Symbols for Rock-Forming Mineralsl

Total Page:16

File Type:pdf, Size:1020Kb

Symbols for Rock-Forming Mineralsl American Mineralogist, Volume 68, pages 277-279, 1983 Symbolsfor rock-forming mineralsl RupH KRBrz Department of Geology University of Ottawa Ottawa. Canada KIN 984 There is at present a disturbing lack of uniformity An example of a mineral that has very diferent in the choice of symbols for rock-forming minerals. namesin different languagesis: For example,in Volume 65 (1980)of TheAmerican E kyanite Mineralogisl, all of BT, BIO, and Biot are used for F disthdne biotite, and all of and qtz are used Q, QTZ, Qtz, Qz G cyanit for quartz. At least 10other minerals are referred to R K,I4aH'ITr by two or more symbols,and in one instance,two S cianita different symbols are used for a mineral in a single paper. Here, because Russian and English writing out- In Table I is a list of mineral names,taken mainly weighs that of other languages,agreement might be from Deer et al. (1962), and for each name a found in the symbol Ky. proposed symbol. In preparing the list of symbols, Most of the symbols that were selectedhave been consideration was given to mineral names in the usedpreviously by numerousauthors, e.g., Bowen different languagesused in scientific writing. With (1928), Ramberg (1952), Perchuk (1973), Winkler few exceptions, the names for a mineral in the (1973), Mueller and Saxena (1977), Barton and languages English (E), French (F), German (G), Skinner (1979) and the various authors of the Re- Russian (R), and Spanish (S) have similar phonet- viewsin Mineralogy(e.g.,Prewitt, 1980).However, ics, for example: becauseso much variation exists, some guidelines were required, and the following were chosen:(l) E biotite The mineral symbol should consist of 2 or 3 letters, F biotite the first capitalized, the other(s) in lower case. (2) G biotit The first letter should be the same as the first letter R 'uorrrr of the mineral name, and the others should be S biotita selectedfrom the mineral name, preferably from the and a suitable choice for a symbol is Bt. Interna- consonants.(3) A mineral symbol should not be tional uniformity would depend on the willingness identical to any of the symbols of the periodic table of Russian scientists to adopt Latin letters for of the elements. (4) The symbol should preferably mineral symbols, as Perchuk (1973) has already not spell out a word in common use in any of the done. Another example is: languagesused in scientific writing. The standard we should strive for with regard to E garnet mineral symbols is the universally adopted system F grenat of symbols for the chemical elements. G granat The use of a single symbol for both a mineral R rpanar phase and a component of a mineral or of a melt S granate phase has created confusion in the past, and a and the symbol Grt would seem preferable to Gar. separateset of symbols for componentsis required. It is suggestedthat component symbols be written entirely in the lower case, for example di for the componentCaMgSizOo in a pyroxene crystal or in a melt. Some examples of components that coffe- IEditor's note: the abbreviation system describedin this note is recommended,not required, for use in TheAmerican Mineral- spond to mineral "end members" and their pro- ogist. Comments will be appreciated. posedsymbols are listed in Table 2. 0003-.fix)vE3/0r02-0277$02.ffi 277 278 KRETZ: SYMBOLS FOR ROCK.FORMING MINERALS Table l. Mineral Symbols Acm acmite Elb elbaite Ntr natrolite Act actlJlollte En enstatLte (ortho) Ne nephellne Agt aegirine-augLte Ep epidote Nrb norberglte Ak ikernanite Fst fasslte Nsn nosean Ab al-bite Fa fayalite 01 olLvine Aln al-lanite Fac ferroactinolite Omp ornphacite Alm almandine Fed ferroederilte Oam orthoarnphibole Anl anal-clte Fs ferrosiltte (ortho) Or orthoclase Ant. anatase Fts ferrotschermaklte Opx orthopyroxene And andalusite Fl" fluorite Pg paragonite Adr andradite Fo forsterite Prg pargasite Anh anhydrite Gn galena Pct pectolite Ank ankerite Grt garnet Pn pentlandite Ann annlte Ged gedriEe Per periclase An anorthite Gh gehlenite Prv perovsklte Atg antigoriEe Gbs gibbsite Phl phlogopite Ath anthophylllte Glt glauconite Pgt pigeonite Ap apatite Gln glaucophane Pl plagiocLase Apo apophylllte Gt geothite Prh prehnlte Arg aragonite Gr graphite Pen protoenstatite Arf arfvedsonite Grs grossularite Pnp punpellylte Apy arsenopyrite Gru grunerite Py pyrite Aug augite Gp gypsum Prp pyrope Ax axinite HI halite Prl pyrophylliEe Brt barite Hs hastingsite Po pyrrhotite Br1 beryl Hyn haiiyne Qtz quartz Bt biotite Hd hedenbergite Rbk riebeckite Btm boehnite Hem hematite Rds rhodothrosite Bn bornite Hc hercynite Rdn rhodonj.te Brk brookite Hul- heulandlte Rt rutile Brc brucite Hb1 hornblende Sa sanidine Bst bustanite Hu humLte Spr sapphlrine Cam Ca clinoamphibole IL1 illite Scp scapolite Cpx Ca cllnopyroxene IIn ilmenite Sr1 schorl Ca1 caLcite Jd jadelte Srp serpentine Ccn cancrlnite Jh johannsenLte Sd siderite Crn carnegleite Krs kaersutLte Sil sillinanite Cst cassiterite Kls kalsllite Sd1 sodalite Cls celestite K1n kaolinite Sps spessartine Cbz chabazite Ktp kataphorite Sp sphalerite Cc chalcocite Kfs K feldspar Spn sphene Ccp chalcopyrite Krn kornerupine Sp1 spinel Ch1 chlorite Ky kyanite Spd spodumene Ctd chloritold Lmt laumontlte St staurolite Chn chondrodite Lws lawsonite Stb stilbite Chr chronlte Lpd lepidolite Stp stilpnomelane Ccl chrysocolla Lct leucite Str strontianite Ct1 chrysotile Lm linonite T1c tal-c Cen cl-inoenstatite Lz lizardite Ilrp thonpsohite cfs clinoferrosilite Lo loellingite Ttn titanite Chu cllnohunite Mgh uaghemite Toz topaz Czo clinozoisite Mkt magnesiokatoptorlte Tur tourmaline Crd cordierite Mrb magnesioriebeckite Tr Eremolite Crn corundum Mgs magnesite Trd trldymite Cv covellite Mag nurgnetite Tro trollite Crs cristoballite Mrg margarLte Ts tschermakite Cum cummingtonite Me1 nelilite Usp ulv6spinel Dsp diaspore Mc microcline Vrm vermiculite Dg diginite Mo urolybdenite Ves vesuvianite Di diopside Wrz monazite l.,lh lrltherite Dol doloni.te Mtc monticel-lLte tJo wollastonite Drv dravite l,lnt montmorillonlte Wus wiistite Eck eckermannite MuL nullite Ztn zircon Ed edenite Ms muscovite Zo zolslte KRETZ: SYMBOLS FOR ROCK-FORMING MINERALS 279 Table 2. Symbols for some components References Barton, P. B. Jr. and Skinner, B. J. (1979