<<

Chemical and Crystallographical studies on Calciferous Title , Tschermakite-Pargasite Series from Volcanic Rocks

Author(s) Tomita, Katsutoshi

Memoirs of the College of Science, University of Kyoto. Series Citation B (1962), 28(4): 549-569

Issue Date 1962-03-20

URL http://hdl.handle.net/2433/258651

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University MEMOIRS OFTHE COLLEGE OF SCIENCE, UNIVERSITY OF KyOTO, SERIEs B, Vol, XXVIII, No. 4 Geology and , Article 6, 1962

Chemical and Crystallographical studies on Calciferous Amphiboles,

Tschermakite-Pargasite Series from Volcanic 'Rocks

By

Katsutoshi ToMITA

Geologica} and Mineralogical Institute, University of Kyoto

(Received Decem. 5, 1961)

Abstraet Calciferous amphiboles of tschermakite-pargasite series occur mainly in volcanic rocks. These amphiboles can be called oxyhornblende. Chemical cornposition ef calciferous arnphiboles may indicate the geological environment which crystallized thern. By X¥-ray powder diffraction, there are found interesting facts in the relationship between or actinolite and tschermakite-pargasite series.

Introduction

It has become an important fie!d of investigation of mineralogy to discuss the relationship between the chemical composkion and the of rock forming minerals. Accordingly, k is essentia} to clariÅíy the variety of chemical composition and to determine the accurate crystal structures of rock- forming minerals forrned under various conditions. From this viewpoint, many excel}ent studies have been carried out on feldspars, , and other minerals. In the investigatioR of group, it is neccesary to obtain the reliable chemical and crysta}lographical data. The principal aims of this study are to find the chernical formula, the relationship among the substitutions of some element groups, and to obtain crystallographic data of Al-rich ca}ciferous amphiboles occurring mainly in volcanic rocks. In this paper, the chemical formula of this variety of amphibole will be described, some informations wili be given on the relationship between con- stituents, and the crystallographic data obtained from the powder patterns of the X-ray diffraction will be described. Reliable crystallographic data for A}-rich calciferous amphibole will be dis- cussed in future. The author wishes to express his sincere thanks to Prof, T. ITQ and Dr, 550 Katsutoshi ToMiTA

T. UEDA of Kyoto University, for their ttseful suggestions oR this iBvestigation, as well as for their kind advice in this work. Tkanks are also due to Dr. Y. UKAi for his encouragement, to former Prof. A. HARuMoTo and Mr. T. SHiMizu for supplying materials used in this work, and to Dr. M. TATEKAwA for his valuable advice and help. Me is also indebted to Dr. AsAyAMA for permission to use the Shimazu recording diffractometer in Kyoto Technological University.

Classifieation of Natural Amphiboles

The naturai amphiboles fall into two classes, ortltorhombic and monoclinic. The crystal structures of monoclinic amphiboles were investigated by WARREN (1929, 1930), WARREN and MoDELL (1930), WmTTAKER (1949) and ZvssMAN (1955, 1959). The crystal structure of tremolite giveR by WARREN (1930) consists of double chains oÅí SiO,i tetrabedra running parallel to c-axis. In a half unit cell there are eigh¥t 4-coordinate positions eccupied by Si atoms. five 6-coordinate positions by Mg ions and two 8-coordinate positions by Ca iolls. llereafter, the 4-, 6- an(l 8-coordinate positlons will be desigRated by the letteys Z, Y, and Å~ respectively. Besides these there is one vacant site cailed "A" slte by Warren. In mgnoclinic amphiboles, Z positions are occupied by Si and Al atoms, Y positioRs by Mg, Fe", Ti, Fe'", and Al ions and X positions by Ca, Na, aRd/or K ions and occasionally by Mg, and Fe" iens, causing a collapse of the structure. " A" site is, sometimes, occupied by Na, and/or K ion. Then we come to the genera} formula of monoclinic amphibole which is as follows : X,rm,Y,Z,O,,(OH), where X:Ca, Na, K, Mg, Fe" Y: Mg, Fe", Fe'", Ti, Mn, AI Z: Al, Si

