Climate Change Impact Assessment on Maize Production in Jilin, China

Total Page:16

File Type:pdf, Size:1020Kb

Climate Change Impact Assessment on Maize Production in Jilin, China Climate change impact assessment on maize production in Jilin, China Meng Wang, Wei Ye and Yinpeng Li 1 Backgrounds APN CAPaBLE project with focus on integrated system development for food security assessment Bio-physical & Economic Uncertainties: e.g. GCMs, CO2 emission scenarios Adaptation measures (cross multi-scales) 2 SimCLIM model Greenhouse gas MAGICC emission scenarios Data Global Climate Projection Scenario selections Climate and GCM pattern import Local Climate toolbox average, variability, extremes IPCC CMIP (GCMs) (present and future) USER -Synthetic changes - GCM patterns “Plug-in” Models Biophysical Impacts on: Agriculture, Coastal, - Land data Human Health, Water - Other spatial data Impact Model 3 Case Study: Jilin Province 4 Climate Scenario Baseline Climate CRU global climatology dataset, 1961-1990 (New, 2000) Climate change scenarios • Pattern scaling (Santer, 1990; Mitchell, 2003) • 20 GCMs change patterns (Covey et al., 2003) • 6 SRES emission scenarios (IPCC, 2000) 5 DSSAT model – to simulate maize growth CERES-Maize model (Jones, 1986) • Site-based, daily time step • Input – weather, soil, cultivating strategies, cultivar parameters • Output – yield, phenological parameters (e.g. growing season, growing phase date), etc. 6 DSSAT – weather generator SIMMETEO (Geng & Auburn, 1986) • Input – monthly Tmax, Tmin, Rs, Prec. • Random seed sensitive 9.5 Ensemble 1 (b) 8.5 Ensemble 2 ) Ensemble 3 -1 7.5 Ensemble 4 6.5 Yield (t ha Yield (t 5.5 4.5 3.5 0 20 40 60 80 100 120 Random seed So, the average result of 100-seed simulations 7 Climate change projections Precipitation (mm) Baseline 2080 ensemble 8 Climate change projections Mean temperature (degC) Baseline 2080 ensemble 9 DSSAT – Soil ISRIC-WISE soil dataset (Batjes, 2006) • 5 × 5 minutes • 14 FAO soil categories 10 DSSAT – cultivating strategies Scheme Planting manner density: 6 plants m-2 date: controlled by soil temperature Fertilization nitrogen fertilizer (kg ha-1) applied by county Irrigation controlled by the total irrigation quota (350mm) and frequency 11 Calibration – cultivar parameters The initial ranges of 5 gene coefficients (P 1, P 2, P 5, G 2, G3 ) Produce 30 trial geno-types by the uniform design method Cultivar parameters P1, P2, P5 Yield Simulation G2, G3 Calculate Ie ; Find out the genotypes with the two smallest Ie s The i -th ranges of gene coefficients 11-site observations If (the differences between the ranges of these two genotypes are smaller than 5% of the initial No yield, upper range) then sowing date, Yes harvest date The final range of gene coefficients The coefficients are the average of the final range 12 Calibration – cultivar selection Late Early P1 280 270 Late P2 0.3 0.3 Early P5 790 700 G2 720 720 G3 8.5 8.5 13 Calibration – 11 sites (1996- 2000) Site Cultivar Ysim/Yobs Msim/Mobs Changling Late 0.55 0.94 Nong’an Late 0.92 1.03 Yushu Late 0.87 1.06 Lishu Late 1.05 1.05 Ji’an Late 0.94 0.96 Shulan Early 0.87 1.06 Yongji Early 0.99 0.95 Dunhua Early 1.23 1.13 Liaoyuan Early 1.05 1.01 Meihekou Early 0.94 0.94 Huadian Early 0.90 1.00 14 Validation – Compare with the county census yield (1990-2002) Average Standard deviation a b 15 Climate scenarios Climate change in Jilin Province • Growing season (Apr.