A Practical Hardware Implementation of Systemic Computation

Total Page:16

File Type:pdf, Size:1020Kb

A Practical Hardware Implementation of Systemic Computation UNIVERSITY COLLEGE LONDON A Practical Hardware Implementation of Systemic Computation by Christos Sakellariou A thesis submitted in partial fulfilment for the degree of Doctor of Engineering in the Faculty of Engineering Department of Computer Science December 2013 2 Declaration of Authorship I, Christos Sakellariou, declare that this thesis A Practical Hardware Implementation of Systemic Computation and the work presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a research degree at University College London. Where any part of this thesis has previously been submitted for a degree or any other qualification at University College London or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly attributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Date: 3 Abstract Faculty of Engineering, Department of Computer Science UNIVERSITY COLLEGE LONDON Doctor of Engineering by Christos Sakellariou It is widely accepted that natural computation, such as brain computation, is far superior to typical computational approaches addressing tasks such as learning and parallel processing. As conventional silicon-based technologies are about to reach their physical limits, researchers have drawn inspiration from nature to found new computational paradigms. Such a newly-conceived paradigm is Systemic Computation (SC). SC is a bio-inspired model of computation. It incorporates natural characteristics and defines a massively parallel non-von Neumann computer architecture that can model natural systems efficiently. This thesis investigates the viability and utility of a Systemic Computation hardware implementation, since prior software-based approaches have proved inadequate in terms of performance and flexibility. This is achieved by addressing three main research challenges regarding the level of support for the natural properties of SC, the design of its implied architecture and methods to make the implementation practical and efficient. Various hardware-based approaches to Natural Computation are reviewed and their compatibility and suitability, with respect to the SC paradigm, is investigated. FPGAs are identified as the most appropriate implementation platform through critical evaluation and the first prototype Hardware Architecture of Systemic computation (HAoS) is presented. HAoS is a novel custom digital design, which takes advantage of the inbuilt parallelism of an FPGA and the highly efficient matching capability of a Ternary Content Addressable Memory. It provides basic processing capabilities in order to minimize time-demanding data transfers, while the optional use of a CPU provides high-level processing support. It is optimized and extended to a practical hardware platform accompanied by a software framework to provide an efficient SC programming solution. The suggested platform is evaluated using three bio-inspired models and analysis shows that it satisfies the research challenges and provides an effective solution in terms of efficiency versus flexibility trade-off. 4 Acknowledgements I sincerely believe I could not have been luckier when I first emailed Peter Bentley about five years ago on the prospect of working under his supervision towards a doctoral degree. I am extremely thankful to him for his tremendous level of support during these five years. I hugely appreciate all his help along this journey and clearly acknowledge that this thesis would not have been possible without his guidance and encouragement. I enjoyed the fact the he is a person that I could talk to freely and count on being listened every single time. I am grateful to consider him as a friend from whom I learned a lot. I also wish to thank the other researchers of my research group. Special thanks go to Erwan Le Martelot for sharing with me early drafts of his thesis when I started my studies. Further thanks go to Hooman Shayani, Arturo Araujo and Marjan Rouhipour for sharing parts of their work on Systemic Computation that greatly helped me move forward. I would also like to thank other colleagues at UCL: my second supervisor Prof. Steve Hailes and Prof. Izzat Darwazeh for their guidance during the reviews of my progress reports. I also would like to express my thanks to my industrial sponsor Toumaz Technology and especially to my industrial supervisor Alison Burdett for her invaluable support on the initial application towards my doctorate degree and the financial support along its duration. I further wish to acknowledge the EPSRC, the EngD VEIV doctoral centre and the department of Computer Science in UCL for their financial support and for hosting me along my studies. I would like to thank all my friends that supported me during happy and rough times during these last five years (thank you so much guys for endless coffees and nights in and out!!): my good friends from Greece Psilos, Spirakos, Thomas and Giannakis, my good Toumaz friend Andrikos, my Physics friends Thiseas and Thanos, my soton friend Giannis, my UCL friends Melinos, Dimitris, Theo, Tim and Alexis, my weekend ciccilones friends Pippo, Adrian, Vero and Andreea, my Reading friends Stamo and Dia, my neighbours Bogo and Stella, my childhood friends Sakis, Nantia, Zetta, Stelios and Panagiotakis, my Imperial friend Dimos, all my dear cousins and so many more that need to be here and aren't due to my long-lasting sleep deprivation.. :) Of course I want to thank my family for their continuous support before, along and beyond my studies. Special thanks to my parents, Aspasia and Thomas, and my little sister Kleiw for their unconditional love. Further thanks to all my extended family (grandparents, uncles, aunts and cousins) for helping me become who I am. Last but not least, I'd like to express my gratitude to my loving partner Marilia for always being there for me along these years, following and supporting me on every step of the way. 5 Table of Contents Abstract ......................................................................................................................... 3 Acknowledgements ...................................................................................................... 