Monoclinic amphibo}e can be divided iRto two groups on the basis of chemica} composition, i.e. in the first group, X positions are occupied by Mg, and Fe", in the other group, by Ca, Na and K. The former will be cal}ed commingtonite group. The latter wiil be divided into two sub-groups on tke basis of the number of Ca-ions occupying X positioRs. ORe sub-group is calciferous ampkiboles which are higher in Ca- centeRt, and the other is alkali amphiboles lower in that content substituting Na ions for a part of Ca-ioRs (llALmMoND, 1943). In the classification of moRoclinic amphiboles, such treatment as mentioned above has been adopted by many authors. Among tkem WmNcHELL (1945) Chemical and Crysta}lographical studies on Calciferous Amphiboles, . 551 Tschermakite-Pargasite Series, from Volcanic Rocl<$ found an important information in systematizing amphiboles. MiyAsmRo (1957) made a valuable contributioB to the study of a}kali-amphiboles, aRd BoyD (1959) preseRted a new classification of ampkiboles, cornmenting on the old one which has been current so far. The crystal structure of oythorhombic amphiboles, anthophyllite, has beefi established by WARREN aRd MoDELL (1930), and ITo (l950). ' The anthophyllite structure is "virtually a twinned tremolite, containing only one and the same kind of ckains as found in tremo}ite" (ITo, 1950). Ortkorhombic amphibo}es, Anthophyllite'group are 1

Table 1. Classification of Calcifereus Amphiboles.

tremolite-ferrotremolite Ca2(Mg, Fe'+'2)sSis022(OH)2 tschermakite-ferrotschermal

There are certain calciferous amphiboles somewhat different from the groups described in Table 1. They are called oxyhornblende. The content of water in tkem is almost neg}igible. In this paper, tlte oxyhornblende wi}l be mainly discussed.

Chemical Analysis of Calciferous Amphiboles Samp}ing of Specirr}eRs: Calciferous amphiboles used in this study were picked out from the host rocks and agglomerate shown in Table 2. The specimens were crushed into the grains size of which is from 100 mesh to 150

Table 2 I co'io'r' oigampie l Sample host rock

1 (tremolite) white contact zone 2 dark green porphyrite 3 { dark red hornblende andesite 4 I dark green hornblende andesite 5 lT black agglomerate of volcanic ejecta

Lecality Sample 1 : Antung-hsien, Liaotung, China 2:Hanya Village, Ono Prov. Fukui Pref. Japan 3,4 : Shinanozakai, Suwa Prov. Nagano Pref. Japan 5:Gaspan, Parao Island. 552 Katsutoshi TowtTA mesh. The crushed specimens were separated from magnetic impuyities, quartz and feldspars, using an iscdynamic separator. After that, the specimens were purified¥ under a microscope. The purified specimens were pulverized into powders in an agate mortar. ARalytical Method: The maln pOrtions, that is, Si02, A1203, CaO, MgO were determined gravimetrically which is usually applied to silicate minerals. Total iron and FeO were afialysed volumetrically, the former by the methods of Zimmermann Reinhardt, and the Iatter by usua} method. Ti02 and MnO were determined colormetrically. Alkali met.als were deSermined by the method of fiame photometry: Absorbed water was determined by heating the pulverized samples at the temperature betweeR 1080 and 1100C for 2 hours in an electric air-oven. Determination of total water conteRt was diracult technically. ALLEN and CLEMENT (1908) found that tremolite lost 859o! of combined water at 9230C. PosN3AK and BowEN (193i) demonstrated tlte behavior of water in tremolite by static weight loss experiments : up to 900eC, the theoretical water content of 2.229o/ was driven off, but the dehydration was very slow up to 850eC. Tremolite heated at 9000C for 24 hours showed several X-ray diffyaction lines which are in conformity with those of . They therefore cencluded that the followlng reaction might be taken place in the solid state: Ca2MgsSis022(OH)2"dH ::= 2CaSiO,¥5MgSi03"H20 -- Si02 AA diopside-clinoenstatite li cristobalite The author re-examined the dehydration process with tremolite (Sample No. 1), green hornblende from metagabbro, Shiga island, Fukuol

Chemical Cornposition and Chemical Formula Tlte results of chemical analyses with calcifereus amphiboles which Chemical and Crystallographical studies on Calciferous Amphiboles, 553 Tschermakite-Pargasite Series, from Volcanic Recks

Table 3. Chemical Composition of Calciferous Amphiboies.

t i ,I 2 3 i i 14l i 56* Si02 l 58.54 39.34 t 3958 42.05 l 41.o7 3g.20 I Al,0, i o.79 I 19.91 19.42 18.00 17.97 13.87 Fe203 i e.o3 l o.oo 7.54 2.77 3.59 4.08 Ti02 lII O.04i 1.30 3.04 2.8e i,illl,iii FeO i 0.11 7.18 0.57 4.66 i MgO Il 23.6e i l4.10 14.92 15.19 MnO tr. 0.19 0.11 0.11 0.14 0.11 caO 12.75 l4.96 l2.30 10.95 12.05 12.37 l Na20 0.59 2.40 l 2.58 2.12 L83 i 1.99 K,O O.07 0.35 i o.2o e.31 0.31 1.45 H,O -i- 2.52 1.02 ' O.OO i 1.15 0.52 ' 0.87 K,0- 0.15 0,00 O.06 0.19 0.57 0.27

l I gg.3g koo.o3 Total 99.19 100.75 IOO.32 100.30 l 1 I / g 6* : Analyst UsmziMA (KARUMoTO," CmKyu" (The Earth) Vol. I9, 1933.)

