuture airspace Holistic approach toHumanMachineInter-- - Enhanced visionsystemandsynthetic - Robust managementoffl ight phasesnear sued withinALICIAinclude: Some ofthekeyinnovationsthatwillbepur- reducing timetomarket. creating furthercompetitiveadvantagewhilst increase inre-use ofEuropean technology tiple aircraft types.Thiswillcontributetoan standardisation andcommonalityacross mul- that embracestheprinciplesofincreased of nextgenerationcockpitsusinganapproach ALICIA willalsomakeadvancesinthedesign welcome benefi ts totheEuropean traveller. signifi cant economicadvantagesaswell weather byatleast20%.Thiswillprovide very reduce delaysinEurope associatedwithpoor all environment capabilities; audio, largearea/high resolution displays; input, audioenvironment including3D e.g. headmounteddisplays,direct voice certifi cation; to supportconceptvalidationandproduct infrastructure; face designandintegration; imagery; and ontheground; Passive/Active Sidesticks Head Up Displays Automation Task

© Westland Helicopters Ltd UKBA202YBYeovil Westland HelicoptersLimited Lysander Box Road, 65, Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: okelClisFac FR DE DE UK UK FR CZ UK DeutschesZentrumfürLuft-undRaumfahrt e.V. IT FR BE FR RockwellCollinsFrance DE EADSDeutschlandGmbH DE IT LATECOERE GEAviation SystemsLimited Barco PL BAESYSTEMS(Operations)Limited SprzetuKomunikacyjnego ‘PZL-Swidnik’SpolkaAkcyjna Wytwornia Jeppesen CAE(UK)Plc Aircraft Industries,a.s. Agusta SE n.v. AleniaAeronautica S.p.A. DassaultAviation SA GmbH AIRBUSFRANCESAS DiehlAerospace GmbH SpA Saab AB +44(0)1935703594 +44(0)1935386 337 FP7–AAT–2008–RTD–1 cer: [email protected] http://alicia-project.eu TAE vois FR THALES Avionics 48 months ALICIA 46681422 Mr. EricLecomte CP–IP Mr. NeilHarris 31.08.2013 01.09.2009 27813675 233682 Avionics, HumanFactorsandAirports AllConditionOperationsandInnovativeCockpitInfrastructure f entoa ’tdse ercece eoptae FR Offi ce nationald’étudesetderecherches aerospatiales € € 93 Increasing Time Effi ciency 94 Increasing Time Effi ciency nvriyo otapo UK UK MT TR SE IT ES IT UniversityofSouthampton TR DE Aydin Yazilim Ve Elektronik SanayiA.S. DE IT StirlingDynamicsLtd ES AlmaMaterStudiorum-UniversitàdiBologna FR TheUniversityofMalta Technische zuBraunschweig UniversitätCarolo-Wilhelmina Interconsulting AVTECH SwedenAB IT European Engineering Virtual FR UzayveSavunmaTeknolojileri A.S. DBSSystemsEngineeringGmbH S.r.l. ES DeepBluesrl GTDSISTEMASDEINFORMACION FR A-Volute NL IngenieríadeSistemasparalaDefensaEspaña,S.A. NL Centro ItalianoRicerche Aerospaziali USE2ACES IntuiLab StichtingNationaalLucht-enRuimtevaartlaboratorium Météo-France b.v. ue lzbt erDbi hriatrcle C) IE Queen ElizabethnearDublin(hereinafter calledTCD) The Provost, FellowsandScholarsoftheHolyUndividedTrinity of INSTITUTE RU Federal StateUnitaryEnterpriseCENTRALAEROHYDRODYNAMIC airside aspects. in theUnitedStates,are more advancedon Current research activitiesinEurope, butalso over onebillionEuros ayear. 50% ofthefl ight-plans inEurope wouldsave Reducing justfi ve minutesofbuffer timein their schedulesand/orreserve extraaircraft. airlines introduce costlytimebuffers within planning. Inorder tomaintainbasicstability, This leadstopoorpredictability withinfl ight its standfordeparture (‘off-block time’). is aresult ofvaryingtimesanaircraft leaves bution toinsuffi cient punctuality atairports Recent studiesreveal thatthemaincontri- formance atairports. cient airtransportisduetothesystemper- ACARE research goalsintermsoftimeeffi - The mainchallengetobemetinreaching the years. a tendencytodrop below80%inthepast3 set byACARE’s 2020andhasshown Vision Europe isfarfrom the99%punctuality target Atthemoment,AirTransport punctualityin StateoftheArt-Background Transport Aeronautic Study onSeamless ASSET - effects ofairtransportnetworkonlatearriv- - aircraft serviceprocesses atstand/gate - the associated processes forbaggage/ - passenger inboundandtransferfl ows time- port process chains: for improvement ofvariousmodulestheair- ASSETaimsatfinding anintegratedapproach Objectives airport, als duetoprevious delays atpriordeparture etc.), (fuelling, cleaning,cateringmaintenance airport, freight handlingataircraft andwithinthe boarding ofaircraft, liness atairportsincludingboarding andde- 1. Alistofsolutionstoenhancetimeeffi ciency four mainoutcomes: The proposed ASSETproject istodevelop esses are improved inanintegrated manner. therefore onlybeobtainedifallthose proc- Improvements oftheoff-block punctuality can - there are multiplecontrol procedures involv- single solutions. ment ofpromising combinationsofdifferent grated approach whichallowstheassess- process chains.ASSETtargetsataninte- addressing singleelementsofdifferent airport tial willnotonlybelimitedtosinglesolutions The analysisofsolutionsimprovement poten- 4. Afinancial approach that willclearlyindicate 3. Anobjectiveandcomparablescheme 2. Arankingofabove-mentionedmeasures requirements of thevariousairtransport cisely identifywhatthebottlenecks and The objectiveofWork Package 1istopre- logical steps(WP1–WP4). Theenvisagedworkisbroken downintofour DescriptionofWork ing, etc. security, customsandimmigration, board- bottlenecks priortoembarking:check-in, forced theirdutiesandconstitutemany ing multiplestakeholderswhoallhaverein- the benefi ts forthevarious stakeholders. in typicalairportenvironments, technological and/orprocedural changes medium-sized airport)toassessfuture of twogenericairportmodels(huband economically viableairtransport, tion towards more time-effi cient andthus according totheirleveloftargetcontribu- tional andstrategicapproaches, at airportswhichincludestechnical,opera- 95 Increasing Time Effi ciency 96 Increasing Time Effi ciency ger, baggageandaircraft turnaround. ments oftheairportprocess chainspassen- integrated approach, includingallrelevant ele- of anexpansionthepresent analysistoan port processes. Thecurrent WPconstitutes tions forimproving timeperformanceofair- and rankingofafore developedsinglesolu- results ofWP3,inparticulartheevaluation Work Package4activitiesare basedonthe requirements inthefi eld oftimeeffi ciency. port processes withregard tostakeholders’ improving theperformanceofvariousair- opment andtheevaluationofsolutionsfor Work Package3dealswithboththedevel- for bothtypes. similar, butindependent, approach isfollowed types ofairports:medium-sizeandhub.A ment ofgenericsimulationmodelsforthetwo The focusofWork Package2isthedevelop- gage andaircraft turnaround timeissues. stakeholders are toaddress passenger, bag- Expected Results cessful inthepast. the airtransportsystemhavenotbeensuc- isolated solutionstoimprove punctualityof tion ofairsideandlandsideairportprocesses, depends onaprecise functioningandintegra- Because performanceofaircraft punctuality remote position. serve more aircraft atagivenairport gateor and fasterturnaround processes enableto ity ofaircraft movements,asmore predictable airports willpavethewaytoincreased capac- more predictable and/orfaster-processes at Searching andfi nding more timeeffi cient - technological readiness for2020. ASSET project are alsojudgedagainsttheir The assessmentsofthesolutionswithin the pointwhere theaircraft leaves itsstand. ger (andhisbaggage)totheairport,up process chain,from theentryofapassen- for airportprocesses throughout thewhole been assessedintermsoftimeeffi ciency ASSETdeliversalistofsolutionsthathave DE51147Koeln DLR-DeutschesZentrumFürLuftundRaumfahrtev Linder Hoehe Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: ae euieSA FR DE Rheinisch-Westfaelische Technische HochschuleAachen DE SagemSecuriteS.A. Siemens AG mtsHianGb DE UK SmithsHeimannGmbH FR FR ICTS(UK)LTD ADP ID Ingéniérie PARTNERS i rneCnutn FR EL LetiskoM.R. AirportS.A. AthensInternational AirFranceConsulting FR Airbus SAS +49(0)22036013848 +49(0)2203601 237 7 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.asset-project.eu/ ibsDushadGb DE AirbusDeutschlandGmbH 36 months ASSET 3638512 Ms.StéphanieStoltz-Douchet CP–FP Mr. AxelClassen 31.05.2011 01.06.2008 2291255 211625 Avionics, HumanFactorsandAirports Aeronautic StudyonSeamlessTransport Ž ilinská univerzitav € € Š eáia-ArotBailv,AS BS SK tefánika -AirportBratislava,A.S.(BTS) Ž iline SK 97 Increasing Time Effi ciency 98 Increasing Time Effi ciency knowledge oftheturnaround process. can improve theiroperationsthankstobetter mation totheotheractorssothat they too from theconcept.Thistool willalsofeedinfor- tool fortheairlinesinorder forthemtobenefi t (concept ofoperations),aswella specifi c is fullycompatiblewiththeSESARConOps operational conceptforthisprocess which project intendstodevelopanewadvanced by focusingontheturnaround process. The TITAN directly addresses airportoperations Objectives outbound phase). airport’s perspective(inbound,ground and milestones inwhichthefl ight isseenfrom the process. CDMdefi nes atotalof16basic is themilestoneapproach totheturnaround is dividedintoseveralelements,oneofwhich use ofresources. TheairportCDMconcept predictability ofeventsandoptimisingthe at airportsbyreducing delays,improving the fi c FlowandCapacity Management(ATFCM) is aconceptwhichaimsatimproving AirTraf- Airport CollaborativeDecisionMaking(CDM) Gate Management. and resources, andoptimisetheStand make more effi cient useofexistingfacilities to landingwouldenableground handlersto time (derivedfrom avariabletaxi-intime)prior Anaccurate estimateofthein-block Time). arrives atablock(AIBT, ActualIn-Block The turnaroundcommenceswhenthefl ight such asground handlers. caused byairlines,airportsorotherparties, just statedthatlocalturnaround delayswere covering thecalendaryear2006).Thereport CONTROL PerformanceReviewReport of primarydelays(according totheEURO- In2006,turnarounddelaysamountedto79% StateoftheArt-Background and Network Turnaround IntegrationinTrajectory TITAN DescriptionofWork - WP3:Validation ofthe TITAN concept,fol- - WP2: DevelopmentoftheTITAN model: - WP1: Conceptanalysis anddefi work packages(WPs): nition: Theproject isdividedintoseveraltechnical - To improve punctualityandreduce delays. - To increase ATFM andairportslot - To optimisetheuseofallresources forall - To ensure punctualturnaroundonthe To reduce operationalcostsduringtheturn- - To enhancetheeffi- ciencyofaircraft operator The mainobjectivesare: Validation Methodology(E-OCVM). lowing theEuropean Operational Concept terms ofprioritiesandconstraints. round modelsplusthe airline politicsin aggregation ofseveralsingleaircraft turna- project’s concept.Itwillbebasedonthe to supporttheoperationalvalidationof the developmentofaturnaroundmodel concept fullyinlinewithSESARConOps. get objectivesandproposing anoperational expectations, settingtheperformancetar- identifi cation ofproblems, userneedsand and airportservicequality. viewpoint andakeydeterminantofairline Punctuality isessentialfrom apassenger’s adherence. involved partners. service. apron and,thus,ahigherlevelofpassenger dling companiesandairportoperators. cost-effectiveness ofairlines,ground han- between thepredictability, effi ciency and around process. There isaclearrelationship scheduling andmore effi cient operations. time. Systempredictability allowsimproved the dispersionassociatedtooff-block The defi nition ofpredictability focuseson operations, specifi cally ground operations. - WP6: Integration ofTITAN intheairtrans- - WP5: Costbenefi t analysis(CBA):the - WP4: DevelopmentoftheTITAN tool:the actors. an airportandtheirrelations withtheother processes ofthedifferent airlines’aircraft at includes theaggregation oftheturnaround on that,avalidationmodelwillbebuiltwhich time) according tothedefi ned rules.Based dapting itsfi nal EOBT(estimatedoff-block defi inputsandtriggers,rea-ned external process forasingleaircraft, reacting tothe will implementamodelwhichrepresents this Once thisconceptisdefi ned, theTITAN team parameter willhaveanimpactonit. the ground sectorandhowachangeonany esses (landsideandairside)interactingwith Concept whichwillidentifythedifferent proc- TITAN willpropose aTurnaround Operational ExpectedResults with particularattentiontotheairlines. withtheturnaround process,concerned information stream ofthedifferent partners ing theoutputofTITAN modelintothe port system:defi ning thedetailsofintegrat- to theTITAN tool. tomised forthisproject anditsapplication development ofaCBAmethodologycus- tions affecting theturnaround process. changes intheirscheduleduetomodifi ca- the evaluationandnegotiationofany CDM environment foranairlinetoimprove development ofadecision-supporttoolin stakeholders. the technologicalcommunicationamong processes atanairport,takingintoaccount all solutionwillbeintegratedinfuture CDM mation related topublicmilestones.Theover- as wellthepublicationofprogress infor- the negotiationandfi nalisation ofmilestones, and proven turnaroundmodel.Itwillallowfor of themodel.Thetoolwillutilisedesigned will alsobedevelopedtoshowthefeasibility collaborative decision-makingtoolforairlines theTITANWithin project, ademonstratorfor fuel trucks. refl ect thelimitedresources of,forinstance, using simulatedagentsfortheotheractorsto tion platforminorder toverifytheconcept, This modelwillbeimplementedinavalida- The turnaroundrelay process 99 Increasing Time Effi ciency 100 Increasing Time Effi ciency Partners: ECOffi Fax: Tel: E-mail: Coordinator: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: ES28036Madrid PaseodeLaHabana INECO-IngenieríayEconomiadelTransporte S.A. ltCnutn t HU BE NL ES DE Rheinisch-Westfälische Technische HochschuleAachen ES UK SlotConsultingLtd BoeingResearch andTechnoloy Europe BluSkyServicesZerkowitzGCV IngenieríadeSistemasparalaDefensaEspañaS.A. ECORYS NederlandB.V. ISA ES Centro deReferencia InvestigaciónDesarrollo eInnovaciónATM, A.I.E. DE Software Jeppesen GmbH +34(0)914525770 +34(0)914521306 FP7–AAT–2008–RTD–1 cer: [email protected] EntidadPúblicaEmpresarial Aeropuertos Españolesy NavegaciónAérea ES 36 months TITAN 3918349 Ms.StéphanieStoltz-Douchet CP–FP Mr. Alvaro Urech 30.11.2012 01.12.2009 2794337 233690 Avionics, HumanFactorsandAirports Turnaround IntegrationinTrajectory andNetwork € € ADDSAFE safetybottleneck and ensure suffi cient availablecontrol action. redundancy inorder toperformcoherency tests at alltimesistoprovide highlevelsofhardware faults andobtainfullfl ight envelopeprotection ers todiagnoseguidanceandcontrol (G&C) Thestateofpracticeforaircraft manufactur- StateoftheArt-Background Flight GuidanceandControl AdvancedFaultDiagnosisforSafer ADDSAFE the FDDscientifi c methodsadvocatedwithin nical solutionshavewidenedthegapbetween Indeed, thesenovel‘green andeffi cient’ tech- demanded bysociety. safer, cleanerandquieter’ imperativesbeing cal sectortosatisfythe‘more affordable, solutions beingdevelopedbytheaeronauti- junction withthemanyinnovativetechnical increasingly problematic whenused incon- costs. Moreover, itsapplicabilityisbecoming and thusitsmanufacturingmaintenance increase theaircraft’s weightand complexity, processes. However, theseFDDsolutions which alsofi ts intocurrent aircraft certifi cation approach isthestandard industrialpractice, based FaultDetectionandDiagnosis(FDD) Nowadays thishardware-redundancy- Automation Reduction Advanced Technological Reduction Fuel Burn Noise Needs Certification Improvements Aerodynamic methods Optimal Efficiency Reduction Engine Weight Technological Projects EC-FP Solutions Safety Bottleneck Verification & Validation bottleneck. diagnosis challengesarisingfrom thissafety ADDSAFE addresses thefaultdetectionand transport systems. the fullrealisation ofthenextgenerationair neck’, atechnologicalbarrierconstraining industry, creating a cal developmentsrequired bytheaeronautics the academiccommunityandtechnologi- 1. I scientifi c perspectiveare: The mainbenefi ts from atechnologicaland and actuatorloss-of-control malfunctions. control systemfaults,predominantly sensor model-based FDDmethodsforaircraft fl ight Theoverallaimistoresearch anddevelop Objectives Failure ADDSAFE suitable performanceevaluationmetrics. ent setoffaultdiagnosisrequirements and academic researchers willprovide aconsist- work betweenindustrialpractitionersand design andanalysisforaircraft G&C.Joint dentifi cation ofasetguidelinesforFDD Foundation Knowledge Fault Diagnostic Applicable methods de facto Vision 2020 Objectives ‘safetybottle- Environment Air transport Affordability Efficiency Quality & Safety The

© ADDSAFE 101 Ensuring Customer Satisfaction and Safety 102 Ensuring Customer Satisfaction and Safety - secure European aircraft leadership. - - improve aircraft transportcostand allow theuseofgreener technicalsolutions; - improve aircraft safety; - ety, ADDSAFEwill: From theperspectiveofbenefi ts to soci- 4. Ademonstrationofthemostpromising 3. Asteptowards averifi cation andvalida- 2. Improved FDDmethodsandunderstand- ADDSAFE benchmarkandvalidationdemos effi ciency; SIMULATION CORE state-of-the-art fl ight simulation platforms. model-based FDDdesignsonindustrial state-of-practice fl ight simulators. industrial software assessmenttoolsand systems, bybringingtogetheradvanced tion (V&V)process foraircraft diagnostic and robust theoretical guarantees. ing methodsgivingincreased performance advanced FDDsynthesisandoptimal-tun- nosis methods,andthedevelopmentof most widespread fundamentalfaultdiag- encompasses theenhancementof ing oftheirapplicabilitytoaircraft FDD.This On-Board Systems Definition Algorithms Mission G&C Navigation MONTE CARLO SIMULATION Actuators Raw Data Core Driver Logging SIMULATION ENGINE Environment Dynamics & Kinematics Configuration Sensors Model the fi nal designandtuning. where information from WP4isusedtoguide assessment, andadetaileddesign stage, the goalistoperformaninitialdesign and into twostages:preliminary design,where WP3: ‘Applicationtobenchmark’is divided retical guarantees. researching newmethodswithstronger theo- rent model-basedFDDmethodsaswellin the project. Itfocusesonenhancingthecur- main scientifi c developmentcomponentof tools’ startsinparalleltoWP1andisthe WP2: ‘DevelopmentofFDDmethodsand and software assessmenttools. associated faultdiagnosismetrics,guidelines benchmark problem andindevelopingthe assessment tools’focusesondefi ning the WP1: ‘Industrialbenchmarkproblem and WP0: Managementanddissemination. (WP). Theproject isdividedintosixworkpackages DescriptionofWork

Real World Raw Data VISUALISATION POST-PROCESSING MAN MACHINE INTERFACE Processed Post- Data

© DEIMOS Space S.L & Airbus SAS Edifi cio FiteniVI,2-2 RondadePoniente19 DEIMOSSpaceS.L.

ES28760Tres Cantos (Madrid) Partners: ECOffi Fax: Tel: E-mail: Coordinator: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: ehiceUiesti ef NL UK UK FR DE Technische Universiteit Delft Centre NationaldelaRecherche Scientifi que UniversityofLeicester UniversityofHull DeutschesZentrumfürLuft-undRaumfahrt e.V. of thepotentialintegrationissues. DEIMOS andAirbussimulators,astudy means ofatechnologydemonstrationon gies totheindustrialaeronautics sectorby the developedFDDmethodsandtechnolo- the mainpurposeofwhichistohelptransfer WP5: ‘Integrationissuesanddemonstration’, flsimulators). ight up toimplementationandtestinginAirbus will beselectedforfullindustrialvalidation(i.e. be benchmarkedandthetwomostpromising is where allthedevelopedFDDdesignswill WP4: ‘Industrialbenchmarkingassessment’:

+34(0)918063450 +34(0)918063451 FP7–AAT–2008–RTD–1 cer: [email protected] ibsFac A FR AirbusFranceSAS 36 months ADDSAFE 3662624 Mr. FrancescoLorubbio CP–FP Dr. AndrésMarcos 30.06.2012 01.07.2009 2608594 233815 SystemsandEquipment AdvancedFaultDiagnosisforSaferFlightGuidanceandControl Automatizálási Kutató Intézet Magyar Tudományos AkadémiaSzámítástechnikai és € € a HU Expected Results - the demonstrationofaunifi ed software improved FDDmethodsandsoftware tools - - defi nition ofasetguidelinesforaircraft ADDSAFE’s aimare: benefi ts thatwillbeachievedinpursuitof The three mainscientifi c andtechnological ing aircraft ‘greener’. reduction inaircraft accidentsaswellmak- 2020 Vision Theresults willhelpachievetheEuropean systems. and test-benchV&Vprocess fordiagnostic for aircraft G&CFDDsynthesisandanalysis. diagnosis. G&C model-basedfaultdetectionand safetychallengeofan80% 103 Ensuring Customer Satisfaction and Safety 104 Ensuring Customer Satisfaction and Safety - To- explore thepromising technologieslead- - To demonstratedataavailability inadverse objectives: aims toprovide afurtherstep viatwoparallel Based ontheNESLIEresults, DANIELA an improved confi guration. allows foradissymmetricsystem,resulting in introduction ofanewmeasurement principle probes: PitotandAOA/SSA.Furthermore, the the removal ofthemostexposedexternal in thenextairlinerprogrammes, enabling using athree-axis velocityisenvisioned improve performance.Animplementation nels, isseenasanappropriate solutionto TheuseofLiDAR,foronethethree chan- Objectives as expectedinallfl ight phases. make sure thatthenewsystemwillperform technology infuture airlinerprogrammes isto before implementingachangeofsensor systems. Therefore themainissue toaddress Air dataparametersare inputsforthefl ight enhanced reliability andanextendedlifetime. ment willavoidthesedrawbacksandfeature corrosion. Alaser-based anemometryinstru- mountedprobesthe externally are exposedto three channels)andrequire maintenanceas power consumption(typically4kWforthe Such systemsneedde-icing,leadingtohigh angle ofattackandaltitude. parameters duringfl ight suchasairspeed, probes andpressure sensorsanddelivers A typicalairdatasystemiscomposedof channel oncivilaircraft. Doppler LiDARfunctionasaprimaryairdata data system(ADS)builtaround athree-axis the operationaluseofafl ush-mounted air TheaimoftheDANIELAproject istoprepare StateoftheArt-Background InstrumEnt basedonLAser DemonstrationofANemometry DANIELA ing toafullOptical AirDataSystem. conditions; - LiDAR mock-uprealisation, fl ight-testing R&D onopticalwindowandrelated aircraft- - - Optimising signalprocessing specifi cation Studying theoccurrence andmicrophysical - - Development ofaself-suffi cient balanced - Integration ofthepassiveandactiveopti- The consortiumismadeupofskilledpart- The consortiummanagement. - The validationofopticaltemperature meas- - The developmentofaLiDARmock-upsuit- - The developmentofInfrared DopplerLiDAR - packages whichwillruninparallel: Theproject hasbeenorganisedintofourwork DescriptionofWork technologies, improved maintenance). availability androbustness (dissymmetric tional airdataprobes, willincrease system This system,asareplacement forconven- for thecertifi cation aspectsoftheLiDAR. rare. Thissecondobjectiveisveryimportant in areas where particlesare supposedtobe able overthefullfl ight envelope,particularly able andtoverifythatthesystemwillbeavail- frame ofNESLIEinorder tomakeitafford- laser-based anemometerdevelopedinthe The mainexpectedresult istoimprove the and records analysis; installation issues; and implementation; properties ofaerosol; heterodyne photo-detectordevice; size andcost; technologies inorder toreduce theweight, cal functionsthrough monolithicandhybrid NESLIE project. Themaintasksare: ners, andbenefi ts from theresults ofthe urement concepts; assessment; able forground andfl ight-test performance components; dyne detectorandglass-integratedoptical technology, focusedonasmarthetero- FR26027Valence Cedex 25,rueJulesVédrine and fl ight tests,inworst-casescenarios. demonstrator, itwillbeassessedbyground enhancement appliedtotheNESLIEmock-up based anemometrysystem.Basedonfurther tion ofaccuracyandavailabilityalaser- Themainexpectedresult isthedemonstra- ExpectedResults Management oftheconsortium. - AssessingUVandIRtemperature-measure- - Partners: ECOffi Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: lrdWngrIsiue(W) DE DE NL BE Alfred Weneger Institute(AWI) NationalAerospace Laboratory(NLR) EADSDeutschlandGmbH FR Cranfi Teem UK Xenics eld Photonics University ment concept; +33(0)4757980 45 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.danielaproject.eu hlsRsac ehooy(R) FR ThalesResearch Technology (TRT) 36 months DANIELA 6431583 Mr. DietrichKnoerzer CP–FP Mr. Jean-Pierre Schlotterbeck 30.04.2011 01.05.2008 4140000 212132 SystemsandEquipment DemonstrationofANemometryInstrumEntbasedonLAser € € - Technologies enablingadissymmetricalair LiDAR suffi- ciently ready tostartearly-stage Recording fl- ight-test results; Enhanced signalprocessing; - LiDAR windowinstallationsandcoatings; - - Self-suffi cient balancedheterodyne photo- - Integrated passiveandactiveoptical Other expectedresults are: system. the developmentofafullyopticalairdata temperature-measurement concept, enabling The secondresult istheavailabilityofoptical aircraft. development fornext-generationtransport the wayforLiDARanemometryfull-scale The developedtechnologieswillthenpave data system. certifiprocess; cation detector device; components; 105 Ensuring Customer Satisfaction and Safety 106 Ensuring Customer Satisfaction and Safety on aturbulentatmospheric area, provided on will bebasedoncomparingtheinformation range turbulencedetection.Thisvalidation date theconceptofLIDAR-based medium- The technicalobjectiveofDELICAT istovali- AWIATOR project. frame oftheFifthFrameworkProgramme against turbulencehasbeenvalidatedinthe Theshort-rangeconceptforprotection Objectives and economicalreasons. overall reliability andintegrityofthesystem) tional (medium-rangedetectionincreasing the into asingleLIDARsystem,forbothopera- a great interest inintegratingbothfunctions Detection AndRanging),andthere wouldbe based ontheUVLIDARtechnology(Light Both shortandmedium-rangeconceptsare Medium-range (10kmto30km)detection - Short-range (50mto300m)measurement - tection againstturbulencehazards include: shown thatoperationalconceptsforthepro- (FP5 AWIATOR, FP6FLYSAFE, etc.)have Studies conductedduringvariousprojects times fasterthantheincrease inairtraffi c. growing byafactorof5since1980,three number ofturbulenceaccidentshasbeen including state-of-the-artweatherradar. The equipment, detected byanyexistingairborne as ClearAirTurbulence (CAT), cannotbe of turbulenceaccidents,anddesignated whole classofturbulence,representing 40% fl ight crews innon-fatalairlineaccidents.A leading causeofinjuriestopassengersand Atmosphericturbulenceencountersare the StateoftheArt-Background Air Turbulence detection DEmonstrationofLIdar-based Clear DELICAT and crewmembers byfasteningseatbelts. of turbulence,andsecuringpassengers effect ofturbulence; on theaircraft fl ight controls tomitigatethe of airspeedaheadtheaircraft, andaction cost. ing) toachieveitsgoalatthelowestpossible ware (lasersubassemblies,testaircraft fair- DELICAT willtakeadvantageofexistinghard- Conclusionswillthenbedrawnonthecapa- - The dataobtainedfrom theLIDARandfrom - - During thefl ight tests,theatmosphere will A UVLIDARmock-upwillbedesignedand - lowing steps: range turbulencedetectionincludesthefol- ThevalidationoftheLIDAR-basedmedium- DescriptionofWork can estimatethat suchaUVLIDARtur- Based ontraffi c andaccidentstatistics,one tomer comfortandaviationsafety. bulence hazards. Thiswill increase bothcus- for aircraft protection againstClearAirTur- to thevalidationofanadvancedtechnology TheDELICAT project willdirectly contribute ExpectedResults speed, temperature, etc.). other bytheaircraft sensors(acceleration,air one handbytheremote UVLIDARandonthe concepts. defi ned, forbothshortandmedium-range preliminary equipmentarchitecture will be ing ClearAirTurbulence detection,anda bilities oftheLIDARtechnology, regard- evaluated. atmospheric area willbeassessedand experienced bytheaircraft foragiven backscattered signalsandtheturbulence The correspondence betweentheLIDAR off-line oncetheaircraft isontheground. the aircraft sensorswillthenbecompared by the be analysedremotely bytheUVLIDAR,and lent andnon-turbulentconditions. research aircraft, whichwillfl y inbothturbu- the ground, andtheninstalledonboard a manufactured, testedinalaboratoryon in situ aircraft onboard sensors. FR26027Valence Cedex 25rueJulesVédrines ThalesAvionics SA Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Tel: E-mail: Coordinator: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: f eNtoa ’tdse eRcece éoptae FR NL FR RO DE NationalInstituteofResearch andDevelopment forOptoelectronics Offi ce Nationald’ÉtudesetdeRecherches Aérospatiales StichtingNationaalLucht-enRuimtevaartlaboratorium UK DeutschesZentrumfürLuft-undRaumfahrt e.V. Météo-France Hovemere Ltd ASDushadGb DE EE EADSDeutschlandGmbH LaserDiagnosticInstrumentsAS PL Uniwersytet Warszawski phenomenon. the capabilitytoforecast suchhazardous Clear AirTurbulence phenomenon, and towards increasing theknowledgeabout The DELICAT project willalso contribute oped byDELICAT’s industrialpartners. per year, oncethissystem hasbeendevel- 40%) ofthenumberturbulenceaccidents dents in2005andwillreduce byupto20(or avoided between8and10turbulenceacci- bulence protection equipmentwouldhave +33(0)4757986 53 FP7–AAT–2008–RTD–1 cer: [email protected] eteNtoa el ehrh cetfiqe FR Centre NationaldelaRecherche Scientifi que 36 months DELICAT 5584791 Mr. DietrichKnoerzer CP–FP Mr. HervéBarny 31.03.2012 01.04.2009 3811000 233801 SystemsandEquipment DEmonstrationofLIdar-based ClearAirTurbulence detection fAmshrcPyisRS RU of AtmosphericPhysicsRAS Organization ofRussianAcademy Sciences A.M.ObukhovInstitute € € range concepts). bulence (bothforshort-rangeandmedium- their needsregarding protection againsttur- vide feedbackandalsotoupdaterefi ne progress ofDELICAT, theywillbeabletopro- will beinformedabouttheobjectivesand facturers, meteorological service providers) stakeholders(airlines,aircraft manu- external Through theEEAGandwebsite, ExpertsAdvisoryGroupan External (EEAG). by settingupawebsite,andgathering Dissemination ofDELICAT willbeensured 107 Ensuring Customer Satisfaction and Safety 108 Ensuring Customer Satisfaction and Safety

© Lidar Technologies Ltd requirements of theaerospace industry. also meetsthesafety, performanceandcost suitable forinstallationonaircraft, andwhich ance required todetectthehazard that is design andbuildasystemwiththeperform- a LASER,there isaconsiderablechallengeto wind shear. SinceLIDARrequires theuseof cal solutionfordetectingwakevorticesand ing) hasalready beenshowntooffer atechni- LIDAR technique(LIghtDetectionAndRang- funded withinEurope andtheUSA, therefore thefocus ofresearch programmes Wake vortexandwindsheardetection is from theresulting delays. affect theoperatingperformanceofairports separation timesbetweenaircraft whichcan due towakevorticesisimposemandatory ena, andthemainwayofreducing accidents options forprotection againstthesephenom- ing take-off orlanding.There are currently few tially resulting inacrashifencountered dur- disruption totheaircraft’s trajectory, poten- not bedetectedbysightandresult insudden gers andcrew ofallaircraft types.Theycan- causes ofaccidentsandinjuriestopassen- Wake vorticesandwindshearare potential StateoftheArt-Background Hazard Map incorporating anAtmospheric wake vortexdetectionsystem DemonstrationofLIDAR-based GREEN-WAKE and validateinnovativetechnologies that TheobjectiveofGreen-Wake istodevelop Objectives This willallowforacost-effective designofa ment oftheGreen-Wake project simulation. ling andsimulationresearch toallowdevelop- The fi rst istheextensionofexistingmodel- Green-Wake. There are four main innovationsinvolvedin DescriptionofWork system. to determinetheoverallperformanceof and implemented.Aprototype willbeused Doppler LIDARsystemwillthenbedeveloped new windshearandwakevorteximaging Based ontheoutcomesofmodellinga the opticalandhardware engineering. hazard phenomenaandthestateofartin ments oftheusers,meteorology ofthe well-developed understandingoftherequire- performance canbeachieved.Thisrequires a involved inorder tounderstandhowoptimum allows modellingthelargenumberofvariables Firstly, asimulationwillbedevelopedwhich to theaircrew. also tolookathowdataare tobepresented for integrationintoacommercial aircraft, but of theproject istodevelopasystemsuitable taken toreduce oravoidthehazard. Theaim in front ofanaircraft, allowingactiontobe and windshearphenomena50-100metres of detectingandmeasuringwakevortexes ing DopplerLIDARsystemthatiscapable Green-Wake willdevelopandtestanImag- tion timesbetweentrailingaircraft. providing asafemeanstodecrease separa- improve theoperatingeffi ciency ofairportsby improve passengersafetyandcomfort, will detectthehazards inatimelymannerto © Deutsches Zentrum für Luft- und Raumfahrt, 2009 tial hazards mosteffectively totheaircrew. ofpoten- The objectiveistodeliverwarnings tures localtotheaircraft willberesearched. wake vortexdataintoanoverallmapoffea- Finally, theintegrationof windshearand for theaircrew. and providing informationinasuitableformat investigated foranalysingthedatagenerated handling required, andthetechniqueswillbe which willpermitthedegree ofreal-time data tor willbedevelopedaspartoftheproject fast andaccurateprocessing. Anewdetec- a largevolumeinfront oftheaircraft requires The third isinthedatacollection.Scanning detection ofthehazard. at suffi cient densitytoallowfortheeffective which mustbescannedanddatagathered volume ofairspaceinfront oftheaircraft tem. Thisisarequirement duetothelarge The secondinnovationisafastscanningsys- involved. despite theenormousnumberofvariables system whichisoptimisedfortheapplication, Sensor andcontrol systemconceptV02 dissemination plan. disseminated inaccordance withtheproject in aseriesofwrittendeliverables,andwillbe outcomes oftheproject willbedocumented built andevaluatedwithintheproject. The and thesystemitselfwhichwillbedesigned, optimisation ofthesystemwhichistobebuilt, simulator whichwillallowtheinvestigationand The mainproducts from theproject are the the world. envisaged iscurrently availableanywhere in driver. Noproduct ofthetypeandcapability mercial potentialoftheproject isamajor high proportion ofSMEsforwhomthecom- The consortiumiscomposedofarelatively environmental goalsfor2020. being heldup.ThiscontributestotheACARE and reducing fuelconsumptionfrom aircraft landings, increasing travellerconvenience reduce unnecessarydelaysintake-off and the safetyofcitizenstravellingbyairbutalso gested airports.Thiswillnotonlyenhance permit more effective useofrunways atcon- safety ofaircraft passengersandcrew, and a commercial product whichwillenhancethe tem whichcanultimatelybedevelopedinto The aimoftheproject istoproduce asys- which isalsosuitableforinstallationinaircraft. detecting wakevorticesandwindshear, but Doppler LIDARsystemwhichiscapableof extending itinorder todevelopanimaging vious FrameworkProgramme projects and Thisproject isbuildingonresearch from pre- ExpectedResults 109 Ensuring Customer Satisfaction and Safety 110 Ensuring Customer Satisfaction and Safety Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: UKTN145HDSevenoaks ArticHouse Ryelane LidarTechnologies Ltd Dunton Green uaSsesLd GB FR PT BG NL BE CZ SulaSystemsLtd IE BG DE PhotonicScienceLtd ActiveSpaceTechnologies SimSoftware VZLU-VýzkumnýaZkušebníLeteckýÚstav, A.S. DLR-DeutschesZentrumfürLuft-undRaumfahrte.V. SensL Technical UniversitySofi a UniversiteCatholiqueLouvain ADSE Ltd Ltd +44(0)1732469696 +44(0)1732469695 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.greenwake.org ASDusln mH DE EADSDeutshland GmbH 36 months GREEN-WAKE 3128373 Mr. JoséM.MartinHernandez CP–FP Dr. LesleyHanna 31.10.2011 01.11.2008 2206286 213254 SystemsandEquipment

an AtmosphericHazard Map Demonstration ofLIDAR-basedwakevortexdetectionsystemincorporating € € © Memscap AS Pressure transducer withmanifoldforFADEC, airdataandcabin pressure controller long-term stability. altitude pressure transducerswiththebest trol (ATC) solutions,aswelltomanufacture lead inaltimetryandautomaticairtraffi c con- avionic systemindustrytoregain themarket A keyHISVESTA targetisfortheEuropean improvement. strate theeffectiveness oftheperformance testing performedintheproject willdemon- ers, airdatacomputersandmeteorological ties foraltitudeaccuracy. Altitudetransduc- will provide signifi cantly improved capabili- fi xed-wing andhelicopterapplications,which barometric altimetrymodules,suitablefor project willdevelopanewgenerationof gramme Six(www.sintef.no/hastac). The HASTAC project intheECFramework Pro- opment challengesafterthesuccessful remaining research andtechnologicaldevel- HISVESTA isthenextstepinsolving StateoftheArt-Background Altimeter Instruments HighStabilityVertical Separation HISVESTA more accurateandeffective. the automatedavoidanceinstructionstobe reliable altitudeinformation,whichwillallow tems willalsobenefi t from more accurateand tems. Aircraft Traffi c CollisionAvoidance Sys- manual andautomatedairtraffi c control sys- increased reliability inaltitudeinformation for the project willcontributetosignifi cantly Used inenhancedtransponderapplications, ations suchasdarknessandlowvisibility. as wellindemandingmanualfl ying situ- tion minimalegislationof1000ft(RVSM), in situationsthereduced verticalsepara- aircraft. Theproject isparticularlyrelevant data computersandautopilotsystemsfor barometric altimetrytransducersusedinair particularly inlowvisibility, byimproving the increase thesafetyinallin-fl ight situations, Thestrategicobjectiveoftheproject isto Objectives 111 Ensuring Customer Satisfaction and Safety 112 Ensuring Customer Satisfaction and Safety

© Memscap AS mined bymodellinganddetailedstatisti- root causesforlong-termdriftwillbedeter- calibration intervalsoftheentire system.The accuracy byafactor2andwillallowlonger is <0.01%FS/year, whichwillincrease altitude The altimetrytransducerlong-termdriftgoal ness oftheperformanceimprovement. in theproject willdemonstratetheeffective- lab testingandflight datacollectionperformed available. Comprehensive modelling,analysis, sure reading accuracyoverthose currently signifi cant improvement inaltitudeandpres- helicopter applications,whichwillprovide a altimetry modules,suitableforfi xed wingand The project willdevelopnewgenerationsof algorithms. and FPGAsforcompensationwarning and newconceptsusingmicrocontrollers be donebasedonnewtechnologyinMEMS in real timewithaveryhighaccuracy. Thiswill that monitorstheaircraft barometric altitude the-art highprecision altimetrysensorsystem Themainconceptistocreate anewstate-of- DescriptionofWork towards reducing CO Another project objectiveistocontribute Pressure transducers inMEMStechnology FADECS. rate pressure measurements inmultistage (MEMS) pressure sensors,designedforaccu- temperature micro-machined silicon structure VESTA project willdeveloparange ofhigh Engine Control systems(FADECS). TheHIS- control systemintheFullAuthorityDigital ing accuracyinthemultifunctionalpressure the nextgenerationaero engines,byimprov- 2 andNO x emissionsin - Techniques enablingthedevelopmentof - Onboard technologiesforin-fl ight collision - Technologies toenableafullandperma- Instrumentsandairdatacomputersystems; - - Unique hardware/software compensation - Barometric MEMSsensortechnologyin vation dueto: and technicalexcellencelong-terminno- motion ofreal progress, basedonscientifi c HISVESTA’s goalswillcontributetothepro- ExpectedResults accuracy andrepeatability. transducers optimisedforsuperbstability, result isanewrangeofbarometric pressure package, electronics andsoftware. Thefi nal ment, fabricationprocesses, pressure sensor careful co-designoftheMEMSsensorele- effects ofthesecauseswillbeminimisedby cal characterisationandanalysis.Resulting improved aviationsafetymetrics. avoidance concepts; weathers; nent automaticapproach andlandinginall techniques; silicon; NO7465Trondheim Strindveien Stiftelsen Sintef Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: eaiaIgnaSRL RO UK CeramicaIngenuaS.R.L. Curtiss-Wright Controls (UK)Ltd RO Microelectronica SA +47(0)22067546 +47(0)22067350 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.sintef.no/hisvesta MmcpA NO Memscap AS 30 months HISVESTA 3158333 Mr. Hans JosefvondenDriesch CP–FP Mr. AusenDag 30.06.2011 01.01.2009 2208250 213729 SystemsandEquipment HighStabilityVertical SeparationAltimeterInstruments € € 113 Ensuring Customer Satisfaction and Safety 114 Ensuring Customer Satisfaction and Safety - ice thickness. ice presence, andatalaterstage - the onset oficing, - be capableofdetecting: and offering real-time control. Thesensorwill system mountedintoacomposite structure that isfullyintegratedintoanice-protection develop anddemonstratesensortechnology the ultimateobjectiveofprogramme isto fi xed-point opticalice-detectorsensorwhilst Theinitialobjectiveistoproduce arobust Objectives engine inletapplications. for fi xed-wing, helicopterrotor bladeand composite electro-thermal de-icingsystem project willdevelopasmart,autonomous, widely usedinhelicopters,theON-WINGS on electro-thermal de-icingtechnologynow located withthesafetycriticalzones.Building distinguish betweenicetypesandare notco- current icedetectorsare insensitive, cannot als willbeusedextensively. Furthermore, of airtransport,inwhichcompositemateri- gies are incompatiblewithfuture generations sure toshedtheicelayers.Thesetechnolo- pneumatic ‘boots’whichexpandunderpres- surfaces, whilesmalleraircraft sometimesuse the enginestoremove icefrom fl ight-critical Large aircraft usehotgasesdivertedfrom much longerinlow-altitudeholdingpatterns. sures onairportsmeanthataircraft willspend problem thatwillintensifyasincreased pres- accidents andloss-of-control events,andisa phenomenon hascausedanumberoffatal handling characteristicsoftheaircraft. This cally altertheliftofaerofoil andhencethe ice disturbsthelocalairfl ow andcanradi- foils andotherstructures. Thegrowth ofthe both onandbehindtheleadingedgeofaero- cially atlowaltitudes,icecanformrapidly, Whenanaircraft fl ies incold, moistair, espe- StateoftheArt-Background and MonitorinGSystem ON-WingIceDetectioN ON-WINGS data acquisitionsystemwillbedeveloped ice andusedinfi xed-wing aircraft. Ageneric calibrated todetectthepresence ofrunback uted icesensorwillalsobedeveloped and used asanengineinleticesensor. Adistrib- calibrated tomeasure theonsetoficingand ice type.Thiswillbefurtherdeveloped and ice roughness todeterminethecriticalityof accretion rateoficeinreal time,aswell calibrated tomeasure theicethicknessand wing-slat ofanaircraft, willbedevelopedand ble ofbeingadaptedandmultiplexedinthe technology, basedonopticalmethodscapa- Agenericair-conformal direct ice-detection DescriptionofWork electro-thermal ice-protection system. impacts thatmayleadtode-laminationofan also beinvestigatedwiththeaimofdetecting A ‘threshold’ impactdetectionmethodwill the heatingzonesusingfi bre optics. particular distributedtemperature sensingof Another focusisonhealthmonitoring,andin - specify, designanddevelopaquasi-dis- - use thepointicesensortoinvestigate As partoftheadvancedconcepts: control electronics. system, eachwithitsdedicatedsensorand ing conceptswilldevelopamulti-zone-based A secondworkpackageofadvancedsens- with compositeelectro-thermal zoneheaters. grated inarepresentative wing-slat,along using dedicatedalgorithms,andwillbeinte- The sensingsystemwillbemade‘smart’by points. ing thepresence oficeatamultitude electro-thermal heatingcapableofdetect- be integratedinthewing-slatcouponwith tributed fi bre-optic icesensorwhichwill roughness; parameters fordetectingicethicknessand industry. aviation andmore generally tothetransport The technologywillbedisseminated to case-specificertifi c cations. concept validated,thuspavingthewayto ufactured tofl ight standards andproof of A prototype parasitic‘coupon’willbeman- system inanicingtunnel. and evaluatedwiththeintegratedde-icing The prototypes willbemanufactured, tested heaters. developed andintegratedinthecomposite ing andinterrogation electronics willalsobe lers. Genericdistributedtemperature sens- heater withtheicesensorsandcontrol- a genericcomposite-zonedelectro-thermal will beachievedbydevelopingandintegrating ‘Smart’ compositeelectro-thermal heaters interrogate theicesensorsdescribedabove. with suitablealgorithmsthatwillbeableto critical aerospace applications. detecting theicethicknessandroughness for system willbedemonstrated,capable of A completesmartairconformalice-detection - novel conceptsbasedonsophisticated - air conformalopticalicedetectorsused - a ‘smart’electro-thermal de-icingsystem - a primary‘on-wing’icedetectorused to fi rst time,thefollowing: Theresulting systemwillincorporate,forthe Expected Results ice distributedoverlargeareas. fi bre-optic methodscapableofmeasuring system; for primaryactivationoftheice-protection system; distributive temperature/health monitoring integral aero-conformal icedetectionand of electro-thermal heaterelementsandan to demonstratetheinteractionandcontrol activate theice-protection system; 115 Ensuring Customer Satisfaction and Safety 116 Ensuring Customer Satisfaction and Safety Partners: ECOffi Fax: Tel: E-mail: Coordinator: Technical domain: Duration: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: UKLU29PQLuton LondonLutonAirport GKN Aerospace esrHgwyLmtd UK UK UK DE DE PL GR SensorHighwayLimited GEAviation SystemsLtd SprzetuKomunikacyjnego ‘PZL-Swidnik’S.A. Wytwornia Eurocopter DeutschlandGmbH TWTGmbHScienceandInnovation AOSTechnology Ltd NationalandKapodestrianUniversityofAthens +44(0)1582811039 +44(0)1582811153 FP7–AAT–2008–RTD–1 cer: [email protected] nvriyo onia GR UniversityofIoannina 36 months ON-WINGS 3982356 Mr. Eric Lecomte CP–FP Mr. DavidArmstrong 2503056 233838 SystemsandEquipment ON-Wing IceDetectioNandMonitorinGSystem ON-Wing € € - full timeavailability–which impactsboth reduced leadtimeforentryintoservice; - - reduced operatingcostsfortheairlines, ahigherrateofnewaircraft programmes will - IMA capability: a furthersignifi cant stepbeyondthecurrent tation ofIMA1G,forcing theindustrytotake drivers haveemergedsincetheimplemen- ever, additionalsocio-economic andmarket away from thefederatedarchitectures. How- Avionics (IMA1G)hasbeenasuccessfulstep The fi rst generationofIntegratedModular modules. boxes’ withfewer, common processing the numerous separateanddissimilar‘black onics (IMA)concept.Thisconceptreplaces totheIntegratedModularAvi-then turned and technologies.Theaerospace community number of‘blackboxes’dissimilarsizes An aircraft ofthe1980scontainedalarge size andcomplexity. increased, thefederatedarchitecture grew in of functionsbeingtransferred toavionics ment anyaircraft function.Asthenumber bespoke hardware andsoftware toimple- on federatedarchitecture, useddedicated Earlyavionicssolutions,whichwere based StateoftheArt-Background Electronics plaTformsandTools SCAlableandReconfi SCARLETT scope ofitems,from architecture, hardware, researched by SCARLETTcoverabroad uted ModularElectronics (DME)concept ThekeyinnovationsoftheIMA2G Distrib- Objectives 100%. craft operationalavailabilityisnowreaching comfort topassengers.Therequired air- the operatingcostsofairlinesand costs, weightandvolumeoftheavionics; fares. impliesareduction of Thisinturn and aconsequentreduction inpassengers’ be launchedwithincreasing frequency; avionicssolutionsproviding thehighestlevel - new decentralisedhealthmonitoringtopro- - common processes, methodsandtoolsets, - a newdesignmethodologythatreadily sup- - - the introduction ofmiddleware services - a decentralisedanddistributedavionics and processes. Theyare: software (includingmiddleware), uptotools - the ‘HighPerformancesDataDistribution’ onstration platformsare: components, are foreseen. Thesefourdem- DME solutions,allbuiltwiththesame typesof Four different capabilitydemonstratorsforthe integration, verifi cation, testandvalidation. fi cations, leadingtodevelopment,then ments, followedbythedefi nition ofspeci- starting from theconsolidationofrequire- Theconsortiumhasadoptedanapproach DescriptionofWork patch rate. required whilemaintainingthehighestdis- minimise thenumberofspare resources bilities tosupportfaulttolerance.Thiswill of availability, withreconfi guration capa- vide 100%detectionofelectronics failure; effectiveness; cycle andimprove thedevelopment’s tion supplierstoreduce thedevelopment enabling systemintegratorsandapplica- ing tomarketneeds; enabling adaptationsandupgradesaccord- ports theevolutionofonboard electronics, tion andalleviateddevelopmenteffort; ing resources, enablingsmarterconfi gura- higher levelofabstractionfrom theunderly- in order toprovide theapplicationswitha that cansupportallaircraft functions; communications andapplicationinterfaces (I/O) functions,standardised hardware, application processing andinput/output craft, usingseparatescalablemodulesfor architecture aimedatthefullydigitisedair- demonstrator, addressing high data fl ow gurabLe 117 Ensuring Customer Satisfaction and Safety 118 Ensuring Customer Satisfaction and Safety - the defi nition ofplatformservices(orIMA- thesmoothuseofsetIMA dedicated/ - an innovativeapproach intermsof: These fourdemonstratorsare supportedby - the ‘Reconfi guration andMaintenance’ - Critical’demonstrator,the ‘Time dem- - the ‘I/OIntensive’demonstrator, dem- Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Fax: Tel: E-mail: FR31036Toulouse 105avenueduGénéralEisenhower BP Thales 63647 Avionics development environment. tion supplierswithabetter/fastersoftware dedicated middleware) toprovide func- service; reduced leadtimetotheaircraft’s entryinto module-independent toolchain,toensure a required tools,thuscreating anoverall tion capabilities. demonstrator addressing thereconfi gura- skid braking; constraint –typicallyfl ight controls oranti- safety-critical applicationwithhard real-time onstrating theDMEconceptforahighly detection orventilationcontrol; intensive application–typicallyfi re/smoke onstrating theDMEconceptforanI/O applications; performances –typicallyforcockpitdisplay +33(0)5611976 74 +33(0)5611977 50 FP7-AAT-2007-RTD-1 [email protected] http://www.scarlettproject.eu 36 months SCARLETT 40077634 CP–IP Ms.Marie-Lucie Larrieu 30.04.2011 01.05.2008 22999657 211439 SystemsandEquipment SCAlableandReconfi gurabLe Electronics plaTformsandTools € € avionics. concepts ofreconfi guration solutionsincivil SCARLETT alsointendstodemonstratethe the tool chainthatsetsthesoundfounda- - - the fourdifferent capabilitydemonstrators aset ofhardware andsoftware components - Themajordeliverablesoftheproject are: ExpectedResults activities inanIMA2G-basedsolution. will coveralltheembeddedavionicsactors’ ency andproductivity enhancement,which tions forbothdatamanagementconsist- IMA 2G; with solutionsenvisagedintheframeof each targetingfunctionaldomaincancope DME buildingblockssoastoverifythat presented above,allbasedonthesame basic buildingblocks; representative ofthefuture IMA2Gplatform Partners: ECOffi paaea atn mH DE UK IL ApparatebauGautingGmbH FR UniversityofNottingham Yamar Electronics Ltd Thales SA NS pl .. CZ AT DE FR FR PolitechnikaRzeszowskaim.Ignacego Technische UniversitätHamburg-Harburg UNIS,Spol.SR.O. PT TTtechComputertechnikAG DE UK ThalesAvionics ElectricalSystemsSA CH PT GR FR IT SkysoftPortugal-Software eTecnologias deInformaçãoSA Universität HU SagemDéfenseSécurité NL SE FR DE UK Offi ce Nationald’ÉtudesetdeRecherche Aérospatiales Syderal RU DE Bremen IT StichtingNationaalLucht-enRuimtevaartlaboratorium Naturen IndustrialInformaticsandTrading Ltd UK Saab UK QinetiQ DE InstitutodeSoldaduraeQualidade SA HellenicAerospace IndustrySA FR SYSGO FR UniversityofBristol DE StateResearch InstituteofAviation Systems AB GalileoAvionica S.p.A. Messier-Bugatti Ltd EADSDeutschlandGmbH DassaultAviation SA AG BE AleniaAeronautica S.p.A. SA FR NL GEAviation SystemsLtd DiehlAerospace GmbH Barco AirbusUKLtd ARION AirbusDeutschlandGmbH AIirbusFranceSAS AcQ NV Entreprise Inducom cer: ATI FR ARTTIC Mr. HansJosefvondenDriesch EEE ..-Tlcmuiain n nomto ehooy GR TELETEL S.A.-Telecommunications andInformation Technology. Ł kseiz R PL ukasiewicza PRZ 119 Ensuring Customer Satisfaction and Safety 120 Ensuring Customer Satisfaction and Safety Objectives input dataconfi guration control. acquisition andmaintenanceoverheads, user’s presence, pick/graspquality, training, ance totaskexecutionchanges,immersed of imagequalityduringuserinteraction,toler- ism ofrendered virtualenvironment, trade-off ments withrespect tocriteriasuchasthereal- aircraft-related virtualproducts andenviron- cation level,byimproving theperformanceof state oftheart,atbothtechnologyandappli- VR software asa‘baseline’.Itwilladvancethe functionality provided bycurrent worldclass the worldwideacademicknowledgeand standard workpractices.VISIONwilluse ties, atleastincomparisonwithahuman’s do notadequatelymatchhumancapabili- devices forinteractingwithdigitalmock-ups realism ofthevirtualenvironments. Moreover, work practice.Thiseffect isduetothelackof reject theimmersionintosimulationasa like anunrecognisable ambient,andsothey they oftenfeelthefullsyntheticenvironment are immersedintothevirtualenvironment, users ofanaircraft-related virtual product life-cycle usage.However, whenpotential used asameansforassessingtheaircraft’s of man-in-the-loopsimulationtaskshasbeen activities. Inaircraft design,effi cient execution in order tosimulatecostandtime-intensive features are widelyusedinengineering tasks reality Virtual (VR) immersionandinteraction StateoftheArt-Background ProductsRelated Virtual Activities inInteractiveAircraft- for Life-CycleHuman-Oriented ImmersiveInterfaceTechnologies VISION immersive visualisationandii)interaction. ity technology, namelyini)photorealistic ofvirtualreal- in fundamentalcornerstones specify anddevelopkeyinterface features ThetechnologicalobjectiveofVISION isto virtual products willbeanalysed,thenthetwo machine interactionwithintheaircraft-related requirements and theirimplicationsinhuman- will bedefi ned. InWP2,thehuman-centred interaction), specifi c technologyrequirements the basicVISIONmodules(visualisation, space oftheproject solutions. Foreachof uct requirements willprovide theapplication In WP1,thespecifi cation ofthevirtualprod- (WP). Theproject includeseightworkpackages DescriptionofWork as thesafetyperformanceoftheseproducts. fl exible, reliable andcost effi cient way, aswell address thedevelopmentphaseinamore and situationaltraining.Thustheywillhelp cations ofequipmentdisplays,operational verifi cation, ergonomicvalidation,specifi increased useforactivities,suchasdesign - text ofthesevirtualproducts byenablingtheir developed willenhancetheengineeringcon- The immersiveinterfacetechnologiestobe virtual products alongtheproduct lifecycle. functionality andusageofaircraft-related immersive VR,improving thehuman-oriented is todrivespecifi c technologicaladvancesin The application-orientedobjectiveofVISION tion inthespecifi c domain. optimise thehuman-virtualproduct integra- ital human-in-the-loopVRsimulationsand of VISIONwillenhancetherealism ofthedig- cabin, etc.).Thetechnologicalachievements critical aircraft virtualproducts (e.g. virtual (design, validation,andtraining)related to of thehuman-orientedlife-cycleprocedures better accommodatingthespecifi c needs drawbacks oftheunderlyingtechnology, thus In particular, itaimsatremoving thecurrent respectively. and themanagementofproject activities, WP8 are fortheexploitation/dissemination improvement onsystemevaluation.WP7and The demonstrationwillgiveinputtofurther strated basedonreal-life industrialscenarios. WP6, theintegratedplatformwillbedemon- mon multi-modalinterfaceplatform(WP5).In modules willbenextintegratedintoacom- vidual visualisationandinteractionsimulation along withinteractionmetaphors.Theindi- tracking andnewmethodsforuserinterfacing hardware/concepts formarkerlessbody Development workwilladdress advanced ronment. WP4istheInteractionModule. real-time constraintsoftheimmersiveenvi- human towards lightilluminationandthe features consideringtheperception ofthe ment workwilladdress advancedrendering Module.Develop- WP3 istheVisualisation major simulationmoduleswillbedeveloped. VISION expectedachievements the designand‘virtualprototyping’ ofcritical based simulationfunctionalityinsupportof VISIONaimstodevelopadvancedVR- ExpectedResults the improvement ofaircraft safety. ment costsandtimetomarket,aswellon impact onthereduction ofaircraft develop- the project isexpectedtohaveasignifi cant trial scenarios.Thetechnologicaloutputof cases, whichwillbebasedonreal-life indus- involving aircraft-related virtual-product-use deliver asetofapplicationdemonstrators operative designactivities.VISIONwillfi nally these toolsbyremotely locatedusersforco- and willfurtherenablethecollaborativeuseof with cost-effi cient testingtoolsandmethods, features. Theplatformwillprovide engineers will seamlesslyintegratethenovelsimulation mon multi-modalinterfaceplatform,which practices. Theproject willalsodeliveracom- and theirintegrationintheeverydaybusiness the newmethodologiesbyusergroups, is expectedtofacilitatethe‘acceptance’of tive onthedesignofvirtualreality interfaces their lifecycle.Thehumanfactorperspec- and usageofthesevirtualproducts along improve thehuman-orientedfunctionality sive visualisationandinteraction,soasto of theVRtechnology, suchastheimmer- cifi c advancesinfundamentalcornerstones aircraft-related products. Itwilldeliverspe- 121 Ensuring Customer Satisfaction and Safety 122 Ensuring Customer Satisfaction and Safety Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: GR26500Patras UniversityCampus-PanepistimioupolisRion UniversityofPatras inaUiest fTcnlg AT DE FI FR UniversityofTechnology Vienna VTTTechnical Research Centre ofFinland UniversitätdesSaarlandes EADSFrance(InnovationWorks department) +30(0)2610997262 +30(0)2610997744 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.project-vision.eu/ ASDushadGb DE EADSDeutschlandGmbH 30 months VISION 2197252 Mr. Hans JosefvondenDriesch CP–FP Dr. DimitrisMavrikios 30.04.2011 01.11.2008 1485714 211567 SystemsandEquipment

