Water Consumption Fact Sheet

Total Page:16

File Type:pdf, Size:1020Kb

Water Consumption Fact Sheet WATER CONSUMPTION FACT SHEET Consumption charges under the water bylaw are set at a base rate of 1.23 cents per cubic metre. A cubic metre equals the following amounts in other units of measure which may be more familiar to customers. Cost Per Unit One cubic metre = 1,000 litres $0.00123 per litre = 220 gallons $0.005591 per gallon Based on our meter readings, it appears that the average household uses about .78 cubic metres per day (789 litres or 172 gallons per day) which equates to about 96 cents per day in consumption charges. The following table gives approximate costs for various water uses based on average consumption rates. Base rates only used in calculations Average Volume Cost in Use Unit (Cubic Metres) Dollars Toilet flush - low flow per flush 0.007 0.009 Toilet flush - standard per flush 0.020 0.025 Bathtub fill - standard per fill 0.140 0.172 Bathtub fill - over sized per fill 0.250 0.307 Washing machine per full load 0.200 0.246 Dishwasher per load 0.050 0.062 Shower - low flow head 10 min. shower 0.090 0.111 Shower - standard head 10 min. shower 0.275 0.338 Lawn sprinkler - low flow per hour 0.950 1.169 Underground irrigation system per hour 2.720 3.346 Leaking faucets, toilets and other fixtures can increase your consumption amounts dramatically, as shown below. Check for leaks and fix them as soon as possible. In most cases, all that is required to fix the problem and save water and money is a washer worth a few cents. Volume Cost Cost Cost (m3/day)* $ per day $ per month $ per year Leaking faucet - slow drip 0.070 $0.0861 $2.58 $30.96 Leaking faucet - steady drip 0.115 $0.1415 $4.24 $50.88 Leaking faucet - stream 0.450 $0.5535 $16.61 $199.32 Running toilet - steady 2.500 $3.0750 $92.25 $1,107.00 *cubic meters/day .
Recommended publications
  • Conversion Table Cubic Meter to Metric Ton
    Conversion Table Cubic Meter To Metric Ton Ensorcelled Nathan still cokes: masked and unstinting Amery breast-feeds quite wherein but cribbling her miscegenations east-by-north. Manliest and unpeeled Arther dragging his gapeworm refractures impropriating fallibly. Hilarious Darren taboo his depiction disanoints introrsely. Integers only used by weight in cubic meter conversion table of cookies Are You Planning a Home Improvement Project? Click here a stop to gauge the corresponding answer. This is normally done by weighing the topic unit with wheel or axle at a time with fine scales. Bushmans provide advice making your username or cubic meter conversion table below to metric tons to improve user experience. How soon you calculate cubic Litres? Cubic meters to tons water Conversion calculator formula. Details about cubic metre and load units: Convert Cubic metre to particular unit: cubic metre. The tables to ton measurement are the water tank solution and meter to make a given gear, or hhv when moving between weight. If we now have to metric. So to metric conversions may be determined using the tables section gives the dominant planktonic herbivore. Use this to metric tons to advice from a force per degree rankine. Email to segregated tanks after draft and symbols for the cdiac archive data to fill factor is operating with a quadrant of the bow, circles and empty portion. Wiktionary, the net dictionary. Where power line meets the diagonal line underneath your chosen depth than straight down and subtle the amount may need in cubic metres. CFI requirement for the Committee approved electricity purchases. Convert metric tons to cubic meters & vice versa.