Table 4. Atomic Ratie of Analyzed Calciferous Amphiboles Based on (O, OK) == 2400

l 1 2 3 4 5 6*

' 60-0" si 792 570 i 552 610 586 AIIY 23e l 24s 2oo I 190 214 8 i AIVI 4 llO i 70 i:g , 125 30 Ti o 13 32 2 74 Fe'F3 o o 79 ggi 39 47 Fe+2 o 86 97 92 Mn o 1 i7 32Z l2i 3io 2I 2 Mg 477 304 297 i 267 Ca 182 232 ii i9i igg i 192 198 Na 25 68 61 53 I 57 K o 6 627 OH 227 99 i 56 llO 50 86 "ALeS 106 32 o 51 i I 82 x 196 200 li2i 200 200 i 200 . Rt, 477 i 391 382 I 396 361 Rin 4 123 162 I 166 i 151 i ggg 544 ' RU {u RLttl 482 514 562 512 z 800 seo 800 l 800 i 800 i I 554 . Katsutoshi ToMITA occur. in vo}canic rocl

Table 5. X--ray Powder Diffraction Patterns of Amphiboles Sample 1. tremelite

i 2e obs¥ l hkl degree l4sin2e 4 sin2 e cal. l d (A) l I I 020 I 9.75 O.0288 O.0288 9.07 19 i 10.50 O.0335 O.033<; 8.42 109 110 t 10i l7.45 O.0920 O.0923 5.08 10 011 l 18.13 O.0994 0.1008 4.90 6 200 18.62 0.1046 0.1048 4.77 11 19.63 040 l 0.1162 0.ll52 4.55 11 1 21.10 1 0.1341 I 0.1336 4.21 24 220 i 031 22.86 O.l571 Oal584 3.89 6 l41 26.30 0.2070 e.2e75 3.40 23 [ 240 27.23 I 0.2217 0.2200 3.28 41 l 28.53 0.2429 0.2430 3.23 310 i 100 051 30.36 l 0.2744 I 0.2736 2.94 16 l 31.92 0.3023 0.3006 2.81 27 330 i i 231 32.76 0.3182 i 0,3182 2.73 I 12 1- l 25 ' 33.08 l e.3242 l 0.3234 2.71 28 i I 112 34.55 i 0.3527 l 0.3528 2.59 9 l I 2o2 35.37 0.3690 I 0.3692 2.54 I 12 l 132 37.35 0.4104 I 0.4104 2.40 l 1 l l I 0.4119 E 301 37.75 0.4186 l 2.38 7 I i 0.4292 400 l 38.50 0.4347 l 0.4407 2.34 321 I 14 l 420 39.15 0.4490 0.4480 2.30 5 0.4962 27X 41.74 I 0.5075 2.16 ' 24 332 I 0.5100 I I 202 I 44.92 l 0.5831 0.5892 2.02 8 i 48.00 0.6617 0.6622 1.90 I 14 510 l 56 -1 55.65 0.8715 I 0.8703 1.65 8 I 48e 56.15 I 0.8859 0.8800 l 1.64 2 521 56.88 0.9073 0.9149 1.62 2 i 0.9434 600 58.40 0.9520 1.58 1 I l 0.9519 103 I 123 : 59.43 0.9829 0.98e2 1.56 2 ; 1.0078 570 i 60.30 1.0090 1.53 E 2 1.0164 622 I i 61.70 1.0518 1.0500 1.50 3 282 i 2120 i 64.75 1.1468 1.1416 1.44 18 556 katsutoshi TouilTA

Table 5. (Continued) Sample 2.

hkl l 2e degree I4 sin2 e obs. l 4 sin2 e cal. l d (A) i I o2e 110 10.55 O.0338 O.0335 8.42 91 ioi 011 18.00 O.0978 0.100! 4.93 4 2eo 040 19.67 0.1166 O.l168 4.51 6 220 21.20 O.l341 0.1340 4.21 4 14 -1 26.33 0.2075 0.2084 3.39 12 240 27.25 I 0.2219 0.2216 3.27 40 3iO 28.62 l 0.2443 0.2431 3.12 100 051 30.45 l 0.2759 0.2753 2.93 8 330 31.95 0.3029 0.3015 2.80 18 232 32.68 0.3166 0.3181 2.74 15 251 33.05 0.3236 0.3253 2.71 19 112 34.50 0.3517 0.3499 2.60 10 2e2 35.16 0.3650 0.3664 2.55 6 0.4108 301 37.75 0.4183 2.38 400 0.4192 4 321 38.40 0.4325 o.44oe 2.34 8 42e 2 7 " 1 0.5083 41.75 0.5078 2.16 8 332 0.5275 202 44.75 0.5837 0.5852 2.02 6 510 48.02 0.6621 0.6623 !.89 4