Interactive Aircraft-Related Products Virtual Immersive InterfaceTechnologies forLife-CycleHuman-OrientedActivitiesin € € limited. air purifi cation systemsavailable for aircraft is fully investigated.Furthermore thenumberof levels onthehumanbodyhasnotyetbeen discomfort buttheimpactoflowhumidity 15% relative humidity)mayleadtopassenger experienced onground. Drycabinair(about Cabin airisgenerallydryerthannormally ture asymmetry. equipped toachieveadesirablylowtempera- surfaces are neitherthermallycontrolled nor comfort ofpassengers.Currently thesecabin seat, liningandfl oor infl uence thethermal optimum case.Cabinsurfacessuchasthe dissatisfi ed occupantsbyupto10%inthe trols isexpectedtolowerthepercentage of far. Theprovision ofsuchpersonalisedcon- for eachpassengerhasnotbeenrealised so An individualcabinairtemperature control temperature. all ofthemare exposedtoaboutthesame zone covers10to100passengersandthus heat loadwithinthedifferent zones. Asingle eral temperature zones,dependentonthe system withthecabinseparatedintosev- trolled ‘globally’bytheenvironmental control Currently thecabinairtemperature iscon- personal serviceunits. individual airoutletsintheoptionaloverhead ised toprovide personalisedcontrol, suchas cargo. Onlyafewcomponentsare custom- ments, suchascabinareas, fl ight deckor rent aircraft isdesignedmainlyoncompart- Thetraditionalairconditioningsystemofcur- StateoftheArt-Background Aircraft CabinEnvironment innovativeSystemsforPersonalised iSPACE the supplierindustrywithknowledge and fl ight byproviding aircraft manufacturers and a stepchangeinpassengercomfort during TheprimaryobjectiveofiSPACE istoprovide Objectives cabin pressure). most realistic testenvironment (includinglow by simulationaswellhardware modelsina developed andtheirproof ofprincipleshown Therefore conceptsandtechnologieswillbe being bycontrolling theindividual’s climate. temperature, humidity, ventilationandwell- ment andpassengercomfortwithregard to gaps toachieveanenhancedcabinenviron- project intendstocloseexistingtechnological ation andcontrol oftheindividualclimate.The will bedevelopedforarevolution ofthegener- of cabinoccupants.Conceptsandsystems iSPACE willfocusonthepersonalenvironment - provide simulationtoolsforindividualised - develop andprove emergingstep-change develop conceptsforanindividualpassen- - and technologicalobjectives: This willbeachievedbythefollowingscientifi c alisation ofapassenger’s cabinenvironment. innovations neededtoaddress theindividu- 2. Selectionofsuitabletechnologies forfur- 1. Compilationofcurrent knowledgeandspe- cal solutionstoanewandinnovativelevel: rent knowledgeanddemandsfortechnologi- technical workpackageswhichraisethecur- TheworkwithiniSPACE isallocatedtofi ve DescriptionofWork aircraft. dations forexistingandfuture commercial cabin environments andgiverecommen- cabin environments; technologies forindividualisedpassenger feasibility; ger cabinenvironment andprove itsgeneral to testandevaluate thenewconceptsfor development ofatestdesigntobe able study andasimulativeparameter study; ther development,basedonafeasibility aircraft andfortheirsimulation. cifi c requirements fortechnologiesusedin 123 Ensuring Customer Satisfaction and Safety 124 Ensuring Customer Satisfaction and Safety 5. Disseminationandexploitationofresults 4. Testing andanalysis oftheselectedtech- 3. Developmentoftheselectedtechnologies Personal environment ofasingleoccupant(topandfront viewatseatlevel) market requirements anddemands. tions toguaranteeconsiderationofthe and technologicalsolutions;implementa- senting thenewconcepts. simulated environments capableofrepre- nologies; optimisationandvalidationof test bed. at seatlevelandtheirintegrationintothe Flight Test Facility. and subjects’responses intheFraunhofer tion basedonobjectivemeasurements personal climatecontrol andtheirsimula- Aisle orA/CWall Left Neighbour, Top View Front Seat Back Seat Seat Aisle orA/CWall Right Neighbour, - developing andevaluating technologiesfor - developing validatedsimulationtoolsforthe - - proving theindividualisationofpassen- - developing conceptsforindividualclimate gaining knowledge aboutindividualpassen- - by: the stateofartinscienceand iSPACE provides major innovations beyond ExpectedResults individualised passengercabinclimates. design ofindividualisedcabinenvironments; environment; ger cabinclimatesinarealistic fl ight control andcomfort; human perception; ger cabinenvironments andtheirimpacton

Left Neighbour, Aisle or A/C Wall Seat Ceiling Floor

technology Right Neighbour, Aisle or A/C Wall Front View © iSPACE Consortium (2008) DE80686Munich Fraunhofer-Gesellschaft zurFörderung derangewandtenForschunge.V. Hansastrasse Coordinator: Website: Technical domain: Duration: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: alErp t UK DE AT UK DE CZ UK Streit-TGA GmbH&Co.KG DE PallEurope Ltd MedicalUniversityofVienna IconComputerGraphicsLtd EADSDeutschlandGmbH ContourPremium Aircraft Seating SeaTex UniversityofTechnology Brno AG +49(0)8024643218 +49(0)8024643366 FP7–AAT–2008–RTD–1 cer: [email protected] http://www.ispace-project.eu ibsDushadGb DE AirbusDeutschlandGmbH 36 months iSPACE 3714550 Mr. HansJosefvondenDriesch CP–FP Dr. HolmAndreas Hagen 2675962 234340 SystemsandEquipment innovativeSystemsforPersonalisedAircraft CabinEnvironment € € 125 Ensuring Customer Satisfaction and Safety 126 Ensuring Customer Satisfaction and Safety environments. of systemsoperatingincomplex cockpit and practicalforhuman-centred design tion ofhumanerrors inways thatare usable prototypical toolssupporting thepredic- develop amethodologywithtechniques and TheobjectiveoftheHUMANproject isto Objectives stage (inthedesign)andwithreduced effort. detection ofpotentialpiloterrors atanearlier are neededthatallowforthemore accurate solutions forimproved human-centred design the aircraft itselfanditssystems,innovative Therefore, inorder toenhancethesafetyof lar aircraft andsimulator-based experiments). judgement, operationalfeedbackfrom simi- and time-consuming(basedonengineering tems isprone toerrors aswellbeingcostly ever, thecurrent approach ofanalysingsys- design andcertifi cation ofthecockpit.How- important analysistoaccomplishduringthe craft industryandisnowconsidered tobean human errors hasbeendevelopedintheair- involve fl ight crew errors. Theexaminationof information reports that55%ofaccidents Worldwide commercial jetfl eet statistical a weekiftherateisnotdrasticallyreduced. leads expertstoexpectoneseriousaccident increase intraffi c densityisanticipated,which air transport.Forthefuture, anevenstronger outweigh thedramaticincrease oftheoverall because thesafetyimprovements couldnot and fouraccidentspermilliondepartures, almost thesame,varyingbetweenthree However, theaccident rate hasremained cal improvements andnewtrainingconcepts. enhanced duringthelastdecadesbytechni- Thesafetyofaircraft hasbeensignifi cantly StateoftheArt-Background System Design Errors DuringAircraft Cockpit Model-BasedAnalysisofHuman HUMAN - simulation platform:todevelopa Virtual - Cognitive modelling:todevelopaninte- complementary research dimensions: HUMAN willproduce keyinnovationsonthree Themainresearch anddevelopmentworkin DescriptionofWork with cockpitsystems. ling approach totheinteractionoffl ight crews later stage.HUMANwillextendthemodel- reducing theamountoftestingrequired ata of detectingpotentialproblems earlierand airliner,modern fortheverysameobjective of thestudy, designand manufacture ofa are already wellestablishedformanyaspects ble. Modelandsimulation-basedapproaches design changesare stillfeasibleandafforda- pilots inearlydevelopmentalstageswhen can beusedasapartial‘substitute’forhuman including erroneous actions.Inthiswaythey situations andtheresulting choiceofactions, cognitive processes liketheassessmentof tems undervariousconditions,andtopredict simulate theinteractionwithcockpitsys- errors becausetheyoffer theopportunity to to automatepartsoftheanalysishuman an executableform.Theyhavethepotential limitations readily availabletodesignersin about characteristichumancapabilitiesand tive modelsare ameanstomakeknowledge cognitive modelofcrew behaviour. Cogni- achieved bydevelopingandvalidatinga The prediction ofhumanerrors willbe dependencies between thepilots,atarget istic fl ight scenariosinorder toanalysethe execute thecognitivecrew modelinreal- high-fi delity virtualsimulation platformto airmanship). ard operatingprocedure andrulesofgood deviations from normativeactivities(stand- dict humanerror categorieswithregard to grated cognitivecrew modelabletopre- - An innovativemeansenablingtheconsid- TheoutputoftheHUMANproject willbe: ExpectedResults (on thephysicalplatform). the virtualplatform)andactualcrew activities and comparingpredicted crew activities(on validating thecognitivemodelbyproducing equivalence isafundamentalprecondition for equivalence betweenthetwoplatforms.This for bothinorder toensure thefunctional cal platformistousethesamecore system The generalideaofthevirtualandphysi- - Physical simulationplatform:tothoroughly Physical andvirtualsimulationplatformssharingthesamecore system design ofcockpitsystems,includingacog- erable improvement ofthehuman-centred platform. model generatedonthevirtualsimulation improving thepredictions ofthe cognitive normative activities,andforvalidation tive processes leadingtodeviationsfrom a detailedknowledgebaseaboutcogni- and cognitivedataasabasisforbuilding simulation platformtoproduce behavioural investigate pilotbehaviouronaphysical environment. system inthecockpit,aircraft andits tests foractiveandpassivesafetymeasures. and byreducing theeffort offl ight simulator effort ofactiveandpassivesafetymeasures, ery from humanerror byreducing thedesign improvement intheeliminationofandrecov- to theobjectiveofachievingasubstantial error prediction. Furthermore, itwillcontribute dent ratebyenhancingtheaccuracyofpilot Commission’s objectiveofreducing theacci- The project willcontributetotheEuropean HUMAN willhaveanimpactonaircraft safety. A methodologythatintegratesallthetech- - A detailedknowledgebaseaboutcognitive - Formaltechniquesandprototypical toolsfor - A prototypical toolbasedonthevirtualsim- - - A high-fi delity virtualsimulationplatform aircraft cockpitsystemdesign. niques andtoolsfortheirapplicationduring guidelines forcockpitsystemdesign; processes leadingtopiloterrors andderived analysis ofsimulatordata; platform andcognitivemodel; ulation platformsupportingusabilityofthe model; enabling executionofthecognitivecrew relevant piloterrors; nitive crew modelabletopredict design-

© DLR, Braunschweig, Germany 127 Ensuring Customer Satisfaction and Safety 128 Ensuring Customer Satisfaction and Safety Total cost: Instrument: Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: GrantAgreement: Nameofproposal: Acronym: DE26121Oldenburg Escherweg Offi 2 s e.V. lnaArnuiaSpA IT AleniaAeronautica S.p.A. etce etu ü ut n amar .. DE DeutschesZentrumfürLuft-undRaumfahrte.V. +49(0)4419722101 +49(0)4419722102 FP7-AAT-2007-RTD-1 cer: Luedtke@offi s.de http://www.human.aero Aru rne FR Airbus France 36 months HUMAN 3909789 Ms.StéphanieStoltz-Douchet CP–FP Mr. Andreas Luedtke 28.02.2011 01.03.2008 2777379 211988 Avionics, HumanFactorsandAirports

System Design Model-Based AnalysisofHumanErrors DuringAircraft Cockpit N ua atr NL BE TNO HumanFactors Netherlands OrganizationforAppliedScientifi c Research – Human-Computer Interaction Université catholiquedeLouvain-BelgianLaboratoryof € € ODICIS workbreakdown structure - an increase insystemfl- exibility toallowavi- - a rationalisationofcockpitequipmentby tion canbeidentifi ed asfollows: Nowadays, themaintrends ofcockpitevolu- situational awareness. effi ciently mergedontoscreens forabetter cockpits. Theoutputofmanysensorswas nology supportedtheintroduction ofglass In theearly1980s,digitalcomputertech- were required tooperatelargeaircraft. complex cockpitswhere multi-personcrews involved thedevelopmentofmore andmore tum leapintechnologyandcomplexity. This War I,World War IIbrought thesecondquan- AftertheadventofcockpitsduringWorld StateoftheArt-Background Solution OneDIsplayforaCockpitInteractive ODICIS Requirements onic upgrades; platforms; media/output devicesandprocessing reducing thenumberofdedicatedinput operational & requirements system, Display, safety WP 1 HSI, functions&safety Architecture, graphic Simulations andassessment generation &safety Displays &media Cancept ofUse Display system Technologies WP 4 WP 2 WP 3 Validation WP 5 challenges. Theadequatemeansofinterac- involve opticalbutalsographicgeneration display, whichcouldbe curved;thiswould feasibility ofasingle,large,seamless,avionic Thefi rst objectiveistoprove thetechnical Objectives to meetthesemajorchallenges. a step-changeimprovement incockpitdesign mation. TheODICISproject willthusprovide rent displayswillsaturatethecrew withinfor- integration ofthesenewapplicationsoncur- Due tothelimitedsizeofcockpitdisplays, support greener operations. mission managementrequirements andto synthetic visionare expectedtomeetfuture 4D trajectory, airportnavigationsystemsor SESAR andCLEANSKY. Newfunctionslike new skypoliciesdrivenbyprojects suchas Tomorrow’s cockpitswillalsohavetoaddress an increase inthedisplaysize. - dissemination Exploitation Project results WP 6 and 129 Ensuring Customer Satisfaction and Safety 130 Ensuring Customer Satisfaction and Safety

© Thales iCockpit trial scheme. lowing theproject, including apossibleindus- from theproject andwillpresent thestepsfol- This willtakeintoaccountthedifferent results The lastobjectiveistoproduce aroadmap. workshops. expertsviaplanned pilots butalsoexternal sible from variousaeronautical actors–from aims atobtainingasmuchfeedbackpos- gration issues.TheODICISconsortiumalso account userrequirements andaircraft inte- The designofthedisplaymusttakeinto concept. to illustrateandevaluatethesingledisplay but alsoinnovativefunctionswillbeprepared machine interfaceimplementingstandard validation ofthecockpitmock-up.Ahuman- reviewed andextendedtoprepare for the the originalsingledisplaycockpitmustbe At thesametime,conceptsofusefor available. mock-up ofasingledisplaycockpitwillbe tives. Atthispoint,acompletetechnological between thedisplayswillbeoneofobjec- ing thebuttonsandcontrol panelsthatwere devices butalsotactileinterfaces.Organis- These includekeyboards, cursorcontrol tion mustalsobedefi ned andimplemented. Artist’s impression ofasingledisplaycockpit specifi c requirements, e.g.aseamlessability. remain mandatory, buttheconceptitselfbrings system tobedesigned.Avionic requirements Requirements: WP1willaimatdefi ning the - Verifi cation. - - Requirements; Conceptual/functional analysisand ess asfollows: aspects ofaformalsystemengineeringproc- six technicalworkpackages(WP)usingkey TheODICISproject hasbeendividedinto DescriptionofWork addressed. nical andoperationalpointsofview willbe against theestablishedrequirements. Tech- the performanceoffi xed-based simulator by previous part-taskevaluations, willcheck Verifi cation: afullevaluation(WP5), supported advanced, fi xed-base simulator. opment phasewillthenfollowresulting inan by derivingthegeneralrequirements. Adevel- (WP4). Thesewillstartalmostsimultaneously (WP3) andthehuman-machineinterface tem (WP2),thegraphicalcontentgeneration demonstration are therear projection sys- The keybuildingblocksinthetechnological comply withthislistofgeneralrequirements. will thenworkonadaptingthetechnologiesto Analysis anddevelopment:theconsortium development; FR92526Neuilly-sur-Seine 45 RuedeVilliers ThalesAvionics SA Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: machine interactions. tecture foravionicsystemsandhuman- of imageblending,graphiccomputingarchi- concept willprovide advancesinthedomain including tactileinput.Suchanewcockpit the wholedashboard andinteractivemeans, base aircraft simulatorwithadisplaycovering project isthecompletemock-upofafi xed- OneofthekeydeliverablesODICIS ExpectedResults cal stakeholderswillbeofprimeimportance. cussing project outputswithotheraeronauti- the ODICISresults (WP6).Sharinganddis- In parallel,amajorpointwillbetodisseminate nvriàt’Mla MT DK GR IT IT BE FR Technological Educational InstituteofPiraeus Universitàta’Malta DanmarksTekniske Universitet InteruniversitairMicro-Electronica Centrum VZW AlitaliaCompagniaAerea ItalianaS.p.A. AleniaAeronautica S.p.A. Optinvent +33(0)5561353 57 +33(0)556135054 FP7–AAT–2008–RTD–1 cer: [email protected] http://https://www.odicis.org/ ih eopc mH DE DiehlAerospace GmbH 30 months ODICIS 5609386 Mr. EricLecomte CP–FP Ms.Marie-LucieLarrieu 31.10.2011 01.05.2009 3595087 233605 Avionics, HumanFactorsandAirports OneDIsplayforaCockpitInteractiveSolution € € image ofaircraft manufacturers. bound toattractattentionandsharpenthe also avisibletechnologicalbreakthrough marketing pointofview, asingledisplayis ibility onthesystemarchitecture. From the aircraft cockpitsbyintroducing agreater fl ex- The ODICISproject willpavethewayforfuture sumer andsimulationmarkets. product, whichalsohaspotentialforthecon- readiness levels,resulting inanaeronautical roadmap willbedefi ned fortechnological opment ofafuture system.Anexploitation mendations willbeprovided forthedevel- Based onthefi nal evaluationreport, recom- 131 Ensuring Customer Satisfaction and Safety 132 Ensuring Customer Satisfaction and Safety Desdemona their results are invariablycatastrophic. situations donotoccuronaregular basis, cal, resulting inlossoftheaircraft. Whilethese the crew allowsthesituationtobecomecriti- cally, alackofawareness andexperienceby as aroll angleofmore than45degrees). Typi- normally experiencedinlineoperations(such inadvertently exceedingthefl ight parameters ful recovery from an‘upset’,i.e.aircraft accidents havebeenattributedtounsuccess- Member States.Alargenumberofthese fatalities) worldwide,12oftheminEASA LOC-I accountedfor87accidents(2,573 in transportaircraft. Between1997-2006, LOC-I, astheleadingcauseoffatalaccidents Safetyreviews listLossofControl In-fl ight, StateoftheArt-Background in Aviation SimulationofUPsetRecovery SUPRA

upset. extreme fl ight conditionsassociatedwithan envelope, whichisnotrepresentative ofthe equations ofmotionapplytothenormalfl ight training, sincetheaerodynamic modelsand are considered inadequateforupsetrecovery a simulator. However, current fl ight simulators pilots already receive theirrecurrent trainingin fl ight simulator, especiallysincecommercial istouseaground-basedand safealternative be expensiveandunsafe.Acost-effective Performing suchtraininginreal aircraft would educate pilotsinupsetrecovery techniques. Aviation authoritiesrecognise theclearneedto

© TNO training. ation ofpilotperformanceinupset recovery will bedevelopedwhichallowsforthe evalu- the research simulators. Adebriefi ng tool WP3 consistsofhardware modifi cations to linear aerodynamics inupsetconditions. fl ight envelopetoaccount forunsteadynon- craft dynamicsbeyondthenormaloperational WP2 extendsthemathematicalmodelsofair- fl ight datarecordings andfl ight tests. WP1 obtainsdatafrom accidentanalyses, packages (WP). SUPRAisdividedintoseventechnicalwork DescriptionofWork can besimulated. ties, extreme attitudesandsustainedG-loads its gimballedcockpitandcentrifugecapabili- motion platformDesdemona(seefi gure). With tise andsimulatorfacilities,suchasthenew The consortiumwillcombineuniqueexper- regardless ofthegrowth inairtransport. current highstandards orevenimproves, ensuring thataviationsafetyremains atthe a setofguidelines.SUPRAwillcontributeto tions. Therequirements willbelaiddownin capable ofsimulatingexceptionalfl ight condi- the developmentofspecifi c fl ight simulators, lators forupsetrecovery training,aswell basis foroptimisingstandard trainingsimu- The results oftheproject willbecomethe - to developaBayesianmotion-perception - to developinnovativemotion-drivingalgo- to extendaerodynamic modelsbeyondthe - to performactualfl- ight teststomeasure air- The technicalobjectivesofSUPRAare: upset. for teachingpilotstorecover from afl ight and validateanewfl ight simulationconcept TheglobalobjectiveofSUPRAistodevelop Objectives tor motion. model forobjectiveoptimisationofsimula- pilot representing in-fl ight upsets; rithms toprovide motionfeedbacktothe standard fl ight envelope; craft behaviourinupsetconditions; transport growth. improving aviationsafety, regardless ofair This way, SUPRAwillcontributetofurther of simulatingexceptionalfl ight conditions. opment ofspecifi c fl ight simulators, capable upset recovery training,aswellthedevel- for optimisingstandard trainingsimulatorsfor The results ofSUPRAwillbecomethebasis Bayesian motionperception model. - guidelines toperform(certain)upsetrecov- - guidelines toretrofi- t existing trainingsimula- innovative motiondrivingtechnologies; - - an extendedmathematicalaerodynamic - a documentedsetofrelevant fl ight upsets Thedeliverablesoftheproject are: ExpectedResults training. guidelines forsimulator-based upsetrecovery WP7 integratestheresults toformulate upset recovery simulation. research simulatorsforthefi nal validationof els andmotion-drivingalgorithmsintothe WP6 integratestheextendedaircraft mod- be developed. completely newmotiondrivingalgorithmswill and fortheunconventionalmotionplatforms, motion drivingalgorithmswillbeoptimised, situations. Forhexapodsimulators,existing tions andattitudescharacteristicofupset tor motionenvelopetothehighaccelera- algorithms whichaccommodatethesimula- WP5 developsthespecialmotiondriving self-motion perception. well certainsimulatorcuesleadtothecorrect Bayesian perception model,showinghow will beinputforthedevelopmentofanew vestibular interactions.Theexperimentaldata ments tobuildaknowledgebaseonvisual- WP4 encompassespsychophysicalexperi- eries indedicatedmotionsimulators; tors forsimulationof(certain)fl ight upsets; model; and required recovery techniques; 133 Ensuring Customer Satisfaction and Safety 134 Ensuring Customer Satisfaction and Safety Total cost: Instrument: Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: GrantAgreement: Nameofproposal: Acronym: NL2628VKDelft Schoemakerstraat97,POBox6060 rmvflih eerhisiue RU ES Gromov fl ight research institute BoeingResearch andTechnology Europe S.L. AT AMST-Systemtechnik GmbH eMnfr nvriy UK DE e.V. Max--GesellschaftzurFörderung derWissenschaften DeMontfortUniversity +31(0)346356378 +31(0)346353977 FP7–AAT–2008–RTD–1 cer: heather.griffi [email protected] http://www.supra.aero tctn aina uh-e umearlbrtru NL StichtingNationaalLucht-enRuimtevaartlaboratorium 36 months SUPRA 4928779 Ms.StéphanieStoltz-Douchet CP–FP Dr. HeatherGriffi oen-Young 31.08.2012 01.09.2009 3713934 233543 Avionics, HumanFactorsandAirports SimulationofUPsetRecoveryinAviation Onderzoek Nederlandse OrganisatievoorToegepast Natuurwetenschappelijk ehia evc Dnmk» RU RU Technical Service «Dinamika» Joint stockcompanyCentre ofScientifi c and Institute namedafterProf. N.E.Zhukovsky Federal StateUnitaryEnterprise-TheCentralAerohydrodynamic € € obtain PODcurves. tive Testing (NDT) lowcostsimulationsto evaluate theconceptofusingNonDestruc- thePICASSOproject, weproposeWithin to of thepart. induced anomalieswithintheApproved Life ure from material,manufacturingandservice turbine disc),toaddress thepotentialforfail- for criticalparts(forexamplecompressor and appropriate damagetoleranceassessments particular, newaeronautic regulations require on Probability ofDetection(POD)sizing.In increasing, imposingenhancedexpectations and expectationsregarding safetyare really Furthermore, theaeronautics regulations tal campaigns. which are obtainedbyexpensiveexperimen- cept ofProbability ofDetection(POD)curves Maintenance isdirectly related to thecon- parts withintheengineandaircraft industry. challenge isparticularlyimportantformetallic an operator’s indirect operatingcosts.This tenance whichstillrepresents around 20%of theincreasewill concern ofeffi ciency inmain- central challengeintheaeronautical industry increase ofairtraffi c inthenext20years,a ageingengines andtheexpected With StateoftheArt-Background Simulation SupportedPOD of Aeronautic Structure through Improved Reliability Inspection PICASSO techniques. paign withNon-DestructiveTesting simulation the costof,aProbability of Detectioncam- are toincrease theaccuracy, andreduce The mainobjectivesofthePICASSO project addition toexistingexperimentaldata base». basedonNDTsimulationin POD curves original conceptof«simulationsupported TheaimofPICASSOistobuildanewand Objectives and numericallyeffi cient simulationtools, and improved bydevelopersto achieveaccurate In thisWP2,themodelswillbe highly large numberofinfl uential parameters. defects, andthefl uctuations comingfrom a tions: thecomplexityofparts,materials and into accountthecomplexityofreal situa- elling. NDTsimulationsoftware havetotake themod- WP2 gathersthetasksconcerning calculations. for thecomparison,withmodel-basedPOD tion casestobeusedasexperimentaldata tion, datafrom equipment)andthevalida- project (materialproperties, defectdescrip- WP1 aimstoprocure theinitialinputsof Packages (WPs). Theproject isdividedintofourtechnicalWork DescriptionofWork - Savings in costs concerning aircraftSavings incostsconcerning mainte- - To- improve theanswertoFAA/EASA dam- The mainimpactsoftheproject willbe: - Delta PODapproach –suppressing the More representative samplesofthepopula- - - Completing experimentalNDTinspections This willbeachievedby: nance andenginedevelopment. tion PODs; knowledge andaccuracyonNDTinspec- age tolerancerequirements withhigher parts orinspectionconfi gurations. need ofanewPODcampaignforsimilar techniques; ing theirnumbersthankstosimulation accuracy ofthePODsamplesandincreas- tion forthePODcampaign–enhancing samples withdefects; ing theneedsofmanufacturingexpensive by simulatedNDTinspections–suppress- 135 Ensuring Customer Satisfaction and Safety 136 Ensuring Customer Satisfaction and Safety experimental andsimulationofPODdata. be performedbythecomparisonbetween POD methodologydevelopedinWP3.Itwill validation ofthenewsimulationsupported withtheassessementand WP4 isconcerned totype PODsoftware platform. expected results isthedevelopmentofapro- supported strategywillbedevelopped.Major cost PODdeterminationusingasimulation Common methodologiesandtoolsforlow a simulationsupportedPODmethodology. studies. TheobjectiveofWP3istodevelop the introduction ofsimulateddatainPOD WP3 focusesonPODissuesanddealswith POD calculations. to bereliable enoughforintensiveuse Example ofPODcurve of Detection Probability 100% 90% 0% POD(a) 50% service ofsuchtools. will bethenextsteptowards theentryinto EU standard onsimulationsupportedPOD Its intensiveuseandthebuildingofafuture safety level. increase itscompetitivenessandtheaircraft In thiscontext,Aircraft European industrywill of inspectionfortheaircraft industry. pean standard forqualifi cation andreliability basis andrecommendations forafuture Euro- POD determinationwillenabletoestablishthe a result oftheproject onsimulationsupported Methodology recommendations obtainedas view ofthepotentialimpacts. will haveattheendofproject aclearover- design offi ces andmaintenancedepartments Through realistic industrialapplications, and methodologies. POD’ byfi rst realistic results, implementation dation oftheconcept‘simulationsupported Themainresult oftheproject willbethevali- ExpectedResults a 90-50 a 90-95 Size ofdefect:a POD(a) 95% ov eoCroaina SE UK PL DE Volvo Aero Corporationab UK TECHNIC-CONTROLSp.z.o.o. FR RollsRoyceplc MTUAero EnginesGmbH TWI TURBOMECA FR PHIMECA LIMITED SA Engineering FR77550MoissyCramayel Rond-pointRenéRavaud-Réau SNECMA SA Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: ohTcnlgeSsee DE HochTechnologie Systeme hlestkik ösoaa SE FR ChalmerstekniskaHögskolaab Commissariatàl’ÉnergieAtomique +33(0)160599112 +33(0)160597584 FP7–AAT–2008–RTD–1 cer: [email protected] udsntl ü aeiloshn n Püug DE BundesanstaltfürMaterialforschungund-Prüfung 36 months PICASSO 7315065 Mr. MichailKyriakopoulos CP–FP Ms.NancyMaléo 30.06.2012 01.07.2009 4957469 234117 MaintenanceandDisposal

Supported POD Improved ReliabilityInspectionofAeronautic Structure through Simulation Fraunhofer-Gesellschaft zurFörderung derAngewandtenForschunge.v European Aeronautic DéfenceandSpaceCompany(EADS)FranceSAS € € DE FR 137 Ensuring Customer Satisfaction and Safety 138 Ensuring Customer Satisfaction and Safety - Develop anargumentationframework that objectives: TheMISSAproject has thefollowing Objectives vide more timeforsystemoptimisation. tion anditsinstallationdefi nition, andwillpro- the timetoanalyseaircraft systemsspecifi ca- requirements. MISSAdeliverableswillreduce lation againstthesafety-driveninstallation providing meanstoauditthephysicalinstal- infl uence onsystemsinstallationandfi nally lation byaccountingforsafetyassessment tion, andwilllooktooptimisesystemsinstal- aircraft systemsfunctionalsafetyspecifi ca- framework forspecifying,andsubstantiating ogies todevelopaseamlessargumentation developing andcombiningtheabovetechnol- MISSA willadvancethestateofartby and imageprocessing. implementation andinstallationspecifi cation, of discrete andhybridsystemsarchitectures, logical andspatialreasoning aboutthesafety model-based safetyspecifi cation, automated tural andimplementationlevelcontract of theartinfi elds offunctional,architec- represent themainsource ofthecurrent state Project andtheSPEEDSIntegratedProject The FP6ISAACSpecifi c Targeted Research targets. mise designsthatare compliantwithsafety tions, whichmeansthere islesstimetoopti- resources andalimitationondesignitera- onstrate safety, agreater demandforskilled new technologies,increasing coststodem- ity hasledtoanincreasing time-to-marketfor Theincrease ofaerospace systemscomplex- SateoftheArt-Background Safety Assessment More Integrated System MISSA sis through toIn-ServiceEvents Data; Design andModelSpecifi cation andAnaly- specifi cation from PhysicalTesting Results, engineering activitythatleadstoan aircraft is capableoflinkingeverysystems safety aircraft level, mainlymodelledthankstofor- requirement allocation andinstallationatthe WP3: Focusontheoptimisation of safety indicators toevaluatetheproject. requirements are usedaskeyperformance analysis techniques.Theresulting detailed on thecandidatemodellingmethodsand and trainalltheteamssotheycanwork WP2: Clarifythedetailedproject requirements ages (WP): packages andtwonon-technicalworkpack- Theworkisdividedintosixtechnical DescriptionofWork - Develop theabilitytoabstracttimeinorder - - Develop theabilitytoincludewithin Devise amethodformodellingtherelevant - - Develop theabilitytocheckconsistency - Develop theabilitytocarryoutInstallation able withreasonable timeandresources. to maketime-dependentsystemsanalys- the systems; more accuratelydescribethebehaviourof els, non-linearmathematicalexpressions to detailed systemsimplementation-levelmod- ness requirements; of specifi cation ataddressing theairworthi- onstrate theadequacyofrelevant level level sothattheycanbeanalysedtodem- systems architecture andimplementation aspects ofspecifi cation ataircraft level, tation level; through tothedetailedsystemsimplemen- analysis results from theaircraft level,down ‘vertically’ includingconsistencybetween detailed systemsimplementationlevel,and craft level,systemsarchitecture leveland between dependentsystemswithintheair- of assumptionsandspecifi cation ‘laterally’ Requirements; tion Requirements andsomePerformance Optimisation, drivenbySafetyInstalla- tificonferences. c industry working-group meetingsandscien- WP8: Publicisetheachievedobjectivesat to industrialisethetools. have suffi cient detailtoshowwhatisneeded systems implementationlevel.Somemodels that spansfrom aircraft downtodetailed platform, oneofwhichisaleadingcasestudy models are developedandusedtotestthe WP7: Focusonplatformevaluation.Several support thejustifi cation ofsafetyobjectives. change-management methodsandtoolsto WP6: Developsynthesis,argumentationand tackled byWPs4and5. The correlation betweenconsecutivelevelsis models. using mainlySimulink,StatemateandScade WP5: Handlethedetaileddesignanalysisby architecture byusingmainlyAltaRicamodels. WP4: Dealwiththeassessmentofsystems MathSAT. mal requirement languagessuchasRAT and Scope andnature ofmodels usedinthemodel-basedsafetyanalysis framework mended practice.Themethodsdeveloped to-day developmentofaerospace recom- aviation safetyandparticipateintheday- main industrialworkinggroups thatfocuson Some consortiummembersare activeinthe needs. products thatare betteralignedtosocietal to produce affordable andbetterperforming It willprovide oneaspectofwhatisneeded chain ofevidence. improving themaintenanceofcomplete and theevidenceusedtosubstantiateit,by keep activethelinksbetweensafetyclaims It willalsoimprove themeanstomaintainand demand through thedesignlife. organisation torespond tochangingmarket agility ofdesign,andsowillenablethedesign and weightoptimisationoranincrease inthe time tohaveagreater levelofperformance reduction tothedevelopmentcosts,more sequent designiterations,offering eithera reducing thetimetakentocompletesub- Theaforementioned capabilitieswillleadto ExpectedResults

© MISSA Consortium 139 Ensuring Customer Satisfaction and Safety 140 Ensuring Customer Satisfaction and Safety UKBS997ARBristol GolfCourseLane,Filton NewFiltonHouse AirbusUKLtd these methods. gaining theirsupportfortheindustrialisationof industry’s workinggroups withtheintentionof ods andpotentialgainstheyoffer tothe results, willbeusedtodemonstratethemeth- within MISSA,alongwiththeevaluation nvriyo ok UK FR UK IT DE IT UK UniversityofYork FR ThalesAvionics SA QueenMaryandWestfi eld College,UniversityofLondon OFFIS–InstituteforInformationTechnology SE Offi ce Nationald’ÉtudesetRecherches Aérospatiales FondazioneBrunoKessler ArtisanSoftware Ltd FR Prover AleniaAeronautica S.p.A. FR APSYS Technology Dassault SA Aviation Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: Grant Agreement Nameofproposal: Acronym: +44(0)1179364140 +44(0)1179365217 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.missa-fp7.eu Aru etcln DE Airbus Deutschland 36 months MISSA 5900216 Michael Kyriakopoulos CP–FP MrJonesDavid 31.03.2011 01.04.2008 3999105 : : 212088 DesignTools andProduction More IntegratedSystemSafetyAssessment € € framework willbebetterplacedtocompete. Industrial organisationsthatimplementthis by makingsafetymanagementmore agile. ity forindustrytorespond tomarketdemand The results from MISSAwillimprove theabil- Generation ofRawAero Data precise prediction ofaerodynamic dataover callforthe margin safetyrisks,whichinturn vehicles. Thisnecessitatessmallorevenzero order tocomeupwithenvironmental friendly designed tobeaslightweightpossiblein Today, secure aircraft structures mustbe but heavyaircraft structures were designed. leading toserioussafetyissues.Finally, secure of globalloadsovertheentire fl ight envelope This approach yieldedratherrough estimates lar caseswere usedforlimitloadpredictions. on thisaerodynamic data.Ingeneral,singu- the designofcontrol surfacesare alsobased tantly, thelayoutoffl ight control systemsand Moretheir weightandfuelburning. impor- sions ofthevehiclesandtherefore infl uences data formsthebasisforstructuraldimen- analogies, andwindtunnelexperiments.This primarily determinedbyusingempiricaldata, Previously, aerodynamic aircraft datawas StateoftheArt-Background Extremes oftheFlightEnvelope Aerodynamic LoadEstimationat ALEF ALEF’s impactonaero dataproduction sequence(schematic) Previous Aero DataProduction Sequence Wind Tunnel Tests (before ALEF) Processing for Aircraft Aero Data Aero Data Raw Aero Empirical Analysis Design Data Data Low Fidelity Validation Analysis Final FT Flow Wind Tunnel Generation ofRawAero Data Tests in theaircraft designprocess. major source foraerodynamic data prediction The challengeisnowtointroduce CFDasthe design simulationsnearthecruisepoint. maturity isbasedontheexperiencegainedby of the‘innerarea’ ofthefl ight envelope.This ing thequalityoftheirresults formajorparts reached asuffi cient levelofmaturityregard- tational fl uid dynamic(CFD)toolshavenow ily increasing theircapabilities.Thesecompu- numerical simulationofaerodynamics, stead- increasingly complementedbytoolsforthe Over thelasttwodecades«testing»hasbeen signifi cant reductions ofdesigncycletimes. tion inaeronautical industryalsoleadstoquite nents, aswelltheoverallaircraft. Competi- for thebetteroptimizationofsinglecompo- information foraerodynamic dataisneeded longer beforeseen. Inaddition,more detailed areas andbeyond,aslimitingcasescanno the entire fl ight envelope,includingfringe Simulation Campaign Planning New Aero DataProduction Sequence Complementary Raw Aero Data Flow Simulation (after ALEF) Mixes Fidelity Processing for Aircraft & Analysis Aero Data Aero Data Raw Aero Analysis Design Data NOT fulfilled fulfilled Complementary Raw Aero Data Requirements Validation Production Aero Data Final FT Empirical Data

© Airbus 141 Improving Cost Effi ciency 142 Improving Cost Effi ciency - Effi- ciency: theneedtodeliveraerodynamic - Quality: theaccuracyofeachfl ow simula- - Comprehensiveness: theability topredict The objectivehasthree aspects: process. ence theoverallaerodynamic development ALEF thisparadigmshiftwillessentiallyinfl u- computational results. Beyondthescopeof measured datatojustasgreat confi dence in from greater confi dence inexperimentally- esses. i.e.ALEFwillkick-off aparadigmshift within therespective developmentproc- on certifi ed numericalsimulationapproaches aerodynamic datasetsoftheiraircraft based aeronautical industrytocreate complete ALEF’s objectiveistoenabletheEuropean Objectives requirements. β face defl ections) and/orfl ow condition(M, in confi guration (cruise/highlift,control sur- needs tocoverallcombinationsofdeviations opment pointofview, aero dataproduction resources byfar:from anactualaircraft devel- scales overshootscurrent computational and requested confi guration insuitabletime high-fi delity simulationforanyfl ow condition As wellasthis,providing aero databasedon task. makes high-fi delity simulationachallenging junction withhighconfi guration complexity, envelope. Complexfl ow phenomena,incon- cits, specifi cally attheextremes ofthefl ight aerodynamic applicationshaveknowndefi - However, numericalsimulationtechniquesfor ) fi nally leadingtoalistofmulti-dimensional resources. esses atgivencostsandcomputational multi-disciplinary industrialdesign proc- formance withintimeframesdictated by and handlingqualities,aswellfor per- data overtheentire fl ight envelopeforloads envelope from toolsofvaryingfi delity; data integratedoverthecompletefl ight namic dataandtothecoherence ofaero tion result usedforprediction ofaerody- regime; derivatives intimeforanypointofthefl ight aerodynamic forces, momentsandtheir α , needs offuture developments. regard totheircapabilities,effi ciency and will beasetoftoolsandprocesses ratedwith tions andtheircomponents.Theoutcome applications oncomplexaircraft confi gura- capabilities tobeappliedforrealistic industrial estimations, togetherwiththeirpotentialand namic toolsandprocesses suitableforload vide insightintothestate-of-the-artaerody- simulations (WP2andWP3).Theywillpro- provided bysteadyandunsteadyaero loads experience, expertise,toolsandprocesses (Task 4.2)from demonstrationstogetherwith and effi ciency goals.Thelessonsare learned in WP1(Subtask1.1.1),subjecttoquality cases andrequirements defi ned andprovided checks onthedemonstration(Task 4.1)oftest bridgehead istheassessment(WP4)which estimation requirements (Task 1.2).Theother and thequalityofaerodynamic loads mation, theprocedures necessary(Task 1.1) defi ne thescopeofaerodynamic loadsesti- major work-packageswhichfi rst (WP1) TheALEFproject isanchored inbetweentwo DescriptionofWork namic developmenteffort byabout40%. reduction by2020,which will cuttheaerody- contribute toa70%windtunneltesting cost data prediction process. ALEFwillessentially could beincorporatedinthestandard aero ent data.Unsteadybehavioursandfl exibility most recent statusofaircraft withconsist- an up-to-dateandfastestimationofthe of anumericaltoolbox.Thiswouldensure fl ight conditionsandconfi gurations bymeans tools inaero datagenerationistocoverall Theultimatescopeoftheusesimulation ExpectedResults frameworks. fl ight envelopeinindustrialdevelopment numerically predicted dataovertheentire ensure thetrustworthinessandreliability of the fi rst twoaspectsoftheobjective.They aerodynamic dataprediction isderivedfrom The certifi cation ofnumericalsimulationfor DE28199Bremen AirbusOperationsGmbH Airbus-Allee 1 Coordinator: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: lnaArnuiaSpA IT FR ES EADS-ConstruccionesAeronauticas S.A. AleniaAeronautica S.p.A. AIRBUSFranceSAS pia niern ... IT IT SE DE DE FR NL PiaggioAero IndustriesS.p.A. FR SE CH Optimadengineerings.r.l. ONERA-Offi ce Nationald’ÉtudesetdeRecherche Aérospatiales NLR-NationaalLucht-enRuimtevaartlaboratorium SAAB DE KTH-KungligaTekniska Högskolan RUAG IT Eurocopter DeutschlandGmbH EADSDeutschlandGmbH DLR-DeutschesZentrumfürLuft-undRaumfahrte.V. AKTIEBOLAG DassaultAviation SA ES Aerospace CIRA-Centro ItalianoRicerche Aerospaziali S.C.p.A. Totalforsvarets SE CIMNE-CentredeMètodesNumèricsenEnginyeria Internacional Forskningsinstitut +49(0)4215387695 +49(0)4215388717695 FP7-AAT-2007-RTD-1 cer: [email protected] IBSEpn .. ES AIRBUSEspanaS.L. 36 months ALEF 5503297 Mr. José M.MartinHernandez CP–FP Dr. JensK.Fassbender 30.04.2012 01.05.2009 3390000 211785 Flight Physics Aerodynamic LoadEstimationatExtremes oftheFlightEnvelope nClu cetfiqe FR en CalculScientifi que Centre Européen deRecherche etdeFormationAvancée € € 143 Improving Cost Effi ciency 144 Improving Cost Effi ciency - Signifi cantly improving knowledgeofinter- - Specifying anewgeneration ofcomposite - Lowering weightby 10%regarding the Lowering production costsby30%regard- - technical goals: leadership, wepropose thefollowingdetailed both society’s needsandthatoftheEuropean higher thanthatofclassicalstructures. To fulfi l production costoflowweightstructures is emissions ofanyaircraft, butunfortunatelythe order tosignifi cantly reduce CO Today, lightweightstructures are mandatoryin Objectives dated inadesign-to-costapproach. by eachofthepartnershavebeenconsoli- when thesolutionstoissuesbeaddressed nifi cant weightandcostsavingsare expected tail conestructure andAPUintegration.Sig- an overviewofalltheproblems concerning project bringstogetheraconsortiumthathas grated tailconeshouldbeinvestigated.The and manufacturingprocesses fortheinte- system, newarchitecture, designconcepts In order toensure athinner, cheaperandsafer ess, whichresults insignifi cant costsavings. using afullyintegratedandautomatedproc- no fastenersinafullyintegratedstructure, function andsmartcompositetailconewith manufacture alightweightmultilayer/multi- The project’s centralfocusistodesignand of itsintegratedAuxiliaryPowerUnit(APU). and nitrogen oxideemission,notablybecause for reducing aircraft noise,fuelconsumption tail coneappearstobeastrategiccomponent development andmanufacturing.Theaircraft try toconsidernewapproaches foraircraft greener aircraft haveledtheaeronautic indus- Newrequirements andecologicalpoliciesfor StateoftheArt-Background ADVance IntegratedCompositeTail Cone ADVITAC action between innovative technologies strength); integration (acoustic,fi reproof, electricaland architecture allowing anextensivefunction actual compositeaero structure; ing theactualcompositeaero structure; 2

