Phylogenetic Uncertainty and Fossil Calibration of Asteraceae Chronograms LETTER Jose L

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Uncertainty and Fossil Calibration of Asteraceae Chronograms LETTER Jose L LETTER Phylogenetic uncertainty and fossil calibration of Asteraceae chronograms LETTER Jose L. Panero1 Barreda et al. (1) claim a Cretaceous fossil pollen type is an opposed to other Barnadesioideae. Encoding “columel- extinct Asteraceae. Concluding this pollen type is “nested late layer visibility under light microscopy” (character 19) within Dasyphyllum (crown representative),” they calibrate results in unintentional character weighting. Exine thick- a Dasyphyllum + Barnadesia crown node (Dasyphyllum ness (character 22) is much smaller in Dasyphyllum crown absent) and estimate an 85.9-Ma Asteraceae crown inerme and Dasyphyllum velutinum than in other Dasy- age that potentially compresses asterid evolution by tens phyllum spp. (3) that would be scored as other Barnade- of millions of years. However, the bootstrap majority con- sioideae and different from the fossil had they been sensus topology reported could not be reproduced from sampled. Characters 19, 21, and 22 clearly contribute the data; instead, the fossil resolved in a trichotomy with to place the fossil with Dasyphyllum. Character 17 as- Calyceraceae and Asteraceae. Thus, unambiguous assign- sumes that concavities distributed asymmetrically ment of these pollen grains to Asteraceae is premature. (sometimes absent) along the intercolpal region in the Paleocene, not Cretaceous, mean ages of Asteraceae fossil are homologous with symmetrically distributed result from calibration placement consistent with the intercolpal concavities in extant taxa and not the result fossil’s phylogenetic position in the reproduced bootstrap of compression forces during fossilization (figure 4 in tree. Calibration at the Asteraceae + Calyceraceae crown ref. 1). This character is scored as “present” in the fossil node (second calibration scenario; figure S5A and table (table S1 in ref. 1) but described as “present or absent” S2 of ref. 1) is not consistent with the bootstrap, because [supporting information (p. 2) in ref. 1]. The authors did it excludes the possibility that the fossil is a stem member not explore the robustness of phylogenetic results to of the Asteraceae + Calyceraceae clade. The third sce- alternative scoring, encoding, or Dasyphyllum sampling. nario placement is consistent with the fossil + Asteraceae + Readers should not construe finding Paleocene- Calyceraceae trichotomy supported by 69% bootstrap Eocene hothouse climate coincident with diversification proportion. The study’s six calibration scenarios illustrate of South American lineages as primarily due to the Dasy- the ambiguous phylogenetic position (identity) of Tubuliflor- phyllum + Barnadesia calibration. Ages for these diver- idites lilliei type A pollen that hinders unequivocal placement gences result chiefly from the placement here of the in chronogram construction. Mutisiapollis telleriae + Raiguenrayun constraint as ra- Furthermore, we should be cautious of sensational tionalized by Panero et al. (4), not at the Asteraceae conclusions underpinned by an inferred phylogenetic crown node shown by Barreda et al. (5). These two cal- relationship supported by few characters. Crucial char- ibrations placed in Asteraceae result in contrasting early acter scoring and encoding are particularly difficult from evolutionary patterns in Barnadesioideae vs. the sister taxa of the dispersed pollen fossil record (2). Extant clade (stem lengths in figure 5 in ref. 1). The authors Dasyphyllum, Chuquiraga,andDoniophyton have an do not comment on this interesting consequence of exine bilayer (3), but when the same character observed their calibration placement, an effect that shrinks when under light microscopy is scored (character 21), Dasy- the T. lilliei type A calibration is placed outside Asteraceae phyllum spp. share a single layer state with the fossil as (figure S5 in ref. 1). 1 Barreda VD, et al. (2015) Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica. Proc Natl Acad Sci USA 112(35):10989–10994. 2 Crepet WL, Nixon KC, Gandolfo MA (2004) Fossil evidence and phylogeny: The age of major angiosperm clades based on mesofossil and macrofossil evidence from Cretaceous deposits. Am J Bot 91(10):1666–1682. 3 Tellería MC, Palazzesi L, Barreda VC (2015) Evolutionary significance of exine ultrastructure in the subfamily Barnadesioideae (Asteraceae) in the light of molecular phylogenetics. Rev Palaeobot Palynol 221:32–46. 