4 List of Figures ............................................................................................................. 10 List of Tables .............................................................................................................. 14 List of Listings ............................................................................................................ 16 List of Algorithms ....................................................................................................... 16 Chapter 1 Introduction ........................................................................................... 17 1.1 Introduction to Natural Computation ............................................................. 17 1.2 Introduction to Systemic Computation .......................................................... 20 1.3 Systemic Computation in Practice ................................................................. 21 1.4 Hypothesis .................................................................................................... 23 1.5 Objectives ..................................................................................................... 25 1.6 Publications .................................................................................................. 26 1.7 Thesis Organization ...................................................................................... 27 Chapter 2 Background ........................................................................................... 29 2.1 Approaches to Natural Computation .............................................................. 30 2.1.1 Software Approaches ............................................................................. 31 2.1.2 Alternative Paradigms ........................................................................... 32 2.2 Hardware-based Approaches to Natural Computation .................................... 33 2.2.1 Conventional Hardware Approaches ...................................................... 33 2.2.2 Unconventional Hardware Approaches .................................................. 38 2.2.3 Other silicon-based designs ................................................................... 55 2.2.4 Hardware Approaches Summary ............................................................ 62 6 2.3 Systemic Computation .................................................................................. 63 2.4 Prior Systemic Computation Implementations ............................................... 68 2.4.1 Original SC Implementation .................................................................. 68 2.4.2 High-level SC Implementation ............................................................... 70 2.4.3 GPU SC Implementation ....................................................................... 71 2.5 Summary ...................................................................................................... 72 Chapter 3 Designing a Suitable
Recommended publications
  • A Superscalar Out-Of-Order X86 Soft Processor for FPGA
    A Superscalar Out-of-Order x86 Soft Processor for FPGA Henry Wong University of Toronto, Intel [email protected] June 5, 2019 Stanford University EE380 1 Hi! ● CPU architect, Intel Hillsboro ● Ph.D., University of Toronto ● Today: x86 OoO processor for FPGA (Ph.D. work) – Motivation – High-level design and results – Microarchitecture details and some circuits 2 FPGA: Field-Programmable Gate Array ● Is a digital circuit (logic gates and wires) ● Is field-programmable (at power-on, not in the fab) ● Pre-fab everything you’ll ever need – 20x area, 20x delay cost – Circuit building blocks are somewhat bigger than logic gates 6-LUT6-LUT 6-LUT6-LUT 3 6-LUT 6-LUT FPGA: Field-Programmable Gate Array ● Is a digital circuit (logic gates and wires) ● Is field-programmable (at power-on, not in the fab) ● Pre-fab everything you’ll ever need – 20x area, 20x delay cost – Circuit building blocks are somewhat bigger than logic gates 6-LUT 6-LUT 6-LUT 6-LUT 4 6-LUT 6-LUT FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel code and hardware accelerators need effort – Less effort if soft processors got faster 5 FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel code and hardware accelerators need effort – Less effort if soft processors got faster 6 FPGA Soft Processors ● FPGA systems often have software components – Often running on a soft processor ● Need more performance? – Parallel
    [Show full text]
  • Implementation, Verification and Validation of an Openrisc-1200
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 1, 2019 Implementation, Verification and Validation of an OpenRISC-1200 Soft-core Processor on FPGA Abdul Rafay Khatri Department of Electronic Engineering, QUEST, NawabShah, Pakistan Abstract—An embedded system is a dedicated computer system in which hardware and software are combined to per- form some specific tasks. Recent advancements in the Field Programmable Gate Array (FPGA) technology make it possible to implement the complete embedded system on a single FPGA chip. The fundamental component of an embedded system is a microprocessor. Soft-core processors are written in hardware description languages and functionally equivalent to an ordinary microprocessor. These soft-core processors are synthesized and implemented on the FPGA devices. In this paper, the OpenRISC 1200 processor is used, which is a 32-bit soft-core processor and Fig. 1. General block diagram of embedded systems. written in the Verilog HDL. Xilinx ISE tools perform synthesis, design implementation and configure/program the FPGA. For verification and debugging purpose, a software toolchain from (RISC) processor. This processor consists of all necessary GNU is configured and installed. The software is written in C components which are available in any other microproces- and Assembly languages. The communication between the host computer and FPGA board is carried out through the serial RS- sor. These components are connected through a bus called 232 port. Wishbone bus. In this work, the OR1200 processor is used to implement the system on a chip technology on a Virtex-5 Keywords—FPGA Design; HDLs; Hw-Sw Co-design; Open- FPGA board from Xilinx.