530 l 561 55.72 0.8734 0.8736 l.65 1 480 521 600 103 622 570 0120 482 282 2l20 64.73 1.1463 1.1560 1.44 10 Chemical and Crystallographical studies on Calciferous Amphiboies, 557 Tschermakite-Pargasite Series, from Volcanlc Rocks

Table Jr. (Continued) Sample 3, from andesite

obs¥ l hkl I 2g degree l4sin2e 4 sin2 e cal.i d (A) """"' "'t. ". .t.ww Ii

1 ] I 1 I I 020 i l I 110 10.60 I O.0341 I e.0336 i 8.35 84 i ] 1 10 -1 l l t i l : I 011 L i I ! i 200 1 l l l 040 19.68 l o.!16s 0.1168 I 4.51 9 i l I i i 220 i I ] I I I 26.41 I o.2ess 0.2082 i 3.38 141 l l 16 240 27.34 l 0.2233 i 0.2220 l 3.27 33 I o.24s7 l 310 l 28.70 0.2440 I 3.11 100 L I o.2776 t i 30.55 0.2752 2.92 12 051 l I L I 32.02 l 0.3042 0.3024 ' 2.80 14 330 1 I 32.75 : 0.3188 2.73 l4 231 I i 0.3179 I 33.14 i o.3252 : 0.3254 2.71 28 251 I 1 112 I 34.62 0.3540 i 0.3492 2.59 14 1 202 I 35.20 0.3657 i 0.3656 2.55 13 l e.4122 301 37.90 0.4218 2.37 400 0.4208 5 I 38.56 0.4362 0.4414 I 2.33 9 321 l I 0.5006 l 271 41.95 l 0.5125 2.15 9 332 l I 0.5076 202 45.17 e.5899 : 0.5864 2.01 10 I I 48.43 I 0.6730 l 0.6648 l.88 5 510 l 53e 50.60 i 0.7305 l 0.7332 1.80 i 7 I i l l 56i i 1 : i 480 56.05 I 0.8830 i 0.8766 l 1.64 i le I i I 521 i i I L i i 600 i I l 103 l I L [ i I l f 622 I 570 i I I l 0120 l i i l l 482 L i ] I l l 282 i l j 2120 65.08 1.1574 I 1.1564 1.43 9 I l I 5s8 Katsutoshi Toxx,IITA

Table 5. (Continued) Sample 4. ,,} l 2e degree I4sin2e obs.I4sin2e cal.I d (A) Ii t 020 9.80 O.0291 O.0292 9.03 2 110 IO.55 O.0338 O.0335 8.42 95 le - 1 I 011 2oe 040 19.65 0.ll64 0.ll68 4.52 6 220 14i 26.32 0.2072 0.2084 3.39 10 240 27.26 0.2222 0.2216 3.27 32 310 28.65 0.2

Tabie 5. (Continued) Sample 5.

i 2e degree obs¥ l hkl 4 sin2 e 4 sin2 e cal. d (A) E I o2e 9.80 O.0292 O.0288 9.03 1 110 10.50 O.0335 O.033Z 8.42 103 10 -1 011 200 o4e .19.60 0.1158 0.1152 4,53 11 220 14I 26.27 0.2065 0.2065 3.39 19 240 27.20 0.2212 0.2188 3.28 28 310 28.50 0.2423 0.2403 3.13 100 051 30.35 0.2741 0.2729 2.94 l7 330 31.85 0.3011 0.2979 2.81 32 231 32.60 0.3151 0.3165 2.75 27 25i 33.00 0.3226 0.3215 2.71 24 112 34.52 0.3520 0.3497 2.60 13 202 35.10 0.3637 0.3652 2.56 13 e.4081 301 37.75 OAI86 2.38 6 400 0.4144 321 38.36 0.4329 0.4363 2.34 16 420 39.e5 0.4468 0.4432 2.30 7 0.4943 27i 41.76 0.5082 332 0.5038 2.16 18 2e2 45.CO 0.5857 0.5852 2.01 IO 510 48.05 0.6630 0.6547 1.89 4 530 56 -1 5520 0.8729 0.8721 1.65 16 480 521 56.97 0.9097 0.9067 1.62 6 0.9324 6eo 58.15 0.9446 1.59 103 0.9445 10 622 570 0120 482 282 61.65 1.0502 i.0460 1.5e 12 2120 i 64.7o l.1452 l.l404 1.44 21 560 I