-Sept.) • Temp. • Prec. 25 1000 Prec (mm) ) 20 800 ℃ • Prec/PET 15 600 10 400 5 200 0 0 Baicheng SongyuanChangchun Siping Jilin Liaoyuan Baishan Tonghua Yanji 2.0 1.6 1.2 P/PET=1.0 P/PET Temp ( P/PET 0.8 0.4 0 Baicheng SongyuanChangchun Siping Jilin Liaoyuan Baishan Tonghua Yanji P/PET Prec Temp 16 Results – spatial pattern of yield change Baseline 2020 2050 2070 17 Results – uncertainties among scenarios 8 8 Baicheng Jilin Baishan 7 7 6 6 5 5 4 4 3 3 2 2 1 2020s 2050s 2070s 2020s 2050s 2070s 2020s 2050s 2070s 1 0 0 ) 8 8 -1 Songyuan Liaoyuan Tonghua 7 7 6 6 5 5 4 4 Yield (t ha (t Yield 3 3 2 2 1 2020s 2050s 2070s 2020s 2050s 2070s 2020s 2050s 2070s 1 0 0 8 8 Changechun Siping Yanji 7 7 6 6 5 5 4 4 3 3 2 2 1 2020s 2050s 2070s 2020s 2050s 2070s 2020s 2050s 2070s 1 0 0 A1B A1FI A1T A2 B1 B2 Baseline Median 18 Results – the probability of yield reduction 5 10 15 20 30 40 50 5 10 15 20 30 40 50 100% 100% 80% Baicheng Jilin 80% 60% 60% 40% 40% 20% 20% 0% 0% 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 100% 100% 80% Songyuan Liaoyuan 80% 60% 60% 2020 Probability 40% 40% 20% 20% 2050 0% 0% 2070 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 100% 100% 80% Changechun Siping 80% 60% 60% 40% 40% 20% 20% 0% 0% 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 Yield reduction % 19 Results – changes in sowing date Baseline 2020 2050 2070 20 Results – changes in flowering date Baseline 2020 2050 2070 21 Results – changes in growing season Baseline 2020 2050 2070 22 Results – yield and growing phase 8 160 8 200 Baicheng Dunhua 7 140 7 180 47 160 6 34 32 120 6 22 28 60 30 29 140 5 100 5 120 4 43 80 4 71 68 61 100 44 41 41 54 3 60 3 80 Yield (t ha-1)Yield (t ha-1)Yield Duration (days) 60 Duration (days) 2 40 2 40 54 59 56 53 66 67 70 66 1 20 1 20 0 0 0 0 Baseline 2020s 2050s 2070s Baseline 2020s 2050s 2070s 8 160 8 200 Tongyu Huadian 7 140 7 180 160 6 34 120 6 33 30 28 140 30 37 51 65 5 100 5 120 4 43 43 43 43 80 4 100 65 3 60 3 61 55 53 80 Yield (t ha-1)Yield (t ha-1)Yield Duration (days) 60 Duration (days) 2 40 2 58 56 56 54 40 1 20 1 51 50 51 49 20 0 0 0 0 Baseline 2020s 2050s 2070s Baseline 2020s 2050s 2070s Sowing - Tasseling begins Tasseling begins - Filling begins Filling begins - Filling ends Auto Irr Control Irr 23 Results – adaptation analysis: irrigation 10 Baicheng 8 ) -1 6 Baseline 4 Yield (t ha (t Yield 2 2020 2050 2070 0 350 450 550 650 750 350 450 550 650 750 350 450 550 650 750 Irrigation quota (mm) 10 Tongyu 8 ) -1 Baseline 6 4 Yield (t ha (t Yield 2 2020 2050 2070 0 350 450 550 650 750 350 450 550 650 750 350 450 550 650 750 Irrigation quota (mm) 25-75th Percentile 10-90th percentile Median 24 Conclusion Impacts on maize yield west & central areas eastern mountain areas Impacts on phenology shortened growing season in the west and central (especially the reduced grain filling phase) Adaptation measures Increase in total irrigation (20- 50 years) New cultivar with longer growing season (>50 years) 25 Thank You 26.