    [Show full text]
  • Softcores for FPGA: the Free and Open Source Alternatives
    Softcores for FPGA: The Free and Open Source Alternatives Jeremy Bennett and Simon Cook, Embecosm Abstract Open source soft cores have reached a degree of maturity. You can find them in products as diverse as a Samsung set-top box, NXP's ZigBee chips and NASA's TechEdSat. In this article we'll look at some of the more widely used: the OpenRISC 1000 from OpenCores, Gaisler's LEON family, Lattice Semiconductor's LM32 and Oracle's OpenSPARC, as well as more bleeding edge research designs such as BERI and CHERI from Cambridge University Computer Laboratory. We'll consider the technology, the business case, the engineering risks, and the licensing challenges of using such designs. What do we mean by “free” “Free” is an overloaded term in English. It can mean something you don't pay for, as in “this beer is free”. But it can also mean freedom, as in “you are free to share this article”. It is this latter sense that is central when we talk about free software or hardware designs. Of course such software or hardware designs may also be free, in the sense that you don't have to pay for them, but that is secondary. “Free” software in this sense has been around for a very long time. Explicitly since 1993 and Richard Stallman's GNU Manifesto, but implicitly since the first software was written and shared with colleagues and friends. That freedom is achieved by making the source code available, so others can modify the program, hence the more recent alternative name “open source”, but it is freedom that remains the key concept.
    [Show full text]
  • Openpiton: an Open Source Manycore Research Framework
    OpenPiton: An Open Source Manycore Research Framework Jonathan Balkind Michael McKeown Yaosheng Fu Tri Nguyen Yanqi Zhou Alexey Lavrov Mohammad Shahrad Adi Fuchs Samuel Payne ∗ Xiaohua Liang Matthew Matl David Wentzlaff Princeton University fjbalkind,mmckeown,yfu,trin,yanqiz,alavrov,mshahrad,[email protected], [email protected], fxiaohua,mmatl,[email protected] Abstract chipset Industry is building larger, more complex, manycore proces- sors on the back of strong institutional knowledge, but aca- demic projects face difficulties in replicating that scale. To Tile alleviate these difficulties and to develop and share knowl- edge, the community needs open architecture frameworks for simulation, synthesis, and software exploration which Chip support extensibility, scalability, and configurability, along- side an established base of verification tools and supported software. In this paper we present OpenPiton, an open source framework for building scalable architecture research proto- types from 1 core to 500 million cores. OpenPiton is the world’s first open source, general-purpose, multithreaded manycore processor and framework. OpenPiton leverages the industry hardened OpenSPARC T1 core with modifica- Figure 1: OpenPiton Architecture. Multiple manycore chips tions and builds upon it with a scratch-built, scalable uncore are connected together with chipset logic and networks to creating a flexible, modern manycore design. In addition, build large scalable manycore systems. OpenPiton’s cache OpenPiton provides synthesis and backend scripts for ASIC coherence protocol extends off chip. and FPGA to enable other researchers to bring their designs to implementation. OpenPiton provides a complete verifica- tion infrastructure of over 8000 tests, is supported by mature software tools, runs full-stack multiuser Debian Linux, and has been widespread across the industry with manycore pro- is written in industry standard Verilog.
