Plant Health Surveillance and Incursion Investigation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bulletin No. 206-Treehopper Injury in Utah Orchards
Utah State University DigitalCommons@USU UAES Bulletins Agricultural Experiment Station 6-1928 Bulletin No. 206 - Treehopper Injury in Utah Orchards Charles J. Sorenson Follow this and additional works at: https://digitalcommons.usu.edu/uaes_bulletins Part of the Agricultural Science Commons Recommended Citation Sorenson, Charles J., "Bulletin No. 206 - Treehopper Injury in Utah Orchards" (1928). UAES Bulletins. Paper 178. https://digitalcommons.usu.edu/uaes_bulletins/178 This Full Issue is brought to you for free and open access by the Agricultural Experiment Station at DigitalCommons@USU. It has been accepted for inclusion in UAES Bulletins by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. Bulletin 2 06 June, 1928 Treehopper Injury in Utah Orchards By CHARLES J. SORENSON 3 Dorsal and side views of the following species of treehoppers: 1. Ceresa bubalus (Fabr.) ( Buffalo treehopper) 2. Stictocephala inermis (Fabr.) 3. Stictocephala gillettei Godg. (x 10 ) UTAH AGRICULTURAL EXPERIMENT STATION LOGAN. UTAH UTAH AGRICULTURAL EXPERIMENT STATION , BOARD OF TRUSTEES . ANTHONY W. IVINS, President __ _____ ____________________ __ ___________________ Salt Lake City C. G. ADNEY, Vice-President ____ ___ ________________________________ ________________________ Corinne ROY B ULLEN ________ __________________________ _______ _____ _____ ________ ___ ____ ______ ____ Salt Lake City LORENZO N . STOHL ______ ___ ____ ___ ______________________ __ ___ ______ _____ __________ Salt Lake City MRS. LEE CHARLES MILLER ___ ______ ___ _________ ___ _____ ______ ___ ____ ________ Salt Lake City WE S TON V ERN ON, Sr. ________________________ ___ ____ ____ _____ ___ ____ ______ __ __ _______ ________ Loga n FRANK B. STEPHENS _____ ___ __ ____ ____________ ____ ______________ __ ___________ __.___ Salt Lake City MRS. -
Diptera: Tachinidae), from Area De Conservación Guanacaste, Northwestern Costa Rica, with a Key for Their Identification
Biodiversity Data Journal 3: e4595 doi: 10.3897/BDJ.3.e4595 Taxonomic Paper Three new species of Trigonospila Pokorny (Diptera: Tachinidae), from Area de Conservación Guanacaste, northwestern Costa Rica, with a key for their identification AJ Fleming‡‡, D. Monty Wood , Daniel H Janzen§, Winnie Hallwachs§, M. Alex Smith | ‡ Agriculture Agri-Food Canada, Ottawa, Canada § University of Pennsylvania, Philadelphia, PA, United States of America | Department of Integrative Biology, Guelph, Canada Corresponding author: AJ Fleming ([email protected]) Academic editor: Pierfilippo Cerretti Received: 26 Jan 2015 | Accepted: 07 Aug 2015 | Published: 11 Aug 2015 Citation: Fleming A, Wood D, Janzen D, Hallwachs W, Smith M (2015) Three new species of Trigonospila Pokorny (Diptera: Tachinidae), from Area de Conservación Guanacaste, northwestern Costa Rica, with a key for their identification. Biodiversity Data Journal 3: e4595. doi: 10.3897/BDJ.3.e4595 ZooBank: urn:lsid:zoobank.org:pub:E334B70E-8CD1-4E4A-9E00-08F77A36F178 Abstract We describe three new species of Trigonospila Pokorny (Tachinidae: Blondeliini) from Area de Conservación Guanacaste (ACG), northwestern Costa Rica. All were reared from various species of ACG caterpillars during an ongoing inventory of caterpillars, their food plants and their parasitoids in dry forest, rain forest and cloud forest. By coupling morphology, photographic documentation, life history and molecular data, we provide a clear and concise description of each species. All species published as new, are known to be previously undescribed as a result of careful study of the genus by DMW. This study builds on the current knowledge of the genus by adding three new species to the current 7 described in the New World. -
The Macadamia Industry in New Zealand
Copyright is owned by the Author of the thesis. Pennission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the pennission of the Author. THE MACADAMIA INDUSTRY IN NEW ZEALAND A Thesis for the Degree of Master of Philosophy At Massey University Palmerston North Bernard Coleman Whangarei 2005 ABSTRACT The New Zealand macadamia industry has been characterised by many small plantings, lifestyle blocks up to 1500 trees and two commercial plantations with more than 10000 trees. Completed research programmes have been few, mainly because government funding in horticulture has been channelled to the needs of the major crops such as kiwifruit. Changes in political policy affected funding for minor horticultural crops and spasmodic cuts in finance severely hindered long-term research projects. Because of its small size the macadamia industry had limited funds available from members but some research programmes have been completed including pest control, tree nutrition, basal stain and future research needs. A private consultant, Ian Gordon has carried out variety trials on a local selection. Several selections have been planted in different locations and have proven to be useful in pollination of Beaumont, the main variety planted in New Zealand. Within the limits, set by climatic factors, the suitable growing areas are north of a line from New Plymouth to Gisbome. Both of those areas are marginal for commercial planting but sites on the sheltered north facing positions could grow satisfactory yields. Yields per tree, generally have been below commercial requirements. -