Recommended publications
  • Analyzing Ecological Vulnerability and Vegetation Phenology Response Using NDVI Time Series Data and the BFAST Algorithm
    remote sensing Article Analyzing Ecological Vulnerability and Vegetation Phenology Response Using NDVI Time Series Data and the BFAST Algorithm Jiani Ma 1, Chao Zhang 1,2,*, Hao Guo 1, Wanling Chen 1, Wenju Yun 2,3, Lulu Gao 1 and Huan Wang 1 1 College of Land Science and Technology, China Agricultural University, Beijing 100083, China; [email protected] (J.M.); [email protected] (H.G.); [email protected] (W.C.); [email protected] (L.G.); [email protected] (H.W.) 2 Key Laboratory for Agricultural Land Quality Monitoring and Control, Ministry of Natural Resources, Beijing 100035, China; [email protected] 3 Land Consolidation and Rehabilitation Center, Ministry of Natural Resources of the People’s Republic of China, Beijing 100035, China * Correspondence: [email protected] Received: 7 September 2020; Accepted: 13 October 2020; Published: 15 October 2020 Abstract: Identifying ecologically vulnerable areas and understanding the responses of phenology to negative changes in vegetation growth are important bases for ecological restoration. However, identifying ecologically vulnerable areas is difficult because it requires high spatial resolution and dense temporal resolution data over a long time period. In this study, a novel method is presented to identify ecologically vulnerable areas based on the normalized difference vegetation index (NDVI) time series from MOD09A1. Here, ecologically vulnerable areas are defined as those that experienced negative changes frequently and greatly in vegetation growth after the disturbances during 2000–2018. The number and magnitude of negative changes detected by the Breaks for Additive Season and Trend (BFAST) algorithm based on the NDVI time-series data were combined to identify ecologically vulnerable areas.
    [Show full text]
  • Changchun–Harbin Expressway Project
    Performance Evaluation Report Project Number: PPE : PRC 30389 Loan Numbers: 1641/1642 December 2006 People’s Republic of China: Changchun–Harbin Expressway Project Operations Evaluation Department CURRENCY EQUIVALENTS Currency Unit – yuan (CNY) At Appraisal At Project Completion At Operations Evaluation (July 1998) (August 2004) (December 2006) CNY1.00 = $0.1208 $0.1232 $0.1277 $1.00 = CNY8.28 CNY8.12 CNY7.83 ABBREVIATIONS AADT – annual average daily traffic ADB – Asian Development Bank CDB – China Development Bank DMF – design and monitoring framework EIA – environmental impact assessment EIRR – economic internal rate of return FIRR – financial internal rate of return GDP – gross domestic product ha – hectare HHEC – Heilongjiang Hashuang Expressway Corporation HPCD – Heilongjiang Provincial Communications Department ICB – international competitive bidding JPCD – Jilin Provincial Communications Department JPEC – Jilin Provincial Expressway Corporation MOC – Ministry of Communications NTHS – national trunk highway system O&M – operations and maintenance OEM – Operations Evaluation Mission PCD – provincial communication department PCR – project completion report PPTA – project preparatory technical assistance PRC – People’s Republic of China RRP – report and recommendation of the President TA – technical assistance VOC – vehicle operating cost NOTE In this report, “$” refers to US dollars. Keywords asian development bank, development effectiveness, expressways, people’s republic of china, performance evaluation, heilongjiang province, jilin province, transport Director Ramesh Adhikari, Operations Evaluation Division 2, OED Team leader Marco Gatti, Senior Evaluation Specialist, OED Team members Vivien Buhat-Ramos, Evaluation Officer, OED Anna Silverio, Operations Evaluation Assistant, OED Irene Garganta, Operations Evaluation Assistant, OED Operations Evaluation Department, PE-696 CONTENTS Page BASIC DATA v EXECUTIVE SUMMARY vii MAPS xi I. INTRODUCTION 1 A.