Table 5. (Continued) 6* kaersutite

E ebs. i 4 sin2e cal¥ i hkl l 2e degree I4sin2e d (A) I 020 110 10.50 O.0335 E O.0333 8.42 69 1 0 - 1 Oll 200 e4o 220 l 14i 26.30 0.2059 0.2059 3.39 13 240 27.15 0.2203 0.2196 3.29 32 310 28.54 Oa2429 0.2421 3.13 100 051 30.33 0.2738 0.2720 2.95 11 330 31.80 0.3002 0.2997 2.81 21 231 32.46 0.3126 0.3164 2.75 10 25I 32.96 e.322e 0.3212 2.71 13 112 34.43 0.3504 0.3463 2.61 ll 202 35.30 0.3677 0.3644 2.54 16 0.4097 301 37.66 0.4168 2.39 400 0.4i76 9 321 38.25 0.4293 0.4385 2.35 10 420 0.4940 27I 41.66 0.5059 2.17 8 332 0.5021 202 44.88 0.5829 0.5828 2.02 7 510 48.00 0.6617 0.6597 1.90 6 530

56I l 480 521 56.8e 0.9048 0.9113 1.62 7 0.9396 600 58.06 0.9426 1.59 9 103 0.9369 622 57e 0120 482 282 2120 64.56 1.1410 1.1412 1.44 7 Chemical and Crystallographical studies on Calciferous Amphiboles, 561 Tschermakite-Pargasite Series, from Volcanic RoÅëks

Tab!e 5. (Continued) actinolite from Mt. Iratsu, Ehime Prefecture, JaPan.

l4$in e obs.I cal. j hkl l 2edegree 4 sin e d (A) ; I I o2e 9.60 O.0280 O.0282 921 7 1!0 10.50 O.0335 O.0335 8.42 loe 10I 17.40 O.0915 O.0924 5.10 9 ell 18.IO O.0989 0.1009 4.9e 6 200 18.67 0.le52 0.1052 i 4.65 10 040 i 19.66 0.1166 0.1152 4.51 15 220 21.IO 0.1341 0.1340 4.21 33 26.33 0.2075 0.2076 3.39 l 10 14i I 240 27.25 0.2219 0.2204 3.27 35 310 28.60 0.2440 0.2439 3.12 100 l 060 29.45 0.2578 0.2592 3.03 1 7 051 3e.35 0.2741 0.2737 2.94 12 330 31.90 o.3o2e 0.3015 2.8i 43 231 32.82 0.3191 0.3189 2.73 11 ' 25 -1 33.05 0.3236 0.3237 2.71 21 112 34.55 0.3527 0.3533 2.59 8 202 35.40 0.3697 0.3696 2.54 8 0.4132 400 37.75 0.4186 2.38 301 0.4208 8 321 38.50 0.4347 0.4414 2.34 9 42e 39.15 0.4490 0.4496 2.30 6 0.4965 27! 41.75 0.5078 2.16 8 332 0.5107 l 202 44.92 0.5837 0.5904 2.02 7 510 48.10 0.6643 0.6647 1.89 16 530 50.30 0.7224 0.7223 1.81 8 s61 55.63 0.8710 0.8724 1.65 8 480 56.10 0.8845 0.8816 1.64 3 521 56.87 0.9068 0.9180 2.62 6 0.9468 600 58.2e 0.9460 1.53 103 0.9524 6 1.0192 622 60.40 l.0121 570 1.0103 153 3 1.0356 482 61.20 1.0365 1.51 3 0i20 1.0368 282 61.65 1.0502 1.0512 1.50 6 2120 63.84 l 1.1495 1.l420 1.44 13 562 Katsutoshi ToMiTA

X-Ray Power Piffractio" of Calciferous Amphiboles Experimental : Five powder samples of calciferous amphiboles used in the investigation are shown in Tabie 2, aRd She others are actinolite from Mt. Iratsu, Ehime Pref. Japan, cn.nd l

2e angles were measured at the maxirnurn of diffractioR peaks and calculat- ed by siiicon diffraction pattern using the method of least sqttares. The assignment of the peaks of tremolite was made by comparison with 4 sin2e obs. and calculated 4 sin2e on the basis of the unit celi dimension, ao:=9.78A, b,==17.80A, pO ce==5.26A, B:mu-'106a2' (WARREN 1930) as space group I 2/m The cnssignment of actinolite was made by the sarne treatmene (celi dimeRsion a, =-:-9.89 A, b, ==-: 18.14 A, co me5.31 A, B=-=105048' space group I 2/m ZussMAN, 1955). Other calciferous Ooo amphiboles, pargasite groups and kaersutite, were indexed by analogy with the very similar patterns of tremolite, actinolite. Tke fiRal least-squares treatment yieids the cell dimensions as given in Tabie 6. The final assignment of lines together wkh the calculated (on thebasis of the unit cell data given in the Tabie 6) and observed 4siR20, and, observed spacings and intenskies are given in Table 5.