Insects That Feed on Trees and Shrubs
INSECTS THAT FEED ON COLORADO TREES AND SHRUBS1 Whitney Cranshaw David Leatherman Boris Kondratieff Bulletin 506A TABLE OF CONTENTS DEFOLIATORS .................................................... 8 Leaf Feeding Caterpillars .............................................. 8 Cecropia Moth ................................................ 8 Polyphemus Moth ............................................. 9 Nevada Buck Moth ............................................. 9 Pandora Moth ............................................... 10 Io Moth .................................................... 10 Fall Webworm ............................................... 11 Tiger Moth ................................................. 12 American Dagger Moth ......................................... 13 Redhumped Caterpillar ......................................... 13 Achemon Sphinx ............................................. 14 Table 1. Common sphinx moths of Colorado .......................... 14 Douglas-fir Tussock Moth ....................................... 15 1. Whitney Cranshaw, Colorado State University Cooperative Extension etnomologist and associate professor, entomology; David Leatherman, entomologist, Colorado State Forest Service; Boris Kondratieff, associate professor, entomology. 8/93. ©Colorado State University Cooperative Extension. 1994. For more information, contact your county Cooperative Extension office. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, -
List of Other Pests of Interest
EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 8 - Other interesting findings: -pests listed in one or several of the Alert Lists which are also important for other fruit crops grown in the EU -pests of interest for other crops identified during the study 1 Pests listed in one or several of the Alert Lists which are also important for other fruit crops grown in the EU Information was extracted from the datasheets prepared for the Alert list. Please refer to the datasheets for more information (e.g. on Distribution, full host range, etc). Pest (taxonomic group) Hosts/damage Alert List Aegorhinus superciliosus A. superciliosus is mentioned as the most important pest of Apple (Coleoptera: raspberry and blueberry in the South of Chile. It is also a pest on Vaccinium Curculionidae) currant, hazelnut, fruit crops, berries, gooseberries. Amyelois transitella A. transitella is a serious pest of some nut crops (e.g. almonds, Grapevine (Lepidoptera: Pyralidae) pistachios, walnut) Orange- mandarine Archips argyrospilus In the past, heavy damage in the USA and Canada, with serious Apple (Lepidoptera: Tortricidae) outbreaks mostly on Rosaceae (especially apple and pear with Orange- 40% fruit losses in some cases) mandarine Argyrotaenia sphaleropa This species also damage Diospyrus kaki and pear in Brazil Grapevine (Lepidoptera: Tortricidae) Orange- mandarine Vaccinium Carpophilus davidsoni Polyphagous. Belongs to most serious pests of stone fruit in South Grapevine (Coleoptera: Nitidulidae) Australia (peaches, nectarines and apricots). -
Pest Risk Analysis for Six Moth Species: Lessons for the Biosecurity System on Managing Hitchhiker Organisms
Pest risk analysis for six moth species: lessons for the biosecurity system on managing hitchhiker organisms Draft approved for release for review February 2008 Pest risk analysis for six moth species: lessons for the biosecurity system on managing hitchhiker organisms MAF Biosecurity New Zealand Wellington New Zealand February 2008 i ii MAF Biosecurity New Zealand Te Manatu Ahuwhenua, Ngaherehere Pastoral House 25 The Terrace P O Box 2526 Wellington New Zealand Telephone: +64 4 894 0100 Facsimile: +64 4 894 0733 Internet: http://www.biosecurity.govt.nz Policy and Risk MAF Biosecurity New Zealand Pest risk analysis for six moth species: lessons for the biosecurity system on managing hitchhiker organisms Date 2008 Draft approved for release for review iii iv Contributors to this Risk Analysis Numerous staff within MAF Biosecurity New Zealand and MAF Quarantine Service contributed invaluable advice, data, ideas and information – many thanks. Both New Zealand and overseas scientists have provided advice and unpublished information from their own research – this support is greatly appreciated. Staff from within the following MAF groups have reviewed all or part of the risk analysis: • Biosecurity Monitoring Group; • Biosecurity Standards Group; • Biosecurity Policy Group; • Response Group; • Surveillance Group; • Incursion and Diagnostic Centres; • MAF Quarantine Service; • Risk Analysis group. The draft risk analysis has also been reviewed by: • John Bain, ENSIS (all chapters); • Melody Keena, Acting Project Leader/Research Entomologist, -