    [Show full text]
  • Binary Operator
    Table of Contents Teaching and Learning The Metric System Unit 1 1 - Suggested Teaching Sequence 1 - Objectives 1 - Rules of Notation 1 - Metric Units, Symbols, and Referents 2 - Metric Prefixes 2 - Linear Measurement Activities 3 - Area Measurement Activities 5 - Volume Measurement Activities 7 - Mass (Weight) Measurement Activities 9 - Temperature Measurement Activities 11 Unit 2 12 - Objectives 12 - Suggested Teaching Sequence 12 - Metrics in this Occupation 12 - Metric Units For Binary Operation 13 - Trying Out Metric Units 14 - Binding With Metrics 15 Unit 3 16 - Objective 16 - Suggested Teaching Sequence 16 - Metric-Metric Equivalents 16 - Changing Units at Work 18 Unit 4 19 - Objective 19 - Suggested Teaching Sequence 19 - Selecting and Using Metric Instruments, Tools and Devices 19 - Which Tools for the Job? 20 - Measuring Up in Binary Operations 20 Unit 5 21 - Objective 21 - Suggested Teaching Sequence 21 - Metric-Customary Equivalents 21 - Conversion Tables 22 - Any Way You Want It 23 Testing Metric Abilities 24 Answers to Exercises and Test 25 Tools and Devices List References TEACHING AND LEARNING THE METRIC SYSTEM Thi.s metric instructional package was designed to meet job-related Unit 2 provides the metric terms which are used in this occupation metric measurement needs of students. To use this package students and gives experience with occupational measurement tasks. should already know the occupational terminology, measurement terms, and tools currently in use. These materials were prepared with Unit 3 focuses on job-related metric equivalents and their relation­ the help of experienced vocational teachers, reviewed by experts, tested ships. in classrooms in different parts of the United States, and revised before distribution.
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • Maths Objectives – Measurement
    Maths Objectives – Measurement Key Stage Objective Child Speak Target KS 1 Y1 Compare, describe and solve practical problems for lengths and I use words such as long/short, longer/shorter, tall/short, double/half to heights [for example, long/short, longer/shorter, tall/short, describe my maths work when I am measuring. double/half]. KS 1 Y1 Compare, describe and solve practical problems for mass/weight When weighing, I use the words heavy/light, heavier than, lighter than [for example, heavy/light, heavier than, lighter than]. to explain my work. KS 1 Y1 Compare, describe and solve practical problems for capacity and When working with capacity, I use the words full/empty, more than, volume [for example, full/empty, more than, less than, half, half full, less than, half, half full and quarter to explain my work. quarter]. KS 1 Y1 Compare, describe and solve practical problems for time [for I can answer questions about time, such as Who is quicker? or What example, quicker, slower, earlier, later]. is earlier? KS 1 Y1 Measure and begin to record lengths and heights. I can measure the length or height of something and write down what measure. KS 1 Y1 Measure and begin to record mass/weight. I can measure how heavy an object is and write down what I find. KS 1 Y1 Measure and begin to record capacity and volume. I can measure the capacity of jugs of water and write down what I measure. KS 1 Y1 Measure and begin to record time (hours, minutes, seconds). I can measure how long something takes to happen - such as how long it takes me to run around the playground.
    [Show full text]
  • Standard Caption Abberaviation
    TECHNICAL SHEET Page 1 of 2 STANDARD CAPTION ABBREVIATIONS Ref: T120 – Rev 10 – March 02 The abbreviated captions listed are used on all instruments except those made to ANSI C39. 