    [Show full text]
  • Evolution of the Process of Urban Spatial and Temporal Patterns and Its Influencing Factors in Northeast China
    Case Study Evolution of the Process of Urban Spatial and Temporal Patterns and its Influencing Factors in Northeast China Jiawen Xu1; Jianjun Zhao2; Hongyan Zhang3; and Xiaoyi Guo4 Abstract: The evolution of urban temporal and spatial patterns in Northeast China is complicated. In order to study the urbanization process in this area, explore the spatial and temporal laws of urban development in Northeast China, and find the main influencing fac- tors affecting urban development in Northeast China, DMSP/OLS images are used as data sources. Urban built-up areas in Northeast China from 1993 to 2013 are extracted and temporal and spatial patterns of urban development are studied. Combining the economic, population, industrial structure, ecological and other statistical data, a geographical detector is applied to study the main influencing factors of urban development in Northeast China. According to a selection of 10 typical cities, the annual urban expansion speed and the urbanization intensity index are calculated to quantitatively analyze the development of typical cities. The present study indi- cates that the urbanization process in Northeast China was slow during 1995–1996. In fact, except for Daqing, the other typical cities developed slowly before 2003. While the urbanization process accelerated after 2003, it reached to its maximum rate in 2010. Moreover, it is observed that from 1993 to 2013, centers of cities gradually moved to their regional centers. On the other hand, it is concluded that from 2004 to 2013, the regional gross domestic product (GDP), GDP of the secondary industry, gross industrial product, GDP of the tertiary industry and the total investment in fixed assets were main indicators of the urbanization that affected change in the urban built- up area in Northeast China.
    [Show full text]
  • 2019 International Religious Freedom Report
    CHINA (INCLUDES TIBET, XINJIANG, HONG KONG, AND MACAU) 2019 INTERNATIONAL RELIGIOUS FREEDOM REPORT Executive Summary Reports on Hong Kong, Macau, Tibet, and Xinjiang are appended at the end of this report. The constitution, which cites the leadership of the Chinese Communist Party and the guidance of Marxism-Leninism and Mao Zedong Thought, states that citizens have freedom of religious belief but limits protections for religious practice to “normal religious activities” and does not define “normal.” Despite Chairman Xi Jinping’s decree that all members of the Chinese Communist Party (CCP) must be “unyielding Marxist atheists,” the government continued to exercise control over religion and restrict the activities and personal freedom of religious adherents that it perceived as threatening state or CCP interests, according to religious groups, nongovernmental organizations (NGOs), and international media reports. The government recognizes five official religions – Buddhism, Taoism, Islam, Protestantism, and Catholicism. Only religious groups belonging to the five state- sanctioned “patriotic religious associations” representing these religions are permitted to register with the government and officially permitted to hold worship services. There continued to be reports of deaths in custody and that the government tortured, physically abused, arrested, detained, sentenced to prison, subjected to forced indoctrination in CCP ideology, or harassed adherents of both registered and unregistered religious groups for activities related to their religious beliefs and practices. There were several reports of individuals committing suicide in detention, or, according to sources, as a result of being threatened and surveilled. In December Pastor Wang Yi was tried in secret and sentenced to nine years in prison by a court in Chengdu, Sichuan Province, in connection to his peaceful advocacy for religious freedom.