4 Panero JL, et al. (2014) Resolution of deep nodes yields an improved backbone phylogeny and a new basal lineage to study early evolution of Asteraceae. Mol Phylogenet Evol 80:43–53. 5 Barreda VD, et al. (2012) An extinct Eocene taxon of the daisy family (Asteraceae): Evolutionary, ecological and biogeographical implications. Ann Bot (Lond) 109(1):127–134. Department of Integrative Biology, The University of Texas, Austin, TX 78712 Author contributions: J.L.P. wrote the paper. The author declares no conflict of interest. 1Email: [email protected]. www.pnas.org/cgi/doi/10.1073/pnas.1517649113 PNAS | January 26, 2016 | vol. 113 | no. 4 | E411 Downloaded by guest on September 28, 2021.
Recommended publications
  • Floral Symmetry Affects Speciation Rates in Angiosperms Risa D
    Received 25 July 2003 Accepted 13 November 2003 Published online 16 February 2004 Floral symmetry affects speciation rates in angiosperms Risa D. Sargent Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada ([email protected]) Despite much recent activity in the field of pollination biology, the extent to which animal pollinators drive the formation of new angiosperm species remains unresolved. One problem has been identifying floral adaptations that promote reproductive isolation. The evolution of a bilaterally symmetrical corolla restricts the direction of approach and movement of pollinators on and between flowers. Restricting pollin- ators to approaching a flower from a single direction facilitates specific placement of pollen on the pollin- ator. When coupled with pollinator constancy, precise pollen placement can increase the probability that pollen grains reach a compatible stigma. This has the potential to generate reproductive isolation between species, because mutations that cause changes in the placement of pollen on the pollinator may decrease gene flow between incipient species. I predict that animal-pollinated lineages that possess bilaterally sym- metrical flowers should have higher speciation rates than lineages possessing radially symmetrical flowers. Using sister-group comparisons I demonstrate that bilaterally symmetric lineages tend to be more species rich than their radially symmetrical sister lineages. This study supports an important role for pollinator- mediated speciation and demonstrates that floral morphology plays a key role in angiosperm speciation. Keywords: reproductive isolation; pollination; sister group comparison; zygomorphy 1. INTRODUCTION The importance of pollinator-mediated selection in angiosperms is well supported by theory (Kiester et al.
    [Show full text]
  • Early Evolution of the Angiosperm Clade Asteraceae in the Cretaceous of Antarctica
    Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica Viviana D. Barredaa,1,2, Luis Palazzesia,b,1, Maria C. Telleríac, Eduardo B. Oliverod, J. Ian Rainee, and Félix Forestb aDivisión Paleobotánica, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia,” Consejo Nacional de Investigaciones Cientificas y Técnicas, Buenos Aires C1405DJR, Argentina; bJodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom; cLaboratorio de Sistemática y Biología Evolutiva, Museo de La Plata, La Plata B1900FWA, Argentina; dCentro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Cientificas y Técnicas, 9410 Ushuaia, Tierra del Fuego, Argentina; and eDepartment of Palaeontology, GNS Science, Lower Hutt 5040, New Zealand Edited by Michael J. Donoghue, Yale University, New Haven, CT, and approved July 15, 2015 (received for review December 10, 2014) The Asteraceae (sunflowers and daisies) are the most diverse Here we report fossil pollen evidence from exposed Campanian/ family of flowering plants. Despite their prominent role in extant Maastrichtian sediments from the Antarctic Peninsula (Fig. 1, Fig. S1, terrestrial ecosystems, the early evolutionary history of this family and SI Materials and Methods, Fossiliferous Localities)(7)thatradi- remains poorly understood. Here we report the discovery of a cally changes our understanding of the early evolution of Asteraceae. number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back Results and Discussion the timing of assumed origin of the family. Reliably dated to ∼76–66 The pollen grains reported here and discovered in the Late Cre- Mya, these specimens are about 20 million years older than previ- taceous of Antarctica are tricolporate, microechinate, with long ously known records for the Asteraceae.