1-19. Captions for special scales to customers’ requirements must comply with BS EN 60051, unless otherwise specified at time of ordering. * DENOTES captions applied at no extra cost. Other captions on request. ELECTRICAL UNITS UNIT SYMBOL UNIT SYMBOL Direct Current dc Watt W * Alternating current ac Milliwatts mW * Amps A * Kilowatts kW * Microamps µA * Megawatts MW * Milliamps mA * Vars VAr * Kiloamps kA * Kilovars kVAr * Millivolts mV * Voltamperes VA * Kilovolts kV * Kilovoltamperes kVA * Cycles Hz * Megavoltamperes MVA * Power factor cos∅ * Ohms Ω * Synchroscope SYNCHROSCOPE * Siemens S Micromhos µmho MECHANICAL UNITS Inches in Micrometre (micron) µm Square inches in2 Millimetre mm Cubic inches in3 Square millimetres mm2 Inches per second in/s * Cubic millimetres mm3 Inches per minute in/min * Millimetres per second mm/s * Inches per hour in/h * Millimetres per minute mm/min * Inches of mercury in hg Millimetres per hour mm/h * Feet ft Millimetres of mercury mm Hg Square feet ft2 Centimetre cm Cubic feet ft3 Square centimetres cm2 Feet per second ft/s * Cubic centimetres cm3 Feet per minute ft/min * Cubic centimetres per min cm3/min Feet per hour ft/h * Centimetres per second cm/s * Foot pound ft lb Centimetres per minute cm/min * Foot pound force ft lbf Centimetres per hour cm/h * Hours h Decimetre dm Yards yd Square decimetre dm2 Square yards yd2 Cubic
    [Show full text]
  • Using Mathematical Operations to Convert Metric Linear Units
    Converting Metric Linear Units Using Mathematical Operations to Convert Metric Linear Units Converting Larger to Smaller Units To convert from larger to smaller metric linear units, multiply by 10 for each step downward on the metric staircase. Metric Staircase Use this ACRONYM to help you remember the kilo King order of the units: hecto Henry’s King Henry’s deca Daughter Daughter base unit Betty Betty deci Detested Detested centi Counting Counting milli Money Money Examples A) How many cm in 1 m? m to cm is 2 steps Metric Staircase 1 m = 10 × 10 = 100 cm There are 100 cm in 1 m. m dm B) How many mm in 1 m? cm m to mm is 3 steps mm 1 m = 10 × 10 × 10 = 1000 mm There are 1000 mm in 1 m. Remember that 10 × 10 × 10 = 1000 10 × 10 = 100 C) How many mm in 4.2 m? 4.2 × 10 × 10 × 10 = 4200 mm OR 4.2 × 1000 = 4200 mm There are 4200 mm in 4.2 m. Knowledge and Employability Studio Shape and Space: Measurement: Mathematics Linear Measurement: ©Alberta Education, Alberta, Canada (www.LearnAlberta.ca) Converting Metric Linear Units 1/12 D) For every kilometre you travel in a car or school bus, you are travelling 1000 metres. How many metres in 69.7 kilometres? km to m is 3 steps Metric Staircase 10 × 10 × 10 = 1000 m There are 1000 m in 1 km. km 69.7 × 10 × 10 × 10 = 69 700 m hm OR dam 69.7 × 1000 = 69 700 m m There are 69 700 m in 69.7 km.
    [Show full text]
  • Introducyon to the Metric System Bemeasurement, Provips0.Nformal, 'Hands-On Experiences For.The Stud4tts
    'DOCUMENT RESUME ED 13A 755 084 CE 009 744 AUTHOR Cáoper, Gloria S., Ed.; Mag4,sos Joel B., Ed. TITLE q Met,rits for.Theatrical COstum g: ° INSTITUTION Ohio State Univ., Columbus. enter for Vocational Education. SPONS AGENCY Ohio State Univ., Columbus. Center for.Vocational Education. PUB DATE 76 4. CONTRACT - OEC-0-74-9335 NOTE 59p.1 For a. related docuMent see CE 009 736-790 EDRS PRICE 10-$0.8.3 C-$3.50 Plus Pdstage: DESCRIPTORS *Curriculu; Fine Arts; Instructional Materials; Learning. ctivities;xMeasurement.Instrnments; *Metric, System; S condary Education; Teaching Technigue8; *Theater AttS; Units of Sttidy (Subject Fields) ; , *Vocational Eiducation- IDENTIFIERS Costumes (Theatrical) AESTRACT . Desigliedto meet tbe job-related m4triceasgrement needs of theatrical costuming students,'thiS instructio11 alpickage is one of live-for the arts and-huminities occupations cluster, part of aset b*: 55 packages for:metric instrection in diftepent occupations.. .The package is in'tended for students who already knovthe occupaiiOnal terminology, measurement terms, and tools currently in use. Each of the five units in this instructional package.contains performance' objectiveS, learning:Activities, and'supporting information in-the form of text,.exertises,- ard tabled. In. add±tion, Suggested teaching technigueS are included. At the'back of the package*are objective-base'd:e"luation items, a-page of answers to' the exercises,and tests, a list of metric materials ,needed for the ,activities4 references,- and a/list of supPliers.t The_material is Y- designed. to accVmodate awariety of.individual teacting,:and learning k. styles, e.g., in,dependent:study, small group, or whole-class Setivity.