    [Show full text]
  • China Russia
    1 1 1 1 Acheng 3 Lesozavodsk 3 4 4 0 Didao Jixi 5 0 5 Shuangcheng Shangzhi Link? ou ? ? ? ? Hengshan ? 5 SEA OF 5 4 4 Yushu Wuchang OKHOTSK Dehui Mudanjiang Shulan Dalnegorsk Nongan Hailin Jiutai Jishu CHINA Kavalerovo Jilin Jiaohe Changchun RUSSIA Dunhua Uglekamensk HOKKAIDOO Panshi Huadian Tumen Partizansk Sapporo Hunchun Vladivostok Liaoyuan Chaoyang Longjing Yanji Nahodka Meihekou Helong Hunjiang Najin Badaojiang Tong Hua Hyesan Kanggye Aomori Kimchaek AOMORI ? ? 0 AKITA 0 4 DEMOCRATIC PEOPLE'S 4 REPUBLIC OF KOREA Akita Morioka IWATE SEA O F Pyongyang GULF OF KOREA JAPAN Nampo YAMAJGATAA PAN Yamagata MIYAGI Sendai Haeju Niigata Euijeongbu Chuncheon Bucheon Seoul NIIGATA Weonju Incheon Anyang ISIKAWA ChechonREPUBLIC OF HUKUSIMA Suweon KOREA TOTIGI Cheonan Chungju Toyama Cheongju Kanazawa GUNMA IBARAKI TOYAMA PACIFIC OCEAN Nagano Mito Andong Maebashi Daejeon Fukui NAGANO Kunsan Daegu Pohang HUKUI SAITAMA Taegu YAMANASI TOOKYOO YELLOW Ulsan Tottori GIFU Tokyo Matsue Gifu Kofu Chiba SEA TOTTORI Kawasaki KANAGAWA Kwangju Masan KYOOTO Yokohama Pusan SIMANE Nagoya KANAGAWA TIBA ? HYOOGO Kyoto SIGA SIZUOKA ? 5 Suncheon Chinhae 5 3 Otsu AITI 3 OKAYAMA Kobe Nara Shizuoka Yeosu HIROSIMA Okayama Tsu KAGAWA HYOOGO Hiroshima OOSAKA Osaka MIE YAMAGUTI OOSAKA Yamaguchi Takamatsu WAKAYAMA NARA JAPAN Tokushima Wakayama TOKUSIMA Matsuyama National Capital Fukuoka HUKUOKA WAKAYAMA Jeju EHIME Provincial Capital Cheju Oita Kochi SAGA KOOTI City, town EAST CHINA Saga OOITA Major Airport SEA NAGASAKI Kumamoto Roads Nagasaki KUMAMOTO Railroad Lake MIYAZAKI River, lake JAPAN KAGOSIMA Miyazaki International Boundary Provincial Boundary Kagoshima 0 12.5 25 50 75 100 Kilometers Miles 0 10 20 40 60 80 ? ? ? ? 0 5 0 5 3 3 4 4 1 1 1 1 The boundaries and names show n and t he designations us ed on this map do not imply of ficial endors ement or acceptance by the United N at ions.