View the PDF File of the Tachinid Times, Issue 12
The Tachinid Times ISSUE 12 February 1999 Jim O’Hara, editor Agriculture & Agri-Food Canada, Biological Resources Program Eastern Cereal and Oilseed Research Centre C.E.F., Ottawa, Ontario, Canada, K1A 0C6 Correspondence: [email protected] The Tachinid Times began in 1988 when personal Evolution of Egg Structure in Tachinidae (by S.P. computers were gaining in popularity, yet before the Gaponov) advent of e-mail and the World Wide Web. A newsletter Using a scanning electron microscope I investigated distributed through the mail seemed like a useful the egg structure of 114 species of Tachinidae. The endeavour to foster greater awareness about the work of research was focused on the peculiarities of the egg others among researchers interested in the Tachinidae. surface and the structure of the aeropylar area. Data on Now, eleven years later, despite the speed and the method of egg-laying, the structure of the female convenience of e-mail and other advanced modes of reproductive system and the host range were also taken communication, this newsletter still seems to hold a place into consideration. Since any kind of adaptation is a in the distribution of news about the Tachinidae. If there result of evolution and every stage of ontogenesis, is sufficient interest - and submissions - over the course including the egg stage, is adapted to some specific of the next year, then another issue will appear in environmental conditions, each stage of ontogenesis February of the new millennium. As always, please send evolved more or less independently. The development of me your news for inclusion in the newsletter before the provisionary devices (coenogenetic adaptations) and their end of next January. -
Arthropods Diversity As Ecological Indicators of Agricultural
Journal of Entomology and Zoology Studies 2020; 8(4): 1745-1753 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Arthropods diversity as ecological indicators of www.entomoljournal.com JEZS 2020; 8(4): 1745-1753 agricultural sustainability at la yaung taw, © 2020 JEZS Received: 05-05-2020 Naypyidaw union territory, Myanmar Accepted: 08-06-2020 Kyaw Lin Maung Biotechnology Research Department, Kyaw Lin Maung, Yin Yin Mon, Myat Phyu Khine, Khin Nyein Chan, Department of Research and Innovation, Ministry of Education (Science and Aye Phyoe, Aye Thandar Soe, Thae Yu Yu Han, Wah Wah Myo and Aye Technology), Kyauk-se, Myanmar Aye Khai Yin Yin Mon Biotechnology Research Department, Department of Research and Innovation, Ministry of Education (Science and Abstract Technology), Kyauk-se, Myanmar Arthropod diversity was considered as ecological indicators of sustainable agriculture and forest Myat Phyu Khine management. High-quality habitats have the relation with healthy ecosystem functioning. In this study, Biotechnology Research Department, we collected the 101 species of arthropods which consists of 40 species of butterflies, 19 species of flies, Department of Research and Innovation, 14 species of beetles, 10 species of grasshoppers, 7 species of wasps, 6 species of bugs, 3 species moths, Ministry of Education (Science and Technology), Kyauk-se, Myanmar 1 species of millipede and 1 species of centipede at la yaung taw, Naypyidaw union territory, Myanmar. Shannon-Wiener’s diversity indexes, Pielou’s Evenness Index (Equitability) and relative abundance in Khin Nyein Chan Biotechnology Research Department, arthropods were analyzed. Arthropod’s diversity index was observed as 1.717 while the evenness index Department of Research and Innovation, was 0.372. -
REPORT on APPLES – Fruit Pathway and Alert List
EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 5 - REPORT on APPLES – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Wistermann A, Steffen K, Grousset F, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Apples – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/107o25ccc1b2c DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on Apples – Fruit pathway and Alert List 1. Introduction ................................................................................................................................................... 3 1.1 Background on apple .................................................................................................................................... 3 1.2 Data on production and trade of apple fruit ................................................................................................... 3 1.3 Pathway ‘apple fruit’ ..................................................................................................................................... -