- Trough ThicknessReinforcement andinfu- WP8: Dissemination. lightning tests; elements anddetailedtests,suchasfi re and architecture willbedemonstratedbydifferent tiveness ofthelowweightandlow-cost WP7: Full-scaleexperimentaltest:theeffec- scale tailconedemonstrator; the validationprocess tobeappliedafull- WP6: Full-scalevalidationprocess: enabling cost andweightpointofview; will enhancetherelevant processes from a building onpromising technologies,thisWP WP5: Manufacturingprocess enhancement: issues defi ned inthespecifi cation WP; the bestprocesses thatare relevant tosolving WP4: Innovativeprocess selection:selecting cost drivers; manufacturing process inorder toidentifyreal tecture: defi ning adesignandanalysingthe WP3: Compositestructure designandarchi- manage thetechnicalissues; defi ning precisely theinputdatanecessaryto WP2: Integratedtailconespecifi cations: WP1: Project management; Work Packages(WPs). TheADVITAC project isdivided into eight DescriptionofWork the useofexpensive titaniumrivetandhand automated implementation ofTTR,replacing forcement withAFP, Fast andrepeatable processing ofdryrein- assembly costs)leadingto: sion technologytotheTRL4/5(reduction of ing automatedfi bre placement,TTRand infu- AutomatedandIntegratedProcesses, includ- ExpectedResults sion process. esses, includingautomateddryperform; allowing fullyautomatedintegratedproc- FR41400SaintJuliendeChedon 23RoutedeTours DaherAerospace SAS - Robust resin InfusionProcess including - Specifi cation andsystemforSHMsensor - Innovative solutionsforelectricalcontinu- - Innovative solutionsforthemulti-material tive architecture oftheTailcone. forcement, andtheimplementationofinnova- the latterfullyintegrated3dimensionalrein- tion byintegratingpartswithLRIappliedto riveting processes, completefunctionintegra- Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: EOE ME R RO BE FR BR RECOMETIMPEXSRL Empresa BrasileiradeAeronáutica SA Free FieldTechnologies SA CoriolisCompositesSAS ES Cranfi Fundación UK eld INASMET University the structure; control ofnanoparticlesrepartitioning within automated placement; used formultilayercomposite; ity, thermalproperties, andlighteningtobe fi bres, carbon+metallicfi bres); fi bres placementprocess (carbon+optic +33(0)2547169 01 +33(0)254711282 FP7–AAT–2008–RTD–1 cer: [email protected] http://www.advitac.eu tctn aina uh-e umearlbrtru NL StichtingNationaal Lucht-enRuimtevaartlaboratorium 42 months ADVITAC 5895306 Mr. PabloPérez Illana CP–FP Mr. RomainLefrançois 28.11.2009 28.05.2009 3999137 234290 Aerostructures andMaterials ADVance IntegratedCompositeTail Cone € € - Calculation software foraero andvibro Verifi- cation onascaleoneaircraft tailcone - Experimental measurement ofnanopar- - System forlowcostandautomateddry - Low costinfusiontools(mainlythanksto into accountcompositeproperties. acoustic issues,innovativebecausetaking esses developedwithinADVITAC; of industrialcapabilitiesinnovativeproc- structure; cal andthermalbehaviourofacomposite ticles effect onbothelectrical,mechani- stringer manufacture; the mouldandbetterdemouldingissues); new solutionforboththermalbehaviourof 145 Improving Cost Effi ciency 146 Improving Cost Effi ciency to prepreg. which wouldprovide promising alternatives combination with‘out-of-autoclavecuring’, IMac-Pro willfocuson‘textilepreforming’ in sive stepofprepreg production. curing intheautoclaveisalsoaveryexpen- layer, andamanualvacuumbagging.Resin with hand-lay-upofthematerial,layerby plex shapesstillneedextensivemanualwork geometries withmoderatecurvature. Com- parts iscurrently limitedtotwo-dimensional nology. Automatedproduction ofprepreg duced usingpre-impregnated (prepreg) tech- CFRP partsalready inuseare mostlypro- development costs. copters, andreduce aircraft production and ecological compatibilityofplanesandheli- designs basedonCFRPs,whichimprove the aircraft marketandthedemandforlightweight cantly inthefuture, duetoarapidlygrowing of CFRPprofi les isexpectedtogrow signifi - The marketforcost-effective manufacturing thicknesses andlocalfi bre direction. optimised designregarding geometry, local cifi c stiffness andstrength. Theyalsoallowan lightweight designbyoffering excellentspe- (CFRPs). CFRPshaveaveryhighpotentialfor substituted bycarbonfi bre reinforced plastics craft designthesematerialsare increasingly air-minium, evenpartlyoftitanium.Inmodern on thewingsandfuselageare madeofalu- ture ofanaircraft andforstiffening theskins Today, mostoftheprofi les usedforthestruc- StateoftheArt-Background for Aerospace Applications Technologies forCompositeProfi IndustrialisationofManufacturing IMac-Pro tion ofoptimisedCFRP stiffener profi les (e.g. ess chainforthecost-effective serialproduc- development ofacompleteintegrated proc- ThetechnologicalobjectiveofIMac-Pro isthe Objectives 1. Massiveprofi les likefl oor beamsand for theproduction: on themanufacturingtechnologynecessary main categoriesduetothesignifi cant impact cross section.Theycanbedividedintotwo length incomparisontothedimensionsof acteristics ofthesepartsare anenormous craft stiffener profi les. Thecommonchar- Theproject addresses different typesofair- DescriptionofWork - a costsavingofmore than45%compared - - a weightsavingofupto5%compared to a weightsavingofatleast20%compared- ing challenginggoalstoreach: the production oftheprofi les, withthefollow- tion andcostsavingwillbethebaselinefor techniques withahighpotentialforautoma- In IMac-Pro, net-shapedtextilepreforming curved (e.g.fuselageframes). cross section(e.g.wingspars)orcomplex fuselage stringers),straightwithavarying straight withaconstantcross section(e.g. and theloads,targetedprofi les mightbe Depending onthegeometricalrequirements advanced injectionandcuringtechnologies. on textiletechnologiesincombinationwith ger andfreighter planes,helicopters)based shafts, etc.)forallkindsofaircraft (passen- frames, stringers,struts,fl oor beams,drive to prepreg designforcomplexprofi les. prepreg designforcurvedprofi les; to aluminiumdesign; periodically. change alongtheprofi le continuouslyor tion shapeandtheirwallthicknesses may additional challengethattheircross sec- 0.5 to8mm.Theseprofi le typeshavethe of 50to400mmandwallthicknesses from frames withedgedimensionsinthe range les - a circular- braiderfrom USTUTT, whichcan - a circular braideratKümperswillbe to already existingequipment: measurement systems,whichwillbeadapted mostly ofmachineprototypes, devicesand Theexpectedresults ofIMac-Pro comprise ExpectedResults microwave heating. tion) ofthepreform, continuousinjectionand compensate forthesettling(thicknessreduc- withadaptableelementsto tigated: RTM Different techniquesofcuringwillbeinves- products andbyfi bre patchpreforming (FPP). forming (similartopultrusion)oftextilesemi Profi le type2willbeaddressed bycontinuous ogy isthebaselineforpreform production. For themassiveprofi les thebraiding technol- 2. Stringerprofi les withrelative smallcross Manufacturing oftheCarbonFibre Preform foraCurvedProfi le byBraiding braiding ofclosed frames; be opened,willusedtoaddress the devices; equipped withthe0°and90° lay-up length (upto30metres). single ordoublecurvedandofevengreater no changingofthecross section,butpartly section dimensionsintherangeof50mm, and non-autoclavecuring. shapes, andthepotentialforcheaper tools ing, ahighdegree ofautomation forcomplex rial costs,reduced waste duetonetshap- compared toprepreg are: lowerbasicmate- be expected.Themaincost-cutting issues reduction inaircraft acquisitioncostscan performance. Atthesametime,asignifi cant of environmental compatibilitywithoutlossof whole airframeandbythistoanimprovement will leadtoasignifi cant weightsavingofthe A consequentapplicationoftheproject results - a cargofl oor unit,consistingofacurved a stiffened panelwithfourstringerpreforms - a stiffened panelwithfourpre-cured string- - three demonstratorstructures are planned: Using thedevelopedmachinesandtools, - a microwave ovenatDLRwhichwillbe - a laboratorystringerpreform machineat z-struts. frame profi le, astraight crossbeam and and textileskincured atthesametime; ers onaprepreg skin; used forthefaststringercuring. lay-up units; SECAR, whichwillbecombinedwithFPP

© EADS Innovation Works 147 Improving Cost Effi ciency 148 Improving Cost Effi ciency Partners: ECOffi Fax: Tel: E-mail: Coordinator: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: DE85521Ottobrunn EADSDeutschlandGmbH Willy-Messerschmitt-Strasse lnaArnuiaSpA IT GR IL GR AT AT CZ FR AleniaAeronautica S.p.A. GR GR Aeronautical Research andTest InstituteoftheCzech Republic IsraelAerospace IndustriesLtd INASCO-INtegratedAerospace Sciences COrporationO.E. BE UniversityofPatras DE HellenicAerospace IndustrySA DE Westcam FertigungstechnikGmbH DE SECARTechnology BE GmbH CH FachhochschuleNordwestschweiz - InstituteofPolymerEngineering DE LTSM-Upatras Centre deRecherche enAéronautique ASBL CH SociétéAnonymeBelgedeConstructionsAéronautiques DE DassaultAviation SA DeutschesZentrumfürLuft-undRaumfahrte.V. UniversityofStuttgart-InstituteAircraft Design RUAG SGLKümpersGmbH&Co.KG FIBRE,FaserinstitutBremen e.V. iSAMAG,GesellschaftfürangewandteKybernetik Aerospace +49(0)8960722713 +49(0)8960724180 FP7-AAT-2007-RTD-1 cer: [email protected] uootrDushadGb DE Eurocopter DeutschlandGmbH 42 months IMac-Pro 7341660 Mr. Francesco Lorubbio CP–FP Mr. Andreas Gessler 31.12.2011 01.07.2008 4998870 212014 Aerostructures andMaterials

Aerospace Applications Industrialisation ofManufacturingTechnologies forCompositeProfi les for € € cases. structural integrityofthecomponentinsome maintenance, andmayevengoagainstthe the componentmanufacturingandposterior tional weightpenaltyandcomplexityduring posite structures result inaddinganaddi- structural healthmonitoringsystemsoncom- The incorporationofice/fi re protection and increased use. their structuralhealthare required duetotheir tion techniquesforcontinuousassessmentof ing them.Moreover, improved fi eld inspec- for preventing accidentsbutalsoforsurviv- icing anderosion, aswellfi re, notonly tems againstatmospherichazards suchas able, effective andcertifi able protection sys- smoke. Forthisreason, theyrequire afford- easily,tend toburn emittingtoxicgasesand electrically andthermallybadconductors matrix components,compositematerialsare But duetotheorganicnature ofpolymeric effi cient thanmetals. components thatare more aerodynamically the possibilityofdesigningcomplexgeometry specifi c strength andstiffness combinedwith the last35years,duemainlytotheirhighlevel nautics industryhasconstantlyincreased over Theuseofcompositematerialsintheaero- StateoftheArt-Background Aircraft CompositeStructures MultifunctionalLayersforSafer LAYSA - Design andmanufacture anovellayer The scientifi c objectivesoftheproject are: protection, aswellhealth monitoring. aircraft compositestructures foriceandfi re and sensingcapabilitiestobeincorporatedin cal conductivity, improved fi re performances multifunctional layerwiththermalandelectri- ThemainobjectiveofLAYSA istodevelopa Objectives nanomaterials; concept withmultifunctionalitybased on - Manufacture andvalidatecompositecom- - Develop modellingtools tofacilitatethe - Couple theconductivitycharacteristicsof The technologicalobjectivesare: - Integrate, modeland validateamultifunc- - Use electricalconductivityvariationmeas- - Reduce fl ammability; - Develop electrical/thermalconductivity focusing onpre-treatment, dispersion, adhe- The functionalitieswillbestudiedseparately, tivity, fi re resistance andsensingcapability). triple functionality(electrical/thermal conduc- WP2: Developmentofnanocomposite with sibility ofcombiningnanomaterials. similar metalnanotubes–andalso the pos- nanotubes, layered silicates(MMT)orother will beconsidered includingdifferent carbon composite structures. Severalnanomaterials fi re protection andsensorsystemsofaircraft structural andfunctionalrequirements ofice/ to beusedduringtheproject. Specifi cation of tures inorder todeterminethebasematerials WP1: Specification ofaircraft compositestruc- Theproject workpackages(WP)are: DescriptionofWork damage assessment. capabilities forreal-time temperature and ponents withice/fi re protection andsensing analysis anddesignofmultifunctionallayers; health monitoringsystems; the compositewithice/fi re protection and materials. tional systeminnovelstructuralcomposite ures tosensetemperature andstress; can beachieved; and apowerconsumptionreduction of50% is estimatedthataweightreduction of99% respect tocurrent electrothermal systemit or toremove thealready existingone.With mation onitssurfaceinrough fl y conditions on acompositesurfacetoprevent icefor- capable ofdistributingthenecessaryheat 149 Improving Cost Effi ciency 150 Improving Cost Effi ciency LAYSA workpackages and fi re protection. able electrical,thermal,sensingproperties order toproduce nanocompositesofpredict- other andwiththeavailableepoxy matrix in the possiblenanofi llers willinteractwitheach A modelwillbederivedtoshowhoweachof functionality. of nanomaterialsintoresin fortherequired sion andorientation(randomlyoraligned) Several layer alternatives willbeconsidered,Several layeralternatives traditional compositemanufacturing process. WP3: Integrationofthenanocomposite inthe WP0 PROJECT MANAGEMENT (TEC-INAS) DEVELOPMENT OF CONDUCTIVITY INCORPORATION OFFUNCTIONALITYINNOVELCOMPOSITES(LEVEL2) SYNTHESIS OFMULTIFUNCTIONAL NANOCOMPOSITELAYER (LEVEL1) (CNRS-CRPP) ELECTRICAL/ THERMAL WP2, 1 DEFINITION OFREQUIREMENTSANDMATERIALS SELECTION ECONOMIC EVALUATION, EXPLOITATION ANDDISSEMNITION DEVELOPMENT OF FIRE PROTECTION INTEGRATION OFFUNCTIONALITIES (ENSCL) WP2, 2 PROCESSES DEVELOPMENT (TEC-INAS) VALIDATION (SICOMP) (INASCO) (SICOMP) WP3, 2 WP2, 5 WP3, 1 (AES) (AES) WP3 WP2 WP1 WP4 (UP) mass. cally represents aslittle10-15%ofthetotal equipment massbecausethestructure typi- reduction doesnotleadto furtherloweringof Concentratingsolelyonstructural mass ExpectedResults will alsobeexplored. dissemination. Stepsforcertifyingtechnology WP4: Economicevaluation,exploitationand manufacturing process ofthenovelcomposite. selected, optimisedandincorporatedinthe DEVELOPMENT OF PERFORMANCE SENSING (INASCO) WP2, 3 MODELLING ANALYSIS WP2, 4 (UP)

© LAYSA consortium ES20009SanSebastian MikeletegiPasealekua2 PaseoMikeletegi2,Parque Tecnologico Miramon1689 Fundación INASMET Instrument: GrantAgreement: Nameofproposal: Acronym: electrical conductivityandsensingcapacity. exceptional properties, intermsofthermaland multifunctionality potentialsderivedfrom their aircraft operationbybetterexploitingavailable performance, environmentally friendlyandsafer material technologiesopensthedoortohigh protection andhealthmonitoring)withnano- The integrationofthethree functions(ice/fi re Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: dacdCmoieGop UK UK ES GR FR CH GR FR FR ES AdvancedCompositeGroup UniversitédePauetdesPaysL’Adour IntegratedAerospace SciencesCorporation Aernnova UniversityofCranfi eld Aries EcoleNationaleSupérieure deChimie deLille Huntsman UniversityofPatras Centre deRecherche PaulPascal-Transform Complex +34(0)9430037 +34(0)9430038 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.laysa.eu SCM B SE SICOMP AB 36 months LAYSA 4347840 Mr. PabloPérez Illana CP–FP Dr. CristinaElizetxea 31.08.2011 01.09.2008 3007603 213267 Aerostructures andMaterials MultifunctionalLayersforSaferAircraft CompositeStructures € € skilled professionals. and theopportunitiesforemploymentofhighly tion, increasing theEuropean marketshare the manufacturingprocess andfuelconsump- tive andsocietalimpactssuchassavingsin LAYSA outputsare expectedtohavecompeti- 151 Improving Cost Effi ciency 152 Improving Cost Effi ciency - if theappropriate levelofconfi dence and - the fi nal assemblylineprocess mustbe - the substitutionoftheassemblymany also beconsidered: effects ofa‘more composite’aircraft should cost andperformance,variousknock-on ite areas canbefurtheroptimisedintermsof and more costeffi cient airframes:compos- structure isnotsuffi cient toachievelighter percentage ofcompositesintheairframe bus A350XWB.Nevertheless,increasing the anticipated fortheBoeing787andAir- A380 structuralweightandupto50%is Composites represent 26%oftheAirbus to corrosion. rent designrulesandare alsolesssensitive age underin-servicefatigueloadswithcur- fasteners, are lessprone toprogressive dam- ing ofmore integratedstructures withfewer ratios thanmetallicones,allowthedesign- greater stiffness andstrength todensity tures withlessmaintenance.Theyprovide Compositesolutionscandeliverlighterstruc- StateoftheArt-Background nUmerical Sizing eXtended, IntergratedandMature More Affordable Aircraft through MAAXIMUS cycle timewasavailable, simulation-based ductility, stiffness); adapted tocompositeproperties (lackof vides additionalweightreduction; small compositepartsbyalargepart pro- - more conductivecompositesare neces- - reduce- thecurrent developmenttimeframe Regarding fasterdevelopment,theaimisto: reduce thestructural weightby10%,com- - - reduce themanufacturingandassembly enable ahighproduction rate:50%reduc-- composite airframeare to: The objectivesregarding thehighlyoptimised a virtualstructure developmentplatform,to - a physicalplatform,todevelopand validate - on: achieved through coordinated developments optimised compositeairframe.Thiswillbe ment and‘rightfi rst time’validationofahighly Theaimistodemonstratethefastdevelop- Objectives protection. sary toavoidadditionalweightforsystem which relies onphysicaltests; ture thanthecurrent development process expensive pathtofi nd theoptimalstruc- design wouldprovide afasterandless responding non-recurring cost. (ALCAS reference), andby10%ofthecor- liminary designuptofull-scaletestby 20% of aircraft compositestructures from pre- TANGO FP6Project fuselage). similar fuselagesections(F7X,A320and pared tothebestavailablesolutionson a result ofmore integratedstructures; ALCAS FP6project equivalentreference) as recurring costsby10%(compared tothe section; tion oftheassemblytimefuselage them earlier. identify thebestsolutionsfasterandvalidate low-weight aircraft; the appropriate compositetechnologiesfor - IT frameworkdevelopment,forasuccessful - - Generic numericaltechnologiesforoptimi- - Advances incompositetechnology; - aircraftVirtual engineeringand can becategorisedinthefollowingthemes: improvements needtobeachievedfi rst and ment cannotbelaunchedfrom scratch.Many objectives, thetwo-sectionbarrel develop- However, toachievethe different project airframe development. ence withthecurrent industrialapproach for down byskilldisciplineisadirect correspond- made oftwofuselagesections.Thisbreak- assemble, control andtestafull-scalebarrel, MAAXIMUS willdesign,analyse,manufacture, Basedonasetofairframerequirements, DescriptionofWork avoid lateandcostlychangesduetounex- - - additionally reduce theairframedevelop- aims are to: Regarding the‘rightfi rst time’structure, the ite aircraft structure. Development andvalidation ofnewstandards inhighfi delity modeling,optimisation,analysisandcertifi cation ofcompos- coherent workingenvironment. multi-skill integrationofnewmethodsintoa sation andanalysis; manufacturing; pected testresults. trial context; equivalent developmentstepsinanindus- ment costsby5%compared withthe - ‘capability development’view:‘Hubview’. - ‘airframe development’skillview:Sub- development: simultaneously thetwodimensionsof The overallMAAXIMUSstrategyistoaddress virtual platform. the expectedaccuracyandconfi dence ofthe the full-scalecompositebarrel, demonstrating facturing, control andtestinguptofailure of demonstrated bythedesign,sizing,manu- Advances incompositetechnologywillbe This willbeakeyassetforairlinersatisfaction. letins orpost-entryintoservicemodifi cations. for entryintoservice,withfewerServiceBul- today. More mature aircraft willbeprovided a trouble–free designearlierthancanbedone testingwillbeamajorassettofreezeVirtual - a setofadvancedoptimisationandanaly- - a genericcompositebarrel section manu- a setofphysicaltestsatcoupon,structural - Themainresults oftheproject willbe: ExpectedResults the sub-projects. project andcreate theconnectionbetween This willgiveatransversevisiononthe contain alltheproject workpackages project view. Thedifferent sub-projects will framework. sis methodsintegratedinademonstrator factured andtestedunderquasi-staticload; detail andpanellevel; 153 Improving Cost Effi ciency 154 Improving Cost Effi ciency Total cost: Instrument: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: GrantAgreement: FR31060Toulouse RoutedeBayonne03 AirbusOperationsSAS S ru A FR DE AT FR FR DE FR DE UK FischerAdvancedCompositeComponents AG IT FR Eurocopter DeutschlandGmbH ES ESIGroup SA FR IT European Aeronautic DefenceandSpace CompanyFranceSAS BE EADSDeutschlandGmbH(MASand IW) DE DeutschesZentrumfürLuft-undRaumfahrt e.V. FR Centre d’EssaisAéronautique deToulouse DassaultAviation SA NL DassaultSystèmesSA ConstructionsIndustriellesdelaMéditerranée Centro ItalianoRicerche Aerospaziali SCPA Centre deRecherche enAéronautique ASBL AleniaAeronautica S.p.A. AirbusUKLtd AirbusEspanaSL AirbusDeutschlandGmbH AdvancedLightweightEngineringBV ARTTIC +33(0)567197090 +33(0)5619399 70 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.maaximus.eu AAU UK ABAQUS 60 months MAAXIMUS 67140538 Mr. DietrichKnoerzer CP–IP Mr. JocelinGaudin 31.03.2013 01.04.2008 40199771 213371 Aerostructures andMaterials

nUmerical Sizing More Affordable Aircraft through eXtended,IntergratedandMature € € nvriyo ars GR IE TR SE PL NL DE SE UK UniversityofPatras FR UniversityofLimerick CH Tusas Aerospace IndustriesInc. SwedishDefenceResearch Agency IT DE Technology PartnersFoundation NL Technische UniversiteitEindhoven UK Technische UniversitätHamburgHarburg Technische UniversitätCarolo-wilhelmina zuBraunschweig EidgenössischeTechnische HochschuleZürich StichtingNationaalLucht-enRuimtevaartlaboratorium BE SogetiHighTech (CapGemini) FR DE Swerea SICOMPAB CZ ShortBrothers plc FR FR BE Rheinisch-Westfaelische Technische IL HochschuleAachen Sonaca PT UK DE PolitecnicodiMilano RU Offi ce Nationald’ÉtudesetdeRecherche Aérospatiales FR MSCSoftware Ltd SAMTECH EcoleNormaleSupérieure deCachan SA QinetiQ LETOVLETECKAVYROBAS.R.O. BE ES LeibnizUniversitätHannover GottfriedWilhelm FR SA GR NationalInstituteofAviation Technologies IsraelAerospace IndustriesLtd LMS Ltd iSIGHTSoftware SARL UK ES InstitutoSuperiorTecnico DE InstitutNationaldesSciencesAppliquéesdeLyon Latécoère IntegratedAerospace SciencesCorporation O.E International ImperialCollegeofScience,Technology andMedicine DE IMAMaterialforschungundAnwendungstechnikGmbH FundaciónImdeaMateriales Universität FundacióndelaIngenieraCivilGalicia ES Fundación Stuttgart Fatronik 155 Improving Cost Effi ciency 156 Improving Cost Effi ciency advanced, smart, miniaturisedandreliable For thisglobalobjective,itwilldevelop an use inall-electricaircraft. thermal environmental conditions ready to Electro-Mechanical Actuators(EMA)inharsh high performanceandreliability capabilitiesof TheCREAMproject objective istoreach new Objectives auxiliary actuators). pulsion inverters,variouspumps,and braking system,landinggearactuators,pro- Actuators -EMA(fl ight control actuators, hydrostatic actuatorsbyElectro-Mechanical allowing thereplacement ofallelectrical the conventionalhydraulicsystems,thereby ble, electrically-powered actuatorstoreplace aircraft isthedevelopmentofcompact,relia- challenge fortheimplementationofPBW technology islaggingbehind.Infact,thereal the actuators.However, thematurityofPBW risks byproviding electricalpowerstraightto the hydraulicconnectionanditsassociated to signifi cantly reduce oreliminatealtogether of AEAs.Thegoalpowerbywire (PBW)is achieving thisambitioustechnologicalvision tors are oneofthetechnicalbottlenecksfor Today, itisclearthatreliable electricactua- duce thrustandpredominantly electricpower. must beredesigned andoptimisedtopro- power, hydraulicpowerand electricalpower, rently required toproduce thrusts,pneumatic lines aspossible.Theengine,whichiscur- plicated circuits ofhigh-pressure hydraulic as manyhydraulicpowersources andcom- (AEA). Thegoalofthisconceptistoeliminate to future movestotheAllElectricAircraft nomic trends appliedtoairtransportpoint Theactualpolitical,environmental andeco- StateoftheArt-Background integrated inActuatorsandMotors for CompactandReliableElectronic InnovativeTechnological Platform CREAM and thecomplexvalidationplantoensure the ter understandingoftheharshenvironment WP1, Specifi cations, isorientedtothe bet- into 4Work Packages(WPs). actuator preparation. The project isdivided technological platformdestinedto electric high performancesmartelectronic andmotor motor technologiesandtointegratethema emerging sub-components,packagingand ment andvalidationofanumbervarious cal research program allowingthedevelop- CREAMproposes anambitioustechnologi- DescriptionofWork - Provide- validationofaeronautic reliability in Integratethenewelectronic andmotorplat- - - Provide hightemperature andcompact - Provide advancednewconceptofthermal - Provide highpowerdensityandcompact order to: electronic modulesandtheEMAmotorsin substantially improve thedriveandcontrol components andassemblymethodsableto ing newcompacttechnologies,advanced electronic technologicalplatformintegrat- health monitoringfunctionality. hours), andevenbetter(100000hours)with than existinghydraulicsystems(50000 high temperature atleastthesamelevel ing performingthermalmanagement; thermal environment (above200°C)provid- form inactuatorhousingandaverysevere the motorvolumeandmass); motors foractuators(reduction of30% allowing higherperformancesandreliability; management oftheelectronic platform mass); a factorof2theelectronic volumeand grated inactuatorsormotors(reduction by characteristics ofelectronics modulesinte- cated tothedevelopment ofanewmotorfor WP3, ActuatorGlobalIntegration, is dedi- integration. bly technologiesandreliability ofthemodules tronic devicesdeveloped, including allassem- WP2.4 dealswiththereliability oftheelec- high temperature applications. dedicated tothecontrol oftheactuatorfor WP2.3 willdevelopanotherelectronic module power packaging. module andthecompacthightemperature power componentinterfaceswiththecontrol power modulefortheactuatorincluding WP2.2 refers tothedevelopmentofanew modules). global packagingandintegrationbetween MCPM globalpackaging(electronic interface, of thisactivityandalldevelopmentsthe WP2.1 refers tothetechnicalcoordination sub-workpackages. tor. Thisworkpackage is dividedinto4 tion ofthenewelectronic partoftheactua- CREAM project andwillleadtothecrea- Design, isthecore developmentofthe WP2, Multi-ChipPowerModule(MCPM) aircrafts. best implementationofthenewactuatorin CREAM EMAInnovation:AppliedtoFlightcontrol actuator Technological ReadinessLevelexpected. at validatingthenewactuatortoperform WP4, Technological platformvalidation,aims the actuator. control method,willbeevaluatedtoimprove gies, asnewmagneticmaterialsormotor this generationofactuators.Newtechnolo- ReliableEMAactuatorsinhard thermalenvi- - High temperature andcompactmotorcon- - - A newtechnologyanddesignformeasur- - Successful developmentofhighthermal - Reliable ‘application-ready’ high-tempera- impacts: CREAM project willleadtofurthereconomic Thefollowingtechnologicaloutputsofthe ExpectedResults for maintenance. ronment providing reduced operationalcost troller forapplicationsinvalves andpumps; in varioussectors; ing current inharshenvironment, reusable areas where reliable coolingisanissue; bility: suchmaterialsare ofinterest inmany conductive materialswithhighthermalsta- temperature electronics; European know-howinthefi eld ofhigh- ture electronic modules:establishmentof

© CREAM / SAGEM 157 Improving Cost Effi ciency 158 Improving Cost Effi ciency Partners: ECOffi Fax: Tel: E-mail: Coordinator: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: enhanced safety. ing costs(includingreducedand fuelburn) tion, easiermaintainability, reducing operat- and reliability, benefi ts ofoverallweightreduc- ics inactuationincludehigherperformances application ofelectricalpowerandelectron- Immediate benefi ts derivedfrom thewider oehEgneigLD GR FR CH RU CH HU GR AT AlmaConsultingGroup S.A.S. RotechEngineeringLTD JointStockCompanyUnitedAircraft Corporation Naturen Industrial,InformaticsandTrading Ltd. CH DE Technological Educational instituteofPiraeus FraunhoferInstituteofIntegratedSystems andDeviceTechnology BE LiaisonElectro-Mécanique SA AdvancedSiliconS.A. EcolepolytechniqueFédéraledeLausanne EPFL AustrianInstituteofTechnology CISSOID UK SEMELAB S.A. PLC FR75512Pariscedex15 27rueLeblanc SagemDéfenseSécurité +33(0)475867080 +33(0)475867050 FP7–AAT–2008–RTD–1 cer: [email protected] HsaoSia FR Hispano-Suiza 36 months CREAM 6127734 Mr. HansJosefvondenDriesch CP–FP Mr. EricBRIDOT 31.08.2012 01.09.2009 4199478 234119 SystemsandEquipment

integrated inActuatorsandMotors Innovative Technological PlatformforCompactandReliableElectronic € € ing methods. concepts andsub-systemsreliability test- control surfaces,byintegratinginnovative for aircraft actuatorsincludingfl ight critical electric actuationasaprimaryreliable method CREAM isabletoestablishthecredibility of networking technology, withitsassociated ble theexploitationofkeyterrestrial optical The primaryobjectiveofDAPHNEistoena- fl exibility andpackagingminiaturisation. terms ofspeed,channelcount,modularity, aircraft equivalentsbyorders ofmagnitudein in networkswhichoutperformeventhelatest com systemsinthelast20yearshasresulted optics interrestrial communicationanddata- The dramaticadvanceintheuseoffi bre than astepchangeintechnology. adaptation ofexistingsystemsolutionsrather and certifi cationrequirements whichfavouran lag isfurthercompoundedbystringentsafety or communicationsystems.Thistechnology ing technologiessuchascomputerhardware art. Thisisparticularlytrueofrapidlyevolv- several yearsbehindthetruestateof tems employedonanewairframeare often development ofnewaircraft meansthatsys- tice, thelongdesigntimeassociatedwith digm oftechnologicalachievement.Inprac- aircraft Modern are considered tobeapara- StateoftheArt-Background Networks DevelopingAircraft Photonic DAPHNE suitable asaplatformforfuture development. the current stateoftheartandmakethem pean aircraft systemscapabilitywellbeyond validate future aircraft networksto takeEuro- from commercial markets,anddevelop key componentsandnetworktechnology aircraft andsystems.Theproject willadopt performance advantages,infuture European ing EMCimmunityandimproved security. optics bringsotherimplicitadvantagesinclud- and scalabilityofthenetwork.Moreover, fi bre cost, andimprove themodularity, fl exibility technology wouldreduce size,weightand A coordinated stepchangetofi bre-optic expensive, andthistrend issettocontinue. more complex,larger, heavierandmore based oncopperconductors,havebecome bandwidths andprotocols. Existingsystems, of nodeswithawiderangespanlengths, networks supportalargenumber Modern throughout thehistoryofpowered fl ight. matically incomplexityandfunctionality Aircraft datanetworkshaveincreased dra- Objectives 159 Improving Cost Effi ciency 160 Improving Cost Effi ciency - Extensive systemtestingwill - Components andmoduleswill - Network hardware willbedeveloped, pro- - System integrationconceptswillbedevel- Existing andfuture aircraft networkrequire-- as follows: TheDAPHNEworkplanissplitintokeytasks DescriptionofWork compelling. and businesscaseforphotonicnetworksis fuselage structures meanthatthetechnology nodes, andtheincreased useofcomposite by information-to-the-seat),largenumberof urability, highbandwidths(drivenprimarily Here theneedforhighfl exibility, re-confi g- area forimplementingphotonicnetworks. systems asthemostimmediateapplication The DAPHNEconsortiumhasidentifi ed cabin networks toaircraft systems. required tobringtheadvantagesofphotonic However, research anddevelopmentworkis may beadaptedforaerospace environments. source oftechniquesandcomponents,which restrial telecomsmarketshasprovided arich The boominphotonictechnologiesforter- mission across theintegrated including quantifi ed datatrans- vidual componentsandsystems, validate thecompatibilityofindi- system applications. resent different aircraft typesand aircraft networkmock-upstorep- modules willbeintegratedinto network systems.Theprototype be integratedintorealistic aircraft ment prepared forintegration. constructed, andmock-upaircraft equip- built andtested.Networkmoduleswillbe willbe totype componentsandharnesses work performance. integrated systemsandmodelpracticalnet- modelling willassesstheperformanceof work layoutsforgenericairframes.Network nications asawhole,withappropriate net- modelled, consideringaircraft-level commu- oped andarchitectures analysedand of reference fortheproject. ments willbestudiedtoestablishtheframe - Dissemination andstandardisation ofthe - Physical environmental testingwillcapture - Aircraft electronic LRUhousings,designed - Active andpassivecomponentsoptimised - Quantitative networkanalysisandmod- Thekeyoutputsfrom theproject include: ExpectedResults developments. sue thestandardisation ofthetechnology the aircraft industry, aswellactivelypur- disseminate theproject aimsandresults to uptake oftheproject results. DAPHNEwill results isessentialtoensure widespread safety testing. network physicallayer(s)andcriticalsystem tions onfi xed androtary wingairframes. from current generationfi bre-optic installa- anisms basedonreal observedinstances commonly recognised fault-causingmech- which theywillbeinstalled ing andtheeffect ontheenvironment into photonics devices,componentmount- to takeintoaccountthesmallfootprintof survivability. of activecomponentsandEMC/lightning be addressed, includingtheself-testing maintenance andrepair considerationswill mounting, encapsulation andin-harness for aircraft environments. Theproblems of availability andmaintainability. network functionalityaswellreliability, cal characteristics,opticalperformanceand effi ciency ofthenetworksintermsphysi- elling ofthephysicallayertooptimise DE21129Hamburg AirbusDeutschlandGmbH Kreetslag 10 Coordinator: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: ehia nvriyo emr DK DE CZ IT DE UK UK PT DE UK SkysoftPortugal,Software eTecnologias deInformação, S.A. PT Technical UniversityofDenmark Technische UniversitätIlmenau InstitutodeEngenhariaSistemaseComputadores doPorto SQSVláknovaAptikaAS W.L. Gore andAssociates GmbH Gooch&Housego(Torquay) Ltd FR GalileoAvionica S.p.A. Westland HelicoptersLtd BAESystems(Operations)Ltd EADSDeutschlandGmbH D-Lightsys S.A.S. +49(0)4074386354 +49(0)4074376232 FP7–AAT–2008–RTD–1 cer: [email protected] ii opnnsLd UK ComponentsLtd Vivid 36 months DAPHNE 6730852 Mr. Eric Lecomte CP–FP Mr. NickBrownjohn 31.08.2012 01.09.2009 3956791 233709 SystemsandEquipment DevelopingAircraft PhotonicNetworks € € 161 Improving Cost Effi ciency 162 Improving Cost Effi ciency oped tobetterhandle IPpacket-basedcom- radios’ structure andfunctionswillbedevel- all linkswillcarryIPpackets,andthe avionic domains through afullyIP-basednetwork.So will beshared betweenthe variousapplicative craft andground stations or serviceproviders cation anddigitalvoicelinksbetween theair- Following theSANDRAvision,datacommuni- large varietyofservices. provided bydifferent providers to implementa globe theaircraft mayutilizeseverallinktypes wide basis,thusonatypicalfl ight around the provider existsforalllinktypesonaworld- vary from aircraft toaircraft. Nosingleservice tion systemsdeployedonboard, whichmay and ontheparticularsubsetofcommunica- available basedonthegeographicallocation simultaneously active.Theselinkswillbe shall betohavemultipledataorvoicelinks the normalstateofoperationforaircraft tecture basedontheinnovativeconceptthat SANDRAwilldevelopandvalidateanarchi- Objectives modularity andreconfi gurability. ensuring ahighdegree offl exibility, scalability, improve effi ciency andcost-effectiveness by cation systemisofparamountimportanceto this context,anintegratedaircraft communi- nections thatonlyairtransportcandeliver. In the worldtobenefi t from theessentialcon- formance, andwillallowpeopleallaround effi ciency andimproved environmental per- passenger andfreight fl eets willbringbetter per yearoverthesametimeframe.Future of passengersisexpectedtogrow by4.5% per year. Onaworldwide basis,thenumber cast, withanaveragegrowth of2.7%-3.7% 2025 according totheEurocontrol’s lastfore- Airtraffi c inEurope isexpectedtodoubleby StateoftheArt-Background Radios andAntennas through integrationofDatalinks, SeamlessAeronautical Networking SANDRA - integration atantennaandRFlevelby - integration ofseveralexistingradiotech- - integrationatnetworklevelhavinganIPv6 - integration atservicelevel,supportinga four different levels,namely: standards. Integrationwillbeaddressed at set ofinterfacesandwell-proven industry based onanopenarchitecture, acommon grated aeronautical communicationssystem and validatethrough in-fl ight trialsaninte- TheSANDRAproject willdesign,implement DescriptionofWork spares andmaintenanceoperations. to justtheonereconfi gurable type,simplifying the numberoftypesradiowillbereduced number ofradiosetscarriedconsiderably, and cifi c radiolinkasrequired. Thiswillreduce the independently reconfi gured tooperateaspe- system eachsingleradioelementcouldbe munications. InadditionintheSANDRAradio means ofaverylow profi le satelliteantenna type ofradiolink; each radioelementtooperateaspecifi c the possibilitytodynamicallyreconfi gure modular approach willadditionallyensure mented asstandaloneequipments. The with respect tocurrent radiosystemsimple- reduce thesize,weight,andcostinavionics (IMR) platform,allowingtodramatically nologies intoanIntegratedModularRadio the current procedures tothenewsystem ATN/OSI, toensure arealistic transitionfrom network technologiessuchasACARSand point, butaddressing interoperability with aeronautical networkasfi nal unifi cation Service Orientedarchitectural approach; management-related operationsthrough a operations, securityservicesandairtraffi c on-ground passengerservices,airport tions, cabincrew operations,in-fl ight and full rangeofservicessuchasairlineopera- completely inlinewithSESARactivities and Last butnotleast,theSANDRAconcept is services. senger andenhancedcabincommunication the highmarketdemandforbroadband pas- tion Managementconcept,andformeeting Informa- Making basedontheSystemWide of distributedservicesforCommonDecision resent akeyenablerfortheglobalprovision SANDRA communicationsystemwillrep- addressed bySANDRA.Inthislight,the architecture isoneofthemainchallenges through acost-effective andfl exible avionic with veryheterogeneous requirements Theintegrationofdifferent servicedomains ExpectedResults SANDRA Architectural Sketch - adaptationforintegratedmulti- WiMAX domain airportconnectivity. passenger andcabinapplications; especially meantforbandwidthdemanding low maintenance,broadband connectivity, prototype allowingtheprovision ofreliable, HTTP APC Applications VoIP TCP/UDP 802.3 IPv6 … Middleware Layer FTP OSI router, etc. oron-groundgateways, aiborne and IPv4throughtunnelling, Interoperability withATN/OSI TCP/UDP 802.3 802.3 IPv4 IPv6 Router(s) IPv6 CPDLC CLNP 802.3 802.3 TP4 ATS &AOCApplications VoIP … OSI Router Analogue audio domains. ers abroader setofapplicationsandservice global provision ofdistributedservicescov- the proposed integratedapproach forthe term implementationpackages,although identifi ed bySESARforthemediumandlong SANDRA addresses manyoftheenablers Future CommunicationsStudy. Inparticular, and recommendations ofEurocontrol/FAA gramme aswellwiththefi nal conclusions Air Traffi pro-c Managementmodernisation future plansforthedeploymentofEuropean ESA Iris? Analogue audioVHF Integrated ModularRadio AeroMacs VDL2 BGAN Ku L-DACS 1/2? SP5 –IntegratedAntennaSystem SP6 – Global Airborne Capability SP6 –GlobalAirborne SP4 –IntegratedModularRadio SP3 –SeamlessNetworking OSI/IPv6 overVDL2 Hybrid SatCom Demonstrated Only Project AeroMacs Waveforms Antenna showed 163 Improving Cost Effi ciency 164 Improving Cost Effi ciency Total cost: Instrument: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: GrantAgreement: IT00040Pomezia dell’Industria4 Via SelexCommunicationsS.p.A. asutAito A FR NL IT UK DE IE FR IT FR NL InstitutNationaldeRecherche enInformatique etAutomatique FR IntecsInformaticaeTecnologia delSoftware SpA FR DE European Aeronautic DefenceandSpace CompanyEADSFrance LioniX DK UK DFSDeutscheFlugsicherungGmbH IT DassaultAviation SA FR CynerSubstratesbv IMST UniversityofBradford GateHouse ALTYS Technologies S.A.R.L. BV AleniaAeronautica S.p.A. SE AirtelATN Ltd. GmbH ThalesResearch &Technology (UK)Ltd A/S THALESAvionics SA THALESALENIASPACE FRANCE UK ACREO SELEXSistemiIntegratiSpa Thales AB Avionics +39(0)691852251 +39(0)691852312 FP7–AAT–2008–RTD–1 cer: [email protected] etce etu urLf-n amar .. DE DeutschesZentrumfuerLuft-undRaumfahrte.V. 48 months SANDRA 23988398 Ms.StéphanieStoltz-Douchet CP–IP Mr. AngelolucaBarba 30.09.2013 01.10.2009 15620824 233679 SystemsandEquipment

and Antennas Seamless Aeronautical Networkingthrough integrationofDatalinks,Radios € € rs on IT NL AT HU IT NL &Young Ernst ParisLodron UniversitätSalzburg UniversityofPisa-DepartmentInformationEngineering UniversityofTwente NL RU SlotConsultingLtd. SITA InformationNetworkingComputing BV DE StichtingNationaalLucht-enRuimtevaartlaboratorium TriaGnoSys GmbH Monitor-soft Radiocomunicazioni IT RadioLabs –ConsorzioUniversitàIndustriaLaboratoridi 165 Improving Cost Effi ciency 166 Improving Cost Effi ciency applications. are workingtogetherfor specifi c reference that thecomponentsandbreadboard bridges) are integratedinSIBs todemonstrate ised modems,wiringnetworkand specifi c mised Chipsets,adaptedrepeater, custom- the basictechnologicalcomponents(opti- validation inalaboratoryenvironment, where Level (TRL)4:componentandbreadboard TAUPE istargetingTechnological Readiness unique pathwires. and secured poweranddatatransmissionon for systemsqualifi cation thatwillalloweasy and networkequipments,requirements also deliverspecifi wiring cations forharness communication networks,theproject will onic architectures, whichmixelectricaland From theresulting TAUPE fullyoptimisedavi- to thesystemdesign. overall safetyandwithoutaddingcomplexity rent applicationswithoutjeopardising the the samerequired functionalitiesasthecur- The TAUPE avionicarchitecture willprovide unique pathwires. feasibility oftransmittingpoweranddataon on SystemIntegrationBenches(SIB),the munication networks)thatwilldemonstrate, transmission (mixingaircraft powerandcom- mised avionicarchitecture forpoweranddata Themainobjectiveistoprovide afullyopti- Objectives ing poweranddataonthesamecable. the aircraft. Bothtechnologiesaimatsupply- or PoweroverData(PoD)technologiesinside introducing PowerLineCommunication(PLC) length andmassofthecablesinstalledby architectures oftheaircraft andreducing the Thisproject aimsatsimplifyingtheelectrical StateoftheArt-Background Path wirEs Transmission inAircraft onUnique TAUPE - the CabinMock-Up(provided byEADS and functionalcommunication(protocols): electrical powerquality, communicationsignal Two SIBswill be usedforvalidationofthe transport anddomesticapplications. power anddataonthesamecableforsurface ciency andreliability inthetransmissionof These technologieshaveproven theireffi - - the PowerLineCommunication(PLC) the PoweroverData(PoD)technology; - implemented: Two complementarytechnologieswillbe 2. theCabinLightingSystem(CLS),from 1. theCockpitDisplaySystem(CDS),from confi gurations: resentative ofthedifferent transmission two reference applicationswhichare rep- The proof ofconceptwillbecarriedouton - transmission. functional andsafetyrequirements; - - aircraft environment; three challenges: Theapproach istorespond tothefollowing DescriptionofWork - the CopperBird (provided by Hispano-Suiza). Deutschland); technology. aircraft. geting high-speedtransmissionforfuture Diehl Aerospace, acore application tar- sidered assafetycriticalforfuture aircraft; Thales Avionics, anavionicapplicationcon- - a simplifi cation ofthecablingsystemwith - asimplifi cation ofthecablingmaintenance - a systemsweightreduction witharatioof TheTAUPE results willshow: ExpectedResults FR31700Blagnac rueRaymondGrimaudBP10016 Labinal SA ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: the reference applications,resulting inan 50% lesscablesdeployedcompared to A320; 40% reduction inmaintenancecosts)onthe 20% ofmaintenancetimesaved(anda an impactonsecurity, costandtimewith tomaintain)resulting(only oneharness in fuel savedperdayforthecurrent A320fl eet; NO impact onfuelconsumptionandCO (300 kgapprox. savedontheA320),andan between 2and4forthesamefunctionalities +33(0)5622203 90 +33(0)5622204 39 FP7-AAT-2007-RTD-1 x emissionswitharound 180tonnesof cer: [email protected] http://www.taupe-project.eu 36 months TAUPE 5665170 Mr. HansJosefvondenDriesch CP–FP Mr. DavidHania 31.08.2011 01.09.2008 3630186 213645 SystemsandEquipment Transmission inAircraft onUniquePathwirEs € € 2 and acontributiontothedefi- nitionofelectricand portability tootherapplications; - industrialisation andtherelated costs; - safety (designrobustness abletomeetcer- - take intoconsiderationthefollowing: the TAUPE assessmentandvalidationwill To guaranteethefullexploitationofresults, a cost-effective retrofi- t whichwillallowcur- telecommunication standards. tifirequirements); cation for theA320(60%ofretrofi t costssaved). alities easily, thussaving30%ofretrofi t time rent airlinefl eets toimplementnewfunction- assembly lines; cost, complexityandareduction ofdelayin impact onspaceallocationforcabling, 167 Improving Cost Effi ciency 168 Improving Cost Effi ciency Partners: hlsAinc A FR RO DE FR NL DE CH CH CH FR UniversitédesSciencesetTechnologies deLille-IEMNGroupe TELICE ES ThalesAvionics SA Offi ce Nationald’ÉtudesetdeRecherche Aérospatiales StichtingNationaalLucht-enRuimtevaartlaboratorium NL HauteEcoled’IngénierieetdeGestionVaud FR FR EcolePolytechniqueFédéraledeLausanne EKISRomaniaSRL EADSDeutschlandGmbH Hortec DiseñodeSistemasenSilicioS.A. Hispano-Suiza DiehlAerospace GmbH Ascom(Schweiz)AG BV SA ARTTIC

ibsFac A FR AirbusFranceSAS niern n rhtcue Engineering andArchitecture Schoolof University ofScienceCentralSwitzerland,Lucerne CH to fouryears. method) caneasilyexceedatimeframeoftwo methods (orevenanadaptationofexisting re-validation. Validation ofnewmanufacturing permitted withouttime-consumingandcostly zen, nochangestoprocess parametersare laboratory examinationandtesting.Oncefro- inspection, andsuccessfulpartvalidationvia ess followingprocess qualifi cation, fi rst article method adoptedistothen‘freeze’ theproc- to ensure partsurfaceintegrity. Theindustry are oftenreduced ortoolsare changedearly Hence manufacturingprocess parameters above havetobetakenintoconsideration. such apart,themachinabilityissuesstated service life,andindeclaringthelifefor will functioncorrectly andsafelytoadeclared facture toensure thatpartsentering service placed onsafetycriticalcomponentmanu- optimised. Stringentlegislativecontrols are ties, machiningprocesses canneverbefully added tothechangesinmechanicalproper- under normalcircumstances, butwhen materials are classedasdiffi cult tomachine of materialswithexoticsuperalloys.These leavesthechoice maximum, whichinturn and mechanicalstresses are pushed tothe the required engineperformance,thermal is bynature veryconservative.To achieve aeroing componentsinmodern engines Themanufacture ofsafety-criticalrotat- StateoftheArt-Background Jet EngineComponents Processes foraNewGenerationof AdaptiveControl ofManufacturing ACCENT nent conditionswhilst operatinginamulti- to theconstantlychangingtooland compo- Being abletoadaptthemachining process to themanufacture oftheircomponents. ness byapplyingadaptivecontrol techniques manufacturers toimprove theircompetitive- ACCENTwillallowtheEuropean aero-engine Objectives could be40%. machined surfaces.Anticipatedcostsavings improve componentdesignduetooptimised small process changes,andthepossibilityto elimination ofcostlypartre-validation dueto face properties, toolusageoptimisation,the in termsofgeometry, surfaceandsub-sur- ing process time,more consistentpartquality be seenintermsofreduced partmanufactur- conditions andnolonger‘frozen’. Benefi ts will processes willbeoptimisedtotheprevailing dimensional ‘approved process window’, tics, etc.willbeinvestigated andunderstood. machine toolcondition,materialcharacteris- ing process parameters, cuttingtooland integrity generatedasaresult ofthemachin- pose. Theinteractionbetweenthe surface formance intermsoflifeandfi tness for pur- have adirect effect onthecomponentper- WP4: willbringtogetherthoseelements that window. keeps theprocess withinadefi ned process a closed-loopadaptivecontrol systemthat how touseprocess monitoringsystemsin package willdeliveranunderstandingof Procedure forAdaptiveControl. The work WP3: isfocusedondevelopingtheStandard level. in order tosatisfyadefi ned surface integrity process hastobeestablishedandcontrolled specifi cation whichdefi nes howamachining material combinations.Theoutcomewillbea eter windowsforthemachiningprocess and generated todefi ne multi-dimensionalparam- WP2: ensures thatastandard procedure is WP1: project management. (WP). Theproject isdividedintofi ve workpackages DescriptionofWork 169 Improving Cost Effi ciency 170 Improving Cost Effi ciency turing methodologythatwillallowsignifi cant requirements. Itwillprovide anewmanufac- the demandsofdesignandsurfaceintegrity ess parameterwindowsare validatedtomeet components manufactured withintheseproc- eter windowsanddevelopmethodswhereby ard procedure fordefi ning process param- components, ACCENTwilldevelopastand- Forthemanufacture ofcriticalaero-engine ExpectedResults related data. will beplacedonstorageandretrieval of the newvalidationprocedure, newdemands the componentdesigntobeoptimised.With sequent componentservice,andthusallow machining processes onpartqualityandsub- design functiontounderstandtheeffect of The knowledgegainedhere willallowthe WP5: exploitationanddissemination. engineers inEurope. a supplyofhighlyskilledyoungaero-engine academia andindustry, andhelptosecure helping toincrease thesynergybetween universities andcompaniesinEurope, thus will involveworld-leadingexpertsfrom both of theaero-engine sectorinEurope. ACCENT collaboration opportunitiesandconsolidation partners, increased contactswillleadtonew Europe’s aero-engine companies are project ponents tobeoptimised.Asthemajorityof the designandmanufacture ofcriticalcom- individual companyprocedures, thusallowing with amethodologythatcanbeadaptedto ity andprovide aero-engine manufacturers responsible forproducing variablepartqual- ing techniques.Itwilltakeaccountoffactors adaptive control basedonprocess monitor- develop anovelstandard procedure for reduction inrecurring validationcostsand UKSW1E6AT London BuckinghamGate65 RollsRoyceplc Filton Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: nvriyo als IT IT SK ES SE FR ES FR DE UniversityofNaples FR AdvancedPrototype Research MondragonGoiEskolaPoliteknikoa S.Coop. Technical UniversityofKosice FR Sociétéd’ÉtudesetdeRecherches del’ENSAM L’Ecole Nationale d’IngénieursdeTarbes IndustriadeTurbo Propulsores, S.A. Volvo Aero Corporation IT MTUAero EnginesGmbH Turbomeca Snecma Avio SpA +44(0)1332249842 +44(0)1179797079 FP7-AAT-2007-RTD-1 cer: [email protected] WLRT ahn DE WZL-RWTH Aachen 36 months ACCENT 8196673 Mr. MichailKyriakopoulos CP–FP Mr. DavidBone 30.06.2011 01.07.2008 5374684 213855 DesignTools andProduction