    [Show full text]
  • Latticemico8 Soft Core 8-Bit Microcontroller Optimized for Lattice Programmable Devices
    O P E N S O U R C E S O F T C O R E M I C R O C ont R O LL E R LatticeMico8 Soft Core 8-Bit Microcontroller Optimized for Lattice Programmable Devices The LatticeMico8™ is an 8-bit “soft” microcontroller core for the LatticeECP™, LatticeEC™ and LatticeXP™ families of Field Programmable Gate Arrays (FPGAs), as well as the MachXO™ family of Crossover Programmable Logic Devices. Combining a full 18-bit wide instruction set with 32 general purpose registers, the LatticeMico8 is a flexible reference design suitable for a wide variety of markets, including com- munications, consumer, computer, medical, industrial, and automotive. The core consumes minimal device resources, less than 200 Look Up Tables (LUTs) in the smallest configu- ration, while maintaining a broad feature set. In order to encourage user experimentation, development and contributions, Lattice is providing a new open intellec- tual property (IP) core license, the first such license offered Key Features and Benefits by any FPGA supplier. The license applies many of the concepts of the successful open source movement to IP cores Optimized for LatticeECP, LatticeEC, LatticeXP, and MachXO Families targeted for programmable logic applications. Efficient Architecture – Utilizes <200 LUTs Broad Feature Set LatticeMico8 Block Diagram • 8-bit data path • 18-bit wide instructions • 32 general purpose registers 16 Deep Call Stack • 32 bytes of internal scratch pad memory Program Interrupt Ack • Input/Output is performed using ports (up to 256 port Address Program Flow Control & PC
    [Show full text]
  • Day 2, 1640: Leveraging Opensparc
    Leveraging OpenSPARC ESA Round Table 2006 on Next Generation Microprocessors for Space Applications G.Furano, L.Messina – TEC-EDD OpenSPARC T1 • The T1 is a new-from-the-ground-up SPARC microprocessor implementation that conforms to the UltraSPARC architecture 2005 specification and executes the full SPARC V9 instruction set. Sun has produced two previous multicore processors: UltraSPARC IV and UltraSPARC IV+, but UltraSPARC T1 is its first microprocessor that is both multicore and multithreaded. • The processor is available with 4, 6 or 8 CPU cores, each core able to handle four threads. Thus the processor is capable of processing up to 32 threads concurrently. • Designed to lower the energy consumption of server computers, the 8-cores CPU uses typically 72 W of power at 1.2 GHz. G.Furano, L.Messina – TEC-EDD 72W … 1.2 GHz … 90nm … • Is a cutting edge design, targeted for high-end servers. • NOT FOR SPACE USE • But, let’s see which are the potential spin-in … G.Furano, L.Messina – TEC-EDD Why OPEN ? On March 21, 2006, Sun made the UltraSPARC T1 processor design available under the GNU General Public License. The published information includes: • Verilog source code of the UltraSPARC T1 design, including verification suite and simulation models • ISA specification (UltraSPARC Architecture 2005) • The Solaris 10 OS simulation images • Diagnostics tests for OpenSPARC T1 • Scripts, open source and Sun internal tools needed to simulate the design and to do synthesis of the design • Scripts and documentation to help with FPGA implementation
    [Show full text]
  • Workshop on Recent Trends in Processor Architecture
    Workshop on Recent Trends in Procesor Architecture – OpenSPARC March 17, 2007 Ramesh Iyer Sr. Engineering Manager Shrenik Mehta Senior Director, Frontend Technologies & OpenSPARC Program David Weaver Sr. Staff Engineer, UltraSPARC Architect Jhy-Chun (JC) Wang Sr. Staff Engineer Systems Group Sun Microsystems, Inc. www.opensparc.net Agenda 1.Chip Multi-Threading (CMT) Era 2.Microarchitecture of OpenSPARC T1 3.OpenSPARC T1 Program 4.SPARC Architecture 5.OpenSPARC in Academia 6.OpenSPARC T1 simulators 7.Hypervisor and OS porting 8.Compiler Optimizations and tools 9.Community Participation www.opensparc.net Recent Trends in Processor Architecture -2007 , NIT Trichy, India 2 Making the Right Waves Chip Multi-threading (CoolThreadsTM) Symmetrical Multi-processing (SMP) e c n Reduced Instruction Set a m Computing (RISC) r o f r e P / e c i r P d e v o r p m I 1980 1990 2000 2010 www.opensparc.net Recent Trends in Processor Architecture -2007 , NIT Trichy, India 3 The Processor Growth Single Chip Multiprocessors Multiple cores Integer Unit Data Center >350M xstors <20K gates 1982 1990 1998 2005 RISC SMP RAS SWAP 64 bit CMT Source: Sun Network San Francisco, NC03Q3, Sep. 17, 2003 The Big Bang Is Happening— Four Converging Trends Network Computing Is Moore’s Law Thread Rich A fraction of the die can Web services, JavaTM already build a good applications, database processor core; how am I transactions, ERP . going to use a billion transistors? Worsening Growing Complexity Memory Latency of Processor Design It’s approaching 1000s Forcing a rethinking of of CPU cycles! Friend or foe? processor architecture – modularity, less is more, time-to-market www.opensparc.net Recent Trends in Processor Architecture -2007 , NIT Trichy, India 5 The Big Bang Has Happened— Four Converging Trends Network Computing Is Moore’s Law Thread Rich A fraction of the die can Web services, JavaTM already build a good applications, database processor core; how am I transactions, ERP .