Light Brown Apple Moth: Enhancing Natural Biological Control
Light Brown Apple Moth: Enhancing Natural Biological Control Nick Mills - UC Berkeley LBAM: Background and Seasonal Cycle Background: 1 of 40+ species of Epiphyas in Australia, specialists on Asteraceae, Fabaceae 1 of 3 more generalist species of Epiphyas Common cassinia, Cassinia sp. Invasive in western Australia, New Zealand, New Caledonia, Hawaii and the British Isles E. xylodes LBAM: Management Options in California • Eradication Is its feasible? Are there tools available? 33 months since first detection No diapause → flights not discrete • Likelihood of establishment and spread High due to v. broad host plant range • Long-term management options Standard IPM programs for crops Biological control for non-crop habitat LBAM: Arthropod Predators in Australia Spiders: Achaearanea veruculata (Theridiidae) Diaea spp. (Thomisidae) Earwigs: Forficula auricularia Lacewings: Chrysopa sp. (Chrysopidae) True bugs: Melanotrichus australianus (Miridae) LBAM: Insect Parasitoids in Australia Brachymeria teuta Brachymeria phya Dominant species (Chalcididae) Other species Glabridorsum stokesii (Ichneumonidae) Xanthopimpla rhopaloceros Trichogramma carverae (Ichneumonidae) T. funiculatum Adult (Trichogrammatidae) Pupa Egg Bracon sp. (Braconidae) Dolichogenidea tasmanica Eupsenella sp. (Bethylidae) (Braconidae) Goniozus jacintae (Beth.) L5-6 L1-2 Oedemopsis hobartensis L3-4 (Ichneumonidae) Australoglypta latrobei Phytodietus celsissimus (Ichneumonidae) (Ichneumonidae) Bassus unimaculata (Braconidae) Eriborus epiphyas Exochus sp. (Ichneumonidae) (Ichneumonidae) -
Spillover and Species Interactions Across Habitat Edges Between Managed and Natural Forests
SPILLOVER AND SPECIES INTERACTIONS ACROSS HABITAT EDGES BETWEEN MANAGED AND NATURAL FORESTS ____________________________________________________ A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at the University of Canterbury by Carol M. Frost ____________________________________________________ School of Biological Sciences University of Canterbury 2013 Table of Contents Table of Contents………………………………………………………………………...ii List of Tables………………………………………………………………………...…..vi List of Figures…………………………………………………………………………..vii Abstract………………………………………………………………………………...viii Acknowledgements……………………………………………………………………....x Chapter I: Introduction………………………………………………………………….1 1.1 Land-use change as the leading cause of biodiversity loss………………………….1 1.2 Biodiversity conservation versus agricultural production…………………………..2 1.3 Spillover edge effects as a mechanism of change in remnant natural ecosystems….3 1.4 Measuring ecological change: species interactions underlie ecosystem function…..5 1.5 Predicting indirect interactions……………………………………………………...6 1.6 Thesis objectives, study system, and outline………………………………………..9 Chapter II: Community-level spillover of natural enemies.........................................14 2.1 Abstract…………………………………………………………………………….14 2.2 Introduction………………………………………………………………………...15 2.3 Methods…………………………………………………………………………….18 2.3.1 Study system…………………………………………………………………...18 2.3.2 Sampling herbivore abundance and parasitism levels…………………………20 2.3.3 Measuring spillover of natural -
EU Project Number 613678
EU project number 613678 Strategies to develop effective, innovative and practical approaches to protect major European fruit crops from pests and pathogens Work package 1. Pathways of introduction of fruit pests and pathogens Deliverable 1.3. PART 7 - REPORT on Oranges and Mandarins – Fruit pathway and Alert List Partners involved: EPPO (Grousset F, Petter F, Suffert M) and JKI (Steffen K, Wilstermann A, Schrader G). This document should be cited as ‘Grousset F, Wistermann A, Steffen K, Petter F, Schrader G, Suffert M (2016) DROPSA Deliverable 1.3 Report for Oranges and Mandarins – Fruit pathway and Alert List’. An Excel file containing supporting information is available at https://upload.eppo.int/download/112o3f5b0c014 DROPSA is funded by the European Union’s Seventh Framework Programme for research, technological development and demonstration (grant agreement no. 613678). www.dropsaproject.eu [email protected] DROPSA DELIVERABLE REPORT on ORANGES AND MANDARINS – Fruit pathway and Alert List 1. Introduction ............................................................................................................................................... 2 1.1 Background on oranges and mandarins ..................................................................................................... 2 1.2 Data on production and trade of orange and mandarin fruit ........................................................................ 5 1.3 Characteristics of the pathway ‘orange and mandarin fruit’ .......................................................................