Engine Components Adaptive Control ofManufacturingProcesses foraNewGenerationofJet € € 171 Improving Cost Effi ciency 172 Improving Cost Effi ciency a much higher cutting rate during Wire-EDM a muchhighercutting rateduringWire-EDM ator technologyandprocess control willallow New developmentsandadaptations in gener- ing (HighSpeedWire-EDM). ElectroHigh SpeedWire Discharge Machin- processes ofWater JetCutting(WJC)and turbine bladesanddisksbythealternative broaching process offi r tree structures ingas Theobjectiveistosubstitutethecritical Objectives broaching process. would beabletosubstitutethiscritical New andpromisingprocesses alternative work-piece geometry. is veryinfl exible regarding achangeinthe duction. Furthermore, thebroaching process broaching toolsalsoprevent continuouspro- time-consuming regrinding operationsofthe in additionalhighmaintenancecosts.The broaching process wearstools,resulting ties andaccuraciescanbeachieved,the rates incombinationwithhighsurfacequali- bine parts.Althoughveryhighmetal-removal process duringthemanufacture ofgastur- Broaching fi r tree profi les isaverycritical saving assemblyoftheparts. ments, resulting inaclosed-formandspace- blades. Firtree profi les connectbothele- rotors are produced byassemblingdisksand temperature nickel/titaniumalloygasturbine manufacturing technologies.Today, thehigh for effi cient, reliable andadditionalfl vidual andadaptedproductexible solutionscalls ponents are necessary. Theneedforindi- manufacturing processes forturbinecom- gas turbinesintheaircraft industry, effi cient Duetoahighincrease inmarketdemandfor StateoftheArt-Background Gas-engine turbinecomponents Manufacturing Processes for Unconventional(Advanced) ADMAP-GAS Concept ofADMAP-Gas - a continuousproduction process; - - lower maintenancecostsduetolesstool lower toolmanufacturingcosts; - be: The advantagesoftheseinvestigationswill turbine components. and environmentally safeproduction ofgas esses canbeusedfortheeffi cient, cheaper nologies inwhichtheproperties ofbothproc- using knowledge-basedmanufacturingtech- by takingadvantageoftheirCNCfl exibility, can beprogrammed fordifferent geometries developed duringthisproject, themachines proper datamanagementthatwillbe With process reliability. result inlowerproduction costsandhigher based superalloys.Thesecharacteristics for bladesanddisksintitanium-nickel- ess willeconomicallyproduce fi r tree profi les Abrasive Water JetMachining(AWJM)proc- and rim zone.ThisHighSpeedWire-EDM in combinationwithanalmostdamage-free wear;

© WZL Comparison betweenbroaching +Water andWire-EDM Jet allowing features andpocketstobecreated. through a closed-loopcontrol oftheprocess of newabrasivesandcarriermaterials, and and tightertolerances,viathedevelopment achieved through improved process control ity ofsubstitutingthebroaching. Thiswillbe process inorder toevaluatethecapabil- WP2 willfocusonthewater-jet machining dielectrics andadditiveswillbedeveloped. tric willalsohaveaninfl uence sodifferent with lowdischargeenergies.Theuseddielec- heat-affected zonetheprocess hastoberun ing bliskstructures. To generateaminimised tested forfi r tree slottingandrough machin- misation. Thisincreased cuttingratewillbe new wires, newdielectricsandfl ushing opti- be achievedwithnewgeneratortechnology, ability andprecision. Afastercuttingratecan to produce fi r tree structures withhighprofi t- processthe Wire-EDM toprove thatitisable WP1 ismainlyfocusedonthedevelopmentof (WP). There are three maintechnicalworkpackages DescriptionofWork easily corrected process inaccuracies. - less machiningspacerequired; - fl- exibilityandeffi ciencywhenthework-piece geometry hastobechanged; technologies describedabove. data integrationintothetwomainmachining order toimprove theeffi ciency ofCAD/CAM different developmentstepswillbe realised in system. Here thecommunicationbetween grated process anddatamanagement WP4 coversthedevelopmentofinte- totest,demonstrateandverifythenewinte- - anevaluation ofbothtechnologiesandintel- - a comparison ofAWJMwithbroaching and - - the creation ofnewnozzlesandmachine the developmentofmodifi- ed machinetools Themajordeliverablesoftheproject are: ExpectedResults engine components. grated processes formanufacturing real gas fi re tree profi les; to existingprocess chainsformanufacturing ligent process combinationsincomparison rough machiningofblisks; technologies; set-ups andcontrol algorithmsforAWJM process; dielectrics andadditivestooptimisethe and components,newwires, improved

© WZL 173 Improving Cost Effi ciency 174 Improving Cost Effi ciency Partners: ECOffi Fax: Tel: E-mail: Coordinator: Technical domain: Duration: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: DE52056Aachen Rheinisch-Westfälische Technische HochschuleAachen Templergraben 55 nvriyo hf l UK UK CH UniversityofSheffi eld AMRC(Manufacturing)Ltd FR DE DE CharmillesTechnologies SA TEKS Berkenhoff oelheld SARL GmbH GmbH +49(0)2418027432 +49(0)2418022293 FP7–AAT–2008–RTD–1 cer: [email protected] DA R IT DIAD SRL 36 months ADMAP-GAS 4322905 Michael Kyriakopoulos CP–FP Mr. Veselovac Drazen 01.08.0009 2883657 234325 DesignTools andProduction

turbine components Unconventional (Advanced)ManufacturingProcesses forGas-engine € € StateoftheArt-Background Edge Structure 2 CostEffi COALESCE2 - To- determinewaysofachievingfi xed, lead- Theprimaryaimsare: Objectives mechanisms. support alternative ment ofstructuraldesignconceptsthatwould this possibilityinitsstudiesthrough develop- gets tobemet.COALESCE2isincorporating change inaircraft performanceandcosttar- stand whethertheywouldbetterenablestep not justthosemostcommontoday, tounder- exploring otherfl ight control mechanisms, structure. There isalsoagrowing interest in to systemsinstallationshousedwithinthe and assemblyroutes andalloweasyaccess solutions thatoffer simplifi ed manufacturing used tocreate newinnovative,leadingdesign material andprocess technologiescanbe explore howtheapplicationofnewlymatured The predominant research activitywillbeto for bothairlineandaircraft manufacturers. effi ciency hasamuchgreater signifi cance studies becausethistypeofproduct cost aircraft willbeusedastheplatformfor leading edgestructure. Atypicalshortrange design integrationappliedtoaircraft fi xed collaboration studyofnewtechnologyand The COALESCE2Project isanindustrial continue todevelopitstechnicalknow-how. To maintainthispositiontheindustryhasto aerospace engineeringandmanufacturing. recognised worldwideastechnicalleadersin with manyofitsbusinessesestablishedand oped signifi cantly overthepast30years, TheEuropean Aerospace industryhasdevel- cost effi cient thanthehighlyfabricated ing structuraldesignthatisover30% more cientAdvancedLeading - To demonstrate,through simulation,both - To examineanddeveloptechnology slat system and WP4 on alternative moveable slat systemandWP4 onalternative fi gurations forawingwithforward moving as created inWP1.WP3 willfocusoncon- will becheckedwithreference tothecriteria based ontechnologydevelopedinWP2 and a typicalleadingedge.Thedesigns willbe will create innovative,low costdesignsfor details andjointassemblies.WP3 WP4 will validatetheperformanceofstructural will bestudied.Executingmechanicaltests and manufacturingprocess combinations concepts willbeevaluated.Newmaterials including toolinglay-outs,andapplicationto assembly process studieswillbecarriedout, selected fordevelopment.Manufacturingand be reviewed andtypicalfeatures willbe state-of-the-art leadingedgestructure will used throughout theproject. InWP2today’s defi ned, toensure acommonapproach is cost assessmentmethodologywillalsobe and designconceptswillbeevaluated.A tion ofthecriteriabywhichtechnologies concept developmentsandprovide adefi ni- performance thatmustbereached bythe metrical frameworkandminimumstructural working packages.WP1willdefi ne thegeo- Theproject issubdividedintofi ve operational DescriptionofWork good access,tosystemsinstallations. include theabilitytobothhouse,andhave meeting defi ned criticalcriteria.Thesewill developed designandtechnologysolutions the structuralperformance,showing the manufacturing/assemblyprocess and cost target; in enablingachievementofthechallenging mechanisms andshowhowtheycompare ventional andlessconventionalfl ight control integrated designoptionssuitableforcon- for over30years; structure thathasbeenstandard on aircraft 175 Improving Cost Effi ciency 176 Improving Cost Effi ciency One PartofLeadingEdgearea tobedeveloped European aircraft producers needtoensure the specifi ed requirements thattheprimary opments butare directed towards meeting into designsolutionsare notgenericdevel- developments performedandintegrated Themetallicandcompositetechnology ExpectedResults requirements. determine the‘best’conceptstomeetthose 4 ontherequirements specifi ed inWP1and evaluate theconceptsolutionsfrom WP’s 3& ated production costs.WP5willassessand evaluate selectedconceptsandtheassoci- and assemblyissueswillbeinvestigatedto nose orKruegerfl ap. Tooling, manufacturing confi gurations suchas,forexample,droop fi xed leadingedgestructure. much widerexploitationopportunitybeyond craft components,thisoffers thepotentialfor interests inthedesignandmanufacture ofair- ments. AsmostofthePartnershavestrong to otherAerospace componentdevelop- project butmayprove valuableinapplication This knowledgewillberelevant notjusttothis solutions forfi xed leadingedgestructures. to create innovative,high-performingdesign weaknesses andhowbesttoexploitthem understanding theirrelative strengths and up againsttoday’s state-of-the-artoptions, how thedifferent technologyoptionsmeasure partners willgainvaluableknowledgeabout technological developmentactivities,the future competitiveproducts. Through these SE58188Linköping UgglasgataPOBOX703 Bröderna SAAB AKTIEBOLAG Coordinator: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: tr okrAS .. NL DE IT CH NL FI StorkFokkerAESPB.V. BE StichtingNationaalLucht-enRuimtevaartlaboratorium EidgenössischeTechnische HochschuleZürich EADSDeutschlandGmbH Delfoi AleniaAeronautica S.p.A. Sonaca Oy SA +46(0)13185144 +46(0)13182667 FP7–AAT–2008–RTD–1 cer: [email protected] IBSU IIE UK AIRBUSUKLIMITED 36 months COALESCE2 4797477 Mr. Michail Kyriakopoulos CP–FP Mr. StefanNyström 31.03.2012 01.04.2009 2828378 233766 DesignTools andProduction CostEffi cient AdvancedLeadingEdgeStructure 2 € € 177 Improving Cost Effi ciency 178 Improving Cost Effi ciency involving multiplepartners.Compared topast ness, whileusingevolvingbusinessmodels shorter leadtimesandmore costeffective- more complexproducts bedevelopedwith than everbefore. Themarketdemandsthat manufacturers are facinggreater challenges European aircraft, engineandequipment Intoday’s contextofstrong competitiveness, StateoftheArt-Background Optimisation Capability EnablingNextDesign Engineering usingSimulation CollaborativeandRobust CRESCENDO Energy aircraft usecase Thermal aircraft usecase Powerplant integrationusecase Value use cgenerationcase rlmnr einDetailDefinition Preliminary Design Collaboration Enterprise Vœ˜ÌiÝÌ >ÃÜVˆ>̈ۈÌÞ]ÊiۜṎœ˜ÊE ̜ʓ>˜>}iʓœ`iÃ >˜}Õ>}iÃÊ>˜`Ê«ÀœViÃÃià >ÀV ˆÌiVÌÕÀiÃ]Ê`ˆV̈œ˜>ÀÞ]Ê ÕÌˆiÛiÊ“œ`iÃ Model Store Behavioural DigitalAircraft (federatedISplatform) ÊUÊ œ>LœÀ>̈ÛiÊ`iVˆÃˆœ˜‡“>Žˆ˜}Ê>˜`ʎ˜œÜi`}iÊà >Àˆ˜} ÊUÊ}ˆiʈ˜ÌiÀ‡i˜ÌiÀ«ÀˆÃiÊVœ>LœÀ>̈œ˜Ê>ÀV ˆÌiVÌÕÀiÃÊ>˜`ÊܜÀŽv Uʏi݈Li]Ê`ޘ>“ˆVÊ>˜` Simulation Factory UÊ ÕÌˆ‡œLiV̈ÛiÊ`iVˆÃˆœ˜Ê V>«>LˆˆÌˆià ÃÕ««œÀÌÊEÊ "Ê «ÀœViÃÃÊܜÀŽvœÜ `ˆÃÌÀˆLÕÌi`ÊȓՏ>̈œ˜ - Improving- maturityat EntryIntoServiceby grammes address thefollowingbenefi ts: tuality tobedevelopedinnextresearch pro- practices. Themodelling,simulationandvir- cannot betackledonlybyimproving existing tude ofcomplexityhasbeenreached which methods ofdevelopment,anorder ofmagni- necessary reworks anddelaysand,inthe phases inorder tolimitsurprisessuchas simulating thebusinessprocess intheearly œ`iÃÊEÊ-ˆ“Տ>̈œ˜ vˆÌ˜iÃÃÊvœÀÊ«ÕÀ«œÃiʜvÊ ÌœÊˆ“«ÀœÛiÊVœ˜vˆ`i˜Viʈ˜ 1˜ViÀÌ>ˆ˜ÌÞÊ >˜>}i“i˜Ì®Ê E“iÌ œ`ÃÊ­ˆ˜VÕ`ˆ˜} EVVi«Ì>˜ViÊ«ÀœViÃÃiÃÊ 6>ˆ`>̈œ˜]6iÀˆvˆV>̈œ˜Ê Quality Lab Virtual TestVirtual & Virtual Certif. Virtual œÜà sities andtechnologyproviders. ners from industry, research institutes, univer- world. CRESCENDObringstogether 59part- the Product Life-cycleManagement (PLM) just astheDigitalMock-up(DMU)is today for the newbackboneforsimulationworld, craft product life-cycle.TheBDAwillbecome test andcertifi cation phasesofa genericair- during thepreliminary design,detailed will considerdesignproblems andviewpoints craft’ and‘Value Generation’.Thevalidation Integration’, ‘EnergyAircraft’, ‘ThermalAir- ‘PowerPlant and 20testcasesconcerning ties. Itwillbevalidatedthrough fourusecases and theEnterpriseCollaborationCapabili- Simulation Factory, theQualityLaboratory, ponents oftheBDAare: theModelStore, the and contextualassociativity. Themaincom- interoperatibility, hierarchical, cross-functional interact withdifferent modelswith seamless enabling itsuserstolink,federate,coupleand the setofsimulationmodelsandprocesses entire supplychain.Itwilldescribeandhost ment lifecycleataircraft levelandwithinthe use ofsimulationthroughout thedevelop- is themissingcapabilitywhichwillenable building theBDAontopofthem.The grating theseintoafederativesystemand experience andresults from VIVACE, inte- the BehaviouralDigitalAircraft (BDA),taking CRESCENDOwilldevelopthefoundationsfor Objectives - Better translationofcustomerexpectations - - Improving engineeringeffi ciency andagil- airport constraints. client regarding cost,size,userservicesor evolution, changingrequirements from the cal requirements; takeintoaccountmarket explicitly linkcustomerneedsandtechni- cal feasibilityusingasimulationapproach; through upstream assessmentoftechni- customer requirements; tional complexityonthespotaccording to redefi ne products withahighleveloffunc- ity through thecapacitytoreconfi gure and less expensive‘makeandtest’; tion offunctionalevolutionandfaster development phase,toallowfasterintegra- to therequired completionandmaturity. ments defi nition, developmentandvalidation is performedtocompletetheloopofrequire- iteration phase,asequenceofsixbasicsteps 2 -Prototype, Year 3-Validation. each Within tive process: Year 1-Proof ofConcept,Year The workimplementationbuildsonanitera- - SP5 -BDAEnabling Capabilitiesdevelops - SP2, SP3andSP4-Preliminary Design, - SP1 -OverallTechnical Managementand fisub-projects: ve Thetechnicalworkplanisbroken downinto industry’s StrategicResearch Agenda. 2020objectivesfortheaeronauticalVision TheCRESCENDOproject addresses the ExpectedResults Description ofWork tion platformforthetestcases. ices totheimplementationofademonstra- The perimeterextendsfrom genericserv- all thecapabilitiesrequired tobuildtheBDA. These willbeusedtovalidatetheMBDA. mon requirements seenwithintheirSPs. respect totheirtestcasesandmore com- requirements fortheSP5capabilitieswith they donotalready exist.Theydefi ne the processes neededbythetestcases,when and developthemodels,simulations ice. Theirroles are todefi ne thecontext from preliminary designtoentryintoserv- phases ofatypicalproduct designcycle, tual Certifi cation -eachcoverthespecifi c Detailed Defi Testingnition, andVirtual &Vir- ent systems. aspects ofthewholeaircraft andconstitu- the behavioural,functionalandoperational of modelsandsimulationsthatrepresent (or instantiated)withthecompleterange prises theBDAsystem.Thisispopulated for theMastered BDA(MBDA)whichcom- in thevalidationplan,andisresponsible between thebusinessaspects,participates grator’, sinceitensures theconsistency of theproject. Itisthe‘architect andinte- Level Objectivesandprovides therythm ency andconvergencetowards theHigh Integration ensures thetechnicalcoher- 179 Improving Cost Effi ciency 180 Improving Cost Effi ciency Partners: ECOffi Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: innovation forthenextdecade.Hence, sidered achallengingarea forresearch and virtual aircraft uptocertifi cation. Thisiscon- paradigm tosupportthedesignofacomplete It willdelivertheBDAanewdevelopment tests. fi nally, 20%reduction inthecostofphysical tion andcost,50%reduction inrework, and 10% reduction ofdevelopmentlifecycledura- CRESCENDO willcontributetoachievinga NY rneSS FR FR IT UK FR FR DE ANSYSFranceSAS ALTRAN Technologies SA ALENIAAeronautica S.p.A. FR AIRBUSOperationsLtd ARTTIC AIRBUSOperationsSAS AIRBUSOperationsGmbH Aircelle S.A. FR31700Blagnac Rond-pointMauriceBellonte AIRBUS SAS +33(0)567197025 FP7–AAT–2008–RTD–1 cer: [email protected] http://www.crescendo-fp7.eu soito rnas eNraiain FR AssociationFrançaise deNormalisation 36 months CRESCENDO 55294805 Mr. MichailKyriakopoulos CP–IP Mr. PhilippeHomsi 30.04.2012 01.05.2009 32483499 234344 DesignTools andProduction

Next DesignOptimisation Collaborative andRobustEngineeringusingSimulationCapabilityEnabling € € training andtechnologytransferactions. existing networks,informationdissemination, available totheaeronautics supplychainvia cycle. CRESCENDOwillmakeitsapproach in eachphaseoftheproduct engineeringlife the requested functionalityandcomponents in theextended/virtualenterprisewithallof tically manageandmature thevirtualproduct nautics supplychainwiththemeanstorealis- CRESCENDO results willprovide theaero- M mgn A FR IL FR UK BE FR FR LMSImagineSA RU IsraelAerospace Industries FR iSIGHTSoftware SARL FR SE Lule Research International InstituteforAdvancedSystems ES Linköpings FR FujitsuSystems(Europe) Ltd Free FieldTechnologies SA DE IT INTESPACE SE EADSFranceSAS INSA Universitet FR EmpresariosS.A. ES AgrupadosInternacional FR DE DeutschesZentrumfuerLuft-undRaumfahrte.V. FLUOREM DassaultSystemesSA Eurostep Toulouse CentredeMètodesNumèricsenEnginyeria Internacional Eurocopter BrandenburgischeTechnische UniversitatCottbus IT AB AssociazioneEsoceNet Cranfi SAS CERFACS UK AVIO eld S.p.A. University nvriyo otapo UK UK IT FR UK IT FR DE UniversityofSouthampton SiemensProduct LifecycleManagement Software (FR)SAS ShortBrothers Plc DE DE FR UniversitàdelSalento GR BE Snecma SE Rolls-RoyceDeutschlandLtd&Co KG UK Queen’s UniversityBelfast FR SAMTECH PolitecnicodiTorino SAAB Rolls-Royce Offi ce Nationald’ÉtudesetdeRecherches Aérospatiales GR NationalTechnical UniversityofAthens MTUAero EnginesGmbH Pyramis s.a. MSCSoftware GmbH Aktiebolag PARAGON plc LTD å Tkik nvrie SE Tekniska Universitet 181 Improving Cost Effi ciency 182 Improving Cost Effi ciency ov eoCroain SE IE FR UK Volvo Aero Corporation PT UniversityofLimerick UK FR TheChancellor, MastersandScholarsoftheUniversityCambridge NL UNINOVA -InstitutodeDesenvolvimentoNovasTecnologias. Transcendata FR Europe Ltd VINCI ThalesAvionics SA StichtingNationaalLucht-enRuimtevaartlaboratorium Turbomeca Consulting SA bilities complywiththenewregulation. requested todemonstratethatspecifi c capa- in SLDenvironments. To doso,theywillbe strate thattheirproduct cansafelyoperate require aircraft manufacturers todemon- If implemented,theproposed newruleswill tions forcertifi cation in SLD:‘AppendixX’. to jointlydevelopandissueupdatedregula- Aviation SafetyAgency(EASA)are intending Transport Canada(TC), and theEuropean the FederalAviation Administration(FAA), airworthinessauthorities,namely International and/or newtechniquesdeveloped. and existingmeasures mustbeimproved rately simulatetheseconditionsare lacking compliance andengineeringtoolstoaccu- existence ofSLDhasbeenproved, meansof within theEURICEproject wasthat,whilethe project EURICE.Themainresults raised fi rmed inEurope bytheEuropean funded 400 µm.Thepresence ofSLDwasalsocon- freezing rain,withdroplet diametersbeyond freezing drizzle,intherangeof40-400µm,or of super-cooled largedroplets (SLD)suchas droplets). isthepresence Themainconcern let diametersupto50 icing envelopecharacterisedbywaterdrop- FAR AppendixC,whichaccountsforan tion envelopecurrently defi ned bytheJAR/ characteristics beyondtheactualcertifi ca- have highlightedtheexistenceoficingcloud Recentaircraft incidentsandaccidents StateoftheArt-Background EXTreme ICingEnvironment EXTICE Super CooledDroplet (SLD) conditionsare tests inextreme icingconditions,suchas meet duringanicingfl ight campaign,fl ight If standard icingconditionsare noteasyto conditions are costlyand diffi cult toachieve. tifi cation. Unfortunatelyfl ight testsinicing rely primarilyonfl ight-test datafor icingcer- Atthepresent time,certifi cation authorities Objectives μ m (so-calledcloud - to improve safetybyproviding more reliable - - to reduce aircraft developmentcostby The objectivesofthisproposal are twofold: numerical simulationtools. improve existingwind-tunneltechniquesand envelope, there existsaneedtoextendand and trustworthy. Indeed,tocovertheSLD these approaches mustbeproven reliable testing andnumericalsimulation;however ess through acombinationofwind-tunnel performing partofthecertifi cation proc- the present situationcouldbeachievedby still more troublesome. Advantages over simulation. best approach tobeusedforiceaccretion to improve numericaltools byidentifyingthe since theywillbeusedbothtovalidate and such asawingoranairfoil,willbenecessary wind-tunnel testson‘industrialcomponents’, ice accretion numericalsimulationtools.Icing ematical modelthatcanbeimplementedin to defi ne asingleSLDdroplet basicmath- Results from theseexperimentscanbeused improve theknowledgeofSLDphysics. The basicexperimentsare plannedto testing. experiments, wind-tunneltestingandfl ight odology chosenhere isoneintegratingbasic tions andtoprove theiraccuracy, themeth- In aneffort toimprove thereliability ofsimula- codes. cal methods,namelyiceprediction computer means, icingtunnelsandtankers,analyti- natural environment provided byexperimental as theuseofengineeringsimulations fl ights intonaturalicingconditions,aswell Compliancehastypicallyinvolvedactual DescriptionofWork icing simulationtools. environment; craft designandcertifi cation inanicing improving toolsandmethodsforair- 183 Improving Cost Effi ciency 184 Improving Cost Effi ciency conditions willbeinvestigated. obtained andcountermeasures from SLD knowledge ofSLDimpactonaircraft willbe certifi cation rules.Atthesametimeadeeper aircraft inorder tocomplywiththenewicing model accuratelytheSLDencountereffect on bilities, theso-calledengineeringtools,to European theoretical andexperimentalcapa- environment analysisandthedevelopmentof damental knowledgeoftheSLDiceaccretion Theexpectedtop-levelresults willbeafun- ExpectedResults review ofalltheobtainedresults. and ofin-fl ight icing,andperformingacritical for thesimulationoficingwind-tunneltests performed byusingthesamenumericalcode ing inicingconditions.Thecomparisonwillbe specifi c testarticleinstalledonanaircraft fl y- wind-tunnel testtoicingaccumulatedona to compare iceaccretion obtainedinanicing Finally, withintheEXTICEproject, itisplanned b) anincrease inaircraft safetyby providing a) adecrease intimeandcostsforaircraft Concluding theEXTICEproject willallow: within theEXTICEproject. for iceshapesimulationwillbedeveloped envelope willbeincreased andreliable tools accumulated iceshapeswithinthefl ight System andEquipmentasknowledgeof will alsohaveanimpactonAAT.2007.3.3.2 wind-tunnel andfl ight-test costs.Theresults effective designprocess byreducing required within theEXTICEproject willallowforamore the improved icingsimulationtoolsdeveloped by improving toolsforaircraft designsince to AAT.2007.4.1.1 DesignSystemsandTools Therefore theEXTICEproject willcontribute tion tools. industries withmore reliable icing simula- design andcertifi cation; IT81043Capua-Caserta Centro ItalianoRicerche Aerospaziali SCPA Via Maiorise Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: ibsEpñ .. ES IT FR IT DE ES FR AirbusEspañaS.L. FR FR UniversitaDegliStudidiNapoliFederico II PiaggioAero IndustriesIS.p.A. NL Offi ce Nationald’ÉtudesetdeRecherches Aérospatiales Eurocopter InstitutoNacionalDeTecnica Aeroespacial Technische UniversitätDarmstadt Universiteit DassaultAviation SA FR DélégationGénéralepourl’Armement/Centre d’EssaisdesPropulseurs SAS Avions deTransport Regional Twente Cranfi UK eld University +390823623613 +390823623835 FP7-AAT-2007-RTD-1 cer: [email protected] http://extice.cira.it lnaArnuiaSpA IT AleniaAeronautica S.p.A. 36 months EXTICE 4258307 Mr. DietrichKnoerzer CP–FP Mr. GiuseppeMingione 31.05.2011 01.06.2008 3000 211927 DesignTools andProduction EXTreme ICingEnvironment € € 185 Improving Cost Effi ciency 186 Improving Cost Effi ciency

© Airbus mum loadsthattheaircraft willexperience. number ofconditionstoestimatethemaxi- and inertialforces are calculated atalarge known apriori.Therefore, theaerodynamic provide thelargestaircraft loads,are not The fl ight conditionsandmanoeuvres, which structural modelsduringthedesignphase. gusts andmanoeuvres are appliedtodetailed design. Forthispurpose,loadscasesdueto damage andtoleranceforaparticular extreme stress levelsandestimate fatigue performance, etc.Theydeterminethemost characteristics, weight,fl ight control system, and detailedstructuraldesign,aerodynamic craft, andhaveanimpactupontheconcept role inthedesignanddevelopmentofanair- Unsteadyloadcalculationsplayanimportant StateoftheArt-Background Technologies Future FastAeroelastic Simulation FFAST Wing confiWing gurations atdifferent fl ight conditions - Faster identifi cation ofcriticalloadscases: reductions inthetotalanalysis cost/time: that havebeenidentifi ed asoffering major FFAST willfocusonthree areas ofresearch process. technologies toacceleratetheaircraft loads and assessarangeofnumericalsimulation loads process, FFAST willdevelop,implement round timeandincreased accuracyinthe To solvetherequirements offasterturna- Objectives extended tonovelconfi gurations. without compromising airsafety, cannotbe to reduce thenumberofcriticalloadscases Engineering experience,thatiscurrently used from thosefoundonconventionalaircraft. to possesscriticalloadscasesverydifferent to meet2020performancetargetsislikely Secondly, thenewaircraft thatwillbevital increase. overall costoftheloadsprocess mustnot modifi cation inthelaterphases,however ing costsandthedecreased riskofdesign attractive becauseofthereduced tunneltest- ity modelswithmore accuratesimulationsis First, thereplacement ofthecurrent lowfi del- main points. The numberofcriticalloadscasesraisestwo detrimental effect oncostandtimetomarket. tion procedure needstotakeplace,hasa together withthemultipletimesthiscalcula- cycles requires more than6weeks.This, civil aircraft, eachoftheseloadscalculation update oftheaircraft structure. For modern These analyseshavetoberepeated forevery be evaluatedatlower risk; will allownon-conventionalconfi gurations to dependency onengineeringjudgement; this by formalisingtheprocess andreducing aeroelastic analysesto some key-points the minimizationofnumberrequested development andassessment ofthefollowing: The mainsubdivisionsofthework are the will onlybeachievediftheyare fullyintegrated. a signifi cant impactonfuture aircraft design, improvements ineachofthese areas, todeliver validation &assessment.Thefullbenefi t of ling, aeroelastic reduced order modellingand tifi cation, aerodynamic reduced order model- Theworknaturallysplitsintocriticalloadiden- DescriptionofWork three identifi ed areas. are simultaneousimprovements ineachofthe in analysiscostswillonlycomeaboutifthere ments are multiplicativeandthestepchange reduction ofloadsanalysiscost.Improve- a considerableindividualcontributiontothe Success ineachresearch thememaymake - Reduced order modelaccelerationoffull- - The extractionofaerodynamic andaeroe- Expanding highfi delity modellingfrom cruisetocriticalloadscases through convergenceacceleration. reduced order modelsoffer costsavings currently tooexpensiveforroutine use,but order models:fullorder simulationsare models, butatamuchreduced cost; dominant characteristicsofhigherfi delity order models.Suchmodelsreproduce the able forloadsanalysis,from complexfull lastic reduced order models(ROMs),suit-

-1g LOAD FACTOR 0g 1g 2g 3g H

Vs1g

VF AC technologies. validation andassessmentofcandidate The fi nal stageoftheproject will involvethe Globalaeroelastic reduced order modelsfor - Construction ofreduced order modelsfrom - Hybrid aeroelastic reduced order modelling/ - Strategies forglobal reduced order models - - Hybridaerodynamic reduced order model- Aerodynamic reduced order modellingtech- - - Methodsformakingcriticalloadidentifi ca- Methods forreducing thenumberofanaly- - - a solutiondatabaseforunsteadyloads early release software; - new knowledgeintheformofnovelnumeri- - and, asaresult, themainoutputswillbe: FFAST isanupstream universityledproject, ExpectedResults use inearlydesignphase. a unifi ed non-linearaeroelastic system; full order modellingtechniques; for across-the-envelope simulation; ling/full order modellingtechniques; niques atasinglefl ight point; tion applicabletonon-conventionalaircraft; cases forconventionalaircraft; ses neededtoidentifythecriticalloads cases, and approaches totheloadsprocess; cal simulationtechnologiesandinnovative F D E

EAS VD

© Airbus 187 Improving Cost Effi ciency 188 Improving Cost Effi ciency Partners: ECOffi Fax: Tel: E-mail: Coordinator: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: in CO ering aircraft willresult fuelburn inreductions levels thantoday’sburn beststandards. Low- concept thatwillhavesignifi cantly lowerfuel developing capabilitiestodesignanaircraft ing European industrialcompetitivenessby The FFAST project willcontributetoimprov- - ibsU iie UK IT BE IT DE RU UK InstituteForInformationTransmission Problems (IITP) NL EADSDeutschlandGmbH,MilitaryAir Systems AirbusUKLimited OptimadengineeringSrl DE S.A NumecaInternational RU ZA PolitecnicodiMilano(POLIMI) TheUniversityofLiverpool(ULIV) Research International InstituteforAdvanced Systems(IRIAS) DeutschesZentrumfürLuft-undRaumfahrt e.V. (DLR) DelftUniversityofTechnology (TUDelft) CouncilforScientifi c andIndustrialResearch (CSIR) UK-BS81THBristol SenateHouseTyndall Avenue UniversityofBristol,UK. that willguidefuture research investment. reports onarangeofcandidatetechnologies, recommendations intheformofwritten +44(0)117331547 5 +44(0)1179272771 FP7–AAT–2008–RTD–1 2 emissionsthatwillgoasignifi cant way cer: [email protected]

36 months FFAST 3711290

CP–FP Dr. AnnLouiseGaitonde 31.12.2012 01.01.2010 2735511 233665 DesignTools andProduction Future FastAeroelastic SimulationTechnologies Institut NationaldeRecherche enInformatiqueetAutomatique (INRIA) € € of granularityandfi delity. of rapidcriticalloadanalysis,across arange foundation foranewapproach inthekeyarea this. Inthiscontext,FFAST willprovide the tools andtechnologiesare required toenable maturity whilstalsoreducing leadtimes.New top leveldefi nition through tohighlevelsof of conceptstoberetained andassessedfrom process mustevolverapidlytoallowanumber order tomeetthesetargetstheaircraft design to meetingtheACARE2020visiontargets.In FR © Flexa Consortium between thesamephysicalmachines. same production facility, usingandprioritising and multi-product fl ow ofcomponents inthe able todeliveramulti-generation,multi-size to create abalancedproduction unitthatis duction units.Themaintaskinthisproject is tion whendoingnewinvestmentinthepro- strong emphasisontheequipmentspecifi ca- longer, before theygooutofservice.Thisputs operation for30years,sometimeseven with relatively lowvolume,whichwillbein aeronautical industryare products produced it isafactthattheproducts produced inthe dependent onproduction. Atthesametime, and newregulations onenvironmental effects, new product introduction, newmaterialsused ment inproduction are alsofrom demandson turing industry. Therequirements ondevelop- in competitivenesswiththeglobalmanufac- sure tomeetrequirements oncosteffi ciency European industryisconstantlyunderpres- StateoftheArt-Background AdvancedFlexibleAutomationCell FLEXA manufacturing 7 program area Development significance Aero engine significance th Production Framework Aircraft impact FLEXA 7.1.4. Cost engine development Reduction inoverall FLEXA cell generation Automatic

Reduced aircraft development Knowledge-based Code for a manufacturing iterations

costs by 50% FP7 AREA:Aircraft DevelopmentCost manufacturing prediction and preparation of Virtual toolfor More efficient knowledge development process FLEXA contributionto propagation inthe manufacturing processes, Capability of in cellconcepts equipment integrated Automation of Modular system Create acompetitivesupplychain able tohalvetimemarket ity assuranceaspects. fl exibility, lowvolume,multi-product andqual- automotive area andtoimprove theaspectof state-of-the-art technologydevelopedinthe It istheintentionofthisproject toutilisethe nology hasbeendevelopedforalongtime. In theautomotivesectorautomationtech- parts fortheEuropean aerospace industry. human interactionanddeliverqualityassured ture agenericprocess chainallowing forsafe an automatedfl exible cellthatcanmanufac- gies neededtodefi ne, prepare andvalidate To create thetools,methodsandtechnolo- mon mainobjectivewhichisdefi ned as: The FLEXAproject issetuptomeetonecom- automation cells. generation platformforadvancedfl exible manufacturing thatwillhelptobuildthenext improve knowledgefrom selectedareas of Theaimoftheproject istointegrateand Objectives data handling Web service FLEXA cell in thesupplychain collaboration for Enhanced handling andstorage Quality assurance data generation, Technologies handling of restart and automation cell for Quality assurance manufacturing Knowledge and design Reduce travelcharges support reuse for Flexibilty inequipment setup andutilisation manufacturing cost Reduce riskon committed Optimisation production strategy flow for 189 Improving Cost Effi ciency 190 Improving Cost Effi ciency whole automatedcell. ronment tobeablesimulate andverifya The taskdevelopsasimulation-based envi- to beinterfacedgenericautomationtools. includes specifi c application-related demands in theaerospace sector. Thetasktherefore implies increased useofvirtualmanufacturing cells, e.g.forweldingandmachining.This high-level descriptiontoolsforautomated WP3: ThemainobjectiveofWP3istoapply assembly ofaero enginecomponents. supporting theautomatedprocessing and ware andsoftware environment capable of a novelandfl exible reconfi WP2: Themainobjectivehere istodevelop gurable hard- other WPs. vide thedefi nition andbackground forthe The workdescribedwithinthisWPwillpro- for theaero enginemanufacturingindustry. the requirements ofafl exible automatedcell WP1: ThemainobjectiveofWP1istodefi ne packages (WP): Theproject isdividedintofi ve technicalwork DescriptionofWork - Develop aqualityassurancestrategythat Developintelligentdatacommunicationpro- - - Integrate manufacturingknowledgein Develop knowledgeengineeringtoolssup- - Develop virtualtoolssupportingcellprepa- - - Integrate keymanufacturingprocesses in - Develop fl The specifiexible automationtechnology c technicalobjectivesare: structure usedattheindustrialsites. grate state-of-the-artsolutionsintotheinfra- available, butatthesametimeabletointe- tion ofbeingindependentspecifi c solutions The FLEXAproject isdefi ned withtheinten- meets aerospace requirements. tocol formanufacturing; design activities; porting automatedmanufacturing; ration, operationandrestart; automation concept; based onaero industryrequirements; industry competitivenessingeneralterms. wide fi eld, whilealsoimproving European basis forknowledgeimplementationovera als forengineeringeducationwillprovide the reports andtheupdateofteachingmateri- Indirectly, theimpactofresearch publications, as indevelopmentprogrammes forthefuture. knowledge inbothongoingproduction aswell ing industrygroup through implementationof be drivenfrom theaero enginemanufactur- time-to-market. Indirect response thiswill and indirect impactonthegoalofhalving The project isexpectedtodeliverbothadirect D4.25 Handbookofcelloperation. - D3.24 HandbookforOLP(off-line program- - D1.25 Handbookforcelldefi- nition andbest The mostimportantdeliverablesare: evenly splitoverthedifferent work packages. produced duringafour-year period,whichare Theproject has113deliverablesthatwillbe ExpectedResults assurance andsafeoperation. communication tocellmaincontrol forquality human-machine interaction,traininganddata of anautomatedcell,includingpreparation, allow proactive handlingoffatalbehaviour develop anddelivermethodstoolsthat WP5: Themainobjectiveistodefi ne, developed intheproject. an integratedsolutionoftoolsandmethods validate cellconfi gurations andcapabilityas WP4: Themainobjectivehere istoverifyand ming) andQA(qualityassurance); practice document; SE46181Trollhättan Volvo Aero CorporationAB Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: nvriyo hf l UK IT UK UK GR IT DE PL DE UniversityofSheffi eld SE ZenonS.A.RoboticsandInformatics UniversitadiPisa SprzetuKomunikacyjnego PZL-RzeszowSA Wytwornia UniversityofNottingham RollsRoyceplc IE BCTSteuerungs-undDV-Systeme GmbH MTUAero EnginesGmbH HermesReplyS.R.L IT ChalmersTekniska HögskolaAB Skytek Avio Ltd S.p.A +46(0)52094073 +46(0)52098573 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.fl exa-fp7.eu/ HgklnV s SE Högskolan Vast 48 months FLEXA 8196673 Michael Kyriakopoulos CP–FP Dr. Torbjörn Norlander 31.05.2012 01.06.2008 5374684 213734 DesignTools andProduction AdvancedFlexibleAutomationCell € € 191 Improving Cost Effi ciency 192 Improving Cost Effi ciency sions reductions. formance, greater payloadsandfuel/emis- Benefi ts includelowercost,improved per- contributing positivelytotheirincreased use. large scalecompositestructures, therefore manufacture ofhighperformance,integrated, posed technologieswillallowtheeconomical used intheAerospace industry. Thepro- Liquid ResinInfusion(LRI)methodscurrently prediction. Theproject coversallpopular fi nal partdefects/mechanicalperformance ture (infusion),process/part optimisation,and lation chainfrom preform designtomanufac- The INFUCOMPproject willdevelopthesimu- composites. they are notsuitedtolargescaleaerospace tations ofResinTransfer Moulding simulation, to smallscalecomponentsbasedonadap- gies are approximate andreally onlysuited tools. Current infusionsimulationtechnolo- prototype testingduetothelackofsimulation are notfullyindustrialisedandrely oncostly nologies canovercome theselimitations,but well aslimitedmaterialshelflife.Infusiontech- sive andtimeconsumingmanufacturing,as costs, limitedshapeability, complex,expen- fi bre content,butsuffer from highmaterial properties duetotoughenedresins andhigh Prepreg compositesgivesuperiormechanical ofdrytextiles. posites Moulding(e.g.RTM) pregs) toformalaminate,orLiquidCom- layers ofpliesimpregnated withresin (pre- Thesedays,advancedcompositesuseeither StateoftheArt-Background Infusion CompositeParts Industrial Manufacture ofLarge SimulationBasedSolutionsfor INFUCOMP exploitation. WP1Project management,disseminationand Work Packages(WPs): Project aimswillbeachieved through the9 Objectives 1. WPs2and3performfabricdeformation Work packageinteraction(s): DescriptionofWork date thenewCAEtools. be investigatedtocriticallyevaluate and vali- trially relevant LRIaircraft sub-structures will WP9Industrial validation:Fourdiverse,indus- facturing process. studies willbeusedtooptimisetheLRImanu- niques (evolutionary/genetic)andsensitivity WP8Process optimisation:Optimisationtech- experimentally andnumerically. distortions andvoidcontentwillbestudied part performanceincludingresidual stresses, WP7Post-infusion defectsprediction: Final and costmodelsdeveloped. ent costbenefi ts: eachwillbeinvestigated various LRImanufacturingroutes havediffer- WP6Cost analysisandcostoptimisation:The structures willbedevelopedandvalidated. thick, largescale,aerospace composites Numerous newdevelopmentsspecifi c to WP5Infusion simulationdevelopments: model thisprocess stepwillbedeveloped. imposed duringpreformance. Techniques to lation: Importantfabricdeformationsare WP4Preform toolingandassemblysimu- the LRIsoftware. models tobedevelopedandimplementedin will enablenewhydraulicandairpermeability tion: Resinviscositytestingonselectedresins andpermeabilitycharacterisa- WP3Viscosity in totheFEdrapingsoftware. for fabricdeformationlawstobeimplemented Mechanical fabrictestingwilldeterminedata WP2 Fabricdeformationcharacterisation: and resin viscosity/permeabilitymeasure- formance/defects prediction inyear4. infusion workinyear3andmechanicalper- and preforming inyear2,andthenmoveto The validationstudieswillfocusondraping CAE tools. available forpossibleimprovements tothe ered essentialsothatimportantfeedbackis formed assoonpossible.Thisisconsid- years, sothatvalidationworkcanbeper- developments are undertakenintwotothree improved numericalmodels.Mostsoftware being immediatelyusedtodevelopthenew/ fi rst halfoftheproject withmeasurement The testingworkislargelyundertakeninthe 4. FinalvalidationoftheCAEtoolsandproce- 3. WP4,WP6,WP7andWP8alldevelopnec- 2. Themechanicaldataobtainedfrom WP2

dures isundertakeninWP9. validation studieswiththeend-users. taken andthenusedforcollaborative In eachcasethedevelopmentsare under- essary associatedsimulationtechnologies. the newsoftware. (WP3), bothofwhichare implementedinto permeability modelsfordeformedfabrics and meso-scales(WP2)fornew fabric deformationmodelsatthemacro- and WP3isdirectly usedtodevelopnew testing inWP3. from WP2willbeusedforpermeability tion inthesetwoWPs-deformedfabrics ments respectively. There issomeinterac- 1. Improved drapesimulationsoftware for opments include: designed andmanufactured. Specifi c devel- effi cient LRIcompositestructures tobe facturing routes andenablecosteffective, manu- allow theCAEdesignofalternative LRI composites.Thesimulationtoolswill softwares toprovide afullsolutionchainfor INFUCOMPwillbuildonexistingsimulation 8. For thefi rst timesimulationtoolswillbe 7. Chaining ofthesimulationstagesand 6. Cost analysesdevelopmentswillbeinte- 5. Numerous enhancementstostate-of-the- 4. Contributions toteststandards include New methodstopredict preform3. assembly 2. New modelling methodsbasedonfurther Expected Results structures. ess inarangeofindustriallyrelevant LRI used throughout thefulldesignproc- mechanical performance; misation andpositivelycontrol fi nal part optimisation workwillallowprocess opti- grated tothenewdevelopmenttools; analysed; allowing largescale3Dstructures tobe giving asimulationaccuracyof90%, art resin infusionsimulationare planned meability testing; fabric deformation,resin viscosityandper- and obtaininitialinfusionconditions; prediction; for fabricdeformationandpermeability development oftheWiseTex software architecture; accurate knowledgeofthedeformedfabric 193 Improving Cost Effi ciency 194 Improving Cost Effi ciency igi eoIdsre ... IT UK SE IL EL BE FR FR EL PiaggioAero IndustriesS.P.A. INASCO-INtegratedAerospace Sciences Corporationo.e. IsraelAerospace IndustriesLtd. DE ShortBrothers PLC Swerea SICOMPAB UniversityOfPatras Universität KatholiekeUniversiteitLeuven HexcelReinforcements SAS DaherAerospace S.A.S. Stuttgart ESI FR Cranfi UK Group eld S.A. University Partners: ECOffi Fax: Tel: E-mail: Coordinator: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: DE65760Eschborn GmbH EngineeringSystemsInternational Mergenthalerallee +49(0)619695830 +49(0)61969583111 FP7–AAT–2008–RTD–1 cer: [email protected]

48 months INFUCOMP 5157994 Mr. Francesco Lorubbio CP–FP Dr. AnthonyPickett 31.10.2013 01.11.2009 3299123 233926 DesignTools andProduction

éhdse rcsu nutil FR Méthodes etProcessus Industriels ARMINES -AssociationpourlaRecherche etleDéveloppementdes Composite Parts Simulation BasedSolutionsforIndustrialManufacture ofLargeInfusion € € Finite Element(FE)methodsenablethejoining analysis oftheentire assembly. Global-Local it isverydiffi cult tocombinethemforaunifi ed to beincompatiblewithinterfaces.Therefore, As aresult theseindividualmodelsare likely physical behaviour. be present duetolocalanalysisofcomplex locations usingdifferent software, ortheycan ferent engineersatdifferent geographical these individualmodelswere created bydif- and were developedindependently. Typically, individual structuralmodelsthatare coupled conduct aunifi ed analysisofanassembly the modellingofsuchstructures istheneedto craft structures. Oneissuethatarisesduring putational analysisof,forexample,entire air- Engineersneedtoconductlarge-scalecom- StateoftheArt-Background based Models GenericLinkingofFiniteElement glFEM Figure 1Focusareas oftheglFEMproject. intellectual property protection. of adaptiveaccuracy, easeofuseandtailored new profi table waysproviding acombination companies inthesupplychaintocooperate facing. Thisadvancedinterfacingwillenable capabilities bysolvinganalysismodelinter- chain toseamlesslycoupletheiranalysis companies withintheaeronautical supply ply chain.Thiscanbeachievedbyenabling times, andestablishamore competitivesup- aircraft developmentcosts,reduce lead Thestrategicproject objectivesare toreduce Objectives fi nite elementmeshes. use ofcomplexfi nite elementswithingeneric of meshrefi nements oncomponentsandthe addition, thesemethodsallowforahierarchy of independentlymodelledsubstructures. In

© NLR 195 Improving Cost Effi ciency 196 Improving Cost Effi ciency are validated. algorithms thatare used within theresearch implementation. Inaddition,mathematical WP4 conductsbenchmarksof software with existingsoftware code. be ‘generic’,sothatitwilleasyto integrate stated inWP1.Theclassimplementation will language willdependonproject requirements existing software environments. Thecode WP3 implementscouplingapproaches within ory tomeettheproject objectives. approaches, assessesandimproves thethe- WP2 explores thetheoryoncoupling be established. the metricstoassessproject performancewill addition, thelevelofrequired accuracyand are required tomeettheproject objectives.In WP1 specifi es thedetailedfunctionalitiesthat the project andWPscoordination. WP0 iscomprisedofallactivitiesrelated to ment andsixtechnicalworkpackages(WP). Theworkplanisdividedintoonemanage- DescriptionofWork the Figure below. The goalsofthisresearch are summarizedin best approach toacommercial driven code. sidered andtoverifyutilizationbyportingthe fi nd thebestapproach amongtheonescon- ered representative forindustry. Thegoalisto applied toseveralusecasesthatare consid- approaches considered inthisstudywillbe Subsequent tothedevelopment,coupling global FEanalysis. automatically integratedwithinthe(iterative) necessary, andthelocal-global couplingis are automaticallycreated andanalysedwhere cedure istobeautomatic,i.e.localmodels and effi ciency. Additionally, thecouplingpro- posites, metals),anddemandsonaccuracy versus detailedcomponents),materials(com- (e.g. strength, stability),scales(entire aircraft progressive damage),analysiscapabilities different localphenomena(e.g.multi-scale methods hastobegeneric,i.e.itcomprises and modellingfi delity. Applyingthecoupling structural analysismodelsofdifferent origin vative methodstocouplefinite element-based The operationalproject goalistoderiveinno- one-way solution. applicable andnotlimitedtoaone-shot or which are automatic,iterative, generically innovative andreliable coupling approaches, an explicitinvestigationandestablishment of In summary, thenovelcontributionofglFEMis bonding orlocalmaterialdamage). structural behavior(e.g.skin-stringerde- involve localeffects thatinfl uence theglobal eration oflocalmodels.Themodels ward interactionsaswellautomaticgen- includes iterativeprocesses, forward/back- global FEanalyses.Thisautomaticcoupling an automaticcouplingbetweenlocaland length scaleswillbeclearlydefi ned enabling Interaction ofdifferent modelsondifferent expand themulti-scalecouplingcapabilities. In thecontextofvirtualtesting,glFEMwill and theresults obtainedduringthisstudy. published coveringtheresearch conducted publicly available.Inaddition,abookwillbe the developedtheoryandresults willbemade tions atconferences andinscientifi c journals approaches publica- willbedocumented.Via means toexecuteandverifythedeveloped tion, benchmarkproblems are defi ned and into commercial fi nite elementcode.Inaddi- The developedtheorywillbeimplemented tion duringinitialmodelcreation ispresent. origin andmodelingfi delity where nointerac- based structuralanalysismodelsofdifferent provide automaticcouplingoffi nite element interfacing. More specifi cally, thedeliverables sis capabilitiesviaaccurateanalysismodel tional toolstoseamlesslycoupletheiranaly- chain withadvancedmethodsandcomputa- vide companieswithintheaeronautical supply Theresearch conductedinthisstudywillpro- ExpectedResults studied forthisproject. results related tothecouplingapproaches a book.Thisbookwillcoverallthetheoryand withwritingandpublishing WP6 isconcerned research drivencode. by comparingcommercial drivencodeand properly addressed. Thecodeisvalidated benchmarks showthattheindustrialneedis pre-determined testcases.Inaddition,these WP5 benchmarksnewlydevelopedcodevia NL1059CMAmsterdam AnthonyFokkerweg2 StichtingNationaalLucht-EnRuimtevaartlaboratorium Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: eod nvriàdgiSuid aoi IT IT DE CH DE SecondaUniversitàdegliStudidiNapoli Centro ItalianoRicerche Aerospaziali SCPA LeibnizUniversität Hannover GottfriedWilhelm DeutschesZentrumfürLuft-undRaumfahrtev SMREngineering&DevelopmentSA NL Universiteit Twente +31(0)205113662 +31(0)205113210 FP7–AAT–2008–RTD–1 cer: [email protected] http://www.nlr.nl ASDushadGb DE EADSDeutschlandGmbH 36 months glFEM 3815545 Mr. Michail Kyriakopoulos CP–FP Mr. Marco Nawijn 31.08.2012 01.09.2009 2839910 234147 DesignTools andProduction GenericLinkingofFiniteElementbasedModels € € 197 Improving Cost Effi ciency 198 Improving Cost Effi ciency the above-mentioned obstaclesistodevelop It appearsthatthebeststrategytoovercome the operatingsystemsintopractice. following strategieshavebeenchosen toput to structuralhealthmonitoring.However, the solution toovercome allthe challengesrelated present alarge-scaleintegrated technical Itwillnotbepossiblewithinthisproject to Objectives rity, lackofacceptancebyend-users,etc.). by anumberofobstacles(technicalimmatu- still inanearlyphaseandispartiallyhindered mation. However, thefi nal implementationis tems are abletodeliveralltherequired infor- enough experimentalevidencethatsuchsys- real aircraft parts.There isthus,inprinciple, tory scale,andevenpartiallyimplementedin solutions havebeenpresented atlabora- During thelastfewyears,anumberofSHM cated European research programmes. amount byappropriate fundingfrom dedi- fi nancial riskscanbereduced byasubstantial laborative undertaking,andtheconsiderable establishes theidealplatformforsuchacol- in Europe. TheEuropean Research Area laborations ofmanydisciplinesandexpertise mentation effort usingwell-coordinated col- requires aquitecomplexresearch andimple- However, thisapparently easysolution ferent kindsofdefects. waves (Lambwaves)are usedtodetectdif- an aircraft. Inthisproject, guidedultrasonic is placedatcrucialstructuralcomponentsof rable tothenervoussysteminahumanbody, tems, apermanentsensornetwork,compa- suchSHMsys- health monitoring’(SHM).With for damagedetectionisoffered by‘structural priate forallsituations.Acheaperalternative excellent, buttooexpensiveandnotappro- Today’s aircraft inspectionprocedures are StateoftheArt-Background Assessment II Aircraft Integrated StructuralHealth AISHAII - implementing theselected SHMsystems opening theinitialphasewith theestablish- - Other workincludes: current. such aselectrochemical monitoringandeddy Other NDTtechnologieswillalsobeapplied, will thushavetobecontrollable bytheuser. of materialanddamagetobedetected monitoring process willdependonthetype type ofLambwavemodestobeusedinthe practice, thiswillmeanthattheamountand for activeandpassiveLambwavetesting.In an aircraft healthmonitoringsystem,both wave selectionwillbeusedasthebasisof tive aspects,theprincipleofcontrolled Lamb easy process. Asoneofthemaininnova- both activeandpassive,is,however, notan the detectionprocess. Lambmodeselection, fully selectedultrasonicLambwavemodesin Thisproject willusealimitednumberofcare- DescriptionofWork the wholeaircraft. reasonable addedvalue,withoutscreening maintenance where asimpleSHMcangive locations. There are thusisolatedproblems in that defectsusuallyoccuratwell-defi ned ing. From operationalexperiencesitisknown spot monitoringinsteadoflarge-area screen- AISHA IItherefore intendstofocus onhot- application willbecreated. appears tobetrustworthy, abroader fi eld of by conventionalmethods.Ifthistechnique which caneasilybefollowedandvalidated a SHMsystemforselected,isolatedproblems will becarriedoutin closecollaborationwith mentation developed; explored andthefi nal planforSHMimple- groups, thedifferent aspectsoffeasibility part willbestudiedbytheassigned NDT are clearlydefi ned. Therespective full-scale the different demandsondamagedetection ment ofdetailedspecifi cation sheetswhere - A selectionofveryspecifi c aircraft com- the artwillbefollowing: project willbringwithrespect tothestateof Theexpectedprogress thattheproposed ExpectedResults AISHA II-Sensornetwork - an extendedtestprogramme willberunto - considerable; cost savingsfrom usingSHMmustbe and aircraft manufacturers. The expected in collaborationwiththeaircraft operators ponents (representing isolated‘hotspots’) check alloperationalaspects. phase; detailed road mapdefi ned inthedesign concepts willbeimplementedfollowingthe ware andsoftware required, theapproved all partners.Usingthetransducer, hard-