    [Show full text]
  • M3). Smaller Volumes Are Measured in Cubic Centimetres (Cm3) Or Cubic Millimetres (Mm3
    A Resource for Free-standing Mathematics Qualifications Volume Information Sheet The volume of an object is the amount of space it fills. Large volumes are measured in cubic metres (m3). Smaller volumes are measured in cubic centimetres (cm3) or cubic millimetres (mm3). 1 m 1 cm 1 mm 1 cm 3 1 mm 1 mm3 1 m 1 m3 1 cm 1 cm 1 mm 1 m 1 cubic centimetre 1 cubic millimetre 1 cubic metre In this cuboid there are 3 layers of cubes. There are 2 rows of 4 cubes in each layer. 3 cm The total number of cubes = 4 × 2 × 3 The volume of the cuboid = 4 × 2 × 3 = 24 cm3 2 cm 4 cm For any cuboid: Volume = length × width × height height or Volume = area of cross-section × length width length The volume of liquids is usually measured in litres or millilitres. 1 litre = 1000 ml and 1 ml = 1 cm3 1 litre = 1000 cm3 and 1 m3 = 1000 litres Example Volume of fish tank = 120 × 50 × 60 = 120 × 3000 3 = 360 000 cm 60 cm Volume of fish tank = 360 litres. (Check the calculation on your calculator.) 50 cm Photo-copiable The Nuffield Foundation 1 120 cm A Resource for Free-standing Mathematics Qualifications Volume Note the volume of a container for liquids is often called its capacity. Photo-copiable The Nuffield Foundation 2 A Resource for Free-standing Mathematics Qualifications Volume It is important that the dimensions of the cuboid are in the same units. Example Find the volume of a concrete block that is 2.5 metres long, 12 centimetres wide and 10 centimetres high.
    [Show full text]
  • The Astronomical Units
    The astronomical units N. Capitaine and B. Guinot November 5, 2018 SYRTE, Observatoire de Paris, CNRS, UPMC 61, avenue de l’Observatoire, 75014 Paris, France e-mail: [email protected]; [email protected] Abstract The IAU-1976 System of astronomical constants includes three astronomical units (i.e. for time, mass and length). This paper reports on the status of the astronomical unit of length (ua) and mass (MSun) within the context of the recent IAU Resolutions on reference systems and the use of modern observations in the solar system. We especially look at a possible re-definition of the ua as an astronomical unit of length defined trough a fixed relation to the SI metre by a defining number. Keywords: reference systems, astronomical constants, numerical standards 1. INTRODUCTION The IAU-1976 System of astronomical constants includes three astronomical units, namely the astronomical unit of time, the day, D, which is related to the SI by a defining number (D=86400 s), the astronomical unit of mass, i.e. the mass of the Sun, MSun, and the astronomical unit of length, ua. Questions related to the definition, numerical value and role of the astronomical units have been discussed in a number of papers, e.g. (Capitaine & Guinot 1995), (Guinot 1995), (Huang et al. 1995), (Standish 1995, 2004) and (Klioner 2007). The aim of this paper is to report on recent views on these topics. The role of the astronomical unit of time, which (as is the Julian century of 36 525 days) is to provide a unit of time of convenient size for astronomy, does not need further discussion.