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • The Origin of the Bifurcating Style in Asteraceae (Compositae)
    Annals of Botany 117: 1009–1021, 2016 doi:10.1093/aob/mcw033, available online at www.aob.oxfordjournals.org The origin of the bifurcating style in Asteraceae (Compositae) Liliana Katinas1,2,*, Marcelo P. Hernandez 2, Ana M. Arambarri2 and Vicki A. Funk3 1Division Plantas Vasculares, Museo de La Plata, La Plata, Argentina, 2Laboratorio de Morfologıa Comparada de Espermatofitas (LAMCE), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina and 3Department of Botany, NMNH, Smithsonian Institution, Washington D.C., USA *For correspondence. E-mail [email protected] Received: 20 November 2015 Returned for revision: 22 December 2015 Accepted: 8 January 2016 Published electronically: 20 April 2016 Background and Aims The plant family Asteraceae (Compositae) exhibits remarkable morphological variation in the styles of its members. Lack of studies on the styles of the sister families to Asteraceae, Goodeniaceae and Calyceraceae, obscures our understanding of the origin and evolution of this reproductive feature in these groups. The aim of this work was to perform a comparative study of style morphology and to discuss the relevance of im- portant features in the evolution of Asteraceae and its sister families. Methods The histochemistry, venation and general morphology of the styles of members of Goodeniaceae, Calyceraceae and early branching lineages of Asteraceae were analysed and put in a phylogenetic framework to dis- cuss the relevance of style features in the evolution of these families. Key Results The location of lipophilic substances allowed differentiation of receptive from non-receptive style papillae, and the style venation in Goodeniaceae and Calyceraceae proved to be distinctive.
    [Show full text]
  • Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
    Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M.
    [Show full text]
  • Nuclear and Plastid DNA Phylogeny of the Tribe Cardueae (Compositae
    1 Nuclear and plastid DNA phylogeny of the tribe Cardueae 2 (Compositae) with Hyb-Seq data: A new subtribal classification and a 3 temporal framework for the origin of the tribe and the subtribes 4 5 Sonia Herrando-Morairaa,*, Juan Antonio Callejab, Mercè Galbany-Casalsb, Núria Garcia-Jacasa, Jian- 6 Quan Liuc, Javier López-Alvaradob, Jordi López-Pujola, Jennifer R. Mandeld, Noemí Montes-Morenoa, 7 Cristina Roquetb,e, Llorenç Sáezb, Alexander Sennikovf, Alfonso Susannaa, Roser Vilatersanaa 8 9 a Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s.n., 08038 Barcelona, Spain 10 b Systematics and Evolution of Vascular Plants (UAB) – Associated Unit to CSIC, Departament de 11 Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de 12 Barcelona, ES-08193 Bellaterra, Spain 13 c Key Laboratory for Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 14 Chengdu, China 15 d Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA 16 e Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA (Laboratoire d’Ecologie Alpine), FR- 17 38000 Grenoble, France 18 f Botanical Museum, Finnish Museum of Natural History, PO Box 7, FI-00014 University of Helsinki, 19 Finland; and Herbarium, Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov str. 20 2, 197376 St. Petersburg, Russia 21 22 *Corresponding author at: Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s. n., ES- 23 08038 Barcelona, Spain. E-mail address: [email protected] (S. Herrando-Moraira). 24 25 Abstract 26 Classification of the tribe Cardueae in natural subtribes has always been a challenge due to the lack of 27 support of some critical branches in previous phylogenies based on traditional Sanger markers.