© Consortium AISHA II (Helge Pfeiffer) - The applicationofcombinedsensorgroups - - If proved useful,theintroduction ofthe - A systematicresearch ondurablesensor relationships. facilitate theinterpretation ofsignal-damage ultrasonic Lambwaves,buttheyhelpto techniques are beyondtheapplicationof cal monitoringandthermography. These for temperature andstrain),electrochemi- (ultrasonic sensor+parametricsensors techniques; leading toafi ne-tuning ofdataanalysis ment intheeffi ciency ofthevalidationtests idation. Thisenablesadramaticenhance- pseudo-defect techniqueforautomatedval- a specifi ed research institute; connections ensured bycollaboratingwith 199 Improving Cost Effi ciency 200 Improving Cost Effi ciency rj nvrietBusl BE DE BE LV FR ES LufthansaTechnik Aktiengesellschaft ES Vrije UniversiteitBrussel UniversidadDelPaísVasco /Euskal HerrikoUnibertsitatea Fraunhofer-Gesellschaft zurFörderung derAngewandtenForschunge.V. DE DE DE ASCOIndustriesN.V. DK FundaciónCentro deTecnologías Aeronáuticas RigasTechnical University Universität CEDRAT Technologies SA FR DeutschesZentrumfürLuft-undRaumfahrte.V. Insensor Leipzig Eurocopter AS BE3000Leuven OudeMarkt13 KatholiekeUniversiteitLeuven SAS E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: +32(0)16326504 +32(0)16326515 FP7-AAT-2007-RTD-1 cer: [email protected] http://sirius.mtm.kuleuven.be/AISHA-II eaoi ..AI ehoois&Egneig BE MetalogicN.V. A.I. Technologies &Engineering 36 months AISHA II 5694302 Daniel CHIRON CP–FP Ms.MariaVereeken 30.04.2011 01.05.2008 4133731 212912 MaintenanceandDisposal Aircraft IntegratedStructuralHealthAssessmentII € € detection inaeronautical composites. raphy, whichisincreasingly appliedforfl aw niques exist,thebestknownbeingshearog- objects undergoingstress. Different tech- observation ofmicrometric deformationsof holographic techniqueswhichallowfull-fi eld The otherrangeofopticalNDTtechniquesis lamp whichcreates heattransferthrough it. the materialsare illuminatedbyaninfrared of defectslocatedundertheirsurfacewhen phy canshowdifferential thermalbehaviours like theassessmentofmaterials,thermogra- m.InNDTapplications, between 0.9and14 electromagnetic spectrumatapproximately detect radiationintheinfrared rangeofthe of infrared imaging.Thermographiccameras Thermography, orthermalimaging,isatype nique inaeronautics isthermography. The best-knownandusedopticalNDTtech- measurement withscanning. which isafasterprocess thanthesingle-point they allowforobservingacompleteimage, ing ininterest sincethere isnocontact and Optical full-fi eld NDTtechniquesare gain- tion andmaintenance. applications suchasdevelopment,produc- These techniquesare widelyusedinvarious iour ofsuchcomponentsundergivenstress. and structures orthemeasurement ofbehav- allow forthedetectionoffl aws inmaterials Non-destructivetesting(NDT)techniques StateoftheArt-Background on Aeronautical Structures Thermo-Mechanical Measurement Non-Destructive Technique forOnline Full-FieldAdvanced FANTOM drawback ofholography isitssensitivityto advantages anddisadvantages.The main Boththermographyandholography have Objectives ously. Thisisrequired sinceitisnot known information whichwillbecaptured simultane- between theholographicandthermographic The secondisthestudyofdecoupling ital holographyandshearography. electronic interferometry, speckle-pattern dig- techniques. Thetechniquesenvisaged are match specifi c requirements ofholographic infrared sensorwillbeimproved inorder to wave infrared. Criticalsegmentssuchasthe different holographictechniquesinthelong- The fi rst isthestudyanddevelopment of There are three maininnovations. DescriptionofWork separate sensorsare used. compared tothesituationwhere twosuch will allowasubstantialgainininspectiontime tion. Thiswillleadtoauniquesensorwhich capture ofthermalandholographicinforma- camera allowsonetoenvisagesimultaneous of holographyininfrared isathermographic Additionally, thefactthat the imagingsystem range ofthetechnique. turbation, whileincreasing themeasurement greatly reducingper- thesensitivitytoexternal light wavelengths.Thishastheadvantageof graphic cameras,sayatlong-waveinfrared- it willworkinthespectralrangeofthermo- ing withlasersatvisiblelightwavelengths, a usualopticalset-up,butinsteadofwork- on aholography/shearography sensorwith shearography. Thedevelopmentisbased combines thermographyandholography/ ment ofanadvancedNDTtechniquewhich The FANTOM project proposes thedevelop- visible laserswithashortwavelength. on-site perturbation,mainlyduetotheuseof 201 Improving Cost Effi ciency 202 Improving Cost Effi ciency - Conceptual designsoftheinstrument, - Specifying thenewtechniquebasedon Theexpectedresults are: ExpectedResults ties (orotherpotentialend-users). study cases,willbevalidatedinAirbusfacili- ments and,afterbeingvalidatedinknown prototype willbebuiltwithimproved seg- Thirdly, basedonthelaboratorystudies,a object. raphy) affects thethermalsignature ofthe how theuseoflasers(necessaryforholog- Principle oftheESPIout-of-planeoptiontobestudiedwithinFANTOM thermographic including selectionofcriticalcomponents; state-of-the-art andend-userrequirements; sensor unit CO2 laser objective lens LWIR out-of-planeoption combiner beam splitter beam - Validating theprototype instructuraltesting - Build theprototype andcarryouttheevalu- - Development andcertifi- cation ofrepresent- Studyofthermalandholographicsignatures - - Development studiesofdifferent holo- at anAirbusplant(orotherend-users). ation inthelabwithcertifi ed samples; ative samplesforlabevaluation; decoupling; sors andcameramodules; segments andthermographicimagesen- graphic techniques,ofimproved optical mirror lens object BE4031Angleur Centre SpatialdeLiège,LiègeSciencePark UniversityofLiege Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: etod enlga eoátcs ES DE BE BE Centro deTecnologías Aeronáuticas Infratec Innov Optrion Support +32(0)43676668 +32(0)43675613 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.fantom-ndt.eu SutatU iestt DE Stuttgart Universität 36 months FANTOM 2210740 Mr. Pablo Pérez Illana CP–FP Dr. Marc Georges 30.11.2011 01.12.2008 1700080 213457 MaintenanceandDisposal

Mechanical Measurement onAeronautical Structures Full-Field AdvancedNon-DestructiveTechnique forOnlineThermo- € € 203 Improving Cost Effi ciency 204 Improving Cost Effi ciency cost. uting toareduction oftheoveralloperational reduce depotservicetimeforaircraft, contrib- that willfacilitatepatchapplicationand cost-effi cient in-the-fi eld repair technologies aircraft industryisindire needofreliable and application ofthecompositepatchrepair, the confi gurations isachallenge.Regarding the However, theintroduction ofnovelmaterial lored tocomplywiththerepair requirements. ing compositematerialsystemsmaybetai- respect totherepair materialsystem,exist- when usedtorepair primarystructures. With still posesignifi cant challenges,particularly Adhesively bondedfi bre compositepatches the component. risk offretting fatiguebetweenthepatchand sheets, sealstheinterfaceandreduces the induced from mechanicalfasteningofmetal Bonding alsoeliminatesstress concentrations ance andexcellentcorrosion resistance. specifi c properties, case-tailored perform- craft structuralrepair astheyoffer enhanced Bonded compositepatchesare idealforair- art repair techniquesinthenearfuture. will shapetherequirements forstate-of-the- als, processes andstructuralconceptswhich world. Newaircraft incorporatenewmateri- requirement inmostcountriesaround the of ageingairframesisbecomingacritical technologies torepair andextendthelife Theavailabilityofeffi cient andcost-effective StateoftheArt-Background and Life-cycleMonitoringAbilities Structures withCuringOptimisation InnovativeRepairofAerospace IAPETUS offer the multi-functionalitythatwillleadtothe use ofnovelhybridcompositesystems, which posite aircrafts. Thiswillbeachievedwiththe nologies andmaterialsformetallic com- Themainaimistodevelopnovelrepair tech- Objectives - demonstrate thedevelopedmaterialsand - develop acuringmonitoringsystemcom- - develop innovativeconductiveandnon- - develop innovativeCarbonNanoTubes address theproblem ofbondingcomposite - The scientifi c andtechnicalobjectivesare to: effi ciency. ties, togetherwiththeenhancementofrepair gies andlife-cyclehealthmonitoringcapabili- development ofinnovativerepair technolo- and acuringmonitoring systemsuitablefor for galvaniccorrosion will also beinvestigated through the useofCNTadditives.Solutions heating) andpatchmaterialimprovement odologies (direct resistance andinduction SP1: Developingthetwonovelcuring meth- technical sub-projects (SPs). Theproject hasbeenorganisedintothree DescriptionofWork level. repair processes atcouponandcomponent data andthusameanforoptimalcuring; composite patchandprovide curingstate materials, whichwillbeintegratedwithinthe patible withtheproposed processes and strength ofthepatch/structure bond; for achievingincreased peelingandsheer conductive laminatingresins andadhesives capabilities; performance andprovide built-insensing patches whichoffer improved mechanical (CNT)-doped conductivecompositefi bre technologies; element, orbyintroducing inductionheating conductive compositepatchasaheating either bydirect resistance heating, usingthe new easy-to-applyheating-upconcepts, composite aero-structures byinvestigating patch repairs toageingaluminiumandnew (skin) andthick(web)components. The envisagedconstructionwillconsistofthin validated inasuitableaeronautical structure. tions). Thentheintegratedsystemwillbe static anddynamic/fatigueloadingcondi- validated through appropriate testing(quasi- be madeinsmall-scalecomponentsand technologies. Thetechnologyintegrationwill control andmonitoringthesmartpatch the technologiesofinnovativecuring,curing SP3: Providing theframeworktointegrate thermography –willalsobeadopted. second NonDestructiveTechnique –fl ash uated againsttypicalultrasonicinspection.A repaired aero-structures willbecriticallyeval- the detectionofvarioustypesdamagein electrical resistance mappingperformancefor of electricalresistance measurements. The smart patchconceptbasedontheapproach SP2: Demonstratingtheapplicabilityof bonding integrity. ated intermsofcuringeffi ciency andpatch proposed curingmethodologieswillbeevalu- doped materialswillbeimplemented.The composite repairs andadaptedtoCNT- - A listofrecommendations fortheindustri- The integrationoftheinnovativecuringsys- - The implementationandvalidationofnovel - - The designandimplementationofnovel - Optimal CNTprocessing fortheachieve- Themajorexpectedresults oftheproject: ExpectedResults existing repair standards. ing thedevelopedrepair systemwithinthe alisation ofthetechnologyandforsecur- scale applications; and validationatcouponlevellarge- tem withthesmart-patchsensingabilities damaged system; CNT conductivenetworkthatmirror the thickness mappingofthechangesin based onthetwodimensionalandthrough offl ine andonlinesensingmethodologies and resistance heating; properties ofthematerialsusinginduction curing approaches basedontheconductive aluminium substraterepair; misation ofgalvaniceffects inthecaseof properties oftheadhesivelayersandmini- ment ofdispersioninthematrix,conductive 205 Improving Cost Effi ciency 206 Improving Cost Effi ciency Total cost: Instrument: Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: GrantAgreement: Nameofproposal: Acronym: ES20009SanSebastian PaseoMikeletegi,Parque Tecnologico Miramon Fundación INASMET nvriyo onia GR FR UK GR FR GR CH GR UniversityofIoannina HellenicAerospace IndustrySA UniversityofSheffi eld GMIAero SAS GR GR DaherAerospace SAS PANEPISTIMIO IntegratedAerospace SciencesCorporation INASCO-INtegratedAerospace Sciences COrporationO.E. UniversityofPatras HuntsmanAdvancedMaterials IOANNINON +34(0)943003700 +34(0)943003800 FP7–AAT–2008–RTD–1 cer: bcanfl [email protected] http://www.iapetus.eu ywri pzt ouiayng Z wdi plaAcja PL Sprzetu KomunikacyjnegoPZL-SwidnikSpolkaAkcyjna Wytwornia 36 months IAPETUS 3531391 Mr. PabloPérez Illana CP–FP Ms.BegoñaCanfl anca 31.05.2012 01.06.2009 2339595 234333 MaintenanceandDisposal

Life-cycle MonitoringAbilities Innovative RepairofAerospace Structures withCuringOptimisationand € € be considered: TRIADE,the following applicationswill Within space limits. which willbesubjectedtoverystringent from thebatteryandenergy-harvestingunits, achieve thebestuseofenergyobtained The powerconsumptionwillbeminimisedto must exhibitaveryhighlevelofautonomy. toring (SHM)functionsduringfl ights which (HUMS) performingStructuralHealthMoni- a HealthandUsageMonitoringSystem InTRIADE,industrialspecifi cations willrequire StateoftheArt-Background in Aeronautics Health-Monitoring SensingDevices Building BlocksforStructural DevelopmentofTechnology TRIADE TRIADE smarttag-building blockoverview requirements. non-intrusiveness, autonomy, sizeandcost be achievedinaeronautics todaywiththe EU projects showsthatthesegoalscannot The inspectionofcompletedorongoing - To increase theeffi ciency ofaircraft To- monitorcriticalpartsmadeoutofcom- - To explore the‘out-of-fl ight domain’con- maintenance. posites inhelicopters; been repaired inthefi eld; health ofpartsandstructures, whichhave ditions and/ortomonitortheintegrityand

© TRIADE consortium 207 Improving Cost Effi ciency 208 Improving Cost Effi ciency - Implement anarchitecture where energy the followingmeasurablegoals: TRIADE willbeassessedwhencompared to nautical applications. health-monitoring sensingdevicesinaero- age andenergymanagementforstructural powerful intelligence–dataprocessing/stor- eration, powerconservationandembedded integrated prototypes toachievepowergen- viding technologybuildingblocksandfully towards solvingapplicationissuesbypro- TheoverallTRIADEobjectiveistocontribute Objectives intelligence. developed tobringembeddedneuralnetwork Breakthrough solutionswillalsohavetobe - Fully depletedSilicononInsulator(SOI) Energy storageusingrechargeable devices; - The energyharvestingproposed usesseis- - the ADVICEproject: TRIADE from otherEUprojects, particularly The followingtechnicaloutputsdifferentiate TRIADE smarttagprinciple harvesting andstoragesolutions; 30 mAhavailablepowerinmostmodern comparableproductsmodern toless than today betweenaneedof250mAh in most management willbridgethegapthat exists interfaces. Low Power(ULP)functions,sensorsand CMOS technologytargetedforUltra mic massandelectromagnetic conversion; power interfacebetweenenergysource and be implemented:RFlink,microprocessor, sources andbatteries.Severalinterfaceswill aeronautics requirements: energy-harvesting adaptation ofperipheralcomponents tothe particular, withthe thisWPwillbe concerned WP2 willdealwithperipheralcomponents. In power inmind. overall architecture andinterfaceswithlow environmental andfunctionalrequirements, withHUMS WP1 isessentiallyconcerned packages (WP). Theproject isdividedintosixtechnicalwork DescriptionofWork structure (lifetimeofsixmonths tooneyear). (with alifetimeofatleasttenyears),oronthe will bestuckinthelastlayerofcomposite temperature andpressure sensors.Thistag gauges, anaccelerationsensor, andULP tag: ahumiditysensor, one ortwoXYstrain Remote sensorswillbeconnectedtothe management circuit andamicroprocessor. memory, anenergy-harvestingpart,apower an antenna,RFinductivecouplinglink,a posable smarttagthatincludesabattery, Technical developmentwillresult inadis- Validate therobustness ofthesolutiontoan - - Include aneuraltoolanddataprocessing aeronautic environment. consumption requirements; in theprototype, whichwillfulfi l thepower

© TRIADE consortium environmental cycledefi nedbytheend-users. specimen, theprototype willbetestedwithan specimen containingfasteners:stuckonthe prototype tobeputonasmalltechnological withthedevelopmentofa WP6 isconcerned ments andchoices. puting tool,compatiblewithprevious require- It willfocusondevelopingasoftware-com- WP5 consistsofneuralnetworkcomputation. for useinWP6. assessment willbeperformedandtransferred service life.Simulationsforstructuralintegrity and process temperature, environmental and of theelectronics, howitadaptstoprocesses WP4 willfocusonstudyingtheembodiment concepts. critical functionswillbedevelopedwithULP embedded electronics andsensors.Selected lishing theSOICMOS/MEMSplatformfor WP3 willbeaimedatupgradingandestab- low powersolutions. batteries, remote sensorsimplementedwith Expected Results and maybeusedintermittentlyfortenyears. ered; afterTRIADE,theyconsume30mAh lasted afewhourswhencontinuouslypow- tenance systemsconsumed250mAhand embeddable. Before TRIADE,smartmain- aircraft; afterTRIADE,smartsystemswillbe systems were notembeddableonboard by 2020.Before TRIADE,smartmaintenance inspection andotherdirect operatingcosts by 50%,through areduction inmaintenance/ tribution toreducing aircraft operatingcosts The expectedimpactofTRIADEisitscon- SOI-based ultra-lowpowercomponents. - Aneuralnetworkforsmart-record triggering - Harvester devicesusingvibrationandelec- - A batteryoptimisedforaeronautic- embed- ing blockswillbeissuedfrom thissmarttag: technological results withbreakthrough build- further monitoringapplications.Severalother used intheaeronautics domainandallowsfor the sizeofacredit card soastobeeasily facturing processes andservicelife.Itwillbe will respect thecompatibilitywithmanu- sure, moisture andvibrations.The smarttag parameters,e.g.temperature,external pres- composite ofanaircraft inorder to record the on thestructure orinthelastlayerof HUMS smarttagdevicethatcouldbestuck Themajordeliverableoftheproject willbethe and damageassessment; tromagnetic coupling; ded devices; 209 Improving Cost Effi ciency 210 Improving Cost Effi ciency ASDushadGb DE BE UK PL GR PL FR FR BE EADSDeutschlandGmbH UniversitéCatholiquedeLouvain FR SprzetuKomunikacyjnego ‘PZL-Swidnik’SA Wytwornia BE FR InstytutTechnologii Elektronowej UniversityofSouthampton ROVI-TECH DE HellenicAerospace IndustrySA GoodrichActuationSystemsSAS Memsfi KT-Systems CommissariatEnergieAtomique-CEA FR DassaultAviation SA S.A. UniversitédeLiège eld Eurocopter GmbH FR75016Paris Boulevard deMontmorency SAS European Aeronautic DefenceandSpaceCompany(EADS)FranceSAS Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: +33(0)146973337 +33(0)1469730 08 FP7-AAT-2007-RTD-1 cer: [email protected] http://triade.wscrp.fr eted ehrh nArnuiu sl-CNEO BE Centre deRecherche enAéronautique asbl-CENAERO 36 months TRIADE 6130570 Michael Kyriakopoulos CP–FP Mr. BrunoFoucher 16.12.2011 17.12.2008 4170769 212859 MaintenanceandDisposal

Sensing DevicesInAeronautics Development ofTechnology BuildingBlocksforStructuralHealth-Monitoring € € weight andcost,haveprevented theirwide shortcomings, thebiggestbeingtheirhigh been developedforthelatterscope,buttheir Hardened luggagecontainers(HULD)have onboard explosionshastobeconsidered. of countermeasures toreduce the effects of undetected isnotnegligible.Theintroduction old ofthedetectioninstruments,couldgo quantity ofanexplosive,belowthethresh- disasters; nevertheless,theriskthatasmall bodiestopreventinternational furthersuch and has beencarriedoutbygovernments within thepassengers’baggage,mucheffort of whichexplodedduetobombsconcealed Am Flight103(1988,270casualties),both Flight 182(1985,329casualties)andPan rorist bombings.SincethecrashesofAirIndia against catastrophic in-fl ight failure duetoter- measures betakentostrengthen aircraft Theriseinworldwideterrorism requires that StateoftheArt-Background Containers forAviation Safety BlastworthyTextile-Based Luggage FLY-BAG Multi-axial blastworthytextile structure resolved. aboard narrow-body aircrafts hasyettobe aircrafts. Theissueofcontainingexplosions they are notavailableformostnarrow-body utilisation andmarketacceptance;moreover, designed toresist explosionsbycontrol- Flexible, lightweighttextilestructures willbe confi guration. customised forpracticallyanyapplicationand and narrow-body aircraft andcan befurther moreover, thisconceptappliestobothwide- weight andhighresistance toexplosions; a highfl exibility andreconfi gurability, alow ite materialsallowsthecontainertoachieve gage. Combiningtextilefi bres andcompos- by bombsconcealedinsidechecked-inlug- to protect aircrafts from explosionscaused blast-worthy textile-basedluggagecontainer FLY-BAG aimsatdesigningandrealising a Objectives

© Selcom S.p.A. 211 Protection of Aircraft and Passengers 212 Protection of Aircraft and Passengers ing anacceptablylowweight. achieving agreat blastresistance whileretain- different innovativetextilematerialsshallallow gating theblastpressure. Thecombinationof explosion, inawaysimilartocarairbags,miti- could deforminacontrolled wayduringthe layerwhich debris, coupledwithanexternal nal high-strength layertostoptheejected structure asaninter- madeofballisticyarns the gasexpansion.Theideaistouseatextile explosion andthelargedeformationrelated to oped toabsorbthelargedynamicloadsof speed. Amulti-layerstructure willbedevel- them from hittingtheaircraft fuselageathigh luggage fragmentprojectiles andpreventing waves, whileatthesametimeretaining hard- led expansionandmitigationoftheshock Bulk luggageinaircraft hold compartment are defi ned tomeettheneeds the containmentofluggagein cargo the developmentofanovelsafetydevice for effectiveness, thefunctional requirements for Inorder togranttheproject themaximum DescriptionofWork of thecargohold. ers, skinpanels,walllinersandfl oor beams) basic aircraft structure (e.g.,airframe,string- prototype placedinamock-up simulatingthe full-scale blasttestingofthetextile container full-scale validationwillbeachieved through narrow-body aircraft. Attheendofproject, tailored for theluggagecompartmentofa scale prototype ofthecontainerstructure, systems) followedbytheassemblyofafull- connections,opening andexternal internal tile components,compositeelements,belts, the different elements ofthesystem(i.e.tex- stage ofseparatefabricationandtestingall blast. Theprototyping phasecomprisesafi rst behaviour oftheluggagecontainerunder Element Modelsimulationsofthedynamic ballistic andfl ame performance,andFinite loading conditionstomeasure theirblast, ite andtextilematerialssubjectedtodifferent sessions ofsmall-scaleteststhecompos- rication activitiesare supportedbyintensive within theconsortium.Thedesignandfab- by thepresence ofanairlineasend-user of real-life workingconditions;thisisassured

© Meridiana S.p.A. IT16145Genoa SanNazaro Via D’Appolonia S.p.A need toprotect inaneffi cient andcost-effec- the fulfi lment oftheurgentbutyetunsolved A medium-termimpactoftheproject willbe delicate fi eld ofaviationsafetyresearch. co-operation,especiallyinthe international thermore thisproject contributesto increased at theforefront ofpassengersecurity. Fur- further improve theirvisibilityascompanies activities willgivethemtheopportunityto involvement ofend-userswithintheproject valuable results tothemembers.Thedirect novel devicewithintheconsortiumproviding demonstration oftheperformance fi nal partoftheproject, asitwillleadtothe Ashort-termimpactwillalready occurinthe ExpectedResults Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: P opstA SE DK DE APCCompositAB IT DanmarksTekniske Universitet Hoffmann AirCargoEquipmentGmbH IT Centro diProgettazione, DesigneTecnologie deiMateriali UK Meridiana Blastech S.p.A. Ltd +390103628148 +390103621078 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.fl y-bag.net ähice etloshnsnttteV DE SächsischesTextilforschungsinstitut e.V. 24 months FLY-BAG 3057444 Mr. Pablo Pérez Illana CP–FP Mr. DonatoZangani 30.11.2010 01.12.2008 2180792 213577 Aerostructures andMaterials Blastworthy Textile-Based LuggageContainersforAviation Safety € € transport industryasawhole. to theoptimisationofsafety/security ent safetymeasures. Moreover, itcouldlead nity forbenchmarkingandcomparingdiffer- therefore itwillprovide anexcellentopportu- within transport(e.g.railways,maritime)and used inotherindustrialsectors,especially In thelongterm,thisnovelconceptcanbe market. opening anopportunityforahugepotential its standardisation andgeneralacceptance, tem andtostarttherequired procedure for air transportsystemtoacceptthenewsys- organisations inchargeofthesecurity of theproject willbeusedtostimulatethe of explosionsinthecargoarea. Theoutcome tive waynarrow-body aircrafts from therisk 213 Protection of Aircraft and Passengers 214 Protection of Aircraft and Passengers at airvehiclelevelisperformed;itonly the fi nal verifi cation, includingHIRFtesting, end ofthecertifi cation process, i.e.when Problems are usuallyonlydiscovered atthe Design, protection methodsandverifi- cation - HIRF requirements; HIRF electromagnetic (EM)environment; - main categories: Knowledge ofHIRFfallsintothefollowing range of10kHzand40GHz. man-made EMsignalswithinthefrequency licensed emittersthatintentionallygenerate as EMsources totheairvehicle,i.e. external with thesafetyoffl ight are mainlyidentifi ed HIRF radiationsources potentiallyinterfering vehicle’s electricalandelectronic systems. magnetic (EM)radiationthataffects anair fi electro- withexternal eld) denotesa concern Thedefi nition ofHIRF(highintensityradiated StateoftheArt-Background research programme HIRFSyntheticEnvironment HIRFSE Cable modelingforFalcon FX7 certifiprocess. cation via analysisandtestingrequired bytheHIRF addresses thedrawbacksofactual The fi rst objectiveoftheHIRFSEproject - Build (from pastandcurrent methods)an Develop fullyvalidatedandintegratedsolu- - are: HIRFSyntheticEnvironment’s mainobjectives Objectives an airvehicleduringitsoperationallife. the modifi cations thatcanbeintroduced on area fortheaeronautics industryisrelated to sponding costimplications.Anothercritical unnecessarily over-engineered, withcorre- ditional approach, sub-systemswillbeoften to market)andcosts.Moreover, withthetra- has considerableimpactintermsoftime(time redesign process tosatisfyHIRFrequirements project canbefound.Themodifi cation or this stagethatsomenon-complianceinthe lutionary architecture. integrated approach withanopenandevo- for EMaspectsduringthewholelifecycle; tions tomodel,simulateandtestairvehicles

© Dassault Aviation fi cation andtoobtainimproved results. tests required to achievetheairvehiclescerti- issues toreduce thenumber ofdevelopment models andvalidatingvirtualtesting are key redesign andre-testing. Developingvirtual required forphysical testing,andpossible cles andsystems,ofdecreasing thetime ing thedeliverytimescalesoffuture airvehi- HIRF SEwillalsomeettheobjectiveofreduc- tionary architecture. framework whichoffers anopenandevolu- software integrationonacomputerbased systematic solutionbasedonahighlevelof overcome thisdiffi culty withaninnovativeand these problems. TheHIRFSEproposes to supposed toworktogetherinorder tosolve petences. Manystand-aloneexperttoolsare tion ofallavailablenumericalsimulationcom- The secondobjectiveaddresses thecompila- computational techniques. and modifi cation approaches, assistedbyEM design, whichconsistsofthecertifi cation Alenia Aeronautica’s Sky-y(UAV) ready forEMCtestinginsideAnechoicChamber split eitherpersuccessivestagesof realisa- Each WPitselfisdividedintoseveral tasks, - WP8: Dissemination,exploitationand - WP7: Syntheticenvironment fi - nal WP6: Syntheticenvironment modules - WP5: Syntheticenvironment modules - WP4: Syntheticenvironment integration/ - WP3: Syntheticenvironment modules - WP2: Syntheticenvironment framework WP1: Syntheticenvironment requirements - WP0: Project management - nine workpackages(WP): the partnershavedefi ned aworkplanwith Inorder toachievetheHIRFSEobjectives, Description ofWork training assessment validation simulation implementation modelling defi nition

© Alenia Aeronautica 215 Protection of Aircraft and Passengers 216 Protection of Aircraft and Passengers ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: IT80038Pomiglianod’Arco (NA) dell’Aeronautica Viale snc AleniaAeronautica S.p.A. nvriàd oa IT GR FR UniversitàdiRoma FR Offi ce NationalD’Étudiantes etdeRecherches Aérospatiales HellenicAerospace IndustryS.A. AxesSim SAS - Capability todealwiththeincreased useof - follow: Theexpectedresults canbesummarisedas ExpectedResults software. ment conformstothehigheststandards of the project andtheyensure thatdevelop- set ofdocumentswillbeproduced during of theHIRFSEframeworkdevelopment,a To ensure thequalityandcompleteness specifiactivities. c tion forcommonactivitiesorperdomain- will includethemostadvancedcomputa- airframe industry. TheHIRFSEframework composite materialsandstructures bythe +390818874640 +390818872391 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.hirf-se.eu/hirf/ Lu A FR L-up SAS 48 months HIRF SE 26497703 Daniel Chiron CP–IP Dr. DonatellaInvernizzi 30.11.2012 01.12.2008 17799956 205294 SystemsandEquipment HIRF SyntheticEnvironment research programme € € - A developedmethodology/tool,wellrecog- - Develop andissueaworkofexcellenceon - Capability todealwiththecompleteinternal - accordance withcertifi cation bodies. nised insidethecivilaviationcommunity, in of theirown; neers, co-operatingtobuildareference tool scientists, academicandindustrialengi- EM modellingbygatheringalargeteamof nal) interference sources; andexter-ogy andnumberofEM(internal will beabletosimulateawidespread typol- (present andforeseen). TheHIRFSEtool electromagnetic environmentand external composite materials; the EMcharacteristicsandperformanceof tional modelsforthenumericalsimulationof oienc iTrn IT IT FR NL FR IT CZ ES PolitecnicodiTorino DE PiaggioAero IndustriesS.p.A SE Oktal–SyntheticEnvironment GR NationalAerospace Laboratory ES DE UK Polskie NationalInstituteforAerospace Technology CZ IngegneriadeiSistemiS.p.A.-Italia UK InstituteofCommunicationandComputerSystems Hispano–Suiza FR Zak SwedishDefenceResearch Agency IT EvektorSpolsr.o. DE ES EADSConstruccionesAeronáuticas EMCConsDR.RASEK Eurocopter DeutschlandGmbH Galileo CSTGesellschaftfürComputer-Simulationstechnik GmbH CentredeMetodesNumericsal’Enginyer Internacional UniversityofTechnology Brno BAeSystemsLtd Avionica IT UniversityofYork IT DassaultAviation SA Agusta Alenia Westland Aermacchi nvriyo otnhm UK MT UK GR ES NL ES FR FR FR DE AdvancedMicrowave SystemsLtd IngegneriadeiSistemi(UK)Ltd PL UniversityofNottingham UniversitatPolitecnicadeCatalunya UniversityofMalta UniversityofGranada UniversityofTwente Technische Universität Hamburg-Harburg ThalesCommunicationsSA ThalesSystèmesAéroportés ThalesAvionics SA GR RzeszowUniversityofTechnology PL SPIRIT QWED S.A. Sp.z.o.o. el eeouiain IT e delleTelecomunicazioni Istituto Superiore MarioBoellasulleTecnologie dell’Informazione ł d onceS. .. PL ady LotniczeSp.zo.o. 217 Protection of Aircraft and Passengers 218 Protection of Aircraft and Passengers Provide breakthrough progress inreal-world - programmes that: ing innovativeworld-wideairportstaff training Training ModulesandPackages-Develop- - Development and integration ofadvanced - Developing adynamicandrealistic model Direct,- multi-facetedobservationsofgroup modeling through: Advancing thestate-of-theartinbehavioural Ground Breaking Scientifi c Advancement- Objectives involved. encompasses thosedirectly, andindirectly, in anairportorganizationalenvironment that there isinterdependence amongall theactors tion includingthepassengers.Itisclearthat actors thatare partoftheairportorganiza- It requires focusingonanumberofgroups of security. involved indecisionsrelatingterns toairport that isderivedfrom actualbehaviouralpat- must buildupaportfolioofempiricalevidence lay thegroundwork forsuchanendeavourwe during andafteranactualcrisis.Inorder to ers. Thismeansbeingprepared beforehand, ing process amongalltheairportstakehold- social dynamicsinvolvedinthedecisionmak- gaining amore defi nitive understandingofthe gram dealingwithairportsecurityrequires form thebasisforanintegratedtrainingpro- tools involvedincrisismanagementthatwill Providing thefundamentalhumanresource StateoftheArt-Background in Airports BehavioralModelingforSecurity BEMOSA crisis handlingandhazard reduction; emergencies. and predict socialbehaviourinstressful software simulationsthathelptocapture airports; of socialbehaviourduringsecuritythreats in behaviour inairports; - Generating alongitudinalsurveyof cohort - - An exploratoryethnographic studyofthe WP3: StudyingAirports; - - WP2: DesigningtheInitialSurvey forthe WP1: Developinganinitialsimulationwork- - Block 1:Preparatory Research. ing blocks: The WPshavebeendividedintothree build- consequent WP. by acertainWPmayprovide theinputfora entire project, assomeoftheresults obtained WPs are activeonlypartiallythroughout the timely completionofthetasks.Most the resources thatwillfacilitateasuccessful, who participateinthesetasksare allocated ers alltheworkwithinthatpackage.Partners Each WPLeaderhasasetoftasksthatcov- dates fortheinteractionbetweenWPs. sees 8Work Packages(WP)andaccommo- Aworkplanhasbeendesigned,whichfore- DescriptionofWork - Reduction offalsealarms. - Increased effi- ciency ofairtransport; - Improved capabilitytocorrectly detect - Increased safetyandsecuritythrough pean airtransportsystem: will havethefollowingimpactonEuro- Meeting thetwoabove-mentionedobjectives Create trainingmodulesandpack- - - Reduce someofthemostwell-known of keysecuritydecision-makers; major airportsecurityagents; study ofairports; ing modelofsocialdecision-makingchains; potential hazards; enhanced training; tural andorganizationalboundaries. ages thatcanbereadily appliedacross cul- human behaviour; effects ofstress andtimepressure on their safetyandsecurityskillsprocedures. fromlearn experience,revising andupdating procedures improve thewayinwhichairports meaning thatthedevelopedmodels/training organizations’, to makeairports‘learning actions’ prevention. BEMOSAwillcontribute will surely haveanimpactonhazard/hostile reduce falsealarms.Suchimprovements ity tocorrectly detectpotentialhazards and Theresearch willimprove people’s capabil- ExpectedResults WP8: Project Management. - WP7: DisseminationandExploitation; - Block 3:Otheractivities. - WP6: Designingtrainingmodulesand - WP5:Iteration&simulationsofthebehav- - WP4: Utilizethecontinuoussurveyoutput Block 2:ApplicationDevelopment. packages. ioural sciencemodel; for dataanalysisandvalidation; more effective. as wellmakingtheirownsecuritysystems upgrading securityandsafetyforpassengers to makeevidence-basedpolicydecisionsin management andotherrelated stakeholders tion. Asaresult, BEMOSAwillallowairport protocols forsuchtypesofcrisesresolu- modelling thataidstrainingandoperational tivities, arescenario applicabletoalternative of circumstances that,givenculturalsensi- ioural fi ndings are applicabletoavariedset basis oftrainingsimulations.Suchbehav- model forresolving crises,andwillbethe benchmark fordevelopingabehavioural be emphasized.Theseresults willformthe gency andsecurityresolution behaviorwill ing factorsaffecting preparedness, emer- air travel.Investigatinggenericdecisionmak- groups andorganizationsassociatedwith gency anddisasterbehaviorofindividuals, The emphasisoftheproject willbeonemer- 219 Protection of Aircraft and Passengers 220 Protection of Aircraft and Passengers Partners: ECOffi Fax: Tel: E-mail: Coordinator: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: eisTcnlg t UK NL CZ CZ IT BRNO (BRQ) A.S.-AIRPORT LetisteBrno UniversitàdegliStudidiModenaeReggioEmilia ES Technische UniversiteitDelft HeliosTechnology Ltd IE Fundación Spol.SR.O. B&MInternets NL Avitronics CARTIF USE2ACES IL32000Haifa Research Technion City-SenateBuilding Technion -IsraelInstituteofTechnology. BV +972(0)48293097 +972(0)48232958 FP7–AAT–2008–RTD–1 cer: [email protected] epBu r IT DeepBlueSrl 36 months BEMOSA 4215906 Ms.StéphanieStoltz-Douchet CP–FP Prof. AlanKirschenbaum 31.08.2012 01.09.2009 3399934 234049 Avionics, HumanFactorsandAirports Behavioral ModelingforSecurityinAirports € € one attheterminal accessesequippedwith sees twoseparateandintegrated controls: The technicalapproach to befollowedfore- objects. and detectmanykindsofhiddenhazardous sub-systems tomonitorwideairport areas ness derivesfrom thecapability oftheATOM but pervasivesecuritysystem.Itspervasive- The ATOM systemwillbeanon-intrusive or othercriminalacts. contribute toprotecting aircraft from terrorist security, theATOM systemwillalsoindirectly tions. Whiledirectly enhancingtheairport without interferingwithnormalairportopera- and trackingpeoplecarryingthesematerials, detecting hiddenhazardous materials/tools the securitylevelinairportareas by sive radarsensors,whichisabletoenhance lance systemthatintegratesactiveandpas- develop aninnovativedetectionandsurveil- TheoverallobjectiveofATOM istodesignand Objectives and checkedluggage. machines are usedforscreening bothhand before enteringthesecure area, whileX-ray screened bywalk-through metal detectors airports. Today, travellersare onlyquickly ing explosivematerialsorweaponsinside edies whichwere theresult ofpeople carry- been effective andthere are manypasttrag- airport securitymeasures havenotalways natural targetforterrorist acts.Nevertheless, aviation industry, sinceairportsrepresent a fore. ThishasalwaysbeenapriorityfortheEU the problem ofairtransportsecuritytothe many othersinrecent yearsrepeatedly bring hijacking ofAirFrancefl ight 8969(1994)and Eventssuchas11September2001,the SateoftheArt-Background active sensorsarrays dangerous Materialsbypassiveand AirportdetectionandTracking Of ATOM lic airportarea, basedonthebestavailable sensor forthesurveillanceofindoor pub- The developmentofanewpassive radar Passive trackingsystem. reconstruction. to localiseandthenidentifythemusing 3-D as metallicweaponshiddenunder clothes, image generation,dangerous objectssuch subsequent SyntheticAperture Radar(SAR) ature 94-GHz/220-GHzradarsensorswith The objectiveistodetect,bymultiplemini- frequency. Imaging sensorat75-110GHzorTHz ronment tosupporttheperformanceanalysis. be designedandsimulatedinarealistic envi- including advancedtrackingalgorithms,will performance. Theprocessing techniques, radar nodesinorder toincrease accuracyand be developed.Itwillconsistofseveralactive cious peopleconcealingdangerous toolswill sensor systemabletodetectandtracksuspi- An activedistributedRadioFrequency (RF) 35GHzfrequency. Imaging sensorat15 detection systemwithanewtrackingsystem. lance systemwillintegrateaninnovative Thedevelopmentoftheadvancedsurveil- DescriptionofWork people insidetheterminalarea. tion networksthusminimisingtherisktoother managed securely withintheairportinforma- The integratedcontrols informationwillbe people/containers. RF sensorswhichare abletotracksuspicious gate area, willbeequippedwithnewpassive tools; theother, intheairport hallsbefore the detect andidentifydangerous concealed innovative activedevices,whichare ableto 221 Protection of Aircraft and Passengers 222 Protection of Aircraft and Passengers the accuracy. sensors, willbedevelopedinorder toimprove A trackingfi lter, exploitingdatafrom different Data managementanddatadistribution. evaluated. tiple networkedsystemapproach willbe signal processing techniques,andamul- human beingswillbeachievedbysuitable the detectionandlocalisationofdesignated electromagnetic source, willbe analysed; Main blocksoftheatomsystem Passive Tracking (tracking ofsuspicouspeopleintheterminalarea) System (detection ofdangerous materials) 15-35 GHz frequency system Detection System Tracking System W orTeraHertz frequency 15-35 GHzfrequency system Active Tracking system System Expected Results - guaranteeing securitybypreventing actsof - - securingandfurtherdevelopingthecompet- the applicationofawiderangeconcepts, - - developing asystemwhichcomplements ensuring enhancedsecurityinairtransport; - preventing anyhostileactionandsoprotect- - areas ofairportsby: will enhancethesecuritylevelinterminal vative andnon-intrusivesurveillancesystem, TheATOM system,bydevelopinganinno- unlawful interference. the globalmarket; itiveness attainedbyEuropean industriesin airports; are abletoimprove securityaspectsin innovative solutionsandtechnologieswhich airports; other securitysystemsalready inuse terrorism; damage ordisruptionduetotheeffects of ing travellersandpersonnelfrom injury, loss, Data management and distribution IT80146Naples EmanueleGianturco Via SoluzioniEvoluteperlaSistemisticaeiModelliS.C.A.R.L. Partners: ECOffi Fax: Tel: E-mail: Coordinator: Technical domain Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: Grant Agreement Nameofproposal: Acronym: cio eeln .. NL ES HU RO NL NL GR SchipolNederlandB.V. IT Transylvania Airport Tirgu-Mures AYCO S.L. Internet SlotConsultingLtd DE Technische UniversiteitDelft ForschungsgesellschaftfürAngewandteNaturwissenschaftene.V. HellenicAerospace IndustrySA Link ThalesNederlandBV srl +390641504991 +390641504849 FP7–AAT–2008–RTD–1 cer: [email protected] nvriàdgiSuid oa‘aSpez’ IT UniversitàdegliStudidiRoma‘LaSapienza’ 36 months ATOM 5237895 Pablo Perez-Illana CP–FP MrIarossi Nicola 30.06.2012 01.07.2009 3478545 : : 234014 Avionics, HumanFactorsandAirports

active sensorsarrays Airport detectionandTracking Ofdangerous Materialsbypassiveand € € 223 Protection of Aircraft and Passengers

affordable aircraft intermsoflife-cyclecost. high aircraft effi ciency willalsoleadtomore improved handlingqualitiesandsafety. The tion ofsuchhighlyeffi cient smallaircraft with an avionicsplatformallowingtherealisa- SAFAR’s future avionicsarchitecture willbe major airporthubs. using scheduledairtransporttraffi c between speeds andapproximately twiceasfast that are three orfourtimesfasterthanroad point-to-point on-demandtraffi c at speeds reliable LCAT aircraft whichshouldachieve expected, arisingfrom highlyeffi cient, highly Capacity AirTransportation (LCAT) marketis A signifi cant growth potentialfortheLow portation from AtoB. living inremote regions orrequiring fasttrans- sonal transportation,particularlyforpeople Small aircraft canbeausefulmeanofper- be found. individual transportbyroad, railandairshould fi c alone.Consequently, aproper balanceof transport cannotbesatisfi ed byroad traf- Union, theincreasing demandforindividual transport distancesintheextendedEuropean pated saturationofroad traffi c andlonger by automotivevehicles.Duetotheantici- Today, individualtransportismainlyachieved StateoftheArt-Background ARchitecture SmallAircraft Future Avionics SAFAR aircraft. The platformwillcomprisecomput- ant, fl y-by-wire platformapplicabletoLCAT be anadvancedsafety-critical,fault toler- The baselineoftheSAFAR architecture will tionalities canbebuilt. tion systemonwhichfurtheradvanced func- basis forafuture lowcapacity airtransporta- developed andvalidated.Thiswill bethe extendable andscalable)willbedesigned, future smallaircraft (safe,cost-effi cient, SAFAR, Within anavionicsarchitecture for Objectives antee theireffi cient andsafeoperations. which technologieswillbeavailabletoguar- future airtraffi c control andmanagement, transportation: howtheywillbeembeddedin long-term prospect ofsmallaircraft inair The overallworkonSAFAR isdrivenbythe any mechanicalbackup. ance/full authorityfl y-by-wire platformwithout able. Thisrequires analltime/fullperform- as degradationto‘direct law’,are not accept- radations inthehandlingcharacteristics,such of platformfailures. Signifi cant functionaldeg- and fl ight protection features, evenincases maintain thesamehandlingcharacteristics pilot training,thefl y-by-wire platformmust the aircraft straightforward andto avoidany order tokeepthehandlingcharacteristicsof tric powersupplywithall-electricactuators.In navigation systemandasafety-criticalelec- mainly satellite-basedfaulttolerantattitude/ ing resources, ahuman-machineinterface, oped viatestfl ights withavalidationaircraft follow. Appropriate control lawswillbedevel- age fornavigationandcommunication will platform andthecorresponding sensorpack- prototyping ofafailure-redundant fl y-by-wire will bedrawnup.Logically, thedesign and blueprint offuture avionicsofsmallaircraft dation andcertifi cation.Firstacomprehensive defi nition –designandprototyping, andvali- small aircraft performingthetask-concept focuses ontheavionicsfundamentalsfor Based ontheserequirements, theworkthen aircraft. systems andoperationrequirements forsmall level safetyrequirements willdirectly lead to mental conditions,noisepollution,andhigh- aspects suchasindividualmobility, environ- a clearcharacterisationofsociety-induced ability oftechnologies,systemconceptsand small aircraft, requested functionality, avail- Acomprehensive analysisofmissionsfor DescriptionofWork 225 Pioneering the Air Transport of the Future 226 Pioneering the Air Transport of the Future Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: to theaeronautics communitywithahigh enhanced andproven avionicsarchitecture the intentionofSAFAR toprovide ageneric, Beyondthecurrent research objectivesitis ExpectedResults will beperformed. automatic reconfi guration incaseoffailures of handlingquality, control characteristicsand fl ight validationoftheSAFAR avionicsinterms V-plane andtestedontheground. Finallyin- on a6-DOFsimulator, then integratedinthe evant hardware andsoftware willbetested and theirfunctionalbehaviourtested.Therel- All componentswillbeintegratedinatestrig system onthetopoffl y-by-wire platform. (V-plane) andincorporatedinthefl ight control M eopc n eec .. ES AT DE BE DE GMVAerospace andDefenceS.A. DiamondAircraft IndustriesGmbH DeutscheFlugsicherungGmbH CZ Universität Septentrio Honeywell Stuttgart DE28309Bremen International RheinmetallDefenceElectronics GmbH Brueggeweg 54 +49(0)4214573012 +49(0)4214574752 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.fp7-safar.de ehiceUiesti ef NL Technische UniversiteitDelft 36 months SAFAR 7318272 Mr. Dietrich Knoerzer CP–FP Mr. Hans-HermannRoeper 31.03.2011 01.04.2008 4700000 213374 Avionics, HumanFactorsandAirports Small Aircraft Future Avionics ARchitecture € € future aerialrobotic platforms. could beafi rst choicefortheavionicsof approach, theSAFAR avionicsarchitecture million upto1/1billionandthelow-cost Due tosafetylevelsrangingbetween1/1 executed automatically. as aresult oftheonboard ATM/FM shallbe automatism. Four-dimensional fl ight vectoring be supportedbywayofmaximumonboard gency. AdvancedATC andevenATM will and auto-landfunctionalitiesincaseofemer- take-off andlandingorautomaticgo-home tionalities tosmallaircraft, suchasautomatic implementation offurtheradvancedfunc- software components.Thiswillallowfuture degree ofre-use ofgenerichardware and rent civilaircraft (almost50years). cold conditions)andthelonglifetimeofcur- strict operationalconstraints(e.g.fl yinginvery aeronautics isagreat challenge,duetovery fuelsin context, usingbiofuelsandalternative ditioned byrespecting theenvironment. Inthis sustainable growth ofthecivilaviationiscon- impact offossilfuelsonclimatechange,the the priceofoilisincreasing andwiththe native fuelsinaeronautics. Inacontextwhere ALFA-BIRD aimstodeveloptheuseofalter- StateoftheArt-Background Aircraft Development FuelsandBiofuelsfor Alternative ALFA-BIRD Overview ofthesub-projects and tohelpsoftentheeconomicuncertainty ence, helplesseningglobal-warmingeffects, improve eachcountry’s energyindepend- nautics withalong-termperspective,tohelp fuelsinaero-develop theuseofalternative ThemainobjectiveofALFA-BIRD isto Objectives Overview ofpotential Alternative fuels Alternative 1Y 3Y4 Y3 Y2 Y1 SP1 (including AdvisoryGroup andIPRmanagement) suitability ofalternative Assessment ofthe fuels foraicraft Overall managementandsupport SP2 SP4 - To establishanindustrialuseofthe‘best’ - To evaluatetheenvironmental andeco- - To assesstheadequacyofaselection To- identifyandevaluatepossiblealternative the followingobjectives: In operationalterms,ALFA-BIRD addresses ering thewholeaircraft system. revisiting thefuelspecifi cations andreconsid- fuels topoweraircraft withthepossibilityof tigate newapproaches andnewalternative of crudeoilpeaking.ALFA-BIRD willinves-

