Reveal Troubleshooting Guide

Total Page:16

File Type:pdf, Size:1020Kb

Reveal Troubleshooting Guide Reveal Troubleshooting Guide Lattice Semiconductor Corporation 5555 NE Moore Court Hillsboro, OR 97124 (503) 268-8000 April 2008 Copyright Copyright © 2008 Lattice Semiconductor Corporation. This document may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine- readable form without prior written consent from Lattice Semiconductor Corporation. Trademarks Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice (design), LSC, E2CMOS, Extreme Performance, FlashBAK, flexiFlash, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, IPexpress, ISP, ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDXV, ispGDX2, ispGENERATOR, ispJTAG, ispLEVER, ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP, ispXPGA, ispXPLD, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP, LatticeXP2, MACH, MachXO, MACO, ORCA, PAC, PAC-Designer, PAL, Performance Analyst, PURESPEED, Reveal, Silicon Forest, Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The Simple Machine for Complex Design, TransFR, UltraMOS, and specific product designations are either registered trademarks or trademarks of Lattice Semiconductor Corporation or its subsidiaries in the United States and/or other countries. ISP, Bringing the Best Together, and More of the Best are service marks of Lattice Semiconductor Corporation. HyperTransport is a licensed trademark of the HyperTransport Technology Consortium in the U.S. and other jurisdictions. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. Disclaimers NO WARRANTIES: THE INFORMATION PROVIDED IN THIS DOCUMENT IS “AS IS” WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF ACCURACY, COMPLETENESS, MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL LATTICE SEMICONDUCTOR CORPORATION (LSC) OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (WHETHER DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR INABILITY TO USE THE INFORMATION PROVIDED IN THIS DOCUMENT, EVEN IF LSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF CERTAIN LIABILITY, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. LSC may make changes to these materials, specifications, or information, or to the products described herein, at any time without notice. LSC makes no commitment to update this documentation. LSC reserves the right to discontinue any product or service without notice and assumes no obligation Reveal Troubleshooting Guide ii to correct any errors contained herein or to advise any user of this document of any correction if such be made. LSC recommends its customers obtain the latest version of the relevant information to establish, before ordering, that the information being relied upon is current. Type Conventions Used in This Document Convention Meaning or Use Bold Items in the user interface that you select or click. Text that you type into the user interface. <Italic> Variables in commands, code syntax, and path names. Ctrl+L Press the two keys at the same time. Courier Code examples. Messages, reports, and prompts from the software. ... Omitted material in a line of code. Omitted lines in code and report examples. [ ] Optional items in syntax descriptions. In bus specifications, the brackets are required. ( ) Grouped items in syntax descriptions. { } Repeatable items in syntax descriptions. | A choice between items in syntax descriptions. Reveal Troubleshooting Guide iii Reveal Troubleshooting Guide iv Contents Reveal Troubleshooting Guide 1 HDL Language Restrictions 1 EDIF Support 2 Reveal Inserter and Project Navigator Errors 3 Design Parsing Problems in Reveal Inserter 3 Project Navigator Flow Messages 3 Signals Unavailable for Tracing and Triggering 4 JTAG Restrictions 6 Interface with LatticeMico32 7 Sample Clock 7 Unexpected Reveal Logic Analyzer Results 7 Performance 7 Creating a Reveal Logic Analyzer Project 9 REveal Troubleshooting Guide v Contents REveal Troubleshooting Guide vi Reveal Troubleshooting Guide This document describes the design restrictions for using on-chip debug. HDL Language Restrictions The following features are valid in the VHDL and Verilog languages but are not supported in Reveal Inserter when you use the RTL flow: Array types of two dimensions or more are not shown in the port or node section. Undeclared wires attached to instantiated component instances are not shown in the hierarchical design tree. You must declare these wires explicitly if you want to trace or trigger with them. Variables used in generate statements are not available for tracing and triggering. Variables used in conditional statements like if-then-else statements are not available for tracing and triggering. Variables used in selection statements like the case statement are not available for tracing and triggering. If function calls are used in the array declaration, the actual size of the array is unknown to Reveal Inserter. Entity and architecture of the same design cannot be in different files. In Verilog, you must explicitly declare variables at the very beginning of a module body to avoid obtaining