    [Show full text]
  • Systematics of Dasyphyllum (Asteraceae)
    Instituto de Pesquisas Jardim Botânico do Rio de Janeiro Escola Nacional de Botânica Tropical Programa de Pós-Graduação em Botânica Systematics of Dasyphyllum (Asteraceae) Mariana M. Saavedra Elsie F. Guimarães e Rafaela C. Forzza Barnadesioideae • Synapomorphies: – axillary spines – barnadesioids trichomes • Restricted distribution in South America • 9 genus and 85 species – Dasyphyllum (33 spp.) – Chuquiraga (23 spp.) – Barnadesia (19 spp.) – Arnaldoa (3 spp.) – Doniophyton (2 spp.) – Fulcaldea (2 spp.) – Duseniella, Huarpea e Dasyphyllum vagans Schlechtendalia (1 spp.) Funk et al. 2009 Dasyphyllum Kunth Kunth (1820) – D. argenteum Cabrera (1959) – Dasyphyllum • 36 species (34 new combinations) Infrageneric classification sensu Cabrera • Trees Dasyphyllum subg. Archydasyphyllum • Pinnate leaves • Anthers’ apical appendage • 2 species obtuse or emarginate • D. diacanthoides (Less.) Cabrera • D. excelsum (D.Don) Cabrera) D. diacanthoides Stuessy et al. 1996 Dasyphyllum sensu Cabrera (1959) • Trees or shrubs Dasyphyllum subg. Dasyphyllum • Trinerved leaves • Anthers’ apical appendages bilobed Section Microcephala (=Dasyphyllum) Section Macrocephala • Small and numerous heads • Large and solitaries or few heads • 27 species, 6 varieties • 11 species, 2 varieties D. sprengelianum Stuessy et al. 1996 Stuessy et al. 1996 D. spinescens Morphological phylogeny Urtubey & Stuessy 2001 • 52 of 88 species of the subfamily • 29 spp. Dasyphyllum • 31 morphological characters • 13 characters are informative to Dasyphyllum Infrageneric classification
    [Show full text]
  • Chloroplast Dna Systematics of Lilioid Monocots: Resources, Feasibility, and an Example from the Orchidaceaei
    Amer. J. Bot. 76(12): 1720-1730. 1989. CHLOROPLAST DNA SYSTEMATICS OF LILIOID MONOCOTS: RESOURCES, FEASIBILITY, AND AN EXAMPLE FROM THE ORCHIDACEAEI MARK W. CHASE2 AND JEFFREY D. PALMER3 Department of Biology, University of Michigan, Ann Arbor, Michigan 48109-1048 ABSTRACT Although chloroplast DNA (cpDNA) analysis has been widely and successfully applied to systematic and evolutionary problems in a wide variety of dicots, its use in monocots has thus far been limited to the Poaceae. The cpDNAs ofgrasses are significantly altered in arrangement relative to the genomes of most vascular plants, and thus the available clone banks ofgrasses are not particularly useful in studying variation in the cpDNA ofother monocots. In this report, we present mapping studies demonstrating that cpDNAs offour lilioid monocots (Allium cepa, Alliaceae; Asparagus sprengeri, Asparagaceae; Narcissus x hybridus, Amaryllidaceae; and On­ cidium excavatum, Orchidaceae), which, while varying in size over as much as 18 kilobase pairs, conform to the genome arrangement typical of most vascular plants. A nearly complete (99.2%) clone bank was constructed from restriction fragments of the chloroplast genome of Oncidium excavatum; this bank should be useful in cpDNA analysis among the monocots and is available upon request. As an example of the utility of filter hybridization using this clone bank to detect systematically useful variation, we present a Wagner parsimony analysis of restriction site data from the controversial genus Trichocentrum and several sections of Oncid­ ium, popularly known as the "mule ear" and "rat tail oncidiums." Because of their vastly different floral morphology, the species of Trichocentrum have never been placed in Oncidium, although several authors have recently suggested a close relationship to this vegetatively modified group.
    [Show full text]
  • Phylogeny and Phylogenetic Nomenclature of the Campanulidae Based on an Expanded Sample of Genes and Taxa
    Systematic Botany (2010), 35(2): pp. 425–441 © Copyright 2010 by the American Society of Plant Taxonomists Phylogeny and Phylogenetic Nomenclature of the Campanulidae based on an Expanded Sample of Genes and Taxa David C. Tank 1,2,3 and Michael J. Donoghue 1 1 Peabody Museum of Natural History & Department of Ecology & Evolutionary Biology, Yale University, P. O. Box 208106, New Haven, Connecticut 06520 U. S. A. 2 Department of Forest Resources & Stillinger Herbarium, College of Natural Resources, University of Idaho, P. O. Box 441133, Moscow, Idaho 83844-1133 U. S. A. 3 Author for correspondence ( [email protected] ) Communicating Editor: Javier Francisco-Ortega Abstract— Previous attempts to resolve relationships among the primary lineages of Campanulidae (e.g. Apiales, Asterales, Dipsacales) have mostly been unconvincing, and the placement of a number of smaller groups (e.g. Bruniaceae, Columelliaceae, Escalloniaceae) remains uncertain. Here we build on a recent analysis of an incomplete data set that was assembled from the literature for a set of 50 campanulid taxa. To this data set we first added newly generated DNA sequence data for the same set of genes and taxa. Second, we sequenced three additional cpDNA coding regions (ca. 8,000 bp) for the same set of 50 campanulid taxa. Finally, we assembled the most comprehensive sample of cam- panulid diversity to date, including ca. 17,000 bp of cpDNA for 122 campanulid taxa and five outgroups. Simply filling in missing data in the 50-taxon data set (rendering it 94% complete) resulted in a topology that was similar to earlier studies, but with little additional resolution or confidence.
    [Show full text]
  • Early Evolution of the Angiosperm Clade Asteraceae in the Cretaceous of Antarctica
    Early evolution of the angiosperm clade Asteraceae in the Cretaceous of Antarctica Viviana D. Barredaa,1,2, Luis Palazzesia,b,1, Maria C. Telleríac, Eduardo B. Oliverod, J. Ian Rainee, and Félix Forestb aDivisión Paleobotánica, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia,” Consejo Nacional de Investigaciones Cientificas y Técnicas, Buenos Aires C1405DJR, Argentina; bJodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom; cLaboratorio de Sistemática y Biología Evolutiva, Museo de La Plata, La Plata B1900FWA, Argentina; dCentro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Cientificas y Técnicas, 9410 Ushuaia, Tierra del Fuego, Argentina; and eDepartment of Palaeontology, GNS Science, Lower Hutt 5040, New Zealand Edited by Michael J. Donoghue, Yale University, New Haven, CT, and approved July 15, 2015 (received for review December 10, 2014) The Asteraceae (sunflowers and daisies) are the most diverse Here we report fossil pollen evidence from exposed Campanian/ family of flowering plants. Despite their prominent role in extant Maastrichtian sediments from the Antarctic Peninsula (Fig. 1, Fig. S1, terrestrial ecosystems, the early evolutionary history of this family and SI Materials and Methods, Fossiliferous Localities)(7)thatradi- remains poorly understood. Here we report the discovery of a cally changes our understanding of the early evolution of Asteraceae. number of fossil pollen grains preserved in dinosaur-bearing deposits from the Late Cretaceous of Antarctica that drastically pushes back Results and Discussion the timing of assumed origin of the family. Reliably dated to ∼76–66 The pollen grains reported here and discovered in the Late Cre- Mya, these specimens are about 20 million years older than previ- taceous of Antarctica are tricolporate, microechinate, with long ously known records for the Asteraceae.
    [Show full text]
  • False Flowers in Asteraceae
    Available online at www.sciencedirect.com ScienceDirect Don’t be fooled: false flowers in Asteraceae Teng Zhang and Paula Elomaa The sunflower or daisy family, Asteraceae, comprises of meristems represent so-called flower unit meristems approximately 10% of all angiosperm species. Their (FUM) (Box 1) [4 ]. inflorescences form dense flower-like structures, pseudanthia or false flowers that may combine hundreds of individual In this review, we aim to highlight the most recent work flowers into a single structure. Recent data suggest that to understand the organization, patterning and develop- pseudanthia are analogs of single flowers not only ment of this unique structure and its role for adaptation. morphologically but also at developmental and genetic level, Because of still very limited number of molecular studies, and cannot merely be considered as condensed we also refer to selected older research addressing inflorescences. The large meristem size provides an advantage the major biological questions. Many of the floral traits to study basic principles of patterning as well as inflorescence in Asteraceae are of practical relevance for breeding of diversity in this evolutionary successful family. This knowledge commercially important crops within the family, includ- has also practical importance in the commercially important ing edible leaf, stem and seed oil crops (lettuce, artichoke, crops of the family. endive, sunflower, safflower), herbs and medicinal plants (Artemisia, Calendula, Echinaceae), as well as ornamental Address cut flowers (gerbera, chrysanthemum) [5]. Department of Agricultural Sciences, Viikki Plant Science Centre, 00014 University of Helsinki, Finland Origin and diversity of capitula in Asteraceae Corresponding author: Elomaa, Paula (paula.elomaa@helsinki.fi) Within flowering plants, Asteraceae belongs to the well- supported MGCA clade consisting of families of Menyanthaceae, Goodeniaceae, Calyceraceae, and Astera- Current Opinion in Plant Biology 2021, 59:101972 ceae (Figure 1).
    [Show full text]
  • Sepal Identity of the Pappus and Floral Organ Development in the Common Dandelion (Taraxacum Officinale; Asteraceae)
    plants Article Sepal Identity of the Pappus and Floral Organ Development in the Common Dandelion (Taraxacum officinale; Asteraceae) Kitty Vijverberg 1,2,* , Monique Welten 1, Marjan Kraaij 3 , Bertie Joan van Heuven 1, Erik Smets 1 and Barbara Gravendeel 1,2 1 Evolutionary Ecology, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands; [email protected] (M.W.); [email protected] (B.J.v.H.); [email protected] (E.S.); [email protected] (B.G.) 2 Experimental Plant Ecology, Institute for Water and Wetland Research (IWWR), Radboud University, Heyendaalseweg 135, 6500 GL Nijmegen, The Netherlands 3 Evolutionary Genetics, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +31-(0)715271910 Abstract: The dry one-seeded fruits (cypselae) of the Asteraceae are often crowned with a pappus, an appendage of hairs or scales that assists in dispersal. It is generally assumed, but little investigated, that the pappus represents the outer floral whorl where the sepals are usually located. We analysed pappus–sepal homology in dandelions using micromorphological and floral gene expression analyses. We show that the pappus initiates from a ring primordium at the base of the corolla, heterochronic to the petals. Pappus parts form from this ring, with those in the alternipetalaous position usually being ahead in growth, referring to sepal identity. Tof-APETALLA1 expression increased during floret Citation: Vijverberg, K.; Welten, M.; development and was highest in mature pappus. Tof-PISTILLATA expression was high and confined Kraaij, M.; van Heuven, B.J.; Smets, to the floral tissues containing the petals and stamens, consistent with expectations for sepals.
    [Show full text]