alternative fuels. alternative fuels; nomical performanceofselectedalternative experiments; requirements basedonaseriesoftestsand of uptofi fuelswithaircraftve alternative the wholeaircraft system; fuels topetroleum kerosene, considering alternative fuels alternative analysis and Technical strategy future SP3 227 Pioneering the Air Transport of the Future 228 Pioneering the Air Transport of the Future DE70174Stuttgart HausderWirtschaftWilli-Bleicher-Strasse European InstituteforIntegrated RiskManagement Virtual Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Coordinator: Website: Technical domain: assessment. well asanenvironmental andeconomical try basedontheresults ofSP1andSP2,as fuelsintheaircraftplan foralternative indus- To provide astrategyandimplementation fuels strategy. SP3: Technical analysisandfuture alternative tive fuelswithrespect toaircraft requirements. To assessthesuitabilityofthree tofive alterna- craft requirements. fuelstotheair-SP2: Suitabilityofalternative for theaircraft industry. fuelsandbiofuels opment ofnewalternative To provide acompleteanalysisofthedevel- fuels. SP1: Overviewofpotentialalternative sub-projects (SP): Theproject isorganisedintothree technical Description ofWork FP7-AAT-2007-RTD-1 http://www.alfabird.eu-vri.eu 48 months ALFA-BIRD 9700000 CP–FP Dr. Snezana Jovanovic 31.05.2012 01.07.2008 6800000 213266 Propulsion Alternative FuelsandBiofuelsforAircraftAlternative Development € € Expected Results 4. New methodologyandcorresponding 3. Long-term strategyandimplementation 2. Redefi ne therequirements ofjet fuelsto - - b) Longterm: a) Shortterm:Blendofkerosene andbiofuel fuelsforaircraft;1. Newalternative Themaininnovativedeliverableswillbe: into accountthewholelife-cycleanalysis. tools foreco-effi ciency assessmenttaking project). aircraft (thisisakeydeliverableforthe fuelsfor plan fortheuseofalternative fuels. alternative duction), theuseandoperabilityof optimise thesupplychain(includingpro- (treated plantoil) properties fuels. ofalternative mental studyofthecharacteristicsand the knowledgegainedduringexperi- Defi nition ofbestformulations thanksto for aircraft. availability ofcandidatestobeusedasfuel fermentation processes willenlargethe New molecules:fattyacidsproduced by Partners: ECOffi Fax: Tel: E-mail: ehiceUiesttGa AT UK UK UK ZA CA DE DE FR FR CounciloftheUniversity ofToronto TheGoverning Technische UniversitätGraz FR UniversitätKarlsruhe(Technische Hochschule) UniversityofSheffi eld UK FR FR ShellAviation Ltd SasolTechnology (Pty)Ltd RollsRoyceplc DE FR Offi ce Nationald’Études etdeRecherche Aérospatiales MTUAero EnginesGmbH Snecma FR Lesaffre SARL International FR InstitutFrançaisduPétrole InstituteNationaldesSciencesAppliquéesdeToulouse InstituteNationaldel’Environment IndustrieletdesRisques BE DeutchesZentrumfürLuft-undRaumfahrte.V SA DassaultAviation SA Technologica Group -European Technical JointVenture cvba Centre NationaldelaRecherche Scientifi que IT AirbusUKLtd Avio S.p.A. +49(0)7111839748 +49(0)7116770606 cer: [email protected] ibsFac A FR AirbusFranceSAS Daniel Chiron 229 Pioneering the Air Transport of the Future 230 Pioneering the Air Transport of the Future ALPHA, hybridpropelled vehiclelaunchedathighaltitudeforshort-range fl ights (here: one of severallaunchoptions). and hastwopilots. takes sixpassengerstosuborbitalaltitudes itself willhaveitsfi rst fl ights nextyear. SS2 of beingcommissioned,whilethespaceship carbon-based design.WK2isintheprocess rocket-propelled SS2conceptrelies onanall 2), aslaunchingcarrieraircraft. Thehybrid ShipTwo) aircraft, andtwoWK2(WhiteKnight as airlineoperatorordering fi ve SS2(Space- Galactic Composites intheUSAwithVirgin fi ciently funded,are theactivitiesbyScaled Most feasibleandadvanced,aswellsuf- the UnitedStatesofAmerica. majority oftheseactivitiesistakingplacein a newprivateindustrytoemerge.Thevast suborbital humantransportation,allowing Worldwide activitiesare goingontodevelop StateoftheArt-Background Transport 20XX Future High-Altitude High-Speed FAST20XX fi eld ofsuborbitaltransport.Technologically Europe hasnotreally startedactivities inthe cal ridewithoutlargedown-rangecapability. The aiminallthesecasesisashortverti- place in2007. sengers isthree. Thelasttestfl ights took Delta Clipper. Theanticipatednumberofpas- of BlueOrigin,basedontheprevious DC-X uid rocket-propelled NewShepherd concept vehicle istheverticallystartingandlandingliq- A third potentialcommercial suborbitalfl ight fl ights in2010. and isplannedtohaveitsfi rst suborbitaltest to altitudesofupabout60kilometres, from theground. TheversionMarkIwillclimb space vehicleLynx MarkIstartshorizontally suborbital two-seatedliquid-rocket propelled In contrasttotheairlaunchconcept,XCOR’s rules. and inthedefi nition ofenablinginsurance result innewsafetyandliabilityagreements, very behind.Corresponding activitieswillalso fl ights tohumans.Inthisrespect, Europe is by alleviatingtherulesforsellingsuborbital ceports across theAmericancontinentand providing licencestobuildanumberofspa- has helpedtheemergingprivateindustriesby authorityFAAIn theUSAgovernmental means aswell. tion todevelopnovelsuborbitaltransportation however, European engineersare intheposi- - Flow control insupersonic/hypersonic - Separation techniques; - - Flight Innovative, high-performancecooling experimentation; - Hybrid propulsion; the envisagedconceptsare: The scientifi c andtechnologicalobjectivesfor identify criticaltechnologies. - identify theprerequisites forthecommercial - - evaluate twonovelconceptsforhigh-alti- are to: Thegeneralobjectivesofthepresent project Objectives ground forultra-fastlong- SpaceLiner, two-stageall boundary layers; techniques; port, and operation ofhigh-altitude,high-speedtrans- tude high-speedtransportation, rocket propelled vehicle launched verticallyfrom range fl ights. c. development/evaluation ofhybridpropul- critical assessment/comparisonwithdevel- b. a. preliminary systemdesign,analysisand operation: legal andoperationalbasisforsuborbitalfl ight cepts, aswellpro-actively preparing the for therealisation ofthemajorvehiclecon- technologies, toolsorknow-howrequired tive testsaswelltechnicalvalidationof technological aspectsleadingtorepresenta- The project enablestoconsiderallmajor SpaceLiner. transportation withtheconceptsALPHAand are suborbitallow-energyandhigh-energy point-to-point transportation.Theguidelines ment ofmore challenginglonger-distance, vehicle asafi rst steptowards thedevelop- using theairlaunchofasuborbitalspace port andoperationaldevelopmentactivities Thepresent project pursuestechnicaltrans- DescriptionofWork - Safety analysis. - Guidance NavigationandControl (GNC) techniques; issues ofnoiseandbenignpropellants, sion technologieswithconsiderationof opments inATLLAS andLAPCAT, cepts ALPHAandSpaceLiner, performance evaluationforthevehiclecon- 231 Pioneering the Air Transport of the Future 232 Pioneering the Air Transport of the Future Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Coordinator: . guidelinesforensuringsafetypassen- j. novellaminarfli. ow control techniquesfor know- h. aerodynamic/aero-thermodynamic national/European/inter- and g. on-ground computationalandexperimentalsimulation f. e. novel coolingtechniquesforwingleading d. autonomous GNCwithhealthmonitoring FR75738Paris rueMarioNikis ESA-European SpaceAgency development ofasafetytoolbox. and defi ciencies oftheaircraft itself,and human factors,ATM, airlineoperations, gers, on-ground populationinviewofe.g. while improving aerodynamic effi ciency, tion ofviscousdragandsurfaceheating hypersonic fl ow strivingforastrong reduc- of asuborbitalfl ight, how formasteringascentandsafere-entry operations national guidelinesforsuborbitalfl ight critical stabilityregimes, for thedeterminationofdynamicloadsin methods forseparationphenomenaand locations withveryhighheatloads, edges, stagnationpointsandanyother degradation, and adaptationtovehicleperformance FP7–AAT–2008–RTD–1 36 months FAST20XX 7289429 CP–FP Dr. JohanSteelant 30.11.2012 01.12.2009 5122148 233816 Breakthrough andNovelConcepts Future High-AltitudeHigh-Speed Transport 20XX € € tive research anddevelopmentwork. simultaneously byparticipatinginthisattrac- Young engineersandscientists are educated in timefornewmarkets. oped andestablished,rendering themready of start-upcompanies,are prepared, devel- Concrete servicesandproducts, in particular single benefi ciary withouttheECsupport. activities whichwouldnotbepossiblefora through newresearch andtechnological bles abetterpositioninginemergingmarkets, Europe willalsobearesult. Theproject ena- emerging programmes withinandoutside leading edgeexpertiseforparticipationin A networkofpotentialfuture partnerswith the project. satisfaction ofsociety’s needswillresult from suborbital commercial transportation,andthe scientifi c competenceinEurope inthefi eld of Anincrease ofnon-technicalandtechnical/ ExpectedResults fl ights withpassengersisthesafety. The majorchallengeforallconceptsinvolving Partners: ECOffi Fax: Tel: E-mail: K o amnIsiue BE NL DE DE DE BE SE DE FacultyofLaw, UniversityofLeiden ES SE BE FR VKI-Von KarmanInstitute ONERA-Offi ce National d’ÉtudesetdeRecherches Aerospatiales AstriumGmbHSpaceTransportation CENAERO-Centre deRecherche enAéronautique ASBL ULB-UniversitéLibre deBruxelles Technische UniversitätBerlin IT DE AstosSolutionsGmbH AI:Aerospace InnovationGmbH SwedishSpaceCorporation SwedishDefenceResearch Agency DLR-DeutschesZentrumfürLuft-undRaumfahrte.V. CIRA-Centro ItalianoRicerche Aerospaziali S.c.p.A. DEIMOSSpaceS.L. CH CFS Engineering +31(0)715655552 +31(0)715655421 cer: [email protected] rsaeAo etc AT OrbspaceAron Lentsch Mr. JoséM.MartinHernandez 233 Pioneering the Air Transport of the Future 234 Pioneering the Air Transport of the Future LAPCAT A2:Mach5Vehicle atTake-Off development roadmap tobedefi ned. assessed. Theoutcomewillallowadetailed available, thevehicle’s performancewillbere- detail. Oncetheperformancefi gures are components willnowbeassessedinmore assumed performancefi gures ofdifferent and itsrelated pre-cooled turboramjet,the BeginningwiththeavailableMach5vehicle Objectives retained inthepresent proposal. two novelaircraft forMach5and8fl ights are vehicles, ofwhichthere were several,only than twotofourhours.Amongthestudied to reduce theantipodalfl ight durationtoless EC project Lapcat,whichhadasitsobjective: LapcatIIisalogicalfollow-uptotheprevious StateoftheArt-Background Concepts andTechnologies II Long-termAdvancedPropulsion LAPCAT-II - high-speed air-breathing cycleanalysis; - - the proper developmentandvalidation achieve thesegoalsare: Theimportantpointstobeaddressed to DescriptionofWork a successfuloutcome. trajectory isnowtheprimefocustoguarantee airframe andenginethroughout thewhole eration. Inaddition,theintegrateddesignof formance andfuelconsumptionduringaccel- the formerejectorrocket toassure betterper- formance. Aturbo-basedenginewillreplace rocket, didnotprovide anacceptableper- acceleration phase,whichrelied onanejector cle basedonascramjetseemedfeasible,the Although thecruisefl ight oftheMach8vehi- methodology; of engine-airframeintegrationtoolsand

© REL LAPCAT-MR1: Mach8Vehicle effects willbeinvestigatedforbothvehicles. tion ofcontrailswithitsdirect andindirect and H environmental impact.Theinfl uence ofNO altitudes, limitedexpertiseisavailableonthe For vehiclesfl ying athighspeedsand developments. will bedefi ned outliningthestepstofuture with themissiongoals.Thenaroadmap of afullyintegratedvehicleabletocomply analysis toolsresult inarealistic pre-design The developmentofvalidateddesignand - dedicated experimentstoevaluatethe off- andon-designbehaviourofengine - design invariousoperationpoints. airframe; 2 Ointotheozonelayerandforma- x available. vehicle constructionanddeploymentwillbe necessary forsuccessiveexplorationtowards detailed technologicaldevelopmentroadmap munity inEurope. Attheendofproject, a ing thesupersonic/hypersonicresearch com- project alsoplaysanimportantrole incombin- the databasefrom thepreceding project. This in theframeofthisproject willcomplement Russia orJapan.Theexperimentsconducted term studiesclassicallyperformedintheUSA, be considered asafi rst steptowards long- This willbeuniquewithinEurope andshould cruise partofthetrajectory. which includesboththeaccelerationand ceptual designenablingantipodalrange, propulsion unitswillbepursuedintheircon- TheMach5and8vehiclesrelated Expected Results

© ESA 235 Pioneering the Air Transport of the Future 236 Pioneering the Air Transport of the Future Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: nvriyo rses BE DE IT UK UK UK BE UK BE TheChancellor, MastersandScholarsoftheUniversityOxford IT UniversityofRome-LaSapienza UniversityofBrussels UniversityofStuttgart DE UniversityofSouthampton FR Centre ofExcellenceinAeronautical Research GDL-GasDynamicsLtd FR REL-ReactionEngineLtd Von KarmanInstituteforFluidDynamics Offi ce Nationald’ÉtudesetdeRecherche Aérospatiales DeutschesZentrumfürLuft-undRaumfahrte.V. ItalianAerospace Research Center FR SociétéNationaled’étudeetdeConstructionMoteursd’Aviation MBDA NL2200AGNoordwijk Keplerlaan 1 +31(0)715655552 +31(0)715655421 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.esa.int/techresources/lapcat_II ED-sru DE EADS-Astrium 48 months LAPCAT-II 10400000 Mr. RémyDénos CP–FP Dr. JohanSteelant 30.09.2012 01.10.2008 7400000 211485 Breakthrough andNovelConcepts Long-term AdvancedPropulsion ConceptsandTechnologies II Centre European SpaceAgency-European SpaceResearch andTechnology € € UsefulPlasmaforAerodynamic control PLASMAERO devices have. ease ofimplementationthattheseinnovative and willshowtheadvantagesnotably the properties. Theproject willrunforthree years they maybeoptimisedtoinfl uencetheairfl ow characteristics andanin-depthstudy ofhow enhanced understandingoftheir physical namic fl ow. Thiswillbeachievedthrough an tors canbeusedtocontrol aircraft aerody- surface andsparkdischargeplasmaactua- PLASMAEROseekstodemonstratehow Objectives future aircraft designs. necessary stepforward intheirstudiesfor humid conditions)infl ow control whichisa limitations ofplasmaactuators(including project willcharacterisetheadvantagesand studies andnumericalwork,thePLASMAERO Through thecombinedworkofexperimental reaction tolocalphenomena. over theaircraft structure orlocally inreal-time no de-phasingandsocanbeusedglobally limited amountofelectricalenergy. Theyhave actuators. Plasmaactuatorsrequire onlya and obtainingthedesired effect with active difference betweentheexecutioncommand There isalsoaninherent de-phasing, atime plex kinematicsorlargeamountsofpower. structure, eitherbecausetheyrequire com- extremely diffi cult tointegrate intotheaircraft studied, butsomecouldbeconsidered Activeandpassiveactuatorsare currently StateoftheArt-Background Vortices generatedbysurfaceplasmas

- Providing exhaustiverecommendations - Demonstrating theeaseofuseandinstal- Demonstrating, through windtunnelexperi- - - Performingcomparativeexperimentaltests - Understanding, modellingandclassifying, is structures asfollows: The workplannedinthePLASMAEROproject actuators tooptimisethefl ow overtheairfoil. aircraft’s fi xed structure andtouseeffi cient nologies goingbeyondthelimitationsof to studybreakthrough andemergingtech- forward towards thisobjective,itisnecessary ance canbeonewaytoachievethis.To move 2020 vision.Optimisedaerodynamic perform- tally-friendly aircraft inlinewiththeACARE ented bytheneedtohavemore environmen- Thedesignoftomorrow’s aircraft willbeori- nautical confi gurations. control airfl ow inthemostchallenging aero- It willdemonstratetheirabilitytobe usedto currently beingresearched ornewlypatented. ising innovativeplasmaactuatorswhich are a singleEuropean referential, themostprom- Theproject willbenchmark andadaptunder ExpectedResults Description ofWork eration ofaircraft programmes. implement thistechnologyinthenextgen- on future worktobeperformed inorder to flplatform; ight lation oftheseactuatorsinareduced size cruise andlanding); representative airfl ow conditions(takeoff, terms oflift,lift/dragandhighliftnoisein nifi cantly improve aircraft aerodynamics in ments, theabilityofplasmadevicestosig- for furtherdevelopment; confi gurations toselectthemostpromising and numericalstudiesofdifferent actuator capable ofinfl uencing airfl ow; istics ofsurfaceandjetplasmaactuators ies, themostrelevant physicalcharacter- through experimentalandnumericalstud- 237 Pioneering the Air Transport of the Future 238 Pioneering the Air Transport of the Future Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: through improved lift/lift-drageffi ciency. well asnoiseandoperatingcostsredutions the simplifi cation ofaerodynamic profi les as in designandmanufacturingcoststhrough performance ofaircraft, leadingtoareduction technology basetooptimisetheaerodynamic to envisagethefurtherdevelopmentofthis future workwillpermitEuropean industrial The recommendations androadmap for ehiceUiesttDrsat DE CH FR NL FR IT Technische Universität Darmstadt StichtingNationaalLucht-enRuimtevaartlaboratorium EcolePolytechniqueFédéraledeLausanne Centre NationaldelaRecherche Scientifi que CIRAscpa-Centro ItalianoRicerche Aerospaziali Snecma FR31055Toulouse cedex 2avenueEdouard Belin Offi ce NationaldEtudesetdeRecherches Aérospatiales nvriyo otapo UK UK UniversityofSouthampton TheUniversityofNottingham +33(0)562252857 +33(0)562252583 FP7–AAT–2008–RTD–1 cer: [email protected] http://www.plasmaero.eu ATI FR ARTTIC 36 months PLASMAERO 4988029 Mr. DietrichKnoerzer CP–FP Dr. DanielCaruana 30.09.2012 01.10.2009 3815410 234201 Breakthrough andNovelConcepts Useful PlasmaforAerodynamic control fSine PL of Sciences The SzewalskiInstituteofFluid-Flow MachineryPolishAcademy € € applications suchaswindpowergenerators. trains andcarsaswellotheraerodynamic land-based transportsuchashighspeed This technologybasecouldalsobeusedfor such asregulation, licensing,infrastructure, to beaccompaniedbyprogress inaspects nation. Thistechnologicalprogress willhave short distanceawayfrom theirowner’s desti- and landinginabundancefrom airfi elds onlya place before personalaircraft willbe takingoff the current state-of-the-artwillhavetotake term system.Considerableprogress beyond Personal airtransportsystemsare notanear- or residence. ing remote areas unexploitedforemployment centres becomeresidential centres, andleav- periphery syndrome inwhichemployment veniently from work,worseningthecore- factors limitthedistanceonecanlivecon- tenance ofroads andinfrastructure. These safety hazards andtheneedforcostlymain- low speed,highfuelconsumption,major sists ofon-surfacevehicles(cars)limitedby Today, personalground transportationcon- StateoftheArt-Background for PersonalAirTransport Systems Validation ofPioneeringConcepts PersonalPlane:Assessmentand PPlane PPlane PotentialConcept ment inEurope’. creative andinnovativetechnologydevelop- in astructured process approach towards ‘The proposed setofmechanismswillresult the report: adopts therecommendation thatislistedin technologies forfuture airtransport.PPlane at identifyingpotentialnewconceptsand to theOut-of-the-Boxstudy, whichaimed The PPlaneproject isadirect follow-upaction will quicklybecomingunbearable. congestion isworseningandthatthesituation from thecurrent stateoftransportationthat transportation (co-modality),etc.Butitisclear controlling, synergieswithexistingformsof cost, itcanonlybeusedbyaverylimited aviation ispretty wealthybut,duetoitshigh ered as‘personalairtransport’,business Onthehigherendofwhatcouldbeconsid- Objectives 239 Pioneering the Air Transport of the Future 240 Pioneering the Air Transport of the Future to recommendations, makingthesynthesis The lastphaseoftheproject isdedicated societal aspects. cepts, regarding varioustechnologicaland detail ofthedefi nition oftheretained con- description follows,deepeningthe levelof The preferred PPlane systemsdetailed promising ones. which purposeistoretain onlythemost Then aPPlanesystemselectionismade, numerous PPlaneconcepts. defi nition, leading toarough defi The finition of rst onedealswiththePPlanesystem is dividedinfourmainphases. the oneusedinOut-of-the-Boxstudyand Theproject adoptsasimilarmethodologyto DescriptionofWork research themes. in the‘fullautomation’and4Dtomax’ and willalsobringsomeinputstoitsWP-E agement (ATM) structure planned inSESAR will bebuiltaccording totheAirTraffi c Man- Moreover, thedefi nition ofthePATS concepts implementation across Europe. compared, resulting inrecommendations for ria. Theresulting conceptsare analysedand are considered ineachoftheabovecrite- as technologies,regulation andaffordability tal andhumanfactors.Horizontalareas such safety, automationandcontrol, environmen- criteria. Themainonesincludesecurityand optimisation modelandseveralselection project willsorttheseconceptsusingan els andpilotcompetencyrequirements, the new conceptswithvariousautomationlev- Starting withthedefi nition ofpotentialPATS (PATS), ratherthantakingincremental steps. for future PersonalAirTransport System approach topropose radicaland novel ideas To thisend,PPlaneimplementsasystematic egories, some4to6or8passengeraircraft. on aircraft inbetweenthesetwoextreme cat- PPlane aimsatdevelopingasystembased training fl ights andtravels. ation ismore dedicatedtoleisure/educational At theotherendofspectrum,generalavi- number ofpersons,oftencalled‘theJet-set’. introduction ofanewsystemintothealready to befullydocumentedandjustifi ed asthe to accomodateaPATS intheATS willhave years ofexperience,anynecessary change tions havebeenbuiltbasedonmore than100 not tobeunderestimated. Inaviation,regula- Last butnotleast,theregulation issuesare not imposed. population’s wayoflifehastobeagreed and these daysasanysignifi cant changeinthe Social acceptanceisalsoanimportanttopic as thisisamajorenablerforsuchsystem. The secondoneistechnologicalavailability essential. aspect ofapersonalairtransportsystemis The fi rst oneisaffordability astheeconomic four topicswillbestudiedindepth. able through amulticriteriaanalysiswhere This PATS willappeartobe,ornotwork- management system). port system,integratedintotheairtraffi c organisation (asapartoftheglobalairtrans- viability, itsstructure (components)andits such aPersonnelAirTransport System,its prehensive viewonthepossibilitytodevelop Theexpectedresult from theproject isacom- ExpectedResults ment tasks. dedicated tothedisseminationandmanage- Two other«conventionalworkpackages»are tions thathavebeenmade. scenarios inorder toverifythemainassump- The project isconcludedbyadefi nition of formed intheseworkpackages. ogy) are investigatedallalongtheworkper- social acceptance,regulations andtechnol- Transverse fi elds ofinterest (affordability, human factorsandenvironmental concerns. safety ofthesystem,automationandcontrol, four workpackagesdealingwithsecurityand the systeminaproper wayare analysedin issues todesignthevariouscomponentsof concepts ofsuchasystem.Then,set age dedicatedtoanalysingtheoperational The PPlaneproject startswithaworkpack- insights intopossibleandviablefuture PATS. of thedetailedconcepts,inorder toprovide FR92322Châtillon 29,Avenue delaDivisionLeclerc ONERA-Offi ce Nationald’ÉtudesetdeRecherche Aérospatiales Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: other airspaceusers. compromise thesafetyandsecurityof well-regulated airtransportsystemshouldnot Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: nvriyo ars GR HU IL PL CZ NL ES DE REA-TECHEngineeringandArchitect Ltd. UniversityofPatras IT NLR-NationaalLucht-enRuimtevaartlaboratorium INTA -InstitutoNacionaldeTécnica Aeroespacial DLR-DeutschesZentrumfürLuft- und Raumfahrte.V. Warsaw UniversityofTechnology IT IntergamCommunicationsLtd CIRA-Centro ItalianoRicerche Aerospaziali S.C.p.A. UniversityofTechnology Brno ALMAMATER STUDIORUM–UNIVERSITA’ DIBOLOGNA SI Airnet d.o.o. +33(0)146734904 +33(0)146734149 FP7–AAT–2008–RTD–1 cer: [email protected] http://-stillpendinguntilcontractsignature salArsaeIdsre t. IL IsraelAerospace IndustriesLtd. 30 months PPlane 4829041 Martin Hernandez CP–FP Mr. ClaudeLeTallec 30.03.2012 01.10.2009 3279 005 233805 Breakthrough andNovelConcepts

Personal AirTransport Systems Personal Plane:AssessmentandValidation ofPioneeringConcepts for € € PATS. project willallowtosetplansforthefuture of Moreover, thedisseminationphaseof 241 Pioneering the Air Transport of the Future

Methods inAeronautics Experimentation andDesign Multi-Physics Modelling,Simulation, Europe andChinaintheFieldof Scientifi Prospecting and Promoting AEROCHINA2 of interest toEuropean andChinese partners plines considered inAEROCHINA2whichare aeronautic sector. Themulti-physicsdisci- of multi-physicsproblems ofinterest tothe testing anddesignmethodsforthe solution simulation andcodevalidation,experimental the fi eld ofmulti-physicsmodelling, computer aeronautics sectorinEurope andChinain university andresearch organisationsinthe co-operation betweenanumberofindustry, TheaimofAEROCHINA2istofosterthe Objectives integration oncollaborativeenvironments. the importanceofhumanaspectsandfl exible composite materials,etc.)andemphasising transfer, structure/acoustics, pollutionfl ows, as fl uid/structure, fl involving twoormore differentuid/acoustics, fl fi elds (such uid/heat problems inaeronautics inEurope andChina, loosely andstrongly coupledmultidisciplinary methods, codesandexperimentsrelated to still alackofinitialinformationonavailable applications. Despiterecent efforts, there is pline codesislimitedtoaspecifi c rangeof So far, thecorrect useofsuchsingledisci- coupling duetomultidisciplinaryeffects. applications whennotexplicitlytreating the to beofsignifi cant valueinmanyindustrial in Europe andinChina,haveproven been developedanduseduntilrecently, both and experimentaltoolssolvershave Numerous modelling,designoptimisation StateoftheArt-Background cCo-operationbetween operation inforthcomingFP7calls. for asubstantialandsustainablewin-winco- to amore long-termpreparation necessary These AEROCHINA2objectivescorrespond Seventh FrameworkProgramme (FP7). mature enoughforjointproposals intheEC’s 3. To prepare specifi activitiesthatarec RTD situation; nese partnersinorder toensure awin-win those areas betweentheEuropean andChi- 2. To developconceptsofcollaborationin and design; technological areas ofmulti-physicsanalysis bilities oftheChinesepartnersinrelevant and toclarifytheskills,experiencescapa- 1. To identifyareas interest, ofmutualRTD are thefollowing: The generalstrategicobjectivesoftheproject control andaero elasticity. fl uid dynamics,aero acoustics, activefl ow are aerodynamics, structures andmaterials, 2. Thedevelopmentofacommondatabase 1. Prospective studieson theexistingmeth- Thespecifi c project activitiesare focusingon: DescriptionofWork incorporating theknowledgeofrelevant Europe andChina. tion, experimentationanddesigntools in ods forsingleandmulti-physicssimula- 243 Cross Cutting Activities 244 Cross Cutting Activities 6. Thedisseminationoftheproject outputs 5. Theorganisationofoneshortcourse(in 4. Theorganisationofaworkshop(inChina) 3. Identifi cation ofpossibleco-operationin physics problems inaeronautics. new methodsaimingtosolvecomplexmulti- many opportunitiesforthedevelopmentof mathematical andnumericalmethodsopens in Europe onmultidisciplinaryexperimental, activitiesinChinaand information onRTD organisations. Accesstostate-of-the-art operation betweenEuropean andChinese and technologicalprospects forfuture co- Thisproject offers awiderangeofscientifi c ExpectedResults Europe andChina. and industriesintheaeronautic sectorin among universities,research centres Europe) inthemulti-physicsfi elds. simulation, validationanddesign. knowledge onthefi eld ofmulti-physics interchange andbeprepared toshare Europe andoneinChina)order to and twodatabaseworkshops(onein areas.RTD technology inEurope andChina. multi-physics simulation/validation/design business opportunities. scenariosand attractive co-operativeRTD quate trainingactionswillhelptocreate new technology tothesesectorsthrough ade- AEROCHINA2 disseminatedmulti-physics ture, automotiveindustry, etc.).Transfer ofthe machinery, civilconstruction,navalarchitec- physics transporttechnologies(i.e.rotation tors thatalsoneedthecomputationalmulti- in marketsdifferent from theaeronautic sec- The AEROCHINA2datawillfi nd application projects.basis forsettingupnewRTD problems. Theseguidelineswillprovide the future forthesolutionofmultidisciplinary methodologies tobedevelopedinthenear Guidelines willdefi ne thestrategiclinesand accounted forinpractice.AEROCHINA2 multidisciplinary effects currently notstrongly craft vehicles,takingintoconsiderationmany new possibilityofadvanceddesigncivilair- The technologicalbenefi ts willderivefrom the ES08034Barcelona Edifi ci C1,Campus Nord UPC,GranCapitans/n CIMNE-CentredeMètodesNumèricsenEnginyeria Internacional Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: nvriyo hf l UK CN UK ES BE FR ES IT ChineseAeronautical Establishment IngenieríaAeron áuticaINGENIA,AIE PL InstytutPodstawowychProblemów Techniki PolskiejAkademiiNauk UniversityofSheffi eld DE UniversityofBirmingham S.A. NUMECAInternational FR DLR-DeutschesZentrumfürLuft-undRaumfahrte.V. InstitutNationaldeRecherche enInformatique etAutomatique UniversitédeProvence AleniaAeronautica S.p.A. AirbusEspañaS.L. +34 (0)934016494 +34 (0)934016517 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.cimne.com/aerochina2 ASFac ... FR EADSFranceS.A.S. 24 months AEROCHINA2 650 000 Mr. DietrichKnoerzer CSA–SA Prof. GabrielBugeda 30.09.2009 01.10.2007 500 000 213599 Cross-cutting activities

and DesignMethodsinAeronautics China intheFieldofMulti-PhysicsModelling,Simulation,Experimentation Prospecting andPromoting Scientifi c Co-operationbetweenEurope and eec eerhAec SE Defence Research Agency Totalforsvarets ForskningsinstituteTSwedish € € 245 Cross Cutting Activities 246 Cross Cutting Activities encourage, facilitate andincrease theirpartic- tics offers free-of-charge servicestoSMEs research andtechnology fundinginaeronau- funds. ApoolofexpertsinEuropeanRTD expressed needsforaccessingEuropean support inresponse tothe aeronautical SMEs search and byproviding awide-rangingdirect for information,project opportunities, partner is donebycreating asinglepointofreference participation inEuropean projects. RTD This ogy baseandtheircompetitivenessthrough aeronautical SMEsinadvancingtheirtechnol- TheprimeobjectiveofAeroPortal istosupport Objectives nical researcH. for SMEsinCollaboRativeAeronautical TeCh- Aeronautical SMEsandSCRATCH-Services respectively AeroSME-Support forEuropean tise oftwosuccessfulFP6SupportActions, is builtontheexpertiseandacquired exper- projects.be involvedinEURTD AeroPortal hand information,acquire visibilityandthus and research community, haveaccesstofi rst- onautical SMEstobecomepartofatechnical SMEs’ needsisnetworking,whichallowsaer- A toolforachievingthisgoalandaddressing promoting thecompetitivenessofSMEs. exposed, particularlySMEs.AeroPortal is supply chain,smallersuppliersare particularly competitiveness. Whilethisaffects thewhole to restructure, maintainandimprove itsglobal TheEuropean aerospace industrycontinues StateoftheArt-Background SMEs SupportforEuropean aeronautical AEROPORTAL free support forSMEsinWP4andWP5.In experts. Thistechnicalassessment leadsto SMEs through visitstoSMEsbyAeroPortal expressed research needsfrom aeronautical WP3 creates alistof product-oriented ers orjoinproposals underpreparation. and helpSMEstobecomegoodproject lead- mechanisms viding guidanceonRTD-funding practices forSMEsandSMEmultipliers,pro- WP2 dealswithtrainingandsharingofbest events. and participationinnational/localinformation research forSMEs,electronic newsletters ideas, ahelpdeskforallinquiriesonFP7 containing theprofi les ofSMEsandproject portal,aninteractivedatabase of anInternet groups andmultipliers.Itincludesthecreation ties andnetworkingwithindustries,SME WP1 isdevotedtoawareness-raising activi- packages (WP). Theproject isdividedintofi ve technicalwork DescriptionofWork - Training activitiesforSMEsandSME Local workshopsforSMEs; - Free proposal- servicingactivities:guidance - On-site visitsbyexpertsanalysingSMEs’ Access totheAeroPortal onlinedatabase; - - Electronic newsletters; portal toexchangeprojectAn Internet ideas - - Information onEUprogrammes and project proposals. AeroPortal willprovide: project proposals andforsettinguptheirown SMEs bothfortheintegrationinLevel1and2 and AirTransport. Thesupport isoffered to projectsipation inEUFP7RTD inAeronautics multipliers. proposal writingandpartnersearch; and supportinsettingupproject proposals, opportunities; technical acquisitionneedsandfunding and request technicalskills; initiatives; ExpectedResults successful projects. tuned according inprevious tolessonslearnt expertise andaworkingmethodology, fi ne- upon specifi c competencesandacquired Technology Initiative.Thestrategyisbased opportunities forSMEsintheCleanSkyJoint SMEs, andonproviding informationabout larger industrypartnerrequirements and mission. WP5isfocusedonbringingtogether structure theproject workplanuptofi nal sub- consortium withcomplementarypartnersand a Level1project proposal, buildtheproject aSMEideainto WP4 supportisgiventoturn - Establishing theMultiplierGroup opentoall - por-Setting upandmaintaininganInternet - - Technology-acquisition opportunitiesand Themajordeliverablesoftheproject are: between largecompaniesandSMEs; fl ow withinthesector, inbothdirections, as aplatformfacilitatingthecommunication aeronautical SMEassociationsandgroups database; tal forSMEs,includinganinteractiveSME supply chain; rectly involvedintheEuropean aerospace maximum numberofSMEs,directly orindi- RTD-awareness mechanismsoffered toa - To service atleast40collaborativeRTD - To facilitatecollaborationsbetweenaero- - Training forSMEsandSME multipliers(11 - Information campaignandsupportfor - Organising twotechnologyworkshopsto Organising andparticipatingin20national/ - On-site visits(companies’profi- les) forSMEs Free- servicesforSMEs and apublicHelp- Aeronautics Call). proposals initiatedbySMEs(IIandIIIFP7 PL, RO); States andnewerMember(CZ,HU, nautical SMEsfrom olderEUMember CZ, SI,PL,MT, SK,EE,LV, LT, BG); training sessionsforeseen inCY, RO,HU, Clean SkyJTI; to FP7calls; out matchmakingforLevel2proposals prior industry-led Level1proposals andcarrying support theintegrationofSMEsinlarge regional informationdays; and technologyneeds(about300); to structure theircorporateresearch plan desk onSME-related subjects; 247 Cross Cutting Activities 248 Cross Cutting Activities Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: otgeeSEfrArsaeIdsr PT IL GR GR ES PortugueseSMEforAerospace Industry InstituteofStructures andAdvanced Materials ISTRAM-InstituteofSTRuctures andAdvancedMaterials DE Euro-Consultants (2006)Ltd Univerzita Consultores deAutomatizaciónyRobótica S.A. BE Alround Tomá Innov BE1150Brussels Avenue deTervuren 270 e.V. ASD-Aerospace andDefenceIndustriesAssociationofEurope Support ltCnutn t HU SlotConsultingLtd +32(2)27758139 +32(2)27758112 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.aeroportal.eu uoItrTuos FR Euro InterToulouse 30 months AEROPORTAL 1500000 Mr. RémyDENOS CSA–SA Mr. NorbertReich 31.05.2010 01.12.2007 1500000 200426 Cross-cutting activities Support forEuropean aeronautical SMEs € € š e BativeZlín ě CZ Research Initiative CentralEuropean Aeronautical CEARES European Statesforsharing expertise,thelat- the research organisations oftheCentral establish awell-coordinated networkamong TheconceptoftheCEARESproject isto Objectives co-operation. targeted onthistopicisobstructing projects waslow. Thelackofregional events research establishmentsfrom thisarea inFP6 highly underutilised,andtheparticipationof European aeronautics, butthiscapacityis ity toperformsignifi cant research workfor The NewMemberStateshavethecapac- in termsofinfrastructure andpersonnel. because oftheneedforsignifi cant investment of aeronautics research ontheirown,mainly quality research results inmostdisciplines for research establishmentstoachievehigh ation amongresearch centres asitisnot easy Western Europe there ismuchmore co-oper- little abouteachother’s research potential.In tion andorganisationsintheregion knowvery mented area intermsofresearch co-opera- EuropeCentral andEastern isitselfafrag- are verylimited.Thereason behindthisisthat However thepossibilitiesforthisintegration new EUMemberStatesare developing. cation andco-operationbetweenold Framework Programme (FP6)andcommuni- research. There wasprogress duringtheSixth ation isstillanissueintermsofaeronautics on politicalandeconomiclevels,co-oper- AlthoughEurope isbecomingmore integrated StateoftheArt-Background Serbia, SlovakiaandSlovenia. Hungary, Latvia,Lithuania, Poland,Romania, Bulgaria, Croatia, CzechRepublic,Estonia, Central European andBalticstates:Austria, CEARES. Membersare from thefollowing ments ofCentralEurope were invitedtojoin The mostexperiencedresearch establish- ‘members’. university departmentsare invitedtobecome aeronautics research centres andrelevant lishment ofaregional network,where key to worktogether. Themaintoolistheestab- from theregion andgivethemthepossibility together research centres anduniversities co-operation. Theobjectiveaimstobring European Research Initiativetofoster regional This project intendstoestablishaCentral with theEuropean aeronautics industry. est research results andtodevelopcontact a sectionforCEARES membersonly. Task the creation ofthewebsite whichwillinclude tion managementofCEARES.Task 3.1is Work package3:responsible fortheinforma- individual basis. other research organisations are invitedonan exclusive, andAdvisoryBoard membersand will bepresent buttheworkshopsare not project partners.MainlyCEARESmembers separate tasksatthethree locationsofthe ment. Three workshopswillbeheldasthree Work package2:theworkshoparrange- support totheconsortium. management oftheAdvisoryBoard andits project goalsanddeliverables.Task 1.2isthe coordination oftheproject intermsofoverall a specialfocusonreporting, andhigh-level the project: administrativemanagementwith Task 1.1dealswith theactualmanagementof thisworkpackage, tion ofCEARES.Within Work package1:Managementandcoordina- DescriptionofWork 249 Cross Cutting Activities 250 Cross Cutting Activities co-operation’ andAirTraffi c Management which willinclude‘BestpracticesinEuropean A fi rst workshopwillbeheldinBudapest, EREA) through theAdvisoryBoard. and entities(e.g.ACARE,AirTN,EASN provided bykeyEUaeronautics associations of othermembers.Inaddition,advicewillbe bilities, research activitiesandresearch needs members willbeinformedaboutthecapa- Through theestablishedCEARESNetwork, ExpectedResults and EREA. tions, mainlythrough ACARE,AirTN,EASN after eachworkshop,andalsobypresenta- research community, whichwillbeprepared newsletters totheEuropean aeronautics tion outsideofCEARES,mainlythrough three in thissection.Task 3.3disseminatesinforma- research topicsandco-operationwillalsobe site. TheCEARESForumfornewcommon through themembers-onlypartofweb- on CEARESmembersanddisseminateit 3.2 willcollectalltherelevant information gration ofthenewerMemberStates. cohesion oftheEuropean Unionandtheinte- tions inEuropean consortiawillhelpthesocial Involvement ofregional research organisa- or subcontractors. SMEs canalsoparticipate,aseitherpartners these contact withtheseinstitutions.Inturn, indirectly helpslocalSMEswhichoftenhave By helpinguniversitiesandinstitutes,CEARES training ofyoungresearchers. also enhancecross-border educationandthe ation amongresearch establishmentscan research networkswillbefostered. Co-oper- integration toalready existingEuropean partoftheEuropeantral andeastern Union, among institutesanduniversitiesinthecen- In additiontonetworkingandco-operation ties forthethird FP7aeronautics call. workshop inBucharest willincludeopportuni- nated callsbyseveralMemberStates.Athird cover smallaircraft, intermodalityandcoordi- research. Asecondworkshop,inZilina,will ICS RO SK INCAS Zilina University HU1185Budapest SlotConsultingLtd Nagyszolos U12 Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: Coordinator: +36(0)12362946 +36(0)12921052 FP7-AAT-2007-RTD-1 cer: [email protected] http://www.ceares.eu

24 months CEARES 128 458 Mr. PabloPérez Illana CSA–SA Mr. RolandGurály 31.03.2010 01.04.2008 128 458 213280 Cross-cutting activities Central European Aeronautical Research Initiative iuainCnr HU Simulation Centre EUROCONTROL -CentralEuropean Research, Developmentand € € 251 Cross Cutting Activities 252 Cross Cutting Activities assess theresults byaddingotherelements beyond theidea-generatingworkshopsand of theBoxproject, itwassuggestedtogo fromBased onthelessonslearned theOut air transportinthesecondhalfofthiscentury. ble stepchangestobemadeforsustainable knowledge andtechnologieswhichwillena- stimulate thedevelopmentandcapture of Building onthisapproach, CREATE aimsto their feasibility. and thenevaluatetheseideasassess novel ideasthatcouldleadtostepchanges project, wasdesignedtocollectcreative and project, thepredecessor oftheCREATE Based onthisanalysis,theOutofBox these ambitioustargets. revolutionary conceptsare necessarytomeet order toreach theACAREGoalssetfor2020, changes andbreakthrough technologies.In potential developmentsthatcouldinitiatestep expressed needforairtransporttolook TheCREATE project originates from the StateoftheArt-Background Technologies forEurope CREatinginnovativeAirtransport CREATE WP1. Technology watch Creative workshop Ideas merging Wp 3 WP2 WP7. Total systemoversight and Project management Project setup Ideas assessment WP4. WKI WP 5 - merging ideas; - the idea-generatingworkshoptocreate the technologywatchtocentraliserelevant - will buildtheoverallprocess: proofs ofconcept)sixtypesactivitieswhich The project developsandimplements(as tions inairtransportfor2040andbeyond. process toidentifyandenablecreative solu- TheCREATE project aimsatsetting upa Objectives transport. to maximiseinnovationforthefuture ofair vide recommendations onthebestapproach stages oftheinnovationprocess andpro- and testthesemechanismsatthedifferent The CREATE project isdesignedtoidentify mechanism. process ofmergingideasandanincubator type website,atechnologywatchdevice, European airtransportsector, namelyawiki- to theprocess tofosterinnovationinthe novel ideas; developments andtechnologies; mechanism Incubator WP6 Europe. and innovativetechnologydevelopmentin in astructured approach towards creative The proposed setofmechanismswillresult aligned withtheneedsofsector. workshops toensure thattheprocess isfully nomic experts,willbeinvolvedinanumberof ACARE stakeholders,aswellsocio-eco- sustainable andworld-leadingsector. The tem’s positioningasacustomer-orientated, strengthening theEuropean airtransport sys- These activitiesaimatsupportingand incubating novelideas. - aeronauticalthe Internet-based wikitocol- - - assessing ideas; stakeholders. shop willbeorganisedwiththeairtransport this activitywillbeevaluatedandawork- procedure. Severaloptionsformanaging WP5 developsacost-effective assessment ideas. wiki-type websiteforcreative airtransport WP4 dealswithsettingupanInnopedia,a organised withtheairtransportstakeholders. assessment canbebased.Aworkshopwill into astructured approach onwhichthe different ideascoming from varioussources WP3 addresses amethodologyformerging CREATE. shop willbeorganisedduringthefi rst yearof experience ofsimilarworkshops.Awork- to assemblecreative ideas,basedonthe WP2 developsascriptforfuture workshops the benefi ts oftheairtransportstakeholders. watch mechanismattheEuropean levelfor WP1 developstheconceptofatechnology (WP): organised intothefollowingworkpackages CREATE followslogicalstepsandhasbeen DescriptionofWork lect contributionsfrom stakeholders; project. WP7 isusedtodisseminatetheresults ofthe Apart from theproject managementactivities, workshop. are developedanddisseminatedduringa ity andcollaborationinlong-termresearch are used.Opportunitiesforcreating continu- the ACAREinstitutionalobservationplatform ing incubationmechanisms.Theresults of WP6 fi rst dealswithaninventoryofexist- applied tomanycycles. parent andeffective process thatcanbe forward, deliveringapractical,tested,trans- the future strategiesforaviationmaybetaken CREATE willthusprovide avehicleonwhich the future. step changesnecessaryforairtransportin ideas forthefuture ofairtransportandthe enable aEuropean approach tofosternew full transport-sectorscale.Itisdesignedto a completeinnovativesystemoperatingon The CREATE mechanismattemptstodesign transport community. project. Awikiwillbeoperationalfortheair the airtransportstakeholdersthroughout the different workshops,whichare organisedwith reports from tocollectthe‘lessonslearnt’ Each workpackagegeneratesdetailed whole aswellindividualvalue. delivery. Eachhasitsown impactuponthe process are vitaltothisobjectiveandits All oftheseparateelementsCREATE project. all themechanismswhichare assessedinthe recommendations fortheimplementationof Thefi nal deliverableisareport presenting the ExpectedResults 253 Cross Cutting Activities 254 Cross Cutting Activities Partners: ECOffi Fax: Tel: E-mail: Coordinator: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: ahu ufhteV DE DE NL UK FR BauhausLutfahrte.V. Technische UniversitätMünchen NIVR UK QinetiQ ARTS Trevor BE1150Brussels Avenue deTervuren 270 Aerospace andDefenceIndustriesAssociation ofEurope Truman +32(0)27758290 +32(0)27758131 FP7-AAT-2007-RTD-1 cer: [email protected] A una NL Ad Cuenta 24 months CREATE 644 635 Mr. JoséM.MartinHernandez CSA–SA Mr. RomainMuller 31.10.2010 01.11.2008 632 541 211512 Cross-cutting activities CREating innovativeAirtransportTechnologies forEurope € € from thesupportbyCommission. European Commissionandtherefore benefi ts the results ofresearch projects fundedbythe it isanidealforumtorelate anddisseminate ery research ataEuropean level.Inaddition, means tofostercollaborationinturbomachin- European countries,andasanadditional ing elementbetweenWesternandEastern This conference isalsoseenasanintegrat- from itsprogress. concepts, andalluserswhointendtobenefi t to furtherenhancetheactualdesignsand of turbomachinerytechnology, intheattempt among seniorscientistsworkingattheedge also intendedtoenhanceknowledgetransfer latest developmentsandbestpractices.Itis in thisfi eld through thepresentation ofthe driver fortechnologytransferacross Europe EUROTURBO 8isintendedtobeaprimary scientifiresults. c them topresent anddiscusstheirmostrecent as tostudentsandPhDcandidates,allowing users ofturbomachinerycomponents,aswell interest toresearchers, designengineers, (AT). TheETC-8Conference is of primary decided toholdthe2009Conference inGraz Athens (EL)in2007,theETCCommitteehas Prague (CZ)in2003,Lille(FR)2005and London (UK)in1999,Florence (IT)in2001, Erlangen (DE),1995,Antwerp(BE)in1997, pean Turbomachinery Conferences (ETCs)in Followingtheprevious sevensuccessfulEuro- StateoftheArt-Background ics, Graz,23-27March 2009. TheECsupport chinery –Fluiddynamicsandthermodynam- Eighth European Conference onTurboma- Thisactionsupportstheorganisation ofthe Objectives thermodynamics, Graz,March 2009 Fluid dynamicsand Conference onTurbomachinery SupporttoEighthEuropean EUROTURBO8 the followingpreparatory work wasdone: and achieveallthegoalsmentioned above, Inorder toorganiseasuccessful conference DescriptionofWork 1. Dissemination ofthenewestturbomachin- impact furtherbythefollowingmeasures: ences, EUROTURBO8intendstoimprove its Compared totheprevious successfulconfer- turbomachinery. event forEuropean integrationinthefi eld of Union. Thismakesthisconference aprime be integratedinthefuture intheEuropean the newlyintegratedcountriesandthoseto from alloverEurope, forallparticipantsfrom allows topropose reduced feesforstudents 5. Special efforts tosecure thedissemination 4. Additional disseminationofthe‘Callfor 3. Admittance ofaRussianturbomachin- 2. First actionsfortheharmonisationofdis- ative intheorganisingcommittee. in countrieswhichdonothavearepresent- tional abstracts. visibility whichresulted inattractingaddi- from theEUtoincrease theconference’s Papers’ usingtheNationalContactPoints co-operation; increase thevisibilityinRussiaandenhance Turbomachinery Committeeinorder to ery expertasamemberoftheEuropean EUROMECH); ECCOMAS, CEAS,EUCASand other European associations(ERCOFTAC, fi eld ofaeronautics inco-operationwith seminating scientifi c knowledgeinthe ery knowledge; 255 Cross Cutting Activities 256 Cross Cutting Activities