different results from various synthesis tools. In VHDL, you must declare synthesis attributes within an entity, not within an architecture, to avoid obtaining different results from various synthesis tools. Reveal Troubleshooting Guide 1 Reveal Troubleshooting Guide EDIF Support In VHDL, always define the syn_keep and preserve_signal attributes as Boolean types when you declare them in your design. Synplify defines them as Boolean types, and Reveal Inserter will issue an error message if you define them as strings. EDIF Support The EDIF flow is fully supported in Reveal. However, you must be aware of the following: Reveal Inserter must be started from a Project Navigator project. In order to use the EDIF flow with Reveal Inserter, you must start Reveal Inserter from a Project Navigator EDIF project. You cannot start the EDIF flow from a Project Navigator project that is schematic, VHDL/schematic, VHDL, Verilog/schematic, or Verilog. In the EDIF flow, the representation in Reveal Inserter is of the EDIF hierarchy and signal names. Buses appear as individual signals instead of buses, as in the RTL flow. Reveal Troubleshooting Guide 2 Reveal Troubleshooting Guide Reveal Inserter and Project Navigator Errors Reveal Inserter and Project Navigator Errors This section discusses errors that can occur when you run Reveal Inserter from the Project Navigator. Design Parsing Problems in Reveal Inserter When you start Reveal Inserter from the Project Navigator, it parses and statically elaborates the design in order to build the hierarchy representation and signal list to make them available for debugging. If the design cannot be parsed and elaborated because of syntax errors, Reveal Inserter’s graphical user interface will not open. Instead, a message box opens with an error message similar to that shown in Figure 1 and the location of the reveal_error.log file. This file contains all the information, warning, and error messages issued by the compiler when it tries to read the design. Figure 1: Reveal Inserter Design Parsing Error Message Project Navigator Flow Messages After Reveal Inserter inserts the debug logic, it generates the debug logic cores and passes the information to the Project Navigator for building the design. Several issues could potentially cause the implementation flow to fail because of the debug insertion. Three types of problems could occur: Problems with debug design generation Problems with connecting JTAG functionality Problems with design implementation Reveal Troubleshooting Guide 3 Reveal Troubleshooting Guide Signals Unavailable for Tracing and Triggering Debug Design Messages The debug cores are generated in Reveal Inserter. However, the design must also be modified to allow the debug cores to be connected to the appropriate signals. The modified design is generated during the Build Database step in the Project Navigator. The design is modified with the necessary connections for the debug cores, a temporary HDL file is generated, and the files are synthesized and converted to the Lattice Semiconductor netlist format. Errors generated during this stage are displayed in the automake.log file. JTAG Messages A second step occurs during the Build Database process when Reveal Inserter connects the debug cores to the JTAG functionality on the FPGA. During this step, a module called JTAGhub is generated, and any Reveal debug cores are connected to it. If other modules that use JTAG, such as ispTRACY or ORCAstra, have already been connected to the JTAG functionality, an error results. In the ispLEVER 7.1 release, you cannot use Reveal on a design if these other modules are used. To use Reveal, you would have to remove any of these other modules from the design. In addition, some design elements may have some of these modules embedded in them, causing the design to be unusable with Reveal. One example
Recommended publications
  • Latticemico8 Soft Core 8-Bit Microcontroller Optimized for Lattice Programmable Devices
    O P E N S O U R C E S O F T C O R E M I C R O C ont R O LL E R LatticeMico8 Soft Core 8-Bit Microcontroller Optimized for Lattice Programmable Devices The LatticeMico8™ is an 8-bit “soft” microcontroller core for the LatticeECP™, LatticeEC™ and LatticeXP™ families of Field Programmable Gate Arrays (FPGAs), as well as the MachXO™ family of Crossover Programmable Logic Devices. Combining a full 18-bit wide instruction set with 32 general purpose registers, the LatticeMico8 is a flexible reference design suitable for a wide variety of markets, including com- munications, consumer, computer, medical, industrial, and automotive. The core consumes minimal device resources, less than 200 Look Up Tables (LUTs) in the smallest configu- ration, while maintaining a broad feature set. In order to encourage user experimentation, development and contributions, Lattice is providing a new open intellec- tual property (IP) core license, the first such license offered Key Features and Benefits by any FPGA supplier. The license applies many of the concepts of the successful open source movement to IP cores Optimized for LatticeECP, LatticeEC, LatticeXP, and MachXO Families targeted for programmable logic applications. Efficient Architecture – Utilizes <200 LUTs Broad Feature Set LatticeMico8 Block Diagram • 8-bit data path • 18-bit wide instructions • 32 general purpose registers 16 Deep Call Stack • 32 bytes of internal scratch pad memory Program Interrupt Ack • Input/Output is performed using ports (up to 256 port Address Program Flow Control & PC