Table 6A Reciprocal Lattice Dimensions of Ca-Amphiboles

.¥. I ---¥-'''''' b¥k, c* l gXr um...ttt I" l sarnpi8-I (trem'oiitei ' o.161sal I o.3muosg 1 O.0848 73C)slr o.3o47 I Sample 2 0.1619 i O.0854 73053f i i ; 0.1622 l O.0857 o.3o4s 1 73"45' Sample3 l i Sample 4 i 0.1620 1 O.0853 0.3050 i 73"47, 0.1611 i i Sample 5 O.0848 0.3048 I 73a45i i o.3o33 l l

Table 6B Lattice Dimension of Ca-Amphiboles (space group I 2,m)

ww.ww.ww....ww....mm....tttttt-'''ww'''''''''''t''''''''tum'''''''''''''''''ww "MI,(A) i'-wwb,(A)'wwwwco"E"ww'5ww Samplel(tremolite) ' 992 1818 l 517 salllpie2 glgi islo6 l sl27 Sample3 9.90 17.99 I 5.27 Sample4 , 991 l809 526 kaersutite Sample5 I 9.89i 9.96 18.12 18.17 i 5.27 5.27 actinolite I 9.89 /18.17 i 5.24

The X--ray powder diffraction data for 5 samples of pargasite group, tre- molite'and actiRolite are compared in Table 5. In their d values, there is no remarl

Table 7 Relative Intensities of Some X-ray Diffraction Pattern$.

hkli?raernmPolfitielactinolite isample21 3 i 4 I s Ikaer6s,?tite

' I"i"6'g"um 109 100 91 i 84 i 95 103 69 220 24 33 4iolo -e o 330 27 43 18 14 i 33 i 32 21 101 IO gIo ol olo o 202 12 s I 6 ,,I,i ,, 8 2oe 12 !g i2 gl !Ig o 400 7 8 301 /Ltt ttww tttt ttttt/tttttt t ttlttttttt l

G-rapkical Representatiens and Chemical Fermula of Calciferous Arnphiboles from Volcanie Roeks.

In order to compare with the chemical compositions of calciferous amphi- boles frem volcanic rocks, a number of reliable data were collected from numerous literatures, They are $hown in Table 8, which was compiled in the 564 I

Table 8 Analyses of Calciferous Amphiboles Calculated to Atomic Ratios Based on (O, OH)==2400