© Graz University of Technology - online publicationofpapersforfree regular board meetings; - organising facilitytours; - printing ofconference CDs; - - layout andprintingoftheconference organising thewelcomereception andgala - employing aconference secretary; - launching aconference website(www.etc8. - organising theconference venue; - - making contactwithauthorsandreview organising thepaperreview process; - collecting draftandfi- nal papers; collectingabstractsandperforminganeval- - maintaining theconference website; - seeking conference supportfrom industries - advertising theconference; - publication ofconference callandfi- nal con- pageoftheCallforPaperspublishedinJanuary2008 Title download. proceedings; dinner; tugraz.at); organisers; uation process; and associations; ference programme; Expected Results ing theconference meetinghours. Four exhibitorspresented theirproducts dur- selected papers. in order toaccommodatethetotalnumberof was dividedintotwoorthree parallelsessions at thebeginningofeachday. Theconference given byrepresentatives from industry, one of theUniversityGraz.Fourlectures were The conference tookplaceattheauditorium results. to increase thedisseminationofscientifi c lished ontheETCwebsiteforfree download Over thenextmonthspaperswillbepub- given toeachattendeeoftheconference. well asonaCD-Rom,copyofwhichwas proceedings (ISBN978-3-85125-036-7)as The paperswere publishedintheconference - 13 papers,8%ofthesubmitted - 126 paperswere fi nally acceptedforthe 48 review organisersundertheguidanceof - 156 paperswere submittedforreview; - - 281 abstractswere submittedtothecon- deadlines were achieved. papers, workedverywell,sothatallgoalsand handling ofthesubmittedabstractsand Theconference organisation,aswellthe were publication. suggestedforjournal Athens, Greece; compared tothelastETCconference in of papersalsomeansanincrease of12% acceptance rateof81%.Thishighnumber conference whichcorresponds toan 468 reviews; the review organiser(partner3)arrangedfor sponds to94%; ference; 256were acceptedwhichcorre- AT 8010Graz Inffeldgasse 25A Technische UniversitätGraz Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: nvriádgiSuid aoi‘eeioI’ IT UniversitádegliStudidiNapoli‘FedericoII’ +43(0)3168737225 +43(0)3168737239 FP7–AAT–2008–RTD–1 cer: [email protected] http://www.etc8.tugraz.at o amnIsiuefrFudDnmc BE Von KarmanInstituteforFluidDynamics 12 months EUROTURBO 8 Mr. RémyDénos CSA–SA Prof. FranzHeitmeir 07.05.2009 08.05.2008 15 000 233666 Cross-cutting activities

dynamics andthermodynamics,Graz,March 2009 Support toEighthEuropean Conference onTurbomachinery Fluid € 257 Cross Cutting Activities 258 Cross Cutting Activities customer satisfaction,intermodality, etc. constraints ofsafety, security, environment, European Unionwhilstrespecting thedifferent tee suffi cient airportcapacity intheenlarged Refl ection isthusneededon howtoguaran- political playersinvolved. confl ict betweenthedifferent economicand prospects are sources oftensionand even transport system,theirevolutionandfuture irreplaceable role airportsplaywithintheair nature aserviceactivity. Despitethecrucial, function ofairtransport,thelatterbeingby Airportsare anessentialelementinthe Objectives is looming. ade, buttheproblem ofairtraffi c saturation and isexpectedtodoubleinthenextdec- other modeoftransportinthepast20years Air transporthasincreased fasterthanany its industryandpromote economicgrowth. works andinfrastructure inorder tosupport Europe needstodevelopnewtransportnet- Why holdthisconference? cuss thefuture. to assembletheplayersinvolvedsoasdis- aviation, particularlyairports,makeitcrucial major challengescurrently facingEuropean that havetakenplaceinthemeantime.The account ofchanges,decisionsandactions another lookatthisquestionsoastotake ber 1995inParis.Itisnownecessarytotake the theme‘Airportsoffuture’ inNovem- AAE organisedasuccessfulconference on ber 2009. French Aviation AuthorityDGACon7-8Octo- challenges’ inthegrandauditoriumof conference onthetheme‘Airportsandtheir Space Academy–AAE)organisesatwo-day TheAcadémiedel’Airetl’Espace(Airand StateoftheArt-Background Airports, October2009,Paris Conference International on ICOA.10.09 to theirrespective countries. and share experiencesandideastotakeback a furtheropportunityforparticipantstomingle reception attheAutomobileClubwillprovide ing resources, comfortandcapacity, andthe quality facilities:audiovisualmeans,translat- location intheDGACPariswillensure high ticipation andoptimalimpact.Thecentral profian international le, ahighlevelofpar- communicating effi ciently soastoachieve to bearinattractingtop-levelspeakers,and conferences andwillbringthisexperience AAEhasawideexperienceinorganising DescriptionofWork the airtransportsystemonaEuropean level. will contributetoharmonisingandoptimising innovative ideasforthefuture. Indoingsoit to tacklethevariouschallengesand promote issues facingairports,poolideasas tohow to takestockofthecurrent situationandthe quality exchanges,theconference willserve from theEuropean airtransportsysteminhigh Byengagingpolicy-makersandoperators ExpectedResults ested partiesinEurope andelsewhere. will bediffused aswidelypossibletointer- under discussionintheconference. Results current research projects impactingonissues the future. AAEwillaimtotakeaccountofany tive ideasandencouragediscussionsabout the current stateofaffairs, share newinnova- port systeminorder topoolinformationon and operatorsfrom theEuropean airtrans- conference willbringtogetherpolicy-makers pects withina15-20yeartimeframe.The straints facingthem,andtheirfuture pros- in Europe, thedifferent challengesandcon- dynamic visionoftheevolutionairports This conference willaimtoachieveabroad, FR31505Toulouse Cedex5 avenueCamilleFlammarion Académiedel’Airetl’Espace BP 75825 GrantAgreement: Nameofproposal: Acronym: Session 4:Evolutionandinnovation. development; Session 3:Specifi c demandsofsustainable Session 2:Airportservices; needs; Session 1:Airports:meetingscustomers’ The conference sessionsare thefollowing: Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Technical domain: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: +33(0)534250380 +33(0)561263756 FP7–AAT–2008–RTD–1 cer: [email protected] http://www.air-space-academy.org / 17 months ICOA.10.09 126 000 Ms.StéphanieStoltz-Douchet CSA–SA Ms.MartineSégur 01.03.2010 01.11.2008 56 000 233672 Cross-cutting activities International ConferenceInternational onAirports,October2009,Paris € € follow-up ontheAAEwebsite. and arecommendations booklet,aswella imised withthepublicationofproceedings After theconference, itsimpactwillbemax- 259 Cross Cutting Activities 260 Cross Cutting Activities - for theEUaeronautics organisations,aone - - for theUkrainianaeronautics actors,a and Ukraine: tics collaborationpotentialbetweentheEU WP1:Assessingandpublicisingtheaeronau- DescriptionofWork supporting Ukrainianaeronautical actorsto - - organising combined awareness-raising, - assessing andpublicisingtheaeronautics activities: its overallobjectiveviathree groups of the EUandUkraine.Theproject willachieve co-operation betweenaeronautics actorsin Theoverallobjectiveistofacilitateresearch Objectives Aerospace involvedUkrainianorganisations). under theSixthFrameworkProgramme – is verylow(approximately sixcontractswon in theEC’s research frameworkprogrammes participation ofUkrainianaeronautical actors of aeronautical technologies.Despitethis,the production capabilitiesacross awiderange countries tohaveresearch, engineeringand dating from theSovietera.Itisoneoffew Ukrainehasaproud heritageinaeronautics StateoftheArt-Background Research Co-operation StimulatingUkraine–EUAeronautics AERO-UKRAINE 50 strongest Ukrainianactors; to two-pageprofi le willbecompiled forthe FP7 collaborativeresearch projects; practical adviceonhowtogetinvolved in describing theopportunitiesandproviding short 10-15pagebrochure willbeprepared research proposals. join consortiapreparing FP7aeronautics tical collaborativeresearch opportunities; enth FrameworkProgramme (FP7)aeronau- training andnetworkingeventsaboutSev- Ukraine; collaboration potentialbetweentheEUand - a - a Theresults ofthisproject willbe: ExpectedResults 1. Three FP7aeronautics eventswillbe of EUaeronautics collaborativeresearch WP2: Raisingawareness andunderstanding - a 2. Support someUkrainianaeronautics actors 2. 1. Help toestablishaFP7Aeronautics NCP nautics research WP3: SupportingparticipationinFP7aero- 2. A fewUkrainianaeronautical expertswill - - - via theAERO-UKRAINEweb-portal. available inEnglish,RussianandUkrainian research co-operation. Thebrochure willbe and makesrecommendations forfuture SWOT analysesoftheaeronautics sector, ian aeronautics actors,includes PESTand Ukraine cal organisations. Ukraine Ukraine andtheEU. experts duringFP7/aeronautical eventsin tion andintroductions toEUaeronautical proposals through promotional informa- to joinconsortiapreparing FP7research for Ukraine. events intheEU. nautics research atthree aeronautics present AERO-UKRAINEandtheiraero- activities: organised inUkraine,combiningthree White Paperonaeronautics R&Dinthe organisations. networking withEUaeronautics research laborative research projects; training onhowtoparticipateinFP7col- research opportunities; awareness-raising aboutFP7aeronautics White Paperonaeronautics R&Din thatdescribesthemainUkrain- willbeproduced forEUaeronauti- HU1185Budapest SlotConsultingLtd Nagyszolos u.12 Nameofproposal: Acronym: - participation inthree aeronautics network- organisationoftwoawareness-raising/train- - a websitewillbedevelopedwhere informa- - Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: nvriyo ars GR UA AntonovAeronautical Scientifi c andTechnical Complex UniversityofPatras ing eventsintheEU; Ukraine; ing/networking FP7aeronautics eventsin Ukraine willbeavailable; tion onabout50+aeronautical actorsin +36(0)12903498 +36(0)12921052 FP7–AAT–2008–RTD–1 cer: [email protected] http://aero-ukraine.eu nelgnsaCnutnsLd UK IntelligentsiaConsultants Ltd 24 months AERO-UKRAINE 201 952 Mr. PabloPérez Illana CSA–SA Mr. RolandGuraly 31.03.2011 01.04.2009 201 952 233640 Stimulating Ukraine–EUAeronautics Research Co-operation ae yN uosi UA UA UA State EnterprisenamedafterAcademician A.G.Ivchenko Zaporozhye Machine-BuildingDesignBureau Progress National AcademyofScienceUkraine Frantsevich InstituteforProblems ofMaterialsScience, named byN.Zukovskiy National Aerospace University–KharkivAviation Institute – € € - organisation ofafi- nal disseminationconfer- support forsixormore Ukrainianaeronau-- help to establishaFP7aeronautics NCPin - ence inKiev. research proposals; tical actorstojoinconsortiapreparing FP7 Ukraine; 261 Cross Cutting Activities 262 Cross Cutting Activities operation partnercountries’. ‘Stimulating research co- withinternational under theWork Programme AAT.2008.7.6 EU’s SeventhFrameworkProgramme (FP7) be explored. Theproject issupportedbythe participation ofotherAfricancountrieswillalso these twoentitiesandthepotentialfor be created toenhanceco-operationbetween aeronautics andairtransport.Aplatformwill and SouthAfricanresearch co-operationin AeroAfrica-EU aimstopromote European the European aeronautics community. becoming increasingly more integratedwith between bothentitiesandtheSAindustryis There are commonaimsandobjectives domains. partner intheaeronautics andairtransport SA’s largestresearch anddevelopment(R&D) across theindustrialbase,andEUis driver ofinnovationandcompetitiveness importance oftheaeronautics sectorasa Both theEUandSAhaverecognised the lives ofbothEuropeans andSouthAfricans. base, butreal improvement inthequalityof knowledge enhancement oftheinternational in thepasthavebrought aboutnotjustthe co-operation ties.Collaborativeinitiatives standing political,economicanddevelopment in scienceandtechnology, markedbylong- pean Union(EU)isastrategicpartnership SouthAfrica’s (SA)relationship withtheEuro- StateoftheArt-Background Aeronautics andAirTransport African Research Co-operationin Promoting European-South AEROAFRICA-EU toestablishanaeronautics andairtransport - - to promote SAandAfricanparticipationin todevelopandenhancenetworkspart- - - to explore thepotentialforenhancingco- TheoverallobjectivesforAeroAfrica-EU are: Objectives - Funding mechanisms. - political, economicordevelopmentco- specifi- c SA/African R&Dstrengths; - the ‘enablingenvironment’ (co-operation, collaborations suchasFPprojects, bilateral - - R&D competencesinAfricagovernmental, and analysedinthefollowingcategories: port landscape:interactionswillbecollated WP1:Mappingtheaeronautics andairtrans- DescriptionofWork co-operation. to alsosupporteconomicanddevelopment SA, aswellotherAfricanpartners,so R&D policydialoguebetweentheEUand sory services; FP7 through focusedinformationandadvi- the aeronautics andairtransportactivitiesof transport R&Dco-operation; for mutuallybenefi cial aeronautics andair identifi ed technicalthemesideallysuited African researchers andorganisationsin nerships betweentheEU,SAandother other Africancountries; ation betweentheEUandSA,aswell aeronautics andairtransportR&Dco-oper- operation through ananalysis(mapping)of operation imperatives; legislative frameworks,etc.); initiatives, etc.; research andprivatesectors; collaboration. and defi ne mechanismstofostergreater relevance, identifyareas ofco-operation research environment todiscussissuesof holders intheaeronautics andairtransport creating apolicyframeworktoallowstake- interest andbenefi t inR&Dco-operation:by WP 4:Identifyinganddemonstratingmutual website. achieved through aportalontheproject nautics researchers toparticipateinFP7, supporting FP7:byencouragingAfricanaero- WP 3:Consolidatingandmobilisingtowards nautics andairtransportconferences. awareness aero- sessions,andinternational counterparts through thematicworkshops, tutions willbeactivelypromoted totheirEU and partnerships:SAresearchers andinsti- WP 2:Developingandenhancingnetworks audience. communication anddisseminationtoabroad tion. Theproject websitewillalsofacilitate ping andidentifyfurtherareas forco-opera- Workshops willbeheldtodiscussthemap- - leveraged co-operativerelationships - increased participationinFP7bySAand improved collaborationbetweenEUandSA/ - enhanced networkingandpartneringinthe - Theresults ofthisproject willbe: ExpectedResults priorities. through thejointidentifi cation ofneedsand participation inFP7; knowledge andexpertisetoaidsuccessful the functioningofFP7,andoffer accessto will provide assistanceandinformationon African aeronautics researchers. Theproject co-operation betweenAfricaandEurope. with political,economicanddevelopment nautics andairtransportR&Dco-operation a policypaperonthelinksbetweenaero- African countries.Theintentionistoprepare research projects; case thisproject andEuropean/African Europe andinAfricawillbeutilisedtoshow- raising awareness. Workshops hosted in communicationand facilitating external aeronautics R&Dcommunity, specifi cally 263 Cross Cutting Activities 264 Cross Cutting Activities Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Cranfi UK Johannesburg UniversityoftheWitwatersrand, eld ZA Jorissen University Johannesburg Street ugiaTkik ösoa SE ZA DepartmentofScienceandTechnology KungligaTekniska Högskolan +27 (0)117179024 +27 (0)117179358 FP7–AAT–2008–RTD–1 cer: [email protected] http://www.aeroafrica-eu.org ArsaeV le FR Aerospace Valley 24 months AEROAFRICA-EU 411 312 Mr. PabloPérez Illana CSA–SA Ms.CristinaPinto 31.01.2011 02.02.2009 363 165 234092

and AirTransport Promoting European-South AfricanResearch Co-operationinAeronautics oshn .. DE Forschung e.V. Fraunhofer-Gesellschaft zurFörderung derAngewandten € € Europe development ofAeronautics in the keyenablersforprosperous AirTransport Net(AirTN)asoneof AirTN-FP7 to improve theirmethodsandorganisation organisationsintheNMS and governmental is welldevelopedenabledthegovernments examples from theStates where thesystem their fi nancing andtheirorganisation.Using on thesystemofnationalprogrammes, NMS benefi ted from informationexchanges fully integratethenewmemberstates(NMS). As wellasthedefined goals, AirTNwasableto expand theEuropean dimension. of research activitiesatnationallevelandto step uptheco-operationandcoordination achieving themainobjectives,whichare to Signifi cant progress hasbeenmadetowards work ofmemberstatesandtheiragencies. Net AirTNhasresulted inanexcellentnet- For Aeronautics andAirTransport, theERA- member stateinvolvementandco-operation. tinue itsdevelopmentandallowforfurther support undertheFP7programme tocon- network toapplyforanadditionalperiodof start. Itssuccesstodatehasprompted the of theobjectivesproject setoutatthe Work Packages(WPs)havedelivered many in Aeronautics andAirTransport. Thevarious national research activitiesandprogrammes States whoseagenciesmanagepublicfunded FP6 asanetworkofMemberandAssociated TheAirTNERA-Netwasestablishedunder StateoftheArt-Background AirTN FP7willbefurtherenhanced. positive experience,co-operationwithinthe in theNMSonapartnerbasis.Giventhis tools tosupportnon-discriminatoryresearch ERA-Net AirTNwasoneofthemosteffective of aeronautical research. Asaresult ofthis, tation ofJointActivitiesstep3the ERANET transport. ThefocuswillbeontheImplemen- especially inrelation toaeronautics andair opment ofaEuropean Research Policy, the European Research Area andthedevel- It willbringaddedvaluetothefoundation of tion andstriveforlonglastingco-operation. AirTN inFP7willstrengthen thiscoordina- objectives. and supportinorder toreach itsultimate allow forfurthermemberstateinvolvement programme tocontinueitsdevelopmentand additional periodofsupportundertheFP7 has prompted thenetworktoapplyforan programmes. Thesuccessoftheinitialsteps coordination ofnationalandregional research joint activitiestoenhanceco-operationand are prerequisites fortheimplementation of co-operation. Theresults from theseWPs and theidentifi cation ofpossibleareas for betweenMemberStates tion mutuallearning through thesystematicexchangeofinforma- the fi rst stepsoftheERA-NETinstrument the endof2008.AirTNinFP6hascompleted Now initsthird year, AirTNissettorununtil grammes inAeronautics andAirTransport. funded nationalresearch activitiesandpro- ministries andagenciesmanagepublicly FP6 asanetworkofMemberStateswhose TheAirTNERA-Netwasestablishedunder Objectives 265 Cross Cutting Activities 266 Cross Cutting Activities Establishment ofacatalogueaeronautical - Research topicsforjointactivities; - - WP2: Information collectiononresearch - Maintenance ofthevirtuallaboratory - Consideration ofspecifi c targetgroups’ Analysis ofcommonstrategicissues; - - Coordination ofactivitiesandfulfi lment of Management oftheconsortium; - - Point ofcontactfortheCommissionand WP1: Theworkplanisasfollows. DescriptionofWork Identifying successfulapproaches toensur- - - Facilitating thedevelopmentofajoint - Unlocking theuntappedpotentialofskills - Increased complementaryresearch activi- - Increased effi ciency, synergy, andavoiding pursued inthisproject: In particular, thefollowing objectivesshallbe ACARE StrategicResearch Agenda. Research Area withintheframework ofthe is tocontinuestrengthening theEuropean objectiveofallAirTNactivities The governing tional research. instrument andstep4,thefundingoftransna- ment policies,prioritiesandmechanisms. tries andanalysisofcorresponding invest- research infrastructures invariousEUcoun- programmes; communication. to beusedasanelectronic meansof respect toAirTNactivitiesandobjectives; and briefi ng ofspecifi c target groups with interests withrespect tojointactivities objectives; fulfi lment ofcontractobligations; ing askilledworkforce. facilities; strategy forresearch infrastructures and regions; the newandsmallermemberstates and resources inEurope, especiallyin ties withinEurope; European, nationalandregional levels; the duplicationofresearch performedon solutions topolicy-drivenchallenges. vation andhencegreater probability offi nding national programmes, leading tomore inno- nautics focusbyincreasing thealignmentof enhance andcentralisetheEuropean aero- capacity, securityandsafety, AirTN-FP7will ronment, increased AirTransport System paying attentiontoissuessuchasenvi- capability playsapivotalrole inthis.Whilst most innovativeintheworld.Aeronautical European economytowards becomingthe cal level,envisagethedevelopmentof Ambitions forEurope, setatthehighestpoliti- of policiesinsupportstrategicplanning. research programmes, andthedevelopment ation andcoordination ofnationalandregional This willbeachievedthrough furtherco-oper- tics andAirtransport. foundation ofEuropean Research in Aeronau- role willbetocontinuestrengthening the economically andstrategically. AirTN-FP7’s Aeronautics isimportanttoEurope, socially, ExpectedResults Organisationofadisseminationconference. - Organisation ofthematicfora; - Maintenance ofthepublicwebsite; - WP5: - These aimswillbefurthersupported by - Preparing theERA-NetforTransnational WP4: - Supporting bothmodalitiesofjointactivi- Providing bestpractiseinformationtomem- - - Development ofdocumentationandproc- WP3: international programmes.international ponents andinstrumentsofnational and jointcallsonsomewidelyusedcom- multinational pilotactions,jointactivities of becomingsustainable,post-ECfunding; facilities forthenetworkwithpossibility procedures, andalsoproviding plansand programmes bydevelopingschemesand approach. ties: Project-by-project basisandstructured activities/joint research programmes; ber/associated statesaimingtosetupjoint esses forimplementingjointactivities; DE53227Bonn Joseph-Schumpeter-Allee DLR 1 PT-LF Coordinator: Website: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: ehooySrtg or UK RO IE UK PT SE IT Technology Strategy Board IT PL DepartmentforBusiness,Innovation andSkills(BIS) VINNOVA Research andInnovationforSustainableGrowth ROSA-RomanianSpaceAgency FCT-FoundationforScienceandTechnology HU NCBiR-NationalCentre forResearch andDevelopment FR CIRA-Centro ItalianoRicerche Aerospaziali S.C.p.A. GR SK NL MIUR-MinistryofUniversityandResearch EnterpriseIreland BE NKTH-NationalOffi ce forResearch andTechnology FR -GeneralSecretariat GSRT forResearch andTechnology ONERA-Offi ce Nationald’ÉtudesetdeRecherche NL Aérospatiales AT DGAC/DTA -Direction Généraledel’Aviation ES BELSPO-BelgianFederalSciencePolicyOffi ce NLR-NationaalLucht-enRuimtevaartlaboratorium MinisterievanEconomischeZaken CDTI-Centre fortheDevelopment of IndustrialTechnology FFG-AustrianResearch Promotion Agency AT BMVIT-BundesministeriumfürVerkehr, InnovationundTechnologie SK UniversityofZilina MDPTSR-MinistryofTransport, PostsandTelecommunications +49(0)228447668 +49(0)228447710 FP7-ERA-2008-RTD cer: [email protected] http://www.airtn.eu Mi-BnemnseimfrWrshf n ehooi DE undTechnologie -BundesministeriumfürWirtschaft BMWi 36 months AirTN-FP7 1900000 Mr. DietrichKnoezer CSA–SA Friedrich König 31.12.2013 01.01.2010 1900000 235476(UnderNegotiation atthetimeofediting)

development ofAeronautics inEurope Air Transport Net(AirTN)asoneofthekeyenablersforprosperous onainfrSbetv xeineadRsac CH Foundation forSubjectiveExperienceandResearch S.E.R. StiftungCH- € € 267 Cross Cutting Activities 268 Cross Cutting Activities participants (researchers, companies,policy itwilltargetrelevantfor cooperativeRTD, fying commoninterests andopportunities multi-stakeholders communities,by identi- on whatalready existsin multinationaland cooperation.Building deepen strategicRTD and LatinAmericancountries(LA).It aimsto eration betweentheEuropean Union(EU) an actionsupportingandfosteringthecoop- CoopAIR-LAisambitiousandinnovativeas Objectives actors (researchers, policymakers,users). evant R&DEuropean andLatinAmerican multi-stakeholder communityinvolvingrel- research fi eld, buildingamultinationaland execution activitieswithintheaeronautic tifi c research, technologicalinnovationand to knowandintegratethecurrent scien- on amedium-termbasis.Theproject seeks tion inFrameworkProgrammes aspartners to identifytheexistingpotentialforparticipa- countries inaeronautics, CoopAIR-LAaims development programme forLatinAmerican Programme. Ratherthanjustestablishinga initiatives undertheEuropean Framework collaborative research anddevelopment cooperation inthefi eld ofaeronautics through CoopAIR-LA aimstostimulateandpromote with LatinAmericancouldbring. tage ofallthebenefi ts thatthiscollaboration research inaeronautics isnottakingadvan- IST havebeensuccessfullytackled.However, projects infi elds suchasHealth,Foodand Cooperation Union. SomeInternational between LatinAmericaandtheEuropean research cooperationandcommunication There are importantgapsinaeronautics StateoftheArt-Background Research Aeronautics andAirTransport American CountriesinEuropean GuidelinesforCooperationofLatin COOPAIR-LA projects inthefi eld ofaeronautics research. well astheexistingresearch programmes and performed toidentifytheactorsinvolved as and Mexico.To achievethis,amappingwillbe ica, more specifi callyinBrazil,Chile,Argentina analysing theaeronautics fi eld inLatinAmer- WP2 isdedicatedtoidentifyingactors and Packages (WPs): Theproject isdividedintothefollowingWork DescriptionofWork 1. The project will: America. inEuropemakers, users)onRTD andLatin 5. Organize severalconferences andwork- 4. Ensure thatinformationonEuropean R&D 3. Consider thefi ndings onwhatthemain 2. Analyze thebarriersandtroubles foundby opportunities. ference intheEUtoidentifynetworking shops inLAandEurope, andafi nal Con- also facilitatingdialogueamongthem. policy andpracticeactorsinLA,therefore is promoted toalargenumberofresearch, of theLApartners. mechanisms toenhancetheparticipation obstacles are, andestablisheffective part inanyproject. as thediffi culties encountered whiletaking participate inEUR&Dprogrammes, aswell the potentialLApartnerswhentryingto fi eld. be involvedinEU-LAcollaborationthe cooperation, aswellkeyactorsthatwill R&D issuesonwhichtofocusEU-LA casting capacityrequired toidentifykey Build theobservation,analysisandfore- tion platform. posters, andviaCoopAIR-LA’s communica- the designofamultilingualproject fl yer and CoopAIR-LA results thatwillbeperformedvia WP6 isdevotedtothedisseminationof ther projects. holders, andtostrengthen capabilitiesforfur- collaborate furtherwiththeEuropean stake- ideas forfurthercollaboration,withaviewto European research programmes inLAandfor WP3 willbeusedforthepromotion ofthe ommendations andguidelinesprepared in three workshopswillbeheldinLA.Therec- work Programme 7(FP7).Forthispurpose, the participationofLACountriesinFrame- The aimofWP5istosupportandstimulate research programme. and theneedsofEuropean aeronautics between theLAcountriesR&Dcapabilities WP4 hastheobjectiveofidentifyingsynergies Framework Programme. these issuesandfacilitateparticipationinthe of aguiderecommendations toovercome main outcomesofthisWPistheelaboration participation inresearch projects. Oneofthe riers/diffi culties leadingtotheobservedlow WP3 aimstofi nd andanalysethemainbar- - Acting asamajormediatorandcatalyst Contributingtobuildinganairtransportsys- - - Increased visibilityandinteraction/coordi- - - Enhanced participationofLatinAmerican ExpectedResults preferred cooperationareas andEurope; grammes ofFP7,andbetweenLAcountries’ work programmes across theSpecifi c Pro- ment ofmutualinterest prioritiesoffuture tries, through theidentifi cation andassess- between European andLatinAmericancoun- The promotion ofanactivecooperation facing globalcompetition. ness, acquiringthebestcompetenceswhile therefore enhancingEuropean competitive- research withBrazil,ArgentinaandChile, its strategicLApartnershipinaeronautics in Europe’s efforts forthereinforcement of contribute topotentialcollaborations; of anetworkactorsinvolvedwhichwill and equipment,through theestablishment ing inglobalmarketsforaircraft, engines tem thatresponds tosociety’s needs,lead- level, andR&Dinaeronautics; carried outataEuropean andinternational ties related toaeronautics whichare being nation betweentheinitiativesandactivi- knowledge scenario’; through thepromotion ofa‘European–LA countries inEuropean aeronautic research, 269 Cross Cutting Activities 270 Cross Cutting Activities Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: oihIsiu fAito PL MX BR ES AR ConsejoNacionaldeCienciayTecnología PT MinisteriodeCiencia,Tecnología eInnovaciónProductiva PolishInstitueofAviation SkysoftPortugal,Software eTecnologias deInformação,S.A. Empresa BrasileiradeAeronáutica, S.A. UniversidadPolitécnicadeMadrid FR AIRBUS ES28850Madrid Carretera Torrejon-Ajalvir km.4 InstitutoNacionaldeTécnicaAeroespacial S.A.S +34(0)915201152 +34(0)915201632 FP7–AAT–2008–RTD–1 cer: [email protected] http://www.coopair-la.eu/ neirad itmspr aDfnad saa .. ES IngenieríadeSistemasparalaDefensaEspaña,S.A. 18 months COOPAIR-LA 333 074 Mr. PabloPérez Illana CSA–SA Mr. CarlosPrieto 30.09.2010 01.04.2009 333 074 234321

Aeronautics andAirTransport Research Guidelines forCooperationofLatinAmericanCountriesinEuropean € € StateoftheArt-Background Research andApplications Dissemination ofAeronautical European Collaborative E-CAERO reinforce thenetworkofparticipatingorgan- - ThemainobjectivesofE-CAEROare to: Objectives fi eld ofaeronautical research. objective isharmonizingtheiractivitiesinthe order toincrease theireffectiveness. The main EUROTURBO) havedecidedtounifyforces in ERCOFTAC, EUCASS,EUROMECHand this fi eld (ECCOMAS,thecoordinator, CEAS, For thisreason, sixorganisationsactivein facilities. tion andallowstheuseofelectronic search gives themalargepotentialforeasydistribu- more publicationsare nowelectronic which nal publications,proceedings, etc.More and is furtherdisseminatedundertheformofjour- tion topresentations inevents,theknowledge sia, workshops,shortcourses,etc.Inaddi- moderate sizethematicconferences, sympo- formats ofeventssuchaslargeconferences, Different associationsare activewithdifferent knowledge inthedifferent relevant disciplines. undertaking thedisseminationofscientifi c there are manyinitiativesatEuropean level In thefi eld ofaeronautics andairtransport, should beachievedatEuropean level. tial. Inparticular, effective knowledge-sharing fulfi lling itsresearch andinnovationpoten- the ERAstillexists,preventing Europe from mission recognizes thatafragmentationof Area: Newperspectives’,theEuropean Com- Inthegreen paper‘TheEuropean Research co-operation; isations bypromoting inter-organisational aeronautical interests. tion ofalegalentitythatmergesthepartners’ this fi eld. Eventually, thismayleadtothecrea- dissemination oftheEuropean research in sector andwillresult inamuchmore effi cient This intangiblebenefi tisareal necessityinthis - start anewcollaborativeworkculture signifi- cantlyimprove theindustrialend-users identify andpromote bestpractices; - ties andresources oftheparticipatingorgani- the different structures, methodologies,priori- vey inorder toconstructa detailedpicture of An initialstepiscarryingoutasystematic sur- promote deeperco-operation. among theparticipatingorganisations and atic endeavourtoimprove thecoordination ties whichtogetherrepresent asystem- E-CAero proposes anumberofjointactivi- - WP5: Evaluationofharmonizedcollabora- - WP4: Newsingleandclustered eventsas - WP3: Newcollaborativedissemination WP2: Identifi- cation ofoverlapsandcomple- WP1. OverallManagement,technicalcoor-- are thefollowing: Work Packages(WPs).Theseworkpackages carried outwithinthefi ve interactivetechnical Theobjectiveswillbeachievedbyactivities DescriptionofWork between theassociations. the memberorganisations; participation intheactionsprogrammed by and guidelines. tive disseminationandrecommendations Workshops, etc.; Short Courses,ThematicConferences, harmonized disseminationdemonstrators: tools; mentaries, boththematicandorganisational; dination andspecifi cations; 271 Cross Cutting Activities 272 Cross Cutting Activities Logos ofthesixpartners is expectedtoproduce atransversaldiffusion dissemination oftheiractivitiesandoutcomes clustering ofthedifferent associations inthe of theEuropean aeronautics industry. The increase theeffi ciency andcompetitiveness turbomachinery research inEurope andthus, laborative disseminationofaeronautical and E-CAEROisexpectedtoimprove thecol- ExpectedResults at attractingindustrialparticipation. Organising highqualityeventsisalsoaiming participants tobestappreciate theirneeds. tion withindustry, andsurveyingindustrial It isalsoimportanttoimprove theinterac- will becomemore effi cient. undertaken bytheparticipatingorganisations is through thesecontactsthattheactions partners andtheEuropean Commission.It tion betweenthememberassociations, lish sustainablecontactsandcommunica- The E-CAEROactivitiesalsoaimtoestab- of theeventsorganised. survey willhaveadirect effect onthequality sations. Theinformationprovided bythis a) The E-CAEROwebpageusedtojointly Scientifi c andtechnicaloutputs: mental knowledgeandsimulationtools. a betterunderstandingoftechniques,experi- of theinformationandknowledge,resulting in e) New collaborationculture bewteenthe d) Harmonization andincreased visibilityof A conference managementITtooladapted c) b) A web-basedE-CAEROrepository for associations. the disseminationeventsorganizedjointly; demonstrators; organized eventsthatwillbetheproject This toolisintendedtobeusedinthejointly to theneedsofpartnerassociations. mental results; proceedings, benchmarktestsandexperi- publications, possiblyincludingitemsas Europe; on thecalendarofdisseminationeventsin research andproviding auniqueoverview aeronauticalassociations concerning disseminate theactivitiesofpartner ES08034Barcelona C/GranCapitá,CampusNord UPC, Edifi ci C1 CIMNE-CentredeMetodesNumericsenEnginyeria Internacional Coordinator: Website: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Fax: Tel: E-mail: uoenMcaisScey DE BE ES BE Von KarmanInstituteforFluidDynamics European MechanicsSociety European Conference forAerospace Sciences CouncilofEuropean Aerospace Societies +34(0)934010796 +34(0)934016517 FP7–AAT–2008–RTD–1 cer: [email protected] http://www.e-caero.com uoenRsac omnt nFo,Truec n obsin BE European Research CommunityonFlow, Turbulence andCombustion 36 months E-CAERO 713 487 Remy Denos CSA–SA Mr. DiezPedro 31.08.2012 01.09.2009 713 487 234229

Applications European CollaborativeDisseminationofAeronautical Research and € € 273 Cross Cutting Activities 274 Cross Cutting Activities Objectives technical requirements for‘newvehicles’. senger choiceinairtransportation’,including transportation systemfor‘Improving pas- and requirements forafuture seaplane air strengths, andtoelaborateasetofconcepts situation, toevaluateitsweaknessesand posal aimstoinvestigatetoday’s seaplane Based onthispreliminary analysisthepro- expertise. tional standards andrules,ashortageof report airplanes,interna- alackofmodern starting newseaplanebusinessesinEurope Operators andentrepreneurs interested in in veryfewlocationsEurope. plane/amphibian operationsare onlyavailable At themoment,scheduledcommutersea- natural landingstrips. airportsusing to nationalandinternational fl ights, includingpoint-to-point connections be developedwiththeadvantageofshort thesevehicles, newtraffiWith c routes can traffi c systemusingseaplanes/amphibians. ating greatair potentialforaninternational the newMemberStatesjoinedEU,cre- in Europe were considerablyincreased when The lengthofcoastlineandnumberislands grown considerably. demand forpoint-to-pointconnectionshas capacity overloadofcurrent airportsandthe rate forthecomingyears.Consequently, the decade buttheIATA forecasts anevenhigher higher hasbeenalmostconstantoverthelast Theannualairtraffi c growth rateof5%and StateoftheArt-Background Technologies fortheFuture Future Seaplane Traffi FUSETRA plane/amphibian transportation system. mendations fortheintroduction ofanewsea- development, aswelltopropose recom- tify thepotential,ofseaplanetraffi c business posal istodemonstratetheneeds,and quan- ThegeneralobjectiveoftheFUSETRA pro- tive future traffi c concepts.Alltheimportant ences andideasforbettermore effec- and Baltic)forthecollectionofexisting experi- maritime locations(Mediterranean, Atlantic Three workshops willbeorganisedindifferent - the defi nition offuture-oriented concepts - state-of-the-art statusofworldwidesea- There are twomajortasks: DescriptionofWork - improving transnationalco-operationby - identifying thenumberofseaplanes - improving theaccessibilityofregions - propositions forenablingauniformimple- identifying areduced environmental- impact - developing solutionswhichare ready for identifying possibilities toimprove seamless - The mainobjectivesare: chain andthenecessaryregulatory issues. integration intothesea/air/landtransport plane/amphibian transportsystem, and its and requirements foranewEuropean sea- effectiveness; plane/amphibian operationandtheir organising international workshops. organising international sengers, etc.); demand ofstakeholders(operators,pas- specifi cations fornewvehiclesfulfi lling the needed forfuture operationsandtechnical passengers; by servingbothbusinessandprivate landing fi elds, etc.); operational system(regulatory issues,water mentation (EU-wide)ofthechosenseaplane point-to-point seaplaneoperations; of airtransportbydevelopingsolutionsfor airtraffiinternational c); cost, operationalsafety, betteraccessto fl ight-time reduction, reduced operational acceptance (evidenceofseamlesstravel, implementation byensuringpassenger landside transportationinfrastructure; tion systemswithintheEuropean airand travel byimplementingseaplanetransporta- c-Transport structure andvehiclesshallbedeveloped. operations andthedevelopmentofnewinfra- ing effective andenvironmental feasible Additionally, aregulatory roadmap forassur- ment constraintstoo. account environmental andairtraffi c manage- port systemwillbeconsidered, takinginto operation intothecurrent seamlesstrans- ally, theintegrationof seaplane/amphibian regional airlinenetworkinEurope. Addition- ture andmarket-orientedvehiclesforafuture seaplane infrastructure, aircraft fl eet struc- requirements willbeestablishedforarational carried outbytheuniversities,conceptsand our industrialpartnersandtheresearch work Based ontheseresults, theexperienceof activities willtakeplace. cussions andaccompanyingworkinggroup speeches givenbyexperts,openpaneldis- stakeholders willbeinvited.Besidesprepared - a roadmap forregulatory issues. - - a report ontherequirements foranew - a report onthecurrent strengths and - workshop proceedings summarisingthe current seaplane/amphibiandatabase; - published: Thefollowingresults willbeachievedand ExpectedResults transportation system; an integratedpartofafuture sea/land/air seaplane/amphibian transportsystemas transport system; opportunities foranewseaplane/amphibian ian transportsystems,aswellfuture weaknesses ofexistingseaplane/amphib- regulatory issues; ket needs,economical,environmental and results asexperiences,defi ciencies, mar- and air, betweenlocaland EUauthorities. disciplinary co-operationbetweensea,land strategy offuture regulatory issues initsinter- FUSETRA willalsohaveadirect impactonthe development. a betterchanceforregional economic tionally, seaparkswouldgivethoseregions and improve customersatisfaction.Addi- accessibility andmobilityofthepopulation connections, seaparkswouldsupportthe For regional locationswithnoidealtransport have asignifi cant impactonthepopulation. The procedure andresults ofFUSETRAwill 275 Cross Cutting Activities 276 Cross Cutting Activities Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: nvriyo lso UK MT DE PL DE UniversityofGlasgow RzeszowUniversityofTechnology Technische UniversitätMünchen Aviation Dornier GmbH HarbourAirMalta DE88090Immenstaad Tobelweg Sträter 30 Consulting +49(0)75451341 +49(0)75451361 FP7–AAT–2008–RTD–1 cer: [email protected] http://www.fusetra.eu Arelns GR Airsealines 18 months FUSETRA 397 772 Mr. EricLecomte CSA–SA Dr. SträterBernd 31.05.2010 01.12.2009 397 772 234052 Future SeaplaneTraffi c -Transport Technologies fortheFuture € € MONITOR –Project Structure the needforaone-stopsolutiontheir text, awidevarietyofstakeholdersdeclared of different future developments.Inthiscon- particularly foritsefforts toquantifyeffects well received byairtransportstakeholders, futureselaborating onlimitedalternative was ing long-termaspectsofairtransportand tion community. CONSAVE 2050,address- identifi ed theneedforscenariosavia- EC FrameworkPprogramme 5,haveclearly successfully completedin2005underthe Theresults oftheproject CONSAVE 2050, StateoftheArt-Background Development ofGlobalAviation MonitoringSystemofthe MONITOR management coordination Project WP 6: and newest dataforthequantificationofaviation developmentsandanalysis Proof ofconceptforapermanentmonitoringmechanismtoprovide network ofsources for WP 1:Installationofa WP 2:Datacollection strategy andprocess WP 4:Dissemination aviation monitoring WP 3:Analysing monitoring data of itsimpactsbymodellingtoolsandscenarios for developingaMonitoringSystemofthe oped theconceptofMONITORproject and CONSAVE 2050,amongothers,devel- nario activities,project partnersofAERONET holders formodelling,forecasting andsce- Responding tothedeclared needsofstake- modelling offuture airtransportscenarios. ously impedingthequalityofforecasting and cult tofi nd ortoaccess,andtherefore seri- quality throughout theEuropean Union,diffi - existing datasources were ofheterogeneous modelling activities.Ithasbeenidentifi ed that data needsforstrategicdecision-makingand Project result: Committee activities Steering WP 5: 277 Cross Cutting Activities 278 Cross Cutting Activities DescriptionofWork (ii) To ensure sustainablegrowth ofairtrans- (ii) To improve thecompetitivepositionof (i) To strengthen theEuropean aeronautical project are: The mainsocio-economicobjectivesofthe issues inaviationdevelopments. common European understandingofcritical mittee ofstakeholders,willcontributetoa through theestablishmentofaSteeringCom- of expertsandaviationorganisations, through intensivecontactstoabroad range ments forthefuture ofaviation.Theproject, intensive analysisofnewrelevant develop- Development ofGlobalAviation willfosteran established, theMonitoringSystemof the policyandregulatory community. Once ence community, theaviationindustryand transportation andrelated environmental sci- and amonitoringsystemthatsupportsthe relevant forscenarioandmodellingactivities work ofreliable sources forasetofkeydata Theproject’s mainobjectiveistoinstallanet- Objectives ments ofthedifferent aviationstakeholders. to address theseissuesandfulfi ll therequire- Development ofGlobalAviation thatisable - WP4: Disseminationstrategy andprocess; - WP3: Analysing monitoringdata; - WP2: Data collection; - WP1:Installationofanetworksources for - ages (WPs): Theproject issubdivided into fi ve workpack- aviation monitoring; ber StatesoftheEuropean Union. social welfare forthesocietiesinMem- are importanttotheoveralldevelopmentof mental, socialandeconomicissues,which portation ingeneralwithregard toenviron- growth intheirparticularbusinessactivities; ers intheirefforts toachievesustainable services andtosupportthesestakehold- global marketforairtransportandrelated European airtransportstakeholdersinthe and long-termplanning; tegic orientationoftheshort-,medium-, which canbeusedtodevelopintimestra- industry bydeliveringsoundinformation munity asanindispensable prerequisite for required bystakeholders oftheaviationcom- cation ofaviationscenarios,whichhas been for aperiodicupdatingandpossible modifi - air transport.Theproposed strategywillallow mation onnewdevelopmentsofkey factors in is possibleandnecessary-quantifi ed infor- aviation andregular qualitativeand-asfar constitutes thebasefordecision-makingin features onairtransportdevelopment.This for asetofreliable data,meta-dataandkey after thepilotstudywillbeaone-stopsolution tem installedbytheproject andcontinued Theexpectedresults ofthemonitoringsys- ExpectedResults come oftheproject. which shallbeanalyzedasoneimportantout- on newdevelopmentsintheaviationsector similar direction. Thisguaranteesfastreaction but workingoncomplementaryprojects ina not involveddirectly intheproject activities relevant groups (ACARE)andstakeholders expected tokeepstrong contactwithother or deemedasunreliable. Theproject isalso and tobridgegapswhere dataisnotavailable validate data,conductsensitivityanalyses of ReductionOptionsModellingSystem)to MS model(Aviation EmissionsandEvaluation ing theproject willbetheuseofAERO- improve thedifferent monitoringactivitiesdur- on astakeholderworkshop.Anotherwayto of theproject duringseveralmeetingsand monitor thisworkandtodiscusstheresults Steering Committeewillbeestablishedto and scenariodevelopment.Inaddition,a provider forallkindsofmodellingactivities TOR, astheproject shallserveasaservice This approach isauniquefeature ofMONI- stakeholders inaconsistentdataformat. make thisinformationavailabletointerested monise datafrom different sources andto will bethedevelopmentofworkfl ows tohar- lection, animportantelementoftheproject areas. Aswellasthismethodofdatacol- mental, economic,socialandtechnological est possiblerangeofdataincludingenviron- Given thesetasks,MONITORcoversthewid- - WP5: SteeringCommitteeactivities; - WP6: Project managementand co-ordination. DE51147KÖLN DLR-DeutschesZentrumfürLuft-undRaumfahrte.V. Linder Hoehe Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: Partners: ECOffi Tel: E-mail: Coordinator: Duration: Endingdate: Startingdate: Call: EUcontribution: nvriä tGle CH HU UniversitätStGallen SlotConsultingLtd. port andinformationonfactorsfeatures informationonairtrans- include bothinternal disseminated bytheMonitoringSystemwill set ofdatacollected,analysedandeffectively short-, medium-,andlong-termplanning.The an effective useofthescenariotechniquefor +49(0)22036012189 FP7–AAT–2008–RTD–1 cer: [email protected] L aina uh-e umearlbrtru NL NLR-NationaalLucht- enRuimtevaartlaboratorium 24 months MONITOR 743 887 Mr. JoséM.MartinHernandez CSA–SA Mr. MichaelHepting 31.05.2011 01.06.2009 529 011 233999 Monitoring SystemoftheDevelopmentGlobalAviation nentoae ntttfrAgwnt ytmnls AT InstitutfürAngewandteSystemanalyse Internationales € € for aviation. fiof thosekeyexternal elds settingtheframe 279 Cross Cutting Activities 280 Cross Cutting Activities industry inthehightechnologydomains. would beasignifi cant stepbackforEuropean need torely onnon-European engineers.This less knowledgeinkeydomains,resulting ina specialists willbereduced, togetherwith students decreases, thelevelofEuropean tions are thatasthenumberofinterested towards engineeringactivities.Theimplica- limited numberofstudentsare attracted But today’s situationisverydifferent. Avery from averyearlystageintheireducation. sion anddedicationtothisdomain,formed generation ofengineerswithaspecifi c pas- research atEUlevelhavebenefi ted from a Current achievementsinaeronautical in development. resources neededtosustaintheactualtrend system beingabletoprovide thehuman are relating majorconcerns totheeducational ing positionintheaeronautical industry, there quences: althoughEurope isaimingatalead- This drop ininterest isnotwithoutconse- technology. particularly youngsters,towards scienceand has resulted inadecrease inpeople’s interest, up betweenscientistsandthepublic,this citizens. However, agaphasgraduallybuilt edge–based societyandscientifi cally literate capable ofinnovationinacompetitiveknowl- science hasrequired bothyoungscientists progress. Theever-increasing importanceof have alwaysbeenanessentialpartofsocietal Developmentsinscienceandtechnology StateoftheArt-Background Through Schoollabs Awareness inAeronautical Research RaisingEuropean Student REStARTS necessary intheglobal contextofintegration cational process. Jointactions atEUlevelare cifi cactionsare neededatalllevelsintheedu- Inorder toimprove thecurrent situation,spe- Objectives research andsociety. These demonstrate thedirect linkbetween faction, safetyandsecurityofthepassengers. air transportgreener’ or‘How toensure satis- nautical research isfacinglike‘Howtomake aeroplane fl y?’ orspecial challenges theaero- dynamic fundamentalslike‘How does an topics inaeronautics, including basicaero- informative materialaboutcurrent research tical research andtraininginstitutesdevelop Inthisproject, thepartnersofaeronau- DescriptionofWork and students. impact oftheresulting product forteachers of Leicester, willensure theaccessibilityand ner, the SchoolofEducationattheUniversity ics anditsrelated areas. Aneducationalpart- have considerableexperienceinaerodynam- training establishmentsinaerospace which areThe partnersofREStARTS research and accumulated incomplexresearch projects. the research infrastructure andknowledge where youngstudentscanbenefi t bestfrom The focusoftheactivitiesisdedicatedlabs, nological challengesinaeronautics. stage andraisepublicawareness tothetech- the educationalprocess from averyearly objective istomakeasignifi cant impacton for theEuropean aeronautical industry. The education ofanewgenerationengineers est research results inorder toimprove the cated research infrastructure andthelat- academia forsharingtheknowledge,dedi- organisations inaeronautical sciencesand a wellcoordinated linkbetweenresearch istoestablish The conceptofREStARTS research organisations. science-teaching worldwiththeaeronautical createsREStARTS structures thatwilllinkthe and harmonisationofresources. Theproject Children experimentingwithfl ow visualisationatDLR’s schoollab school labs. create aEuropean networkofaeronautical ests inaR&Dcareer inaeronautics andto ambition istostimulateyoungpeople’s inter- into theworkofresearch organisations.The and appliedresearch bydeliveringaninsight This willbuildbridgesbetweenschooltheory industrial partnerscompletetheprogramme. laboratories oftheproject partnersandtheir ence inscientifi c work.Additionalvisitstothe and enableclassestogethands-onexperi- tutes provide more sophisticatedexperiments school labsestablishedattheresearch insti- aeronauticallenges ofmodern research. The this materialgiveafi rst impression ofthechal- investigated. Theschoollessonsbasedon demonstrate thephysicalphenomenabeing which alsoincludessimpleexperimentsto to compileunderstandableteachingmaterial, pedagogic teamandteachersoflocalschools The scientistsworkinco-operationwitha better publicimage. number ofchildren andstudents,leadingtoa motivation towards aeronautics foralarge the pilotforaprocess thatwillgeneratestrong projectantee thattheREStARTS willbecome participation ofexpertsinpedagogywillguar- scientifi c research isalready established.The as CIRA,INCAS,VKI,andDLRintermsof utation ofresearch andtrainingcentres such for primaryandsecondaryteachers.Therep- documentation andprotocols forexperiments Deliverables consistofresources ofwritten towards aeronautics. motivate youngpeople,andinparticulargirls, demonstrate theeffi ciency ofschoollabsto nautics. Beyondthispilotphase,theaimisto which willresult inteachingmaterialonaero- pean platformbasedonthispilotexperience, istoestablishaEuro-objective ofREStARTS nicate through variousmedia.Thelong-term number ofisolatedresearchers trytocommu- rare. Fewnationalinitiativesexistbutalarge nicate withyoungpeopleandteachersare Initiativesfrom research centres tocommu- ExpectedResults 281 Cross Cutting Activities 282 Cross Cutting Activities Partners: ECOffi Fax: Tel: E-mail: Coordinator: Website: Duration: Endingdate: Startingdate: Call: EUcontribution: Total cost: Instrument: GrantAgreement: Nameofproposal: Acronym: etoIain ieceArsail .... IT DE RO InstitutulNationaldeCercetari Aerospatiale ‘ElieCarafoli’S.A. DeutschesZentrumfürLuft-undRaumfahrte.V. Centro ItalianoRicerche Aerospaziali S.C.p.A. BE1640Rhode-Saint-Genèse ChausséedeWaterloo Von KarmanInstituteforFluidDynamics +32(0)23599655 +32(0)23599600 FP7–AAT–2008–RTD–1 cer: [email protected] http://www.fp7-restarts.eu nvriyo ecse UK UniversityofLeicester 36 months REStARTS 357 700 Mr. EricLecomte CSA–SA Dr. CorieriPatricia 14.03.2012 15.03.2009 253 501 233973

School labs Raising European StudentAwareness inAeronautical Research Through € € Index by Acronyms

Acronym Project name Grant Agreement

AAS Integrated Airport Apron Safety Fleet 213061 49 Management ACCENT Adaptive Control of Manufacturing Processes 213855 169 for a New Generation of Jet Engine Components Index by Acronyms ACFA 2020 Active Control of Flexible 2020 Aircraft 213321 88 ADDSAFE Advanced Fault Diagnosis for Safer Flight 233815 101 Guidance and Control ADMAP-GAS Unconventional (Advanced) Manufacturing 234325 172 Processes for Gas-engine turbine components ADVITAC ADVance Integrated Composite Tail Cone 234290 144 AERO-UKRAINE Stimulating Ukraine–EU Aeronautics Research 233640 260 Co-operation AEROAFRICA-EU Promoting European-South African Research 234092 262 Co-operation in Aeronautics and Air Transport AEROCHINA2 Prospecting and Promoting Scientifi c 213599 243 Co-operation between Europe and China in the Field of Multi-Physics Modelling, 283 Simulation, Experimentation and Design Methods in Aeronautics AEROPORTAL Support for European aeronautical SMEs 200426 246 AirTN-FP7 Air Transport Net (AirTN) as one of the key 235476 265 enablers for the prosperous development of Aeronautics in Europe AISHA II Aircraft Integrated Structural Health 212912 198 Assessment II ALEF Aerodynamic Load Estimation at Extremes of 211785 141 the Flight Envelope ALFA-BIRD Alternative Fuels and Biofuels for Aircraft 213266 227 Development ALICIA All Condition Operations and Innovative 233682 91 Cockpit Infrastructure ASSET ASSET – Aeronautic Study on Seamless 211625 95 Transport ATAAC Advanced Turbulence Simulation for 233710 31 Aerodynamic Application Challenges ATOM Airport detection and Tracking Of dangerous 234014 221 Materials by passive and active sensors arrays BEMOSA Behavioral Modeling for Security in Airports 234049 218 CEARES Central European Aeronautical Research 213280 249 Initiative Acronym Project name Grant Agreement

COALESCE2 Cost Effi cient Advanced Leading Edge 233766 175 Structure 2

COOPAIR-LA Guidelines for Cooperation of Latin American 234321 268 Countries in European Aeronautics and Air Transport Research COSMA Community Oriented Solutions to Minimise 234118 72 Index by Acronyms aircraft noise Annoyance CREAM Innovative Technological Platform for Compact 234119 156 and Reliable Electronic integrated in Actuators and Motors CREATE CREating innovative Air transport 211512 252 Technologies for Europe CRESCENDO Collaborative and Robust Engineering using 234344 178 Simulation Capability Enabling Next Design Optimisation DANIELA Demonstration of Anemometry InstrumEnt 212132 104 based on LAser DAPHNE Developing Aircraft Photonic Networks 233709 159 DELICAT DEmonstration of LIdar-based Clear Air 233801 106 Turbulence detection 284 DESIREH Design, Simulation and Flight Reynolds- 233607 35 Number Testing for Advanced High-Lift Solutions DREAM valiDation of Radical Engine Architecture 211861 52 systeMs E-CAERO European Collaborative Dissemination of 234229 271 Aeronautical Research and Applications ELUBSYS Engine LUBrication SYStem technologies 233651 56 ERICKA Engine Representative Internal Cooling 233799 59 Knowledge and Applications EUROTURBO 8 Support to Eighth European Conference 233666 255 on Turbomachinery Fluid dynamics and thermodynamics, Graz, March 2009 EXTICE EXTreme ICing Environment 211927 183 FANTOM Full-Field Advanced Non-Destructive 213457 201 Technique for Online Thermo-Mechanical Measurement on Aeronautical Structures FAST20XX Future High-Altitude High-Speed Transport 233816 230 20XX FFAST Future Fast Aeroelastic Simulation 233665 186 Technologies FLEXA Advanced Flexible Automation Cell 213734 189

FLOCON Adaptive and Passive Flow Control for Fan 213411 75 Broadband Noise Reduction Acronym Project name Grant Agreement FLY-BAG Blastworthy Textile-Based Luggage 213577 211 Containers for Aviation Safety

FUSETRA Future Seaplane Traffi c - Transport 234052 274 Technologies for the Future FUTURE Flutter-Free Turbomachinery Blades 213414 63

glFEM Generic Linking of Finite Element based 234147 195 Index by Acronyms Models GreenAir Generation of Hydrogen by Kerosene 233862 43 Reforming via Effi cient and Low-Emission New Alternative, Innovative, Refi ned Technologies for Aircraft Application GREEN-WAKE Demonstration of LIDAR-based wake 213254 108 vortex detection system incorporating an Atmospheric Hazard Map HIRF SE HIRF Synthetic Environment research 205294 214 programme HISVESTA High Stability Vertical Separation Altimeter 213729 111 Instruments HUMAN Model-Based Analysis of Human Errors 211988 126 During Aircraft Cockpit System Design IAPETUS Innovative Repair of Aerospace Structures 234333 204 285 with Curing Optimisation and Life-cycle Monitoring Abilities ICOA.10.09 International Conference on Airports, October 233672 258 2009, Paris IMac-Pro Industrialisation of Manufacturing 212014 146 Technologies for Composite Profi les for Aerospace Applications INFUCOMP Simulation Based Solutions for Industrial 233926 192 Manufacture of Large Infusion Composite Parts iSPACE innovative Systems for Personalised Aircraft 234340 123 Cabin Environment KIAI Knowledge for Ignition, Acoustics and 234009 66 Instabilities LAPCAT-II Long-term Advanced Propulsion Concepts 211485 234 and Technologies II LAYSA Multifunctional Layers for Safer Aircraft 213267 149 Composite Structures MAAXIMUS More Affordable Aircraft through eXtended, 213371 152 Intergrated and Mature nUmerical Sizing MISSA More Integrated System Safety Assessment 212088 138

MONITOR Monitoring System of the Development of 233999 277 Global Aviation Acronym Project name Grant Agreement