    [Show full text]
  • FPGA Design Guide
    FPGA Design Guide Lattice Semiconductor Corporation 5555 NE Moore Court Hillsboro, OR 97124 (503) 268-8000 September 16, 2008 Copyright Copyright © 2008 Lattice Semiconductor Corporation. This document may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine- readable form without prior written consent from Lattice Semiconductor Corporation. Trademarks Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice (design), LSC, E2CMOS, Extreme Performance, FlashBAK, flexiFlash, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, IPexpress, ISP, ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDXV, ispGDX2, ispGENERATOR, ispJTAG, ispLEVER, ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP, ispXPGA, ispXPLD, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP, LatticeXP2, MACH, MachXO, MACO, ORCA, PAC, PAC-Designer, PAL, Performance Analyst, PURESPEED, Reveal, Silicon Forest, Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The Simple Machine for Complex Design, TransFR, UltraMOS, and specific product designations are either registered trademarks or trademarks of Lattice Semiconductor Corporation or its subsidiaries in the United States and/or other countries. ISP, Bringing the Best Together, and More
    [Show full text]
  • Machxo Control Development Kit User's Guide
    MachXO Control Development Kit User’s Guide October 2009 Revision: EB46_01.2 Lattice Semiconductor MachXO Control Development Kit User’s Guide Introduction Thank you for choosing the Lattice Semiconductor MachXO™ Control Development Kit! This guide describes how to start using the MachXO Control Development Kit, an easy-to-use platform for rapidly prototyping system control designs using MachXO PLDs. Along with the evaluation board and accessories, this kit includes a pre-loaded control system-on-chip (Control SoC) design that demonstrates board diagnostic functions including fan speed control based on temperature monitoring, LCD control, complete power supply monitoring and reset distribution in conjunction with the Power Manager II ispPAC®-POWR1014A and 8-bit LatticeMico8™ micro- controller. Note: Static electricity can severely shorten the lifespan of electronic components. See the MachXO Control Devel- opment Kit QuickSTART Guide for handling and storage tips. Features The MachXO Control Development Kit includes: • MachXO Control Evaluation Board – The MachXO Control Evaluation Board features the following on-board components and circuits: – MachXO LCMXO2280C-4FT256C PLD (www.latticesemi.com/products/cpldspld/machxo) – Power Manager II ispPAC-POWR1014A mixed-signal PLD (www.latticesemi.com/products/powermanager) – 2 Mbit SPI Flash memory – 1 Mbit SRAM • Interface to 16 x 2 LCD Panel* – Secure Digital (SD) and CompactFlash memory card sockets* –I2C temperature sensor – Current and voltage sensor circuits – Voltage ramp circuits –
    [Show full text]
  • High-Speed Soft-Processor Architecture for FPGA Overlays
    High-Speed Soft-Processor Architecture for FPGA Overlays by Charles Eric LaForest A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto c Copyright 2015 by Charles Eric LaForest Abstract High-Speed Soft-Processor Architecture for FPGA Overlays Charles Eric LaForest Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto 2015 Field-Programmable Gate Arrays (FPGAs) provide an easier path than Application- Specific Integrated Circuits (ASICs) for implementing computing systems, and generally yield higher performance and lower power than optimized software running on high- end CPUs. However, designing hardware with FPGAs remains a difficult and time- consuming process, requiring specialized skills and hours-long CAD processing times. An easier design process abstracts away the FPGA via an \overlay architecture", which implements a computing platform upon which we construct the desired system. Soft- processors represent the base case of overlays, allowing easy software-driven design, but at a large cost in performance and area. This thesis addresses the performance limitations of FPGA soft-processors, as building blocks for overlay architectures. We first aim to maximize the usage of FPGA structures by designing Octavo, a strict round-robin multi-threaded soft-processor architecture tailored to the underlying FPGA and capable of operating at maximal speed. We then scale Octavo to SIMD and MIMD parallelism by replicating its datapath and connecting Octavo cores in a point-to-point mesh. This scaling creates multi-local logic, which we preserve via logical partitioning to avoid artificial critial paths introduced by unnecessary CAD optimizations.