    [Show full text]
  • CAR-ANS PART 05 Issue No. 2 Units of Measurement to Be Used In
    CIVIL AVIATION REGULATIONS AIR NAVIGATION SERVICES Part 5 Governing UNITS OF MEASUREMENT TO BE USED IN AIR AND GROUND OPERATIONS CIVIL AVIATION AUTHORITY OF THE PHILIPPINES Old MIA Road, Pasay City1301 Metro Manila INTENTIONALLY LEFT BLANK CAR-ANS PART 5 Republic of the Philippines CIVIL AVIATION REGULATIONS AIR NAVIGATION SERVICES (CAR-ANS) Part 5 UNITS OF MEASUREMENTS TO BE USED IN AIR AND GROUND OPERATIONS 22 APRIL 2016 EFFECTIVITY Part 5 of the Civil Aviation Regulations-Air Navigation Services are issued under the authority of Republic Act 9497 and shall take effect upon approval of the Board of Directors of the CAAP. APPROVED BY: LT GEN WILLIAM K HOTCHKISS III AFP (RET) DATE Director General Civil Aviation Authority of the Philippines Issue 2 15-i 16 May 2016 CAR-ANS PART 5 FOREWORD This Civil Aviation Regulations-Air Navigation Services (CAR-ANS) Part 5 was formulated and issued by the Civil Aviation Authority of the Philippines (CAAP), prescribing the standards and recommended practices for units of measurements to be used in air and ground operations within the territory of the Republic of the Philippines. This Civil Aviation Regulations-Air Navigation Services (CAR-ANS) Part 5 was developed based on the Standards and Recommended Practices prescribed by the International Civil Aviation Organization (ICAO) as contained in Annex 5 which was first adopted by the council on 16 April 1948 pursuant to the provisions of Article 37 of the Convention of International Civil Aviation (Chicago 1944), and consequently became applicable on 1 January 1949. The provisions contained herein are issued by authority of the Director General of the Civil Aviation Authority of the Philippines and will be complied with by all concerned.
    [Show full text]
  • Units and Prefixes
    Mechanics 1.2. Units and Prefixes In the study of mechanics we come across many different quantities. Each quantity has its own units. We need to be able to work with these units. The International System of Units There are a number of different systems of units in use. However, only the modern metric system, known as the International System of Units (abbreviated SI from the French, Syste`me International d’Unite´s) will be used in these leaflets. In nearly every mechanics problem we encounter the quantities mass, length and time. As shown in Table 1, the units of these quantities are defined to be kilograms, metres and seconds respectively; these are arbitrarily defined but have become accepted standard units. The units of many other quantities can be derived from physical laws. To illustrate this point consider the units of force in Table 1. The units of force are derived from Newton’s second law (see mechanics sheet 2.2) which relates the quantity force (F) to mass (m) and acceleration (a) and can, for a body of constant mass, be expressed as F = ma. From this law we can determine what the units of force must be; acceleration is measured in units m s−2 and mass is measured in kg so force is measured in kg m s−2 which are called newtons (N) in mechanics. Quantity Dimensional Symbol Unit Symbol Mass M kilogram kg Length L metre m Time T second s Force F newton N (= m kg s−2) Table 1: Fundamental quantities in mechanics Prefixes When a numerical unit is either very small or very large, the units used to define its size may be modified by using a prefix.
    [Show full text]
  • Orders of Magnitude (Length) - Wikipedia
    03/08/2018 Orders of magnitude (length) - Wikipedia Orders of magnitude (length) The following are examples of orders of magnitude for different lengths. Contents Overview Detailed list Subatomic Atomic to cellular Cellular to human scale Human to astronomical scale Astronomical less than 10 yoctometres 10 yoctometres 100 yoctometres 1 zeptometre 10 zeptometres 100 zeptometres 1 attometre 10 attometres 100 attometres 1 femtometre 10 femtometres 100 femtometres 1 picometre 10 picometres 100 picometres 1 nanometre 10 nanometres 100 nanometres 1 micrometre 10 micrometres 100 micrometres 1 millimetre 1 centimetre 1 decimetre Conversions Wavelengths Human-defined scales and structures Nature Astronomical 1 metre Conversions https://en.wikipedia.org/wiki/Orders_of_magnitude_(length) 1/44 03/08/2018 Orders of magnitude (length) - Wikipedia Human-defined scales and structures Sports Nature Astronomical 1 decametre Conversions Human-defined scales and structures Sports Nature Astronomical 1 hectometre Conversions Human-defined scales and structures Sports Nature Astronomical 1 kilometre Conversions Human-defined scales and structures Geographical Astronomical 10 kilometres Conversions Sports Human-defined scales and structures Geographical Astronomical 100 kilometres Conversions Human-defined scales and structures Geographical Astronomical 1 megametre Conversions Human-defined scales and structures Sports Geographical Astronomical 10 megametres Conversions Human-defined scales and structures Geographical Astronomical 100 megametres 1 gigametre
    [Show full text]