ODICIS ODICIS - One DIsplay for a Cockpit Interactive 233605 129 Solution ON-WINGS ON-Wing Ice DetectioN and MonitorinG 233838 114 System OPENAIR Optimisation for Low Environmental Noise 234313 78 Impact Aircraft Index by Acronyms PICASSO Improved Reliability Inspection of Aeronautic 234117 135 Structure through Simulation Supported POD PLASMAERO Useful Plasma for Aerodynamic control 234201 237 PPlane Personal Plane: Assessment and Validation 233805 239 of Pioneering Concepts for Personal Air Transport Systems REACT4C Reducing Emissions from Aviation by 233772 37 Changing Trajectories for the Benefi t of Climate REStARTS Raising European Student Awareness in 233973 280 Aeronautical Research Through School labs SADE Smart High Lift Devices for Next-Generation 213442 40 Wings SAFAR Small Aircraft Future Avionics ARchitecture 213374 225 286 SANDRA Seamless Aeronautical Networking through 233679 162 integration of Data links, Radios and Antennas SCARLETT SCAlable and Reconfi gurabLe Electronics 211439 117 plaTforms and Tools SUPRA Simulation of UPset Recovery in Aviation 233543 132 TAUPE Transmission in Aircraft on Unique Path wirEs 213645 166 TECC-AE Technology Enhancements for Clean 211843 69 Combustion TEENI Turboshaft Engine Exhaust Noise Identifi cation 212367 82 TITAN Turnaround Integration in Trajectory and 233690 98 Network TRIADE Development of Technology Building Blocks 212859 207 for Structural Health-Monitoring Sensing Devices in Aeronautics VALIANT VALidation and Improvement of Airframe 233680 85 Noise prediction Tools VISION Immersive Interface Technologies for Life- 211567 120 Cycle Human-Oriented Activities in Interactive Aircraft-Related Virtual Products WakeNet3-Europe European Coordination Action for Aircraft 213462 46 Wake Turbulence Index by Instruments

CP – FP

AAS Integrated Airport Apron Safety Fleet Management 49 ACCENT Adaptive Control of Manufacturing Processes for a New 169 Generation of Jet Engine Components ACFA 2020 Active Control of Flexible 2020 Aircraft 88

ADDSAFE Advanced Fault Diagnosis for Safer Flight Guidance and 101 Index by Instruments Control ADMAP-GAS Unconventional (Advanced) Manufacturing Processes for 172 Gas-engine turbine components ADVITAC ADVance Integrated Composite Tail Cone 144 AISHA II Aircraft Integrated Structural Health Assessment II 198 ALEF Aerodynamic Load Estimation at Extremes of the Flight 141 Envelope ALFA-BIRD Alternative Fuels and Biofuels for Aircraft Development 227 ASSET ASSET – Aeronautic Study on Seamless Transport 95 ATAAC Advanced Turbulence Simulation for Aerodynamic 31 Application Challenges ATOM Airport detection and Tracking Of dangerous Materials by 221 passive and active sensors arrays 287 BEMOSA Behavioral Modeling for Security in Airports 218 COALESCE2 Cost Effi cient Advanced Leading Edge Structure 2 175 COSMA Community Oriented Solutions to Minimise aircraft noise 72 Annoyance CREAM Innovative Technological Platform for Compact and Reliable 156 Electronic integrated in Actuators and Motors DANIELA Demonstration of Anemometry InstrumEnt based on LAser 104 DAPHNE Developing Aircraft Photonic Networks 159 DELICAT DEmonstration of LIdar-based Clear Air Turbulence 106 detection DESIREH Design, Simulation and Flight Reynolds-Number Testing for 35 Advanced High-Lift Solutions ELUBSYS Engine LUBrication SYStem technologies 56 ERICKA Engine Representative Internal Cooling Knowledge and 59 Applications EXTICE EXTreme ICing Environment 183 FANTOM Full-Field Advanced Non-Destructive Technique for 201 Online Thermo-Mechanical Measurement on Aeronautical Structures FAST20XX Future High-Altitude High-Speed Transport 20XX 230 FFAST Future Fast Aeroelastic Simulation Technologies 186 FLEXA Advanced Flexible Automation Cell 189 FLOCON Adaptive and Passive Flow Control for Fan Broadband 75 Noise Reduction

Index by Instruments FLY-BAG Blastworthy Textile-Based Luggage Containers for Aviation 211 Safety FUTURE Flutter-Free Turbomachinery Blades 63 glFEM Generic Linking of Finite Element based Models 195 GreenAir Generation of Hydrogen by Kerosene Reforming via Effi cient 43 and Low-Emission New Alternative, Innovative, Refi ned Technologies for Aircraft Application GREEN-WAKE Demonstration of LIDAR-based wake vortex detection 108 system incorporating an Atmospheric Hazard Map HISVESTA High Stability Vertical Separation Altimeter Instruments 111 HUMAN Model-Based Analysis of Human Errors During Aircraft 126 Cockpit System Design IAPETUS Innovative Repair of Aerospace Structures with Curing 204 288 Optimisation and Life-cycle Monitoring Abilities IMac-Pro Industrialisation of Manufacturing Technologies for 146 Composite Profi les for Aerospace Applications INFUCOMP Simulation Based Solutions for Industrial Manufacture of 192 Large Infusion Composite Parts iSPACE innovative Systems for Personalised Aircraft Cabin 123 Environment KIAI Knowledge for Ignition, Acoustics and Instabilities 66 LAPCAT-II Long-term Advanced Propulsion Concepts and 234 Technologies II LAYSA Multifunctional Layers for Safer Aircraft Composite 149 Structures MISSA More Integrated System Safety Assessment 138 ODICIS ODICIS - One DIsplay for a Cockpit Interactive Solution 129 ON-WINGS ON-Wing Ice DetectioN and MonitorinG System 114 PICASSO Improved Reliability Inspection of Aeronautic Structure 135 through Simulation Supported POD PLASMAERO Useful Plasma for Aerodynamic control 237 PPlane Personal Plane: Assessment and Validation of Pioneering 239 Concepts for Personal Air Transport Systems REACT4C Reducing Emissions from Aviation by Changing Trajectories 37 for the Benefi t of Climate SADE Smart High Lift Devices for Next-Generation Wings 40 SAFAR Small Aircraft Future Avionics ARchitecture 225 SUPRA Simulation of UPset Recovery in Aviation 132 TAUPE Transmission in Aircraft on Unique Path wirEs 166 Index by Instruments TECC-AE Technology Enhancements for Clean Combustion 69 TEENI Turboshaft Engine Exhaust Noise Identifi cation 82 TITAN Turnaround Integration in Trajectory and Network 98 TRIADE Development of Technology Building Blocks for Structural 207 Health-Monitoring Sensing Devices in Aeronautics VALIANT VALidation and Improvement of Airframe Noise prediction 85 Tools VISION Immersive Interface Technologies for Life-Cycle Human- 120 Oriented Activities in Interactive Aircraft-Related Virtual Products

CP – IP

ALICIA All Condition Operations and Innovative Cockpit 91 289 Infrastructure CRESCENDO Collaborative and Robust Engineering using Simulation 178 Capability Enabling Next Design Optimisation DREAM valiDation of Radical Engine Architecture systeMs 52 HIRF SE HIRF Synthetic Environment research programme 214 MAAXIMUS More Affordable Aircraft through eXtended, Intergrated and 152 Mature nUmerical Sizing OPENAIR Optimisation for Low Environmental Noise Impact Aircraft 78 SANDRA Seamless Aeronautical Networking through integration of 162 Data links, Radios and Antennas SCARLETT SCAlable and Reconfi gurabLe Electronics plaTforms and 117 Tools

CSA – CA

WakeNet3-Europe European Coordination Action for Aircraft Wake Turbulence 46

CSA – SA

AERO-UKRAINE Stimulating Ukraine–EU Aeronautics Research Co-operation 260 AEROAFRICA-EU Promoting European-South African Research Co-operation 262 in Aeronautics and Air Transport AEROCHINA2 Prospecting and Promoting Scientifi c Co-operation between 243 Europe and China in the Field of Multi-Physics Modelling, Simulation, Experimentation and Design Methods in Aeronautics AEROPORTAL Support for European aeronautical SMEs 246 AirTN-FP7 Air Transport Net (AirTN) as one of the key enablers for the 265 prosperous development of Aeronautics in Europe Index by Instruments CEARES Central European Aeronautical Research Initiative 249 COOPAIR-LA Guidelines for Cooperation of Latin American Countries in 268 European Aeronautics and Air Transport Research CREATE CREating innovative Air transport Technologies for Europe 252 E-CAERO European Collaborative Dissemination of Aeronautical 271 Research and Applications EUROTURBO 8 Support to Eighth European Conference on Turbomachinery 255 Fluid dynamics and thermodynamics, Graz, March 2009 FUSETRA Future Seaplane Traffi c - Transport Technologies for the 274 Future ICOA.10.09 International Conference on Airports, October 2009, Paris 258 MONITOR Monitoring System of the Development of Global Aviation 277 290 REStARTS Raising European Student Awareness in Aeronautical 280 Research Through School labs Index by Partners

01dB-Metravib SAS 72

ABAQUS 152

Académie de l’Air et de l’Espace 258

AcQ Inducom 117 Index by Partners

Acreo AB 162

Active Space Technologies 108

AD Cuenta 252

ADP Ingéniérie 95

ADSE 108

Advanced Composites Group 149

Advanced Lightweight Engineering BV 152

Advanced Microwave Systems Ltd 218

Advanced Prototype Research 169

Advanced Silicon S.A. 156 291

AENA - Entidad Pública Empresarial Aeropuertos Españoles y 98 Navegación Aérea

Aernnova 149

Aerospace Valley 262

Agusta S.p.A 91, 218

AI: Aerospace Innovation GmbH 230

Ain Shams University, Faculty of Engineering 78

Air France Consulting 95

Airbus Operations GmbH 34, 40, 46, 78, 95, 117, 123, 141, 152, 159, 178, 198

Airbus Operations Ltd 31, 78, 117, 138, 152, 175, 178, 186, 227

Airbus Operations S.L. 141, 152, 183, 243

Airbus Operations SAS 34, 37, 52, 72, 78, 88, 91, 95, 101, 117, 129, 141, 152, 166, 178, 227, 268 Aircelle S.A. 78, 178

Aircraft Development and Systems Engineering B.V. 34, 108

Aircraft Industries, a.s. 91

Aircraft Research Association Ltd 40

Airnet d.o.o. 239 Index by Partners

Airsea lines 274

Airtel ATN Ltd. 162

Alenia Aermacchi 218

Alenia Aeronautica S.p.A. 31, 72, 88, 91, 117, 129, 132, 139, 141, 146, 152, 162, 175, 178, 198, 214, 243, 183

Alfred Weneger Institute (AWI) 104

Alitalia Compagnia Aerea Italiana S.p.A. 129

Alma Consulting Group S.A.S. 156

Alround e.V. 246 292 ALSTOM (Schweiz) AG 59

ALSTOM Power Ltd 63

Altran Technologies SA 178

ALTYS Technologies S.A.R.L. 162

AMRC (Manufacturing) Ltd 172

AMST-Systemtechnik GmbH 132

ANA, SA Aeroportos de Portugal 49

Andreyev Acoustics Institute 78

ANOTEC Consulting SL 82

ANSYS France SAS 178

ANSYS Germany GmbH 31

Antonov Aeronautical Scientifi c and Technical Complex 260

AOS Technology Ltd 114

APC Composit AB 211

Apparatebau Gauting GmbH 117 APSYS SA 138

Aries Complex 149

ARION Entreprise 117

ARMINES - Association pour la Recherche et le Développe- 192 ment des Méthodes et Processus Industriels Index by Partners Artisan Software Ltd 138

ARTS 252

ARTTIC 52, 56, 59, 66, 69, 78, 117, 152, 166, 178, 237

ASCO Industries N.V. 34, 198

Ascom (Schweiz) AG 166

ASD - Aerospace and Defence Industries Association of 246, 252 Europe

Association Française de Normalisation 178

Association pour les Transferts de Technologies du Mans 78

Associazione Esoce Net 178 293 Astos Solutions GmbH 230

Astrium GmbH Space Transportation 230

Athens International Airport S.A. 95

ATMOSTAT 78

ATR - Avions de Transport Regional 183

Austrian Institute of Technology 156

Avio S.p.A 52, 59, 63, 66, 69, 75, 78, 82, 169, 178, 189, 227

Avitronics Research 218

A-Volute 91

AVTECH Sweden AB 91

AxesSim SAS 214

AYCO Internet S.L. 223

Aydin Yazilim Ve Elektronik Sanayi A.S. 91

B&M InterNets spol. s r.o. 218 BAE SYSTEMS (Operations) Limited 91, 159, 214

Barco NV 91, 117

Bauhaus Lutfahrt e.V. 252

BCT Steuerungs- und DV-Systeme GmbH 189

BELSPO 265 Index by Partners

Berkenhoff GmbH 172

Bialystok Technical University 88

BIS 265

Blastech Ltd 211

BluSky Services Zerkowitz GCV 98

BMVIT 265

BMWi 265

Boeing Research and Technology Europe S.L. 98, 132

Brandenburgische Technische Universitat Cottbus 69, 178

294 BRIMATECH Services GmbH 49 Brno University of Technology 123, 214, 239

Bruel & Kjaer Sound & Vibration Measurement A/S 82

Budapesti M szaki es Gazdaságtudomanyi Egyetem 72

Bundesanstalt für Materialforschung und -prüfung 135

CAE (UK) Plc 91

Cambridge Flow Solutions Ltd 59

CDTI 265

CEA - Commissariat Energie Atomique 135, 207

CEAS - Council of European Aerospace Societies 271

CEDRAT Technologies SA 198

CENAERO - Centre de Recherche en Aéronautique ASBL 52, 56, 59, 146, 152, 210, 230

Center for International Climate and Environmental Research 37 - Oslo (CICERO)

Centre de Recherche Paul Pascal-Transform 149

Centre d'Essais Aéronautique de Toulouse 152 Centre of Excellence in Aeronautical Research 234

Centre of Scientifi c and Technical Service "Dinamika" 132

Centro di Progettazione, Design e Tecnologie dei Materiali 211

Centro Technologico Cartif 218

Ceramica Ingenua S.R.L. 111 Index by Partners

CERFACS - Centre Européen de Recherche et de Formation 63, 66, 69, 141, 178 Avancée en Calcul Scientifi que

CFS Engineering SA 31, 230

Chalmers Tekniska Högskola AB 31, 52, 75, 78, 135, 189

Charmilles Technologies SA 172

Chinese Aeronautical Establishment 243

CIAM - Central Institute of Aviation Motors 52

CIMNE - Centre Internacional de Mètodes Numèrics en 85, 141, 178, 214, 243, Enginyeria 271

CIRA- Centro Italiano Ricerche Aerospaziali S.C.p.A. 34, 40, 78, 91, 141, 152, 183, 198, 230, 237, 239, 265, 280 295 CISSOID S.A. 156

CNRS - Centre National de la Recherche Scientifi que 43, 66, 78, 101, 106, 227, 237

COMOTI - Institutul National de Cercetare-Dezvoltare 78, 82 Turbomotoare

Compañía Española de Sistemas Aeronáuticos 43

Consejo Nacional de Ciencia y Tecnología 268

Consiglio Nazionale delle Ricerche 43

Consorzio Ferrara Ricerche 49

Constructions Industrielles de la Méditerranée 152

Consultores de Automatización y Robótica S.A. 246

Contour Premium Aircraft Seating 123

Coriolis Composites SAS 144

Cranfi eld University 40, 52, 104, 144, 178, 183, 192, 262 CRIDA - Centro de Referencia Investigación Desarrollo e Inno- 98 vación ATM, A.I.E.

CSIR - Council for Scientifi c and Industrial Research 63, 186

CST Gesellschaft für Computer-Simulationstechnik GmbH 214

CTA - Centro de Tecnologías Aeronáuticas 52, 63, 201 Index by Partners Curtiss-Wright Controls (UK) Ltd 111

Cyner Substrates bv 162

Czech Technical University 88

D’Appolonia S.p.A 211

Daher Aerospace S.A.S. 143, 192, 207

Danmarks Tekniske Universitet 129, 211

Dassault Aviation SA 31, 34, 78, 91, 117, 136, 141, 146, 152, 162, 183, 210, 218, 227

Dassault Systemes SA 152, 178

DBS Systems Engineering GmbH 91 296 De Montfort University 132

Deep Blue Srl 91, 218

DEIMOS Space S.L. 101, 230

Délégation Générale pour l'Armement /Centre d'essais des 78, 183 propulseurs

Delfoi Oy 175

Delft University of Technology 40, 186

Department of Science and Technology 262

DFS Deutsche Flugsicherung GmbH 46, 162, 225

DIAD SRL 172

Diamond Aircraft Industries GmbH 225

Diehl Aerospace GmbH 91, 117, 132, 166

Diseño de Sistemas en Silicio S.A. 166

D-Lightsys S.A.S. 159 DLR - Deutsches Zentrum für Luft- und Raumfahrt e.V. 31, 37, 40, 43, 46, 52, 63, 66, 69, 72, 75, 78, 82, 85, 88, 91, 95, 101, 106,108, 129, 141, 146, 152, 162, 178, 186, 198, 227, 230, 234, 239, 243, 265, 277, 280

Dornier Aviation GmbH 274 Index by Partners

Dowty 52

Dr. Erich Erdle 43

DTA 265

Dziomba Aeronautical Consulting 34

EADS - Construcciones Aeronáuticas S.A. 34, 141, 214

EADS Deutschland GmbH 31, 40, 43, 72, 78, 88, 91, 104, 106, 108, 117, 120, 123, 141, 146, 152, 159, 166, 175, 186,198, 207

EADS France S.A.S. 75, 120, 135, 152, 162, 178, 207, 243

EADS-Astrium 234 297

ECL - École Centrale de Lyon 63, 75, 85

École Nationale d'Ingénieurs de Tarbes 169

École Nationale Supérieure de Chimie de Lille 149

École Normale Supérieure de Cachan 152

ECORYS Nederland B.V. 98

Eidgenössische Technische Hochschule Zürich 152, 175

EKIS Romania SRL 166

EMCCons DR. RASEK 214

Empresa Brasileira de Aeronáutica SA 144, 268

Empresarios Agrupados Internacional S.A. 178

Engineering Systems International GmbH 192

ENGINSOFT SPA 59

Enterprise Ireland 265 EPFL - École polytechnique Fédérale de Lausanne 52, 63, 78, 82, 156, 166, 237

ERCOFTAC - European Research Community on Flow, Turbu- 271 lence and Combustion

Ernst & Young 162

Index by Partners ESA - 230, 234

ESI Group SA 152, 192

ETW - European Transonic Windtunnel GmbH 34

Euro Inter Toulouse 246

Euro Telematik AG 49

Euro-Consultants (2006) Ltd 246

EUROCONTROL - Central European Research, Development 249 and Simulation Centre

EUROCONTROL Experimental Centre 37

Eurocopter Deutschland GmbH 31, 114, 141, 146, 152, 214 298 Eurocopter SAS 52, 178, 183, 201, 210 EUROMECH - European Mechanics Society 271

European Cockpit Association 46

European Conference for Aerospace Sciences 271

European Virtual Engineering 91

European Virtual Institute for Integrated Risk Management 227

Eurostep AB 18

Evektor Spol s r.o. 214

EZ 265

Fachhochschule Nordwestschweiz - Institute of Polymer 146 Engineering

Faculty of Law, University of Leiden 230

FCT 265

FFG 265

FFT - Free Field Technologies SA 78, 144, 178

FIBRE, Faserinstitut Bremen e.V. 146 Fischer Advanced Composite Components AG 152

FLUOREM 178

Fluorem SAS 75

Fondazione Bruno Kessler 198

Forschungsgesellschaft für Angewandte Naturwissenschaften 72, 126 Index by Partners e. V.

Frantsevich Institute for Problems of Materials Science, 260 National Academy of Science of Ukraine

Fraunhofer-Gesellschaft zur Foerderung der Angewandten 123, 138, 156, 198, 262 Forschung eV.

Fujitsu Systems (Europe) Ltd 178

Fundación de la Ingeniera Civil de Galicia 152

Fundación Fatronik 152

Fundación Imdea Materiales 152

Fundación INASMET 144, 149, 204

Fundación Tekniker 56 299 Galileo Avionica S.p.A. 117, 159, 214

GateHouse A/S 162

GDL - Gas Dynamic Ltd 234

GE Aviation Systems Ltd 52, 91, 114, 117

GKN Aerospace 114

GKN Aerospace Services Limited 78

GlobeGround Berlin GmbH 49

GMI Aero SAS 204

GMV Aerospace and Defence S.A. 225

Gooch & Housego (Torquay) Ltd 159

Goodrich Actuation Systems SAS 207

GOSNIIAS - State Research Institute of Aviation Systems 117

Gottfried Wilhelm Leibniz Universität Hannover 152, 198

Gromov Flight Research Institute 135

GSRT - General Secretariat for Research and Technology 265 GTD Sistemas de Informacion 91

Harbour Air Malta 274

Haute Ecole d'Ingénierie et de Gestion de Vaud 166

Helios Technology Ltd 218

Hellenic Aerospace Industry S.A. 88, 117, 146, 207, 207, Index by Partners 221

Hermes Reply S.R.L 189

HEXEL Reinforcements 192

Hispano-Suiza SA 156, 166, 214

HiTec – Vereinigung High Tech Marketing 49

Hoch Technologie Systeme 138

Hoffmann Air Cargo Equipment GmbH 211

Högskolan Vast Trollhättan 189

Honeywell International 225

Hortec BV 166

300 Hovemere Ltd 106

Huntsman 149, 207

HyGear B.V. 43

IBK Ingenieurbüro Kretschmar 34

Icon Computer Graphics Ltd 123

ICTS (UK) LTD 95

ID - Partners 95

IFP - Institut Français du Pétrole 66

IMA Materialforschung und Anwendungstechnik GmbH 152

Imperial College of Science, Technology and Medicine 31, 63, 78, 152

IMST GmbH 162

INASCO - Integrated Aerospace Sciences Corporation O.E. 78, 82, 146, 192, 204

INCAS - Institutul National de Cercetari Aerospatiale ‘Elie 249 Carafoli’ S.A.

INCAS - Institutul National de Cercetari Aerospatiale 'Elie 280 Carafoli' S.A. INECO - Ingeniería y Economía del Transporte, S.A. 49, 98

INESC Inovação, Instituto de Novas Tecnologias 49

Infratec 201

Ingegneria dei Sistemi (UK) Ltd 214

Ingegneria dei Sistemi S.p.A. - Italia 214 Index by Partners

Ingeniería Aeronáutica INGENIA, AIE 243

Ingeniería de Sistemas para la Defensa de España S.A. 91, 98, 268

Innov Support 204, 246

INPT - Institut National Polytechnique de Toulouse 31

INRIA - Institut National de Recherche en Informatique et 162, 186, 243 Automatique

INSA Lyon 56, 152

INSA Rouen 66, 69

INSA Toulouse 178, 227

Insensor AS 201

Institut Français du Pétrole - IFP 227 301

Institut für Technische und Angewandte Physik GmbH 72

Institut National de l’Environnement Industriel et des Risques 227

Institut National de Recherche sur les Transports et leur 72 Sécurité

Institute For Information Transmission Problems (IITP) 186

Institute for Mathematical Modelling RAS 85

Institute for Operations Research and Management GmbH 49

Institute of Communication and Computer Systems 214

Institute of Sound and Vibration Research, University of 75 Southampton

Institute of Structures and Advanced Materials 246

Institution of the Russian Academy of Sciences Joint Institute 78 for High Temperatures RAS

Instituto de Engenharia de Sistemas e Computadores do 159 Porto

Instituto de Soldadura e Qualidade 117 Instituto Nacional de Técnica Aeroespacial 34, 183, 239, 268

Instituto Superior Tecnico 152

Instytut Maszyn Przeplywowych - Polskiej Akademii Nauk 43, 59

Instytut Niskich Temperatur i Bada Strukturalnych im. 43 Włodzimierza Trzebiatowskiego Polskiej Akademii Nauk Index by Partners Instytut Podstawowych Problemów Techniki Polskiej Akademii 243 Nauk

Instytut Technologii Elektronowej 210

Intecs Informatica e Tecnologia del Software SpA 162

Integrated Aerospace Sciences Corporation 149, 152, 207

Intelligentsia Consultants Ltd 260

Interconsulting S.r.l. 91

Intergam Communications Ltd 239

International Research Institute for Advanced Systems 178, 186

Internationales Institu für Angewandte Systemanalyse 277

302 Interuniversitair Micro-Electronica Centrum VZW 132 INTESPACE 178

IntuiLab 91

ISA Software 98

ISAE - Institut Supérieur de l’Aéronautique et de l’Espace 52

iSAM AG, Gesellschaft für angewandte Kybernetik 146

iSIGHT Software SARL 152, 178

Israel Aerospace Industries Ltd 88, 146, 152, 178, 192, 239

Istituto Superiore Mario Boella sulle Tecnologie 214 dell'Informazione e delle Telecomunicazioni

ISTRAM - Institute of Structures and Advanced Materials 246

ISVR 52

Italian Aerospace Research Center 234

ITP - Industria de Turbo Propulsores S.A. 52, 56, 59, 63, 78, 169

Jeppesen GmbH 91, 98

Johnson Matthey plc 43 JRC - Commission of the European Communities - Directo- 43 rate General Joint Research Centre

KTH - Kungliga Tekniska Högskolan 63, 72, 78, 141, 262

KT-Systems GmbH 207

KUL - Katholieke Universiteit Leuven 192, 198 Index by Partners Labinal SA 166

Lappeenranta University of Technology 49

Laser Diagnostic Instruments AS 106

Latécoère 91, 152

Lesaffre International SARL 227

Letiste Brno A.S. - AIRPORT BRNO (BRQ) 95, 218

LETOV LETECKA VYROBA S.R.O. 152

LFK-Lenkfl ugkoerpersysteme GmbH 31

Liaison Electro-Mécanique SA 156

Lidar Technologies Ltd 108 303 Link srl 126

Linköpings Universitet 178

LioniX BV 160

LMS Imagine SA 176

LMS International NV 70, 83, 150

Loughborough University 64, 67

LTSM-Upatras 144

Lufthansa Technik Aktiengesellschaft 198

Luleå Tekniska Universitet 176

L-up SAS 214

Magna Steyr Fahrzeugtechnik AG & Co. KG 52

Magyar Tudományos Akadémia Számítástechnikai és Autom- 101 atizálási Kutató Intézet

Max-Planck-Gesellschaft zur Förderung der Wissenschaften 135 e.V.

MBDA 234 MDPaT 265

Medical University of Vienna 123

Memscap AS 111

Memsfi eld 210

Meridiana S.p.A. 211 Index by Partners

Messier-Bugatti SA 117

MESSIER-DOWTY SA 78

MET OFFICE 37

Metalogic N.V. A.I. Technologies & Engineering 198

Météo-France 91, 106

Microelectronica SA 111

Microfl own Technologies BV 75, 82

Microtech International SA 78

MICROTURBO SA 66

304 Ministerio de Ciencia, Tecnología e Innovación Productiva 268 MIUR 265

Mondragon Goi Eskola Politeknikoa S. Coop. 169

Monitor-soft 162

MSC Software GmbH 178

MSC Software Ltd 152

MTU Aero Engines GmbH 52, 56, 59, 63, 69, 75, 135, 169, 178, 189, 227

NASTECH SRL - Novel Aerospace Technologies 78

National Aerospace Laboratory 104, 214

National Aerospace University – Kharkiv Aviation Institute – 260 named by N. Zukovskiy

National and Kapodestrian University of Athens 114

National Institute for Aerospace Technology 214

National Institute of Aviation Technologies 152

National Institute of Research and Development for 106 Optoelectronics

National Technical University of Athens 88, 178 NATS En-Route Plc. 46

Naturen Industrial, Informatics and Trading Ltd. 117, 156

NCBiR 265

Nederlandse Organisatie voor Toegepast Natuurwetenschap- 132 pelijk Onderzoek - TNO Index by Partners New Technologies and Services LLC 31, 85

NIVR 252

NLR - Nationaal Lucht- en Ruimtevaartlaboratorium 31, 34, 46, 52, 72, 75, 78, 85, 91, 106, 117, 141, 144, 152, 162, 166, 175, 178, 195, 237, 239, 265, 277

NORT 265

NUMECA - Numerical Mechanics Application International 31, 59, 85, 172, 186, 243 S.A.

OFFIS – Institute for Information Technology 126, 198

Oktal – Synthetic Environment 214

ONERA - Offi ce National d’Études et de Recherche 31, 34, 46, 52, 59, 63, 66, Aérospatiales 69, 75, 78, 82, 85, 88, 91, 305 106, 117, 141, 152, 166, 178, 183, 214, 227, 230, 234, 237, 239, 265

Optimad engineering s.r.l. 141, 186

Optinvent 132

Optrion 201

Orbspace Aron Lentsch 230

Organization of Russian Academy of Sciences A.M. Obukhov 106 Institute of Atmospheric Physics RAS

Pall Europe Ltd 123

Panepistimio Ioanninon 207

PARAGON LTD 178

Paris Lodron Universität Salzburg 162

Pars Makina Ltd 52

PCA Engineers Ltd 63

PFW Aerospace AG 78

PHI-MECA Engineering 138 Photonic Science Ltd 108

Piaggio Aero Industries S.p.A 34, 40, 141, 183, 192, 214

Polish Institue of Aviation 268

Politechnika Rzeszowska im. Ignacego Łukasiewicza PRZ 117

Politechnika Slaska 52 Index by Partners

Politecnico di Milano 52, 152, 186

Politecnico di Torino 52, 63, 178, 214

Polskie Zakłady Lotnicze Sp.z o.o. 214

Portuguese SME for Aerospace Industry 246

Progesa S.R.L. 52

Projecto, Empreendimentos, Desenvolvimento e Equipamen- 72 tos Cientifi cos de Engenharia

Prover Technology 198

Pyramis 178

QinetiQ Ltd 43, 78, 117, 152, 252

306 Queen Mary and Westfi eld College, University of London 198

Queen's University Belfast 178

QWED Sp.z.o.o. 214

RadioLabs – Consorzio Università Industria Laboratori di 162 Radiocomunicazioni

REA-TECH Engineering and Architect Ltd. 239

RECOMET IMPEX SRL 144

REL - Reaction Engine Ltd 234

Rheinisch-Westfälische Technische Hochschule Aachen 172

Rheinmetall Defence Electronics GmbH 225

Rigas Technical University 201

Rockwell Collins France 31, 52, 56, 59, 66, 78, 91,178

Rolls Royce Deutschland Ltd & Co KG 69

Rolls Royce plc 52, 56, 59, 63, 66, 69, 75, 78, 138, 169, 178, 189, 227 ROSA 265

Rotech Engineering Ltd 156

ROVI-TECH S.A. 207

RUAG Aerospace 141, 146

RWTH - Rheinisch-Westfaelische Technische Hochschule 40, 95, 98, 152, 169 Index by Partners Aachen

Rzeszow University of Technology 214, 274

Saab AB 91, 117, 141, 175, 178

SABCA - Société Anonyme Belge de Constructions 146 Aéronautiques

Sächsisches Textilforschungsinstitut e.V. 211

Sagem Défense Sécurité 95, 117, 156

SAMTECH SA 152, 178

Sandu M. Constantin PF 75

Sasol Technology (Pty) Ltd 227

SASS Accoustic Research and Design GmbH 72 307 SC AEROSTAR SA 78

Schipol Nederland B.V. 126

Scholai Frederickou 56

SCITEK Consultants Ltd 52

SeaTex AG 123

SECAR Technology GmbH 146

Seconda Università degli Studi di Napoli 198

Selex Communications S.p.A. 162

SELEX Sistemi Integrati Spa 162

SEMELAB PLC 156

SensL Ltd 108

Sensor Highway Limited 116

Septentrio 225

SER 265 SGL Kümpers GmbH & Co. KG 146

Shell Aviation Ltd 227

Short Brothers PLC 78, 152, 178, 192

SICOMP AB 149

Siemens AG 49, 95 Index by Partners

Siemens Industrial Turbomachinery AB 63

Siemens Product Lifecycle Management Software (FR) SAS 178

SimSoftware Ltd 108

SITA Information Networking Computing BV 162

Skysoft Portugal - Software e Tecnologias de Informação SA 117, 159, 268

Skytek Ltd 189

Slot Consulting Ltd 98, 126, 162, 246, 249, 260, 277

SMITHS HEIMANN GMBH 95

SMR Engineering & Development SA 40, 198

308 SNECMA - Société Nationale d'Étude et de Construction de 52, 56, 59, 63, 66, 69, 72, Moteurs d'Aviation 75, 78, 135, 169, 178, 227, 234, 237

Société d'Etudes et de Recherches de l'ENSAM 169

Sogeti High Tech (Cap Gemini) 152

Soluzioni Evolute per la Sistemistica e i Modelli S.C.A.R.L. 221

Sonaca SA 152, 175

SPIRIT S.A. 214

SQS Vláknova Aptika AS 159

Stellenbosch University 63

Stiftelsen Sintef 111

Stirling Dynamics Ltd 91

STORK FOKKER AESP BV 175

Sträter Consulting 274

Streit-TGA GmbH & Co. KG 123

Sula Systems Ltd 108 Swedish Defence Research Agency 40, 88, 152, 214, 230

Swedish Space Corporation 230

Swerea SICOMP AB 152, 192

Syderal SA 117

SYSGO AG 117 Index by Partners

Technical University of Denmark 159

Technical University of Kosice 169

Technical University Sofi a 108

TECHNIC-CONTROL SP. Z.O.O. 135

Technion - Israel Institute of Technology 218

Technische Universität Berlin 31, 46, 52, 75, 85, 230

Technische Universität Braunschweig 34, 46, 91, 152

Technische Universität Darmstadt 31, 52, 63, 183, 237

Technische Universität Dresden 52

Technische Universität Graz 52, 227, 255 309 Technische Universität Hamburg - Harburg 117, 152, 214

Technische Universität Ilmenau 159

Technische Universität München 66, 88, 252, 274

Technische Universität Wien 88

Technische Universiteit Delft 101, 126, 222, 225

Technische Universiteit Eindhoven 152

Technologica Group - European Technical Joint Venture cvba 227

Technological Educational Institute of Piraeus 132, 156

Technology Partners Foundation 152

Technology Strategy Board 265

Techspace Aero SA 52, 56, 63

Teem Photonics 104

TEKS SARL 172

TELETEL S.A. - Telecommunications and Information 117 Technology

Teuchos SA 72 Thales Air Systems 46

Thales Alenia Space France 162

Thales Avionics Electrical Systems SA 117

Thales Avionics S.A. 46, 91, 106, 117, 129, 162, 166, 178, 195, 214 Index by Partners Thales Communications SA 214

Thales Nederland BV 126

Thales Research & Technology (UK) Ltd 162

Thales Research Technology (TRT) 104

Thales SA 117

Thales Systèmes Aéroportés 214

The Szewalski Institute of Fluid-Flow Machinery Polish Acad- 237 emy of Sciences

TNO - Netherlands Organization for Applied Scientifi c 126 Research – TNO Human Factors

Totalförsvarets forskningsinstitut 31, 34, 141, 243 310 Transcendata Europe Ltd 178

Transylvania Tirgu-Mures Airport 126

Trevor Truman 252

TriaGnoSys GmbH 162

Trinity College Dublin 82, 91

TsAGI - Central Aerohydrodynamic Institute 40

TSAGI - Federal State Unitary Enterprise - The Central Aero- 34, 52, 78, 85, 91, 132 hydrodynamic Institute named after Prof. N.E. Zhukovsky

TSB Innovation Agency Berlin / FAV – Transport Technology 49 Systems Network Berlin

Tsinghua University 31

TTtech Computertechnik AG 117

Turbomeca S.A. 52, 56, 63, 66, 69, 82, 138, 167, 178

Tusas Aerospace Industries Inc. 152

TWI LIMITED 138

TWT GmbH Science and Innovation 114 UAC - United Aircraft Corporation 156

UCL - Université Catholique de Louvain 46, 106,129, 207

UNINOVA - Instituto de Desenvolvimento de Novas 178 Tecnologias

UNIS, Spol. S R.O. 117 Index by Partners Universidad Del País Vasco / Euskal Herriko Unibertsitatea 198

Universidad Politécnica de Madrid 52, 59, 63, 78, 268

Università degli Studi de L'Aquila 37

Università degli Studi di Firenze 52, 59, 63, 66, 69

Università degli Studi di Modena e Reggio Emilia 218

Università degli Studi di Napoli ‘Federico II’ 34, 72, 183, 255

Università degli Studi di Padova 34

Università degli Studi di Roma ‘La Sapienza’ 126, 234

Università degli Studi Roma Tre 72, 78

Università del Salento 178

Università di Bologna 43, 91, 239 311

Università di Pisa 189

Università di Roma 214

Università ta' Malta 132

Universität Bremen 117

Universität der Bundeswehr München 52

Universität des Saarlandes 120

Universität Karlsruhe (Technische Hochschule) 56, 66, 227

Universität Leipzig 198

Universitat Politecnica de Catalunya 214

Universität Siegen 75

Universität St. Gallen 277

Universität Stuttgart 52, 59, 152, 192, 225

Université de Bordeaux 56

Université de Liège 201, 207 Université de Pau et des Pays de L'Adour 66, 149

Université de Provence 243

Université des Sciences et Technologies de Lille - IEMN 166 Groupe TELICE

Université Libre de Bruxelles 56, 230 Index by Partners Universiteit Twente 183, 198

University of Birmingham 243

University of Bradford 162

University of Bristol 117, 186

University of Brussels 234

University of Cambridge 52, 69, 78, 178

University of Cergy Pontoise 72

University of Cranfi eld 149

University of Genoa 69

University of Glasgow 274

312 University of Granada 214

University of Hull 101

University of Ioannina 114, 207

University of Karlsruhe 69

University of Leicester 101, 280

University of Limerick 152, 178

University of Liverpool (ULIV) 186

University of Malta 91

University of Malta 214

University of Manchester 31, 37

University of Naples 167

University of Nottingham 237

University of Nottingham 56, 117, 189, 214

University of Oxford 59, 234

University of Patras 78, 120, 146, 149, 152, 192, 207, 239, 260 University of Pisa - Department of Information Engineering 162

University of Reading 37

University of Salzburg 49

University of Science of Central Switzerland, Lucerne School 166 of Engineering and Architecture Index by Partners University of Sheffi eld 56, 69, 172, 189, 204, 227, 243

University of Southampton 52, 72, 78, 91, 178, 207, 234, 237

University of Stuttgart 234

University of Stuttgart 146, 234

University of the Witwatersrand, Johannesburg 262

University of Toronto 227

University of Twente 162, 214

University of York 138, 214

University of Zilina 95, 249, 265 313 Univerzita Tomáše Bati ve Zlín 246

Uniwersytet Warszawski 106

USE2ACES b.v. 91, 218

Uzay ve Savunma Teknolojileri A.S. 91

VALTION TEKNILLINEN TUTKIMUSKESKUS 78

Vibratec 52

Vibro-Meter SA 52

VINCI Consulting 178

VINNOVA 265

Vivid Components Ltd 159

VKI - von Karman Institute for Fluid Dynamics 52, 85, 230, 234, 255, 271, 280

Volvo Aero Corporation AB 52, 63, 75, 78, 138, 167, 178, 189

VTT Technical Research Centre of Finland 120

VUB - Vrije Universiteit Brussel 198

VZLU - Výzkumný a Zkušební Letecký Ústav, A.S. 40, 106, 146 W. L. Gore and Associates GmbH 159

Warsaw University of Technology 239

Westcam Fertigungstechnik GmbH 146

Westland Helicopters Ltd 91, 159

Wytwornia Sprzetu Komunikacyjnego PZL - Rzeszow S.A. 56, 189 Index by Partners

Wytwornia Sprzetu Komunikacyjnego 'PZL-Swidnik' S.A. 91, 114, 207

Xenics 104

Yamar Electronics Ltd 117

Zaporozhye Machine-Building Design Bureau Progress State 260 Enterprise named after Academician A.G. Ivchenko

Zenon S.A. Robotics and Informatics 189

Zeus GmbH - Zentrum für Angewandte Psychologie, Umwelt- 72 und Sozialforschung

314 List of National Contact Points

ALBANIA Mr. AGOLLI Edmond Ministry of Education and Science of Albania Directorate of Scientifi c Research (DSR) Street Durresi, 23 Tirana [email protected]

AUSTRIA Mr. ROHOWETZ Hans FFG-Austrian Research Promotion Agency EIP Sensengasse 1

A-1090 Vienna List of National Contact Points +435-77554303 [email protected]

BELGIUM Mr. BONNYNS Alexandre BEA (Brussels Enterprise Agency) Tour & Taxis, Avenue du Port 86c B 211 B-1000 Brussels +32-2-4220045 [email protected] 315 Mr. DE RIDDER Luc IWT (Instituut voor de aanmoediging van innovatie door Wetenschap & Technologie in Vlaanderen) Bischoffseimlaan, 25 B-1000 Brussels +32-2-7881566 [email protected]

Mr. FIASSE Pierre UWE (Union Wallonne des Entreprises) Chemin du Stocquoy, 3 B-1300 Wavre +32-10-471949 pierre.fi [email protected]

Mr. VLAEMINCK Kristof STIS (Scientifi c and Technical Information Service) Boulevard de l'Empereur, 4 1000 Brussels +32-2-5195648 [email protected] BULGARIA Mr. MARKOV Iasen Ministry of Transport Coordination of Programmes and Projects Directorate9 Diakon Ignatii 1000 Sofi a +359-2-9409502 [email protected]

SWITZERLAND Dr. RANDALL Julien Euresearch Effi ngerstrasse 19 3001Bern P.O. Box 7924 +41-31-3806002 [email protected] List of National Contact Points CYPRUS Mr. PAPADOPOULOS Andreas Research Promotion Foundation P.O. Box 23422 1683 Nicosia PO Box 23422 +357-22205034 [email protected]

CZECH REPUBLIC 316 Ing SKARKA Martin Academy of Sciences of the Czech Republic Technology Centre (TC) Technology centre AS CR, Rozvojová 136 165023 Praha 6 +42-02-34006113 [email protected]

GERMANY Mr. LOCHTE Kai-Michael Deutsches Zentrum für Luft- und Raumfahrt e.V., PT-LF Nationale Kontaktstelle ´Luftfahrt´ Königswinterer Str. 522-524 53227 Bonn +49-228-447283 [email protected]

Mr. SPIESHÖFER Alexander TÜV Rheinland Consulting GmbH Research Management, Nationale Kontaktstelle 'Verkehr' Am Grauen Stein 33 51101 Köln +49-221-8064153 [email protected] DENMARK Ms. SLOTH Béatrice L. EuroCenter - Danish Agency for Science, Technology and Innovation Bredgade 40 DK-1260 Copenhagen K +45-3-5446285 bels@fi .dk

ESTONIA Ms. HABICHT Maria ARCHIMEDES FOUNDATION Research Cooperation Centre Väike-Turu 8 51013 Tartu +372-7-300327 [email protected] List of National Contact Points SPAIN Mr. TÉBAR Juan Antonio CDTI Dpto. de Programa Marco de I+D C/ Cid, 4 28001 Madrid +34-902-347434 [email protected]

FINLAND Ms. NILÉN-KARO Siru 317 Ministry of Transport and Communications Administration and Specialist Services FI-00023 Government 00023 Helsinki P.O.Box 31 +358-9-16028478 Siru.Nylen-Karo@lvm.fi

FRANCE Mr. SCHÖNFELD Thilo Aerospace Valley 2 Avenue Edouard Belin 31400 Toulouse +33-5-61148030 [email protected]

UNITED KINGDOM Ms. RICHARDS Gill GR Aero Ltd 12 The Mount, Aspley Guise MK17 8AE Milton Keynes +44-870-1910117 [email protected] GREECE Dr. TZITZINOU Cathrine DIKTYO PRAXIS/HELP-FORWARD NETWORK 1 Square Morihovou 546 25 THESSALONIKI +30-2310-552791 [email protected]

CROATIA Ms. KOLARIC Josipa Ministry of Science, Education and Sports Donje Svetice 38 Zagreb +385-1-4594366 [email protected]

List of National Contact Points HUNGARY Ms. JÁRAY GYÖNGY Katalin National Offi ce for Research and Technology Department for Bilateral and Attache Affairs Neumann János u. 1/c 1117 Budapest +36-1-4842535 [email protected]

IRELAND Mr. FLYNN Bob 318 Enterprise Ireland 4500 Atlantic Avenue, Westpark SHANNON Co. Clare +353-61-429950 bob.fl [email protected]

ISRAEL Mrs. MULA Orly SERD-Israeli Directorate for EU Framework Programme 29 Hamered St IL-61500 Tel Aviv POB 50436 +972-3-5118181 [email protected]

ICELAND Mr. THORDARSON Skúli Vegsyn ehf. Klettabergi 62 221 Hafnarfi rdi +354-8467253 [email protected] ITALY Ms. TEGAS Valentina APRE - Agenzia per la Promozione della Ricerca Europea Via Cavour no. 71 00144 Roma +39-06-48939993 [email protected]

LITHUANIA Dr. MONGIRDAS Viktoras Agency for International Science and Technology Development Programmes A. Gostauto 12-219 1108 Vilnius +370-5-2644704 [email protected] List of National Contact Points LUXEMBOURG Mr. DUEZ Benoit LUXINNOVATION EIG - National Agency for Innovation and Research 7, rue Alcide de Gasperi L-1615 Luxembourg B.P. 1372 +352-43-62631 [email protected]

LATVIA 319 Dr. KALNINS Kaspars Riga, Technical University Institute of Materials and Structures Kalku 1 LV-1658 Riga +371-26-751614 [email protected]

MONTENEGRO Ph.D VUJADINOVIC Radoje University of Montenegro Faculty of Mechanical Engineering Cetinjski put bb 81000 Podgorica +381 67 544 766 [email protected]

MACEDONIA, THE FORMER YUGOSLAV REPUBLIC OF Ms. BALEVSKA Julijana Ministry of Education and Science Ilinden bb 1000 Skopje +389-2-3118022; +389-70-338717 [email protected] MALTA Dr. WARRINGTON Brian Malta Council for Science and Technology Malta Council for Science and Technology, Villa Bighi 1320 Kalkara +356-2360-2130 [email protected]

THE NETHERLANDS Mr. BURGWAL, VAN DER Erik SenterNovem EG-Liaison Juliana van Stolberglaan 3 2509 AC The Hague PO Box 93144 +31-70-3735250

List of National Contact Points [email protected]

NORWAY Mr. STRANDLI Øystein The Research Council of Norway St. Hanshaugen 0131 OSLO PO Box 2700 +47-22-037000 [email protected]

320 POLAND Mr. TUREK Zbigniew The Institute of Fundamental Technological Research PAS Swietokrzyska 21 str. 00-049 Warsaw +48-22-828-7483 [email protected]

PORTUGAL Ms. BERTRAND Teresa IDMEC - Instituto de Engenharia Mecânica - Pólo IST Pav. Mecânica I - 2° Av. Rovisco Pais 1049-001 Lisbon +351-21-8419755 [email protected]

ROMANIA Dr. RACHERU Anca Romanian Space Agency S&T Policies 21-25, Mendeleev Street 010362 Bucharest +40-21-3168722 [email protected] SERBIA Ms. MILOSEVIC Nada Ministry of Science and Technological Development Njegoseva 12 11000 Belgrade +381-11-3616529 [email protected]

SWEDEN Ms. FÄNGSTRÖM Britta VINNOVA (Swedish Governmental Agency for Innovation Systems) Mäster Samuelsgatan 56 SE-101 58 Stockholm +46-8-4733136 [email protected]

SLOVENIA List of National Contact Points Dr. CERNE Fedor Ministry of Transport Langusova 4 SI-1000 Ljubljana +386-1-4788319 [email protected]

SLOVAKIA doc.Ing.PhD. FABIAN Peter University of Zilina CETRA- Centre for Transport Research 321 Univerzitná 1 010 26 Zilina +421-41-5135012 [email protected], [email protected]

TURKEY Mr. KORU Aziz TUBITAK FPs National Coordination Offi ce Atatürk Bulvari No:221 6100 Ankara +90-312-4272302 [email protected] List of NCP Directorate General for Research (RTD)

Directorate H : Transport European Commission CDMA 04/166 21, rue du Champs de Mars 1049 Brussels Belgium

Director Mr. András SIEGLER Tel. + 32 (0) 29 80182 CDMA 4/045 [email protected]

Assistant Ms. Christie KALTSOUNIDOU-KENNEDIE Tel. + 32 (0) 29 52676 CDMA 4/032 [email protected]

H.3 Aeronautics Head of Unit Mr. Liam BRESLIN Tel. + 32 (0) 29 50477 CDMA 4/166

[email protected] Contact List Commission Staff European

Secretary Ms. Jessica de LANNOY HOME Tel. + 32 (0) 29 57679 CDMA 4/164 [email protected] 323 Secretary Ms. Nadia EVERAERTS Tel. + 32 (0) 29 87382 CDMA 4/164 [email protected]

Deputy HoU Mr. Daniel CHIRON Tel. + 32 (0) 29 52503 CDMA 4/134 [email protected]

Project Offi cer Mr. Rémy DENOS Tel. + 32 (0) 29 86481 CDMA 4/137 [email protected]

Project Offi cer Mr. Dietrich KNOERZER Tel. + 32 (0) 29 61607 CDMA 4/161 [email protected]

Project Offi cer Mr. Michail KYRIAKOPOULOS Tel. + 32 (0) 29 85575 CDMA 4/175 [email protected]

Project Offi cer Mr. Eric LECOMTE Tel. + 32 (0) 29 84693 CDMA 4/177 [email protected] Project Offi cer Mr. Francesco LORUBBIO Tel. + 32 (0) 29 84519 CDMA 4/137 [email protected]

Project Offi cer Mr. José M. MARTIN HERNANDEZ Tel. + 32 (0) 29 57413 CDMA 4/163 [email protected]

Project Offi cer Mr. Pablo PÉREZ ILLANA Tel. + 32 (0) 29 84928 CDMA 4/178 [email protected]

Project Offi cer Mr. Gerhard PAULY Tel. + 32 (0) 29 84519 CDMA 4/133 [email protected]

Project Offi cer Ms. Stéphanie STOLTZ-DOUCHET Tel. + 32 (0) 29 55033 CDMA 4/138 [email protected]

Project Offi cer Mr. Hans Josef VON DEN DRIESCH Tel. + 32 (0) 29 60609 CDMA 4/162 European Commission Staff Contact List Commission Staff European [email protected]

Secretary Ms. Anne BLOUARD Tel. + 32 (0) 29 92308 CDMA 4/167 324 [email protected] Secretary Ms. Aurélie BOUVART Tel. + 32 (0) 29 51384 CDMA 4/167 [email protected]

Secretary Ms. Frédérique de ROY Tel. + 32 (0) 29 68820 CDMA 4/171 [email protected]

Secretary Ms. Helena DOS SANTOS TENREIRO Tel. + 32 (0) 29 98543 CDMA 4/171 [email protected]

Secretary Mr. Thomas SCHIZAS Tel. + 32 (0) 29 64081 CDMA 4/167 [email protected]

Secretary Mr. Francesc SERRA ZARAGOZA Tel. + 32 (0) 29 97849 CDMA 4/174 [email protected]

Sector Environmental Aspects of Aeronautics Head of Sector Mr. Marco BRUSATI Tel. + 32 (0) 29 94848 CDMA 4/169 [email protected]

Legal Offi cer Ms. Kristina JANKOVICH Tel. + 32 (0) 29 67211 CDMA 4/115 [email protected]

Project Offi cer Mr. Johan BLONDELLE Tel. + 32 (0) 29 64080 CDMA 4/160 [email protected]

Directorate General for Energy and Transport (TREN)

Directorate F : Air Transport European Commission DM24 5/153

24 rue de Mot Contact List Commission Staff European 1049 Brussels Belgium

Director Mr. Daniel CALLEJA CRESPO Tel. + 32 (0) 29 61386 DM24 05/153 325 [email protected]

Unit F2 : Single sky & modernisation of air traffi c control Head of Unit Mr. Luc TYTGAT Tel. + 32 (0) 29 68430 DM24 05/065 [email protected]

Policy Offi cer Ms. Doris SCHROECKER Tel. + 32 (0) 29 55869 DM24 05/068 [email protected]

Res. Prog. Offi cer Ms. Katarzyna GRYC Tel. + 32 (0) 29 56343 DM24 05/069 [email protected]

European Commission Aeronautics and Air Transport Research – 7th Framework Programme 2007-2013 Project Synopses – Volume 1 – Calls 2007 & 2008 Luxembourg: Publications Offi ce of the European Union 2010 — 325 pp. — 14.8 x 21.0 cm ISBN 978-92-79-14287-1 doi 10.2777/83373

How to obtain EU publications Publications for sale: • via EU Bookshop (http://bookshop.europa.eu); • from your bookseller by quoting the title, publisher and/or ISBN number; • by contacting one of our sales agents directly. You can obtain their contact details on the Internet (http://bookshop.europa.eu) or by sending a fax to +352 2929-42758. Free publications: • via EU Bookshop (http://bookshop.europa.eu); • at the European Commission’s representations or delegations. You can obtain their contact details on the Internet (http://ec.europa.eu) or by sending a fax to +352 2929-42758. KI-32-09-195-EN-C

Aeronautics and Air Transport Research in the Seventh Framework Programme The aim of this publication is to provide information on more than 80 projects which were selected in the fi rst two FP7 Calls in the fi eld of Aeronautics and Air Transport. The background, objectives, description of work and expected results of each project are described. The contact details of the project coordinators and the partnerships are also given. Comprehensive index lists by technical discipline, acronym, partner and instrument are also provided to facilitate your search.