    [Show full text]
  • Federal Register/Vol. 83, No. 248/Friday, December 28, 2018
    Federal Register / Vol. 83, No. 248 / Friday, December 28, 2018 / Notices 67229 DEPARTMENT OF COMMERCE complete description of the scope of this Dunhau City Jisen, Fusong Jinqui, administrative review, see the Huzhou Jesonwood, and Shanghaifloor. International Trade Administration 4 Preliminary Decision Memorandum. Intent To Rescind Administrative [C–570–971] Rescission of Administrative Review, in Review, in Part Multilayered Wood Flooring From the Part We received timely filed no-shipment People’s Republic of China: certifications from eight companies.8 Pursuant to 19 CFR 351.213(d)(1), the Commerce issued no-shipment inquiries Preliminary Results of Countervailing Secretary will rescind an administrative Duty Administrative Review, to U.S. Customs and Border Protection review, in whole or in part, if the parties (CBP) requesting any information that Rescission of Review, in Part, and that requested a review withdraw the Intent To Rescind Review, in Part; 2016 may contradict the no-shipment claims. request within 90 days of the date of We have not received information from AGENCY: Enforcement and Compliance, publication of the notice of initiation of CBP to date that contradicts Anhui Boya International Trade Administration, the requested review. This review was Bamboo & Wood Products Co., Ltd.’s, Department of Commerce. initiated on February 23, 2018. On Chinafloors Timber (China) Co., Ltd.’s, SUMMARY: The Department of Commerce March 14, 2018, Huzhou Jesonwood Jiangsu Keri Wood Co., Ltd.’s, Jiashan (Commerce) preliminarily determines submitted a withdrawal request within On-Line Lumber Co., Ltd.’s, Kingman that countervailable subsidies are being the 90-day deadline.5 On May 7, 2018, Floors Co., Ltd.’s, Linyi Bonn Flooring provided to producers and exporters of Dalian Penghong and 15 other Manufacturing Co., Ltd.’s, and Zhejiang multilayered wood flooring (wood companies submitted withdrawal Shiyou Timber Co., Ltd.’s claims of no flooring) from the People’s Republic of requests.6 The petitioner filed sales, shipments or entries of subject China (PRC).
    [Show full text]
  • 2.15 Jilin Province Jilin Province Jixin Group Co. Ltd., Affiliated to the Jilin Provincial Prison Administration Bureau, Has 22
    2.15 Jilin Province Jilin Province Jixin Group Co. Ltd., affiliated to the Jilin Provincial Prison Administration Bureau, has 22 prison enterprises Legal representative of the prison company: Feng Gang, Chairman of Jilin Jixin Group Co., Ltd. His official positions in the prison system: Party Committee Member of Jilin Provincial Justice Department, Party Committee Secretary and Director of Jilin Provincial Prison Administration Bureau1 According to the “Notice on Issuing ‘Jilin Province People’s Government Institutional Reform Program’ from the General Office of the CCP Central Committee and the General Office of the State Council” (Ting Zi [2008] No. 25), the Jilin Provincial Prison Administration Bureau (Deputy-department level) was set up as a management agency under the Provincial Justice Department.2 Business areas: The company manages state-owned operating assets of the enterprises within province’s prison system; production, processing and sale of electromechanical equipment (excluding cars), chemical products, apparels, cement, construction materials; production and sale of agricultural and sideline products; labor processing No. Company Name of the Legal Person Legal Registered Business Scope Company Notes on the Prison Name Prison, to which and representative Capital Address the Company Shareholder(s) / Title Belongs 1 Jilin Jixin Jilin Provincial State-owned Feng Gang 70.67 The company manages state-owned 1000 Xinfa According to the “Notice on Issuing Group Co., Prison Asset Chairman of Jilin million operating assets of the
    [Show full text]
  • Presence of the Jehol Biota Turtle Ordosemys Liaoxiensis in the Early Cretaceous Hengtongshan Formation of Southern Jilin Province, China
    Foss. Rec., 22, 57–64, 2019 https://doi.org/10.5194/fr-22-57-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Presence of the Jehol Biota turtle Ordosemys liaoxiensis in the Early Cretaceous Hengtongshan Formation of southern Jilin Province, China Chang-Fu Zhou1, Wen-Hao Wu2,3, and Márton Rabi4,5 1College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China 2Key Laboratory for Evolution of Past Life and Environment in Northeast Asia, Ministry of Education, Changchun 130026, Jilin, China 3Research Center of Palaeontology and Stratigraphy, Jilin University, Changchun 130056, Jilin, China 4Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany 5Department of Geosciences, University of Tübingen, Tübingen, Germany Correspondence: Chang-Fu Zhou ([email protected]) and Wen-Hao Wu ([email protected]) Received: 25 May 2019 – Revised: 15 August 2019 – Accepted: 19 August 2019 – Published: 12 September 2019 Abstract. Recently, a vertebrate assemblage of the Jehol ence of the Eosestheria (crustacean)–Ephemeropsis trisetalis Biota has been reported from the Early Cretaceous Heng- (mayfly insect)–Lycoptera (fish) community (T. Shao et al., tongshan Formation of Xingling Town, Meihekou City, Jilin 2017). Freshwater sinemydid turtles are among the most Province, China. It is dominated by the fishes Lycoptera and common tetrapod fossils of the Jehol Biota, which makes Sinamia and the sinemydid turtle Ordosemys. Here, we de- their biostratigraphic potential of interest (e.g., Ji, 1995; Tong scribe the turtle specimens and referral to Ordosemys liaox- et al., 2004; Zhou, 2010a, b; Zhou and Rabi, 2015; S.