    [Show full text]
  • FPGA Design Guide
    FPGA Design Guide Lattice Semiconductor Corporation 5555 NE Moore Court Hillsboro, OR 97124 (503) 268-8000 September 16, 2008 Copyright Copyright © 2008 Lattice Semiconductor Corporation. This document may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine- readable form without prior written consent from Lattice Semiconductor Corporation. Trademarks Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice (design), LSC, E2CMOS, Extreme Performance, FlashBAK, flexiFlash, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, IPexpress, ISP, ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDXV, ispGDX2, ispGENERATOR, ispJTAG, ispLEVER, ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP, ispXPGA, ispXPLD, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP, LatticeXP2, MACH, MachXO, MACO, ORCA, PAC, PAC-Designer, PAL, Performance Analyst, PURESPEED, Reveal, Silicon Forest, Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The Simple Machine for Complex Design, TransFR, UltraMOS, and specific product designations are either registered trademarks or trademarks of Lattice Semiconductor Corporation or its subsidiaries in the United States and/or other countries. ISP, Bringing the Best Together, and More
    [Show full text]
  • Machxo Control Development Kit User's Guide
    MachXO Control Development Kit User’s Guide October 2009 Revision: EB46_01.2 Lattice Semiconductor MachXO Control Development Kit User’s Guide Introduction Thank you for choosing the Lattice Semiconductor MachXO™ Control Development Kit! This guide describes how to start using the MachXO Control Development Kit, an easy-to-use platform for rapidly prototyping system control designs using MachXO PLDs. Along with the evaluation board and accessories, this kit includes a pre-loaded control system-on-chip (Control SoC) design that demonstrates board diagnostic functions including fan speed control based on temperature monitoring, LCD control, complete power supply monitoring and reset distribution in conjunction with the Power Manager II ispPAC®-POWR1014A and 8-bit LatticeMico8™ micro- controller. Note: Static electricity can severely shorten the lifespan of electronic components. See the MachXO Control Devel- opment Kit QuickSTART Guide for handling and storage tips. Features The MachXO Control Development Kit includes: • MachXO Control Evaluation Board – The MachXO Control Evaluation Board features the following on-board components and circuits: – MachXO LCMXO2280C-4FT256C PLD (www.latticesemi.com/products/cpldspld/machxo) – Power Manager II ispPAC-POWR1014A mixed-signal PLD (www.latticesemi.com/products/powermanager) – 2 Mbit SPI Flash memory – 1 Mbit SRAM • Interface to 16 x 2 LCD Panel* – Secure Digital (SD) and CompactFlash memory card sockets* –I2C temperature sensor – Current and voltage sensor circuits – Voltage ramp circuits –
    [Show full text]
  • High-Speed Soft-Processor Architecture for FPGA Overlays
    High-Speed Soft-Processor Architecture for FPGA Overlays by Charles Eric LaForest A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto c Copyright 2015 by Charles Eric LaForest Abstract High-Speed Soft-Processor Architecture for FPGA Overlays Charles Eric LaForest Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto 2015 Field-Programmable Gate Arrays (FPGAs) provide an easier path than Application- Specific Integrated Circuits (ASICs) for implementing computing systems, and generally yield higher performance and lower power than optimized software running on high- end CPUs. However, designing hardware with FPGAs remains a difficult and time- consuming process, requiring specialized skills and hours-long CAD processing times. An easier design process abstracts away the FPGA via an \overlay architecture", which implements a computing platform upon which we construct the desired system. Soft- processors represent the base case of overlays, allowing easy software-driven design, but at a large cost in performance and area. This thesis addresses the performance limitations of FPGA soft-processors, as building blocks for overlay architectures. We first aim to maximize the usage of FPGA structures by designing Octavo, a strict round-robin multi-threaded soft-processor architecture tailored to the underlying FPGA and capable of operating at maximal speed. We then scale Octavo to SIMD and MIMD parallelism by replicating its datapath and connecting Octavo cores in a point-to-point mesh. This scaling creates multi-local logic, which we preserve via logical partitioning to avoid artificial critial paths introduced by unnecessary CAD optimizations.