    [Show full text]
  • Small Soft Core up Inventory ©2019 James Brakefield Opencore and Other Soft Core Processors Reverse-U16 A.T
    tool pip _uP_all_soft opencores or style / data inst repor com LUTs blk F tool MIPS clks/ KIPS ven src #src fltg max max byte adr # start last secondary web status author FPGA top file chai e note worthy comments doc SOC date LUT? # inst # folder prmary link clone size size ter ents ALUT mults ram max ver /inst inst /LUT dor code files pt Hav'd dat inst adrs mod reg year revis link n len Small soft core uP Inventory ©2019 James Brakefield Opencore and other soft core processors reverse-u16 https://github.com/programmerby/ReVerSE-U16stable A.T. Z80 8 8 cylcone-4 James Brakefield11224 4 60 ## 14.7 0.33 4.0 X Y vhdl 29 zxpoly Y yes N N 64K 64K Y 2015 SOC project using T80, HDMI generatorretro Z80 based on T80 by Daniel Wallner copyblaze https://opencores.org/project,copyblazestable Abdallah ElIbrahimi picoBlaze 8 18 kintex-7-3 James Brakefieldmissing block622 ROM6 217 ## 14.7 0.33 2.0 57.5 IX vhdl 16 cp_copyblazeY asm N 256 2K Y 2011 2016 wishbone extras sap https://opencores.org/project,sapstable Ahmed Shahein accum 8 8 kintex-7-3 James Brakefieldno LUT RAM48 or block6 RAM 200 ## 14.7 0.10 4.0 104.2 X vhdl 15 mp_struct N 16 16 Y 5 2012 2017 https://shirishkoirala.blogspot.com/2017/01/sap-1simple-as-possible-1-computer.htmlSimple as Possible Computer from Malvinohttps://www.youtube.com/watch?v=prpyEFxZCMw & Brown "Digital computer electronics" blue https://opencores.org/project,bluestable Al Williams accum 16 16 spartan-3-5 James Brakefieldremoved clock1025 constraint4 63 ## 14.7 0.67 1.0 41.1 X verilog 16 topbox web N 4K 4K N 16 2 2009
    [Show full text]
  • Lattice Diamond User Guide
    Lattice Diamond User Guide August 2013 Copyright Copyright © 2013 Lattice Semiconductor Corporation. This document may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior written consent from Lattice Semiconductor Corporation. Trademarks Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice (design), LSC, CleanClock, Custom Movile Device, DiePlus, E2CMOS, Extreme Performance, FlashBAK, FlexiClock, flexiFLASH, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, iCE Dice, iCE40, iCE65, iCEblink, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog, iCEsab, iCEsocket, IPexpress, ISP, ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG, ispLEVER, ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP, ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeECP3, LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP, LatticeXP2, MACH, MachXO, MachXO2, MACO, mobileFPGA, ORCA, PAC, PAC-Designer, PAL, Performance Analyst, Platform Manager, ProcessorPM, PURESPEED, Reveal, SensorExtender, SiliconBlue, Silicon Forest, Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The Simple Machine for Complex Design, TraceID, TransFR,
    [Show full text]
  • Latticemico32 Hardware Developer User Guide
    LatticeMico32 Hardware Developer User Guide May 2014 Copyright Copyright © 2014 Lattice Semiconductor Corporation. This document may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior written consent from Lattice Semiconductor Corporation. Trademarks Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice (design), LSC, CleanClock, Custom Mobile Device, DiePlus, E2CMOS, ECP5, Extreme Performance, FlashBAK, FlexiClock, flexiFLASH, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, iCE Dice, iCE40, iCE65, iCEblink, iCEcable, iCEchip, iCEcube, iCEcube2, iCEman, iCEprog, iCEsab, iCEsocket, IPexpress, ISP, ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDX2, ispGDXV, ispGENERATOR, ispJTAG, ispLEVER, ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP, ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeECP3, LatticeECP4, LatticeMico, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP, LatticeXP2, MACH, MachXO, MachXO2, MachXO3, MACO, mobileFPGA, ORCA, PAC, PAC-Designer, PAL, Performance Analyst, Platform Manager, ProcessorPM, PURESPEED, Reveal, SensorExtender, SiliconBlue, Silicon Forest, Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The Simple Machine for Complex
    [Show full text]
  • Product Selector Guide August 2012