    [Show full text]
  • The Standardization of Procedures in Village Committee Elections
    The Standardization of Villager Committee Election Procedures Survey Analysis of the 5th Round of Villager Committee Elections in 40 Villages from Five Counties in Jilin Province Sun Long and Tong Zhihui I. Survey Background, Purpose, and Methodology Chinese villager committee elections have entered a phase of legalization and standardization, as indicated by the formal promulgation of the Organic Law on Villager Committees in 1998. Jilin Province is the birthplace of the haixuan method of villager committee elections. Haixuan, or “sea election,” means that candidates are not predetermined by higher- level government offices or leaders but nominated by villagers having the right to vote. Final candidates are then determined according to the number of nominations each individual receives. (Wang Zhoutian, 1995) As early as 1986, a portion of Lishu County, Jilin Province began using the haixuan method. By the 4th round of village committee elections in 1997, 86.8% of all villages in Jilin Province had moved to the haixuan method. (Jilin Province People’s Congress Internal Affairs and Justice Committee, et al., 2001) In November 2000, the Standing Committee of the People’s Congress in Jilin Province ratified the Jilin Province Measures for the Election of Villager Committees , standardizing many procedures in villager committee elections. Under the guidance of these Measures, the 5th round of villager committee elections in Jilin Province were held between November 2000 and March 2001. To determine how well the election procedures had been implemented in the villager committee elections, in July 2001 the Ministry of Civil Affairs (MCA) Department of Basic- Level Governance and Community Construction conducted a survey of 790 cadres and villagers in 40 villages randomly selected from five counties in Jilin Province.
    [Show full text]
  • The Comparison of Different Calculation Methods of Pollution Receiving Capacity for Jilin Province Huifa River
    Nature Environment and Pollution Technology ISSN: 0972-6268 Vol. 15 No. 4 pp. 1169-1176 2016 An International Quarterly Scientific Journal Original Research Paper The Comparison of Different Calculation Methods of Pollution Receiving Capacity for Jilin Province Huifa River Yao Liwei and Men Baohui† Renewable Energy Institute, North China Electric Power University, Beijing-102206, China †Corresponding author: Men Baohui ABSTRACT Nat. Env. & Poll. Tech. Website: www.neptjournal.com Huifa River is the largest tributary of the Second Songhua River. Songhua River Basin is the concentrated area of Northeast Old Industrial Base, and it is also the distribution area of major cities, bearing Received: 19-12-2015 production task of national commodity grain. In recent years, with the rapid development of economy, Accepted: 28-01-2016 the deterioration of water quality is serious and the water environment problem is becoming more and Key Words: more outstanding, which have affected the sustainable development of the economic and social of Pollution receiving capacity Jilin province, so it is necessary to analyse and study the pollution receiving capacity of the river and Water quality model control the water pollution source to protect the water environment and strengthen water resources Sewage outfall protection. Based on one-dimensional water quality model, this paper use three kinds of different Huifa river generalization methods, such as midpoint generalization, uniform generalization and sewage outfall barycenter generalization, to calculate
    [Show full text]
  • Speed, Reliability & Security at the Edge