    [Show full text]
  • Small Soft Core up Inventory ©2019 James Brakefield Opencore and Other Soft Core Processors Reverse-U16 A.T
    tool pip _uP_all_soft opencores or style / data inst repor com LUTs blk F tool MIPS clks/ KIPS ven src #src fltg max max byte adr # start last secondary web status author FPGA top file chai e note worthy comments doc SOC date LUT? # inst # folder prmary link clone size size ter ents ALUT mults ram max ver /inst inst /LUT dor code files pt Hav'd dat inst adrs mod reg year revis link n len Small soft core uP Inventory ©2019 James Brakefield Opencore and other soft core processors reverse-u16 https://github.com/programmerby/ReVerSE-U16stable A.T. Z80 8 8 cylcone-4 James Brakefield11224 4 60 ## 14.7 0.33 4.0 X Y vhdl 29 zxpoly Y yes N N 64K 64K Y 2015 SOC project using T80, HDMI generatorretro Z80 based on T80 by Daniel Wallner copyblaze https://opencores.org/project,copyblazestable Abdallah ElIbrahimi picoBlaze 8 18 kintex-7-3 James Brakefieldmissing block622 ROM6 217 ## 14.7 0.33 2.0 57.5 IX vhdl 16 cp_copyblazeY asm N 256 2K Y 2011 2016 wishbone extras sap https://opencores.org/project,sapstable Ahmed Shahein accum 8 8 kintex-7-3 James Brakefieldno LUT RAM48 or block6 RAM 200 ## 14.7 0.10 4.0 104.2 X vhdl 15 mp_struct N 16 16 Y 5 2012 2017 https://shirishkoirala.blogspot.com/2017/01/sap-1simple-as-possible-1-computer.htmlSimple as Possible Computer from Malvinohttps://www.youtube.com/watch?v=prpyEFxZCMw & Brown "Digital computer electronics" blue https://opencores.org/project,bluestable Al Williams accum 16 16 spartan-3-5 James Brakefieldremoved clock1025 constraint4 63 ## 14.7 0.67 1.0 41.1 X verilog 16 topbox web N 4K 4K N 16 2 2009
    [Show full text]
  • Design of the RISC-V Instruction Set Architecture
    Design of the RISC-V Instruction Set Architecture Andrew Waterman Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2016-1 http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html January 3, 2016 Copyright © 2016, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Design of the RISC-V Instruction Set Architecture by Andrew Shell Waterman A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor David Patterson, Chair Professor Krste Asanovi´c Associate Professor Per-Olof Persson Spring 2016 Design of the RISC-V Instruction Set Architecture Copyright 2016 by Andrew Shell Waterman 1 Abstract Design of the RISC-V Instruction Set Architecture by Andrew Shell Waterman Doctor of Philosophy in Computer Science University of California, Berkeley Professor David Patterson, Chair The hardware-software interface, embodied in the instruction set architecture (ISA), is arguably the most important interface in a computer system. Yet, in contrast to nearly all other interfaces in a modern computer system, all commercially popular ISAs are proprietary.
    [Show full text]