    PRODUCT SELECTOR GUIDE AUGUST 2012 FPGA • CPLD • MIXED SIGNAL • INTELLECTUAL PROPERTY • DEVELOPMENT KITS • DESIGN TOOLS CONTENTS ■ Advanced Packaging ............................................................4 ■ FPGA Products ......................................................................6 ■ CPLD Products ......................................................................8 ■ Mixed Signal Products ..........................................................8 ■ Intellectual Property and Reference Designs ...................10 ■ Development Kits and Evaluation Boards ........................14 ■ Programming Hardware......................................................18 ■ FPGA and CPLD Design Software .....................................19 ® ■ PAC-Designer Design Software ........................................19 Page 2 Affordable Innovation Lattice Semiconductor is committed to delivering value through innovative low cost, low power solutions. We’re innovating every day to drive down costs and deliver greater value. From cost sensitive consumer electronics to leading edge communications equipment, designers are using Lattice products in a growing number of applications. We’ve shipped over a billion devices to customers worldwide and we understand that we must deliver cost effective solutions and excellent service in order to succeed. FPGA, PLD and Mixed Signal Products Lattice FPGA (Field Programmable Gate Array) solutions offer unique features, low power, and excellent value for FPGA designs. We are also the leading supplier
    [Show full text]
  • Latticemico8 Development Tools User Guide
    LatticeMico8 Development Tools User Guide Copyright Copyright © 2010 Lattice Semiconductor Corporation. This document may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine- readable form without prior written consent from Lattice Semiconductor Corporation. Lattice Semiconductor Corporation 5555 NE Moore Court Hillsboro, OR 97124 (503) 268-8000 October 2010 Trademarks Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice (design), LSC, CleanClock, E2CMOS, Extreme Performance, FlashBAK, FlexiClock, flexiFlash, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, IPexpress, ISP, ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDXV, ispGDX2, ispGENERATOR, ispJTAG, ispLEVER, ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP, ispXPGA, ispXPLD, Lattice Diamond, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeECP3, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP, LatticeXP2, MACH, MachXO, MachXO2, MACO, ORCA, PAC, PAC-Designer, PAL, Performance Analyst, Platform Manager, ProcessorPM, PURESPEED, Reveal, Silicon Forest, Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The Simple Machine for Complex Design, TransFR, UltraMOS, and specific product designations are either registered trademarks or trademarks of Lattice Semiconductor Corporation
    [Show full text]
  • Introduction to Embedded System Design Using Field Programmable Gate Arrays Rahul Dubey
    Introduction to Embedded System Design Using Field Programmable Gate Arrays Rahul Dubey Introduction to Embedded System Design Using Field Programmable Gate Arrays 123 Rahul Dubey, PhD Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT) Gandhinagar 382007 Gujarat India ISBN 978-1-84882-015-9 e-ISBN 978-1-84882-016-6 DOI 10.1007/978-1-84882-016-6 A catalogue record for this book is available from the British Library Library of Congress Control Number: 2008939445 © 2009 Springer-Verlag London Limited ChipScope™, MicroBlaze™, PicoBlaze™, ISE™, Spartan™ and the Xilinx logo, are trademarks or registered trademarks of Xilinx, Inc., 2100 Logic Drive, San Jose, CA 95124-3400, USA. http://www.xilinx.com Cyclone®, Nios®, Quartus® and SignalTap® are registered trademarks of Altera Corporation, 101 Innovation Drive, San Jose, CA 95134, USA. http://www.altera.com Modbus® is a registered trademark of Schneider Electric SA, 43-45, boulevard Franklin-Roosevelt, 92505 Rueil-Malmaison Cedex, France. http://www.schneider-electric.com Fusion® is a registered trademark of Actel Corporation, 2061 Stierlin Ct., Mountain View, CA 94043, USA. http://www.actel.com Excel® is a registered trademark of Microsoft Corporation, One Microsoft Way, Redmond, WA 98052- 6399, USA. http://www.microsoft.com MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, USA. http://www.mathworks.com Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency.