I''''kE'''Y' i l Fe'n L Fe" i i i OH j R"x {` No. si l Al I Ti Mn Mg l Ca I A" ...._.....1...... iNa K l L I ii 8 649 17e 9 255 5i 9 299 144 ll44 I 3 n.d. 183 o I 9 597 250 I 78 51 91 l 1 247 173 75 29 37 176 77 le 584 243 I 72 45 go l 1 266 197 57 26 86 144 80 11 700 I 228 l 16 41 so l 6 334 178 29 6 95 185 13 ' l2 573 200 i 31 124 1 7 301 178 67 28 n.d. 128 73 13 676 127 l 12 118 94 i 1 272 182 31 7 64 123 20 I l4 589 238 I 22 86 45 2 328 192 49 16 210 135 l 57 15 588 237 23 116 14 i 1 318 187 43 16 203 164 46 l 16 688 189 62 305 I 58 197 60 75 39 139 l32 17 681 167 19 55 ll3 I 4 292 176 39 20 64 141 35 18 673 135 24 160 35 5 298 178 39 21 19 216 30 19 622 220 47 52 73 I n.d. 315 192 92 31 20 188 115 20 61e 174 96 98 46 I 1 280 196 63 11 20 274 70 21 609 206 10 92 342 13 33 169 65 40 217 l27 74 22 607 218 30 137 103 222 201 68 20 46 222 89 23 603 248 56 82 61 264 194 61 22 48 245 77 24 599 226 46 84 80 291 194 66 29 72 201 89 25 598 265 { 3 E117 97 3 254 2e5 l 33 51 48 186 89 26 597 296 62 [ 47 68 4 218 202 49 63 35 264 l14 27 595 230 48 76 74 303 199 81 17 67 197 97 28 595 195 35 127 103 7 231 220 29 13 150 187 62 29 592 261 29 86 47 321 196 66 24 59 197 86 30 587 305 19 80 27 31e 188 90 37 40 210 l15 3i 585 258 41 l 60 73 1 272 175 64 29 205 185 68 32 585 389 13 27 111 270 164 33 12 23 227 9 33 581 321 28 61 28 9 308 198 73 35 25 218 106 34 575 227 68 l 90 88 1 264 169 90 25 110 228 84 ;01 760 36 9 17 2 461 172 68 23 190 5 63 102 782 20 l 3 3 485 205 11 3 201 7 19 le3 790 22 l 7 1 485 188 6 1 196 13 104 791 22 1 5 12 2 524 197 23 16 2e 36 l 105 788 29 2 6 i ua 490 193 l3 4 l42 21 10 ' 106 792 21 2 15 48 2 467 190 22 9 63 32 21 107 739 73 31 175 284 195 9 218 43 4 108 750 84 8 3 1 502 202 52 12 23 53 66 109 771 71 2 8 146 5 321 180 103 11 49 54 94 110 758 54 39 IOI 1 333 222 32 2 121 51 56 111 742 124 4 ' 23 68 3 349 210 l2 11 92 97 33 112 717 137 IO l 29 se 348 172 34 10 134 203 16 113 732 125 10 87 131 l6 254 172 35 13 33 164 20 114 702 124 12 27 116 'll 343 175 53 3 l65 77 31 115 701 l18 5 F 40 105 I- 338 204 28 l80 69 32 116 695 l25 22 125 I, 353 197 28 6 203 42 31 117 666 180 10 31 100 310 196 45 8 190 97 49 118 665 255 15 83 153 l 121 175 84 10 75 233 69 119 662 l88 9 54 166 4 246 196 68 24 71 122 88 120 646 183 15 25 153 295 192 55 204 84 47 121 642 199 18 36 160 1_ 272 181 41 12 200 102 34 122 614 211 29 45 149 251 184 53 11 229 l28 48 l 123 638 193 l2 39 188 L 255 181 39 9 206 94 29 124 631 178 31 32 190 i3 257 182 29 27 202 103 39 125 630 209 15 57 137 =l """ 276 l 197 51 24 !30 126 72 .1.._ Chemical and Crystallographical studies on Calciferous Amphiboles, 565 Tschermakite-Pargasite Series, from Volcanic Rocks

Table 8 (Continued)

Mo. Occurrence i i Locality Authors I I ' g'ammn'S'erml'v' 6icano, simane ' 8 i Lava t FUKuToMI 9 , Black basaltic rock Takaisi, Simane, Japan T. ToMITA 10 { Volcano ejecta i Ufturyoto Korea A. HARUMOTO Zl t Andesite Yufuin, Oita I. SUNAGAWA I i 12 I Andesite Shabozan. Formosa i T. IcHIMURA i l i 1 I

e eoo e2e l IV l eqi 100 l e27 I A¥nv ieit9 i easeets en I l I¥. -1-? ee4 l e eti l g as l ,t.Rth.,21 04 l eAo eJt I Btos el MIol [ e2e la l lle 4.ert a,:I 50 l os I eis .,, l"'7 I s, .Åí,sAA,1"'L 1 9e" l t)isl oe Atts ete ie l A m i06mI 1 i3f !e2 1 t>,, l l ett l i lop 1 ee2 MI ol l of-n led'¥ TeTt di o IOO 200 m --- ,> R amphiboles [I] limestone contact A dioritic rock, gabbro, diorite, granite Q volcanic rock O analysed by the author Fig. 1. Chemical and Crystal}ographical studies en Caiciferous Amphiboles, 567 Tschermakite-Pargasite Series, from Volcanic Rocks

¥ Calciferous amphibo!es from volcanic rocks fall on the upper right p`art of the fieid (R""s are from 150 to 250 and Na, K from 0 to 100). The Si content of calciferous amphiboles from volcanic cn.nd plutonic rocks (dior¥ite, hornblende-granite and gabbro, cited from HALuMoND's study) is shown in Fig. 2. It is evident that the Si content increases somewhat regu}arly with the decrease of R"'. As the Ca-content of calciferous ampkiboles is usually from 150 to 200, substituSions such as (R", Si)-(R"!, Al), and R"LR" (Na, K)

'

I t -' l , ' lt f l ' // t

-siist{2- 04eeL'

