The Interplay Between Inflorescence Development and Function As the Crucible of Architectural Diversity

Total Page:16

File Type:pdf, Size:1020Kb

The Interplay Between Inflorescence Development and Function As the Crucible of Architectural Diversity Annals of Botany Page 1 of 17 doi:10.1093/aob/mcs252, available online at www.aob.oxfordjournals.org REVIEW: PART OF A SPECIAL ISSUE ON INFLORESCENCES The interplay between inflorescence development and function as the crucible of architectural diversity Lawrence D. Harder1,* and Przemyslaw Prusinkiewicz2 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4 and 2Department of Computer Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4 * For correspondence. Email [email protected] Received: 27 July 2012 Returned for revision: 13 September 2012 Accepted: 17 October 2012 † Background Most angiosperms present flowers in inflorescences, which play roles in reproduction, primarily Downloaded from related to pollination, beyond those served by individual flowers alone. An inflorescence’s overall reproductive contribution depends primarily on the three-dimensional arrangement of the floral canopy and its dynamics during its flowering period. These features depend in turn on characteristics of the underlying branching structure (scaffold) that supports and supplies water and nutrients to the floral canopy. This scaffold is produced by devel- opmental algorithms that are genetically specified and hormonally mediated. Thus, the extensive inflorescence diversity evident among angiosperms evolves through changes in the developmental programmes that specify http://aob.oxfordjournals.org/ scaffold characteristics, which in turn modify canopy features that promote reproductive performance in a par- ticular pollination and mating environment. Nevertheless, developmental and ecological aspects of inflorescences have typically been studied independently, limiting comprehensive understanding of the relations between inflor- escence form, reproductive function, and evolution. † Scope This review fosters an integrated perspective on inflorescences by summarizing aspects of their devel- opment and pollination function that enable and guide inflorescence evolution and diversification. † Conclusions The architecture of flowering inflorescences comprises three related components: topology (branching patterns, flower number), geometry (phyllotaxis, internode and pedicel lengths, three-dimensional flower arrangement) and phenology (flower opening rate and longevity, dichogamy). Genetic and developmental at The Univesity of Calgary on January 16, 2013 evidence reveals that these components are largely subject to quantitative control. Consequently, inflorescence evolution proceeds along a multidimensional continuum. Nevertheless, some combinations of topology, geom- etry and phenology are represented more commonly than others, because they serve reproductive function par- ticularly effectively. For wind-pollinated species, these combinations often represent compromise solutions to the conflicting physical influences on pollen removal, transport and deposition. For animal-pollinated species, dominant selective influences include the conflicting benefits of large displays for attracting pollinators and of small displays for limiting among-flower self-pollination. The variety of architectural components that comprise inflorescences enable diverse resolutions of these conflicts. Key words: Inflorescence, angiosperm, form and function, evolution, development, architecture, floral display, pollination, geitonogamy, heterochrony. INTRODUCTION in pollen export (pollen discounting) and siring success (Harder and Barrett, 1995; Karron and Mitchell, 2012). Such The diversity of floral morphology and inflorescence architec- collective effects probably shape the evolution of the extensive ture within angiosperms illustrates the extreme evolutionary inflorescence diversity that is evident within and among angio- plasticity of reproductive structures. Strangely, although sperm clades (e.g. Fig. 1; Stebbins, 1974; Weberling, 1992; floral diversity has stimulated functional interpretations for Claßen-Bockhoff, 2000; Bradford and Barnes, 2001; Doust over two centuries (Baker, 1983) and has featured as evidence and Kellogg, 2002; Evans et al., 2003; Weller et al., 2006; of adaptation since Darwin (1862, 1877), inflorescence diver- Tripp, 2007; Pozner et al., 2012). sity has received much less attention from this perspective (al- As for all aspects of morphology, inflorescence adaptation though see Wyatt, 1982; Harder et al., 2004; Prusinkiewicz and diversification depend on both the functional conse- et al., 2007). This disparity is surprising, as plants typically quences of alternative characteristics, and the evolutionary produce and display flowers aggregated in inflorescences in options and limits established by the generating developmental which flowers seldom act independently during development, processes (cf. Brakefield, 2006; Breuker et al., 2006). pollination, fruit development and seed dispersal. For Nevertheless, the bodies of literature that address inflorescence example, plants that display many flowers simultaneously development and function rarely intersect: ontogenetic studies attract more pollinators than those with small displays seldom consider consequences for plant performance, and (Ohashi and Yahara, 2001), but are also more likely to experi- adaptive hypotheses commonly ignore developmental possi- ence among-flower self-pollination (geitonogamy: Barrett bilities and constraints. Here, we review this disparate litera- et al., 1994; Karron et al., 2004) and an associated reduction ture in search of a unified perspective that recognizes the # The Author 2012. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: [email protected] Page 2 of 17 Harder and Prusinkiewicz — Inflorescence development and function A BC Downloaded from DE H F http://aob.oxfordjournals.org/ B D G E C A FG H at The Univesity of Calgary on January 16, 2013 F IG. 1. Examples of architectural diversity caused by interspecific variation in branching geometry on an underlying cymose topology within South African Iridaceae, including: (A) Moraea tripetala, (B) Chasmanthe floribunda, (C) Crocosmia paniculata, (D) Dierama latifolium, (E) Freesia occidentalis, (F) Babiana villosa, (G) Hesperantha coccinea (with Prosoeca ganglbaueri) and (H) Babiana ringens. The inset phylogeny in (D) illustrates the relationships between the species as inferred by Goldblatt et al. (2008). reciprocal relations through which inflorescence structure both Nevertheless, new perspectives emerge, which may serve to influences and is evolutionarily influenced by reproductive motivate more integrated future studies. function. After providing an ontogenetic definition of an in- florescence and identifying the essential components of its architecture, we review current understanding of the develop- INFLORESCENCES AND THEIR mental controls on those components, with emphasis on archi- ARCHITECTURAL COMPONENTS tectural effects with identifiable ecological implications. We Flowering plants are modular organisms that develop as shoot then examine the consequences of inflorescence architecture apical meristems repeatedly produce metamers, each of which for reproduction, focusing on pollination, which is the essen- comprises a stem segment (internode), distal node, attached tial function of inflorescences. Given the largely independent leaf and axillary bud(s) (Bell, 2008). Consequently, a plant’s progress of studies of inflorescence development and function, architecture grows as metamers are added, internodes elongate our synthesis is unavoidably incomplete. In particular, we do (or not) and axillary buds create branches (or not). This iter- not consider biomechanics, the flow of water, hormones and ated pattern continues after a shoot apical meristem switches nutrients, or the developmental progression of inflorescences from vegetative mode to become an inflorescence meristem. into infructescences and their role in seed dispersal. In this reproductive mode, apical and lateral meristems may Harder and Prusinkiewicz — Inflorescence development and function Page 3 of 17 switch from producing inflorescence axes (shoot identity) to aspects, such as the lengths of internodes and branching producing flowers (floral identity) (Bennett and Leyser, angles (branching geometry) (see, for example, Reinheimer 2006). As a flower is a specialized, highly condensed repro- et al., 2009; Prusinkiewicz and Runions, 2012). Likewise, ductive branch, each axillary flower is subtended by a leaf, the floral canopy can be viewed topologically or geometrically, which may not develop, be rudimentary (bract) or be indistin- by focusing respectively on the numbers of flowers, perhaps of guishable from the leaves that subtend vegetative buds. An in- different types and/or developmental stages, or on their spatial florescence is thus recognized by the transition along an axis arrangement. From a functional perspective, scaffold structure from the production of vegetative branches to flower produc- provides physical support and a conduit for the flow of water, tion, not by the presence or absence of leaves (see Hempel nutrients and hormones to flowers and fruits (Wyatt, 1982), and Feldman, 1994). whereas canopy structure determines interactions with pollen The form (architecture) of inflorescences can be considered vectors, fruit/seed dispersers, floral herbivores and seed preda- from several intersecting perspectives. Within an inflorescence tors (see below). Thus, both structurally and functionally, the one can distinguish the branching scaffold (Fig. 2J) and the scaffold and
Recommended publications
  • Inflorescences