    [Show full text]
  • Latticemico8 Developer User Guide
    LatticeMico8 Developer User Guide Lattice Semiconductor Corporation 5555 NE Moore Court Hillsboro, OR 97124 (503) 268-8000 March 2011 Copyright Copyright © 2011 Lattice Semiconductor Corporation. This document may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine- readable form without prior written consent from Lattice Semiconductor Corporation. Trademarks Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice (design), LSC, CleanClock, E2CMOS, Extreme Performance, FlashBAK, FlexiClock, flexiFlash, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, IPexpress, ISP, ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDXV, ispGDX2, ispGENERATOR, ispJTAG, ispLEVER, ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP, ispXPGA, ispXPLD, Lattice Diamond, LatticeCORE, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeECP3, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP, LatticeXP2, MACH, MachXO, MachXO2, MACO, ORCA, PAC, PAC-Designer, PAL, Performance Analyst, Platform Manager, ProcessorPM, PURESPEED, Reveal, Silicon Forest, Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The Simple Machine for Complex Design, TraceID, TransFR, UltraMOS, and specific product designations are either registered trademarks or trademarks of Lattice Semiconductor
    [Show full text]
  • Contributions to the Fault Tolerance of Soft-Core Processors Implemented in SRAM-Based FPGA Systems
    eman ta zabal zazu Universidad Euskal Herriko del País Vasco Unibertsitatea Bilboko Ingeniaritza Eskola Teknologia Elektronikoa Saila DOCTORAL THESIS. Contributions to the Fault Tolerance of Soft-Core Processors Implemented in SRAM-based FPGA Systems Author: Julen Gomez-Cornejo Barrena Supervisor: Dr. Aitzol Zuloaga Bilbao, June 2018 (cc)2018 JULEN GOMEZ-CORNEJO BARRENA (cc by 4.0) ii Eskerrak - Thanks Lan hau aurrera atera ahal izan dut inguruan izan dudan jendearen laguntza eta babesari esker. Lehenik, nire zuzendaria izan den Aitzol Zuloaga eskertu nahiko nuke. Era berean, lan honetan eragin zuzena izan duten Uli Kretzschmar eta Igor Villalta lankideei esker berezia luzatu nahi nieke. Bestalde, Iraide L´opez eskertu nahi dut dokumentuaren portadaren diseinuarekin laguntzeagatik. Ezin ahaztu APERT taldeko parte diren edo izan diren gainontzeko lankide eta lagunak, esker bereziak: I˜nigo Kortabarria, I˜nigo Mart´ınez de Alegr´ıa, Jon An- dreu, Carlos Cuadrado, Jos´eLuis Mart´ın, Armando Astarloa, J´esus L´azaro, Jai- me Jim´enez, Unai Bidarte, Edorta Ibarra, Naiara Moreira, V´ıctor L´opez, Angel´ P´erez, Asier Matallana, Itxaso Aranzabal, Oier O˜nederra, Estafania Planas, Mar- kel Fern´andez, David Cabezuelo, Iker Aretxabaleta eta Endika Robles. Baita ere, Javier Del Ser, Roberto Fern´andez eta Leire Lopez-i eskeinitako laguntza bihotzez eskertu nahi nieke. I also would like to thank all the kind people from the Computer Architecture and Embedded Systems research group for making me feel like home during the stay at TU Ilmenau, especially to Bernd D¨ane. Ezin ahaztu, nire ondoan egon diren eta jasan nauten familia, lagunak eta Ufa. Eta bereziki eskerrak zuri ama, eredu zarelako.
    [Show full text]