- thftk" nsiteecesoeeeeneee2 l osog tstf - .S ge t - 600 t es eas /.} ' - 'A7,, f ea" / ' ' etv / s - l - A A,,s / - t24 }e / A / } tas A - A2o i2g es !l - l t ' t / Atlf l4fik A,7 - / en / - e / u el7 t / t .ts ! l zlf,, t 70o t tit ll AA11S filF t lt An2 f t ' .oa,i

Jfor Atft t l ' Olee } t {leA t mfef f - - IofA t I Mlez IoS / ! o - t iosO?ec Uto6 ! o ' 8oot 100 _,. RIN ' 200

ll amphiboles from limestone contact .A dioritic rock e volcanic rock o analysed by the auther Fig. 2. 568 Kat.sutoshi ToMITA

might take place. Therefore, the Si content may increase with the decrease of R"'. The actual Si and R"' contents in calciferous amphiboles from volcanic rocks are about 550-650 and about 100-250 respectively, and the actual Na, K content ln their vacaRt ske is about 0-100 as shown in Fig. 1. Thus, the author established the chemical formula of caiciferous ampkibo!e from volcanlc rocks as foliow :

(Na, K)o_iCa2R'X4ww3R"'im2.sAl;g...i.sSis.s-6.s022(OH)2-

The calciferous amphiboles represented by the above formula belong to tschermakite-pargasite series. As for the great part of amphiboles from the volcanic rocks, chemical com- positions could not be represeRted by the above foymula. The ckemical compositions of these specimens could not be exp}ained only by the substitution of metai ions. The (OH) contents of the calc2ferous amphiboles from vo}canic rocks are shown in Fig. 3. The figure shows a tendency for Zthe OH content to be

e @21 200 t- 9, e31

e 28

OB e34 IOO 02 @rl s e. =v afip ore 93 en e 2V t 05 ptas %2 eas @eo 9, tws eth ess eJ2 e,-o e. ele

o es 2oo 04 >Rtll IOO - @amphiboles frem volcanic rock o analysed by the author Fig. 3. Chemical and Crystallographical studies on Calciferous Amphiboles, 569 Tschermakite-Pargasite Series, from Volcahic Roclcs smaller tkan 200. It is frorn 0 to 100. As a matter oÅí course, in determina- tion of the contents of radicals-OH, F, errors are especia}ly liable to be introduced, as is well }

Referenees

BowEN, N. L. & PosNJAi<, E. : The Role of Water in Tremolite ; Am. Jour. Sci., 22, 203 (1931). BoyD, F. R.: Hydrothermal Investigations of Amphiboles; John Wiley & Sons, (1959). HALmMoND, A. F.: On the Graphical Representation of the Calciferous Amphibole; Am. Min., 28, 65 (l943). HARADA, Z.: Chemische Analysen-resultate von Japanischen Mineralien; Jour. Fac. Sci. Hekkaido Univ., 3, nos. 3-4 (1936). HARADA, Z.: Chemical Analyses of Japanese Minerals II; Jour. Fac. Sci. ffokkaido Univ., 7, nos. 1--2 (1948). MARADA, Z.: Chemical Analyses of Japanese Mineral III; iour. Fac. Sci. Kokkaido Univ., 8, no. 4 (1954). HARADA, Z.: Chemical Analyses of Japanese Minerals IV; 3our. Fac. Sci. Hokkaido Univ., 10, no. 1 (1959). ITo, T.: X-ray Studies on Polymorphism; Maruzen., (l952). KAwANo, Y. : Chemical Composition of from Tonami Park ; Japanese Jour. Geol. of Geogr. Tokyo, 55, 289 (l943). MIyAsHmo, A: The Chemistry, Optics, and Genesis of the Alkali-Amprfiboles; Jour. FaÅë. Sci. Univ. Tokyo, Sec. II, il, 57 (1957). SEITsAABI, J: Some New Data en the Blur-green llornblende from the Tampere Schist Be}t; Comrn. Geol. De. Finland, 172, no. 29, 8 (1956). WARREr , B. E. : The Crystal Structure and Chemical Composition of Monoclinic Amphiboles ; Zeit. Krist., 72, 493 (1930). WARREN, B. E.: The Structure of Tremolite ; Zeit. Krist., 72B, 42 (1930). W}ilT'i'AKER, E. 3. W.: The Structure of Bolivian Crocidolite; Acta Cryst., 2, 312 (1949). WmTTAKER, E. J. W. : The Crystal Chemistry of the Amphiboles ; Acta Cryst., 13, 291 (l960). WiNcHELL, A. N.: Variation in Composition and Properties of the Calciferous Amphiboles; Am. )vlin., 30, 27 (1945). WiTTELs, M.: The Structural Disintegration of sorne Amphiboles; Am. Min. 37, 28 (1957). WiLi