    Speed, Reliability & Security at the Edge March 2020 370 Employees 7 Offices Globally About BaishanCloud 600+ Corporate Clients ▪ A leading global cloud data service provider focusing on cross- border cloud content delivery and edge security. 400+ ▪ BaishanCloud's cloud delivery platform is designed to fulfill the Patents Filed data-transmission, data-security, and data-governance needs of Internet and enterprise customers. 70% R&D Workforce Baishan Key Milestones April 2019 Dec, 2019 Edge security Total sales product launched June 2017 revenue tops US$210 Million Strategic partnership with Nov. 2018 Microsoft formed Listed as Deloitte “2018 Asia-Pacific March 2016 Technology Fast 100” Offices in Beijing, Shanghai, Xiamen, Shenzhen, Guangzhou 2018 and Seattle July 2015 6 rounds of private equity financing, Cloud Distribution raising a total of Products launched US$125 million April 2015 BaishanCloud Founded Cloud Delivery Streaming ​Fast, reliable and secure Seamless streaming content delivery to users experience to users anywhere on any device Baishan Product Offering Cloud Security Dynamic Acceleration Product BaishanCloud provides advanced cloud Ultimate security Reliable real-time, technology and solutions to deliver seamless protection against all interactive and personalized digital experience to millions of users in types of cyber-attacks content delivery at the edge China, Asia and beyond. Cloud Delivery Ultra Speed | Easy Customization | High Capacity | Uncompromised Security Slow webpage download can drive your customers away in seconds. Baishan's globally distributed edge servers connect millions of end- users worldwide and deliver your assets in an ultra-fast, reliable and secure fashion, enabling you to focus on creating the best digital experience for your customers.
    [Show full text]
  • Expressways, GDP, and the Environment: the Case of China
    Expressways, GDP, and the Environment: The Case of China Guojun He Hong Kong University of Science and Technology [email protected] Yang Xie University of California, Riverside [email protected] Bing Zhang Nanjing University [email protected] We are indebted to the Editor in Chief, Andrew Foster, and the anonymous referee for their valuable suggestions. We thank Hunt Allcott, Michael Anderson, Richard Arnott, Chong-En Bai, Michael Bates, David Brady, Nathaniel Baum-Snow, Cyndi Berck, Peter Berck, Judd Boomhower, David Brady, Jimmy Chan, Gordon Dahl, Anil Deolalikar, Alain de Janvry, Ozkan Eren, Thibault Fally, Jingting Fan, Fred Finan, Shihe Fu, Joshua Graff Zivin, Michael Greenstone, Jie He, Steven Helfand, Sarojini Hirshleifer, Wei Huang, Ruixue Jia, Larry Karp, Bree Lang, Matt Lang, Bryan Leonard, Weijia Li, Jeremy Magruder, Aprajit Mahajan, John Matsusaka, Daniel McMillen, Helene Ollivier, Albert Park, Martino Pelli, Jeffrey Perloff, Obie Porteous, Han Qi, David Rapson, Elisabeth Sadoulet, Ruoyao Shi, Leo Simon, Michael Song, Kenneth Small, Qu Tang, Itai Trilnick, Reed Walker, Shaoda Wang, Brian Wright, Yanhui Wu, Yiqing Xu, Jia Yan, and participants in seminars and workshops at CU Boulder, CUHK, Fudan University, HKBU, HKUST, Peking University, Shanghai Jiao Tong University, Singapore Management University, Tsinghua University, UC Berkeley, UC Riverside, Université de Sherbrooke, and USC and the 2017 AERE Summer Conference, CAERE Annual Conference, CES Annual Conference, EAERE Annual Conference, Econometric Society Asian Meeting, and Fudan–UC Social Science and China Studies Young Scholar Conference for their valuable comments. Yuhang Pan, Xiaoxiao Shen, Chun Wai Cheung, Ziteng Lei, Tingjun Man, and Jing Yang offered excellent research assistance.
    [Show full text]