    Inflorescences - Floral Displays Inflorescences - Floral Displays A shift from widely The vast majority of flowering plants spaced single flowers to an inflorescence required possess flowers in clusters called an condensation of shoots inflorescence. and the loss of the intervening leaves. These clusters facilitate pollination via a prominent visual display and more The simplest efficient pollen uptake and deposition. inflorescence type would thus be indeterminate with the oldest flowers at the base and the younger flowers progressively closer to the apical meristem of the shoot. = a raceme Raceme (Prunus or cherry) One modification of the basic raceme is to make it compound The panicle is essentially compound a series of attached racemes with the oldest racemes at the base and the youngest at the apex of the inflorescence. Panicle (Zigadenus or white camass) Raceme Panicle 1 A second modification of the basic raceme is to lose its pedicels The spike is usually associated with congested reduced flowers and often, but not always, with wind Pedicel loss pollination. wind pollinated Spike (Plantago or plantain) Raceme Spike A third modification of the basic raceme is to lose its internodes The spike is usually associated with congested reduced flowers and often, animal pollinated but not always, with wind Internode loss pollination. Umbel Spike (Combretum - Brent’s plants) Raceme 2 The umbel characterizes specific families (carrot and The umbel is found scattered in many other families ginseng families for example). as well. These families typically show a compound umbel - smaller umbellets on a larger umbel. Umbel Umbel (Cicuta or water hemlock) (Zizia or golden alexander) (Eriogonum or false buckwheat - family Polygonaceae) - Ben’s plants A fourth modification of the basic raceme is for the stem axis to form a head The head or capitulum characterizes specific families - most notably the Compositae or Asteraceae.
    [Show full text]
  • News from the CREW
    Volume 6 • March 200 News from the CREW lthough 2009 has been a Asteraceae family) in full flower. REW, the Custodians of Areally challenging year with These plants are usually rather C Rare and Endangered the global recession having had inconspicuous and are very hard Wildflowers, is a programme a heavy impact on all of us, it to spot when not flowering, so that involves volunteers from we were very lucky to catch it could not break the strong spir- the public in the monitoring it of CREW. Amidst the great in flower. The CREW team has taken a special interest in the and conservation of South challenges we came up tops genus Marasmodes (we even Africa’s threatened plants. once again, with some excep- have a day in April dedicated to CREW aims to capacitate a tionally great discoveries. the monitoring of this genus) network of volunteers from as they all occur in the lowlands a range of socio-economic Our first great adventure for and are severely threatened. I backgrounds to monitor the year took place in the knew from the herbarium speci- and conserve South Afri- Villiersdorp area. We had to mens that there have not been ca’s threatened plant spe- collect flowering material of any collections of Marasmodes Prismatocarpus lycioides, a data cies. The programme links from the Villiersdorp area and volunteers with their local deficient species in the Campan- was therefore very excited conservation agencies and ulaceae family. We rediscovered about this discovery. As usual, this species in the area in 2008 my first reaction was: ‘It’s a particularly with local land and all we had to go on was a new species!’ but I soon so- stewardship initiatives to en- scrappy nonflowering branch.
    [Show full text]
  • Floral Symmetry Affects Speciation Rates in Angiosperms Risa D
    Received 25 July 2003 Accepted 13 November 2003 Published online 16 February 2004 Floral symmetry affects speciation rates in angiosperms Risa D. Sargent Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada ([email protected]) Despite much recent activity in the field of pollination biology, the extent to which animal pollinators drive the formation of new angiosperm species remains unresolved. One problem has been identifying floral adaptations that promote reproductive isolation. The evolution of a bilaterally symmetrical corolla restricts the direction of approach and movement of pollinators on and between flowers. Restricting pollin- ators to approaching a flower from a single direction facilitates specific placement of pollen on the pollin- ator. When coupled with pollinator constancy, precise pollen placement can increase the probability that pollen grains reach a compatible stigma. This has the potential to generate reproductive isolation between species, because mutations that cause changes in the placement of pollen on the pollinator may decrease gene flow between incipient species. I predict that animal-pollinated lineages that possess bilaterally sym- metrical flowers should have higher speciation rates than lineages possessing radially symmetrical flowers. Using sister-group comparisons I demonstrate that bilaterally symmetric lineages tend to be more species rich than their radially symmetrical sister lineages. This study supports an important role for pollinator- mediated speciation and demonstrates that floral morphology plays a key role in angiosperm speciation. Keywords: reproductive isolation; pollination; sister group comparison; zygomorphy 1. INTRODUCTION The importance of pollinator-mediated selection in angiosperms is well supported by theory (Kiester et al.
    [Show full text]
  • Echium Candicans
    DEPARTMENT OF PRIMARY INDUSTRIES Pride of Madeira Echium candicans Victorian Alert Weed Fact Sheet Plant biology Type of weed: Garden escape. Lifeform: Semi-woody biennial herb. Description: Stems: Pride of Madeira is a much-branched plant that grows to more than three metres high (PIER 2004; Webb et al 2004). The stem, fl owers and leaves of the plant are covered with fi ne, bristly, whitish coloured hairs (Spencer 2005). The species initially grows as a rosette at the base with leaves alternately arranged on the stem (Richardson et al 2006). Mature plants have longer stems with whitish papery bark and stout branches, with leaves growing more towards the stem’s apex (Bennett 2003). Image: RG & FJ Richardson - www.weedinfo.com.au Image: RG & FJ Richardson - www.weedinfo.com.au Image: RG & FJ Richardson Leaves: Leaves are usually 200 mm long and 55 mm wide and are an ellipsoid or lance shape. Botanical name: Echium candicans. Leaves have veins which are very prominent on Synonyms: Echium fastuosum. the lower surface and the leaves are densely covered with bristly hairs that appear grey or Common name: Pride of Madeira. silvery (Spencer 2005; Webb et al 2004). Alternatives: Tower of jewels, star of Madeira, bugloss. Family: Boraginaceae. Flowers: E. candicans is a monocarpic shrub, Relevant relatives: There are over 40 species in the Echium meaning it only fl owers once before dying genus and 30 are listed as being weedy by the Global Compendium (Bennett 2003). Each branch can reach up to of Weeds (Randall 2001). Closely related plants to pride of Madeira 3.5 metres tall with the columnar fl ower spike include Echium wildpretii (tower of jewels) and Echium pininana reach lengths of 200-400 mm (Webb et al 2004).
    [Show full text]
  • Alphabetical Lists of the Vascular Plant Families with Their Phylogenetic
    Colligo 2 (1) : 3-10 BOTANIQUE Alphabetical lists of the vascular plant families with their phylogenetic classification numbers Listes alphabétiques des familles de plantes vasculaires avec leurs numéros de classement phylogénétique FRÉDÉRIC DANET* *Mairie de Lyon, Espaces verts, Jardin botanique, Herbier, 69205 Lyon cedex 01, France - [email protected] Citation : Danet F., 2019. Alphabetical lists of the vascular plant families with their phylogenetic classification numbers. Colligo, 2(1) : 3- 10. https://perma.cc/2WFD-A2A7 KEY-WORDS Angiosperms family arrangement Summary: This paper provides, for herbarium cura- Gymnosperms Classification tors, the alphabetical lists of the recognized families Pteridophytes APG system in pteridophytes, gymnosperms and angiosperms Ferns PPG system with their phylogenetic classification numbers. Lycophytes phylogeny Herbarium MOTS-CLÉS Angiospermes rangement des familles Résumé : Cet article produit, pour les conservateurs Gymnospermes Classification d’herbier, les listes alphabétiques des familles recon- Ptéridophytes système APG nues pour les ptéridophytes, les gymnospermes et Fougères système PPG les angiospermes avec leurs numéros de classement Lycophytes phylogénie phylogénétique. Herbier Introduction These alphabetical lists have been established for the systems of A.-L de Jussieu, A.-P. de Can- The organization of herbarium collections con- dolle, Bentham & Hooker, etc. that are still used sists in arranging the specimens logically to in the management of historical herbaria find and reclassify them easily in the appro- whose original classification is voluntarily pre- priate storage units. In the vascular plant col- served. lections, commonly used methods are systema- Recent classification systems based on molecu- tic classification, alphabetical classification, or lar phylogenies have developed, and herbaria combinations of both.
    [Show full text]
  • Organogenesis and Genetic Transformation of Dierama
    ORGANOGENESIS AND GENETIC TRANSFORMATION OF DIERAMA ERECTUM HILLIARD MOTSELISI JANE KOETLE Submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY Research Centre for Plant Growth and Development School of Life Sciences University of KwaZulu-Natal, Pietermaritzburg April, 2016 STUDENT DECLARATION ___________________________________________________________________ Thesis title: Organogenesis and genetic transformation of Dierama erectum Hilliard I, MOTSELISI JANE KOETLE, student number – 208523555, declare that: (i) The research reported in this dissertation, except where otherwise indicated, is the result of my own endeavours in the Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg; (ii) This dissertation has not been submitted for any degrees or examination at any other University; (iii) This thesis does not contain data, figures or writing, unless specifically acknowledged, copied from other researchers; and (iv) Where I have produced a publication of which I am an author or co-author, I have indicated which part of the publication was contributed by me. Signed at ……………………………….. on the ………… day of …………. 2015. _____________________ SIGNATURE ii DECLARATION BY SUPERVISORS ___________________________________________________________________ We hereby declare that we acted as Supervisors for this PhD student: Student’s Full Name: Motselisi Jane Koetle Student Number: 208523555 Thesis Title: Organogenesis and genetic transformation of Dierama erectum
    [Show full text]
  • The Origin of the Bifurcating Style in Asteraceae (Compositae)
    Annals of Botany 117: 1009–1021, 2016 doi:10.1093/aob/mcw033, available online at www.aob.oxfordjournals.org The origin of the bifurcating style in Asteraceae (Compositae) Liliana Katinas1,2,*, Marcelo P. Hernandez 2, Ana M. Arambarri2 and Vicki A. Funk3 1Division Plantas Vasculares, Museo de La Plata, La Plata, Argentina, 2Laboratorio de Morfologıa Comparada de Espermatofitas (LAMCE), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina and 3Department of Botany, NMNH, Smithsonian Institution, Washington D.C., USA *For correspondence. E-mail [email protected] Received: 20 November 2015 Returned for revision: 22 December 2015 Accepted: 8 January 2016 Published electronically: 20 April 2016 Background and Aims The plant family Asteraceae (Compositae) exhibits remarkable morphological variation in the styles of its members. Lack of studies on the styles of the sister families to Asteraceae, Goodeniaceae and Calyceraceae, obscures our understanding of the origin and evolution of this reproductive feature in these groups. The aim of this work was to perform a comparative study of style morphology and to discuss the relevance of im- portant features in the evolution of Asteraceae and its sister families. Methods The histochemistry, venation and general morphology of the styles of members of Goodeniaceae, Calyceraceae and early branching lineages of Asteraceae were analysed and put in a phylogenetic framework to dis- cuss the relevance of style features in the evolution of these families. Key Results The location of lipophilic substances allowed differentiation of receptive from non-receptive style papillae, and the style venation in Goodeniaceae and Calyceraceae proved to be distinctive.
    [Show full text]
  • Diversity of Wisconsin Asterids
    Diversity of Wisconsin Asterids . bellflowers and asters . **Campanulaceae - bellflower family A family mostly of herbs, but some secondarily woody, widely distributed in the temperate regions and in the montane tropics. Contains 65 genera and over 2200 species, with half belonging to Campanula and Lobelia. • Family has alternate leaves and milky latex. • Flowers are 5 merous and inferior ovaried. **Campanulaceae - bellflower family The family is divided into two distinct subfamilies - Campanuloideae and Lobelioideae - distinguished by floral symmetry, staminal fusion, and carpel number. They were often considered as separate families. Campanulastrum - bellflower Lobelia - lobelia Subfamily Campanuloideae Subfamily Lobelioideae **Campanulaceae - bellflower family Subfamily Campanuloideae __ CA (5) CO (5) A 5 G (3-5) Campanula and relatives have actinomorphic flowers, stamens not fused, and 3-5 fused carpels. Note the 3 styles of Campanula to the left. **Campanulaceae - bellflower family Triodanis perfoliata - Venus looking glass Secondary pollen presentation **Campanulaceae - bellflower family Campanulastrum americana - tall bellflower **Campanulaceae - bellflower family Campanula rotundifolia Campanula rapunculoides Bluebell - circumboreal European bellflower **Campanulaceae - bellflower family Subfamily Lobelioideae Lobelia and relatives have __ zygomorphic flowers, stamens fused CA (5) CO (5) A (5) G (2) into a tube in which the pollen is shed, and 2 fused carpels. Style pushes pollen out through the tube. Style Staminal tube **Campanulaceae
    [Show full text]
  • Larkspur Poisoning: Toxicology and Alkaloid Structure–Activity Relationshipsଝ K.E
    Biochemical Systematics and Ecology 30 (2002) 113–128 www.elsevier.com/locate/biochemsyseco Larkspur poisoning: toxicology and alkaloid structure–activity relationshipsଝ K.E. Panter a,*, G.D. Manners b, B.L. Stegelmeier a, S. Lee a, D.R. Gardner a, M.H. Ralphs a, J.A. Pfister a, L.F. James a a USDA-ARS Poisonous Plant Research Laboratory, 1150 E. 1400 N., Logan, UT 84341, USA b USDA-ARS Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA Received 4 January 2001; accepted 1 May 2001 Abstract Systematic approaches to taxonomic classifications of the tall larkspur spp. have been developed using traditional chemical methods to profile alkaloids, comparison of relative tox- icity of individual alkaloids, plant morphology/taxonomy and molecular genetics. Using these methods (papers published in this series) toxicology of three distinct species of tall larkspurs including Delphinium glaucum, Delphinium barbeyi and Delphinium occidentale is described. Tall larkspurs (Delphinium spp.) continue to be the most serious cause of cattle losses on mountain rangelands in the western US. Over 40 norditerpenoid alkaloids have been reported in species of larkspurs and toxicology data on 25 of these have been reported by the authors. These alkaloids can be classified into three general types based on their structural character- istics and toxicity: the N-(methylsuccinyl) anthranoyllycoctonine (MSAL)-type, having high toxicity; the lycoctonine-type, with moderate toxicity; and the 7,8-methylenedioxylycoctonine (MDL)-type, of low toxicity. The structural importance of the methylsuccinimido anthranilic acid ester group at the C18 position is evident in the high toxicity of MSAL alkaloids, parti- cularly methyllycaconitine (MLA), Nudicauline (NUD) and 14-deacetylnudicauline (14-DAN).
    [Show full text]
  • Tucson Cactus and Succulent Society Guide to Common Cactus and Succulents of Tucson
    Tucson Cactus and Succulent Society Guide to Common Cactus and Succulents of Tucson http://www.tucsoncactus.org/c-s_database/index.html Item ID: 1 Item ID: 2 Family: Cactaceae Family: Cactaceae Genus: Ferocactus Genus: Echinocactus Species: wislizenii Species: grusonii Common Name: Fishhook Barrel Common Name: Golden Barrel Habitat: Various soil types from 1,000 Cactus to 6,000 feet elevation from grasslands Habitat: Located on rolling hills to rocky mountainous areas. and cliffs. Range: Arizona, southwestern New Range: Limited to small areas in Mexico, limited extremes of western Queretaro, Mexico. The popula- Texas, Sonora, northwest Chihuahua tion had become very low in num- and northern Sinaloa, Mexico bers over the years but is just Care: An extremely easy plant to grow now beginning to increase due to in and around the Tucson area. It re- protective laws and the fact that Photo Courtesy of Vonn Watkins quires little attention or special care as this plant is now in mass cultiva- ©1999 it is perfectly at home in almost any tion all over the world. garden setting. It is very tolerant of ex- Photo Courtesy of American Desert Care: The Golden Barrel has slow- Description treme heat as well as cold. Cold hardi- Plants ly become one of the most pur- This popular barrel cactus is noted ness tolerance is at around 10 degrees chased plants for home landscape for the beautiful golden yellow farenheit. Description in Tucson. It is an easy plant to spines that thickly surround the Propagation: Propagation of this cac- This plant is most recognized by the grow and takes no special care.
    [Show full text]
  • Reproductive Ecology of Bird-Pollinated Babiana (Iridaceae): Floral Variation, Mating Patterns and Genetic Diversity
    REPRODUCTIVE ECOLOGY OF BIRD-POLLINATED BABIANA (IRIDACEAE): FLORAL VARIATION, MATING PATTERNS AND GENETIC DIVERSITY by Caroli de Waal A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Ecology and Evolutionary Biology University of Toronto © Copyright by Caroli de Waal 2010 REPRODUCTIVE ECOLOGY OF BIRD-POLLINATED BABIANA (IRIDACEAE): FLORAL VARIATION, MATING PATTERNS AND GENETIC DIVERSITY Caroli de Waal Master of Science Department of Ecology and Evolutionary Biology University of Toronto 2010 Abstract Flowering plants possess striking variation in reproductive traits and mating patterns, even among closely related species. In this thesis, I investigate morphological variation, mating and genetic diversity of five taxa of bird-pollinated Babiana (Iridaceae), including two species with specialized bird perches. Field observations in 12 populations demonstrated that sunbirds were the primary pollinators. Babiana ringens exhibited correlated geographic variation in flower and perch size. Controlled field pollinations revealed self-compatibility and low pollen limitation in B. ringens subspecies, and self-incompatibility and chronic pollen limitation in B. hirsuta. Allozyme markers demonstrated moderate to high selfing rates among populations and considerable variation in levels of genetic diversity. In B. ringens there was a positive relation between the geographic and genetic distance of populations. The results of a manipulative field experiment indicated position-dependent herbivory on inflorescences of B. hirsuta and this could play a role in the evolution of specialized bird perches in Babiana. ii Acknowledgments First, I would like to thank my supervisor Spencer Barrett for his wealth of knowledge, his contagious enthusiasm about the natural world, and for pushing me further than I thought I could go.
    [Show full text]
  • The Campanulaceae of Ohio1
    CORE Metadata, citation and similar papers at core.ac.uk Provided by KnowledgeBank at OSU 142 WIENS ET AL. Vol. 62 THE CAMPANULACEAE OF OHIO1 ROBERT W. CRUDEN2 Department of Botany and Plant Pathology, Ohio State University, Columbus 10 In Ohio the family Campanulaceae is represented by three genera: Campanula, Lobelia, and Specularia; and eleven species, of which five are common throughout the state and two are quite limited in their distribution. Following the key to species each species is briefly described, and distribution, common names, chromosome numbers, if known, and other pertinent data are given. Chromosome numbers are those given in Darlington and Wylie (1956) and in the papers of Bowden (1959a, 1959b). Average time of flowering is indi- ^ontribution Nc. 666 of the Department of Botany and Plant Pathology, The Ohio State University. Research completed while a National Science Foundation Co-operative Fellow. 2Present address: Department of Botany, University of California, Berkeley 4, California. THE OHIO JOURNAL OF SCIENCE 62(3): 142, May, 1962. No. 3 CAMPANULACEAE OF OHIO 143 cated as well as the extreme flowering dates as determined from a study of her- barium material. The genera and species are arranged alphabetically. Distri- bution maps are included. A dot represents a collection of a particular species in a given county. No attempt has been made to indicate the general area of collection within the county, as a majority of herbarium specimens do not have this information. It should also be pointed out that many of the collections examined are forty or more years old and thus the distribution maps do not neces- sarily indicate present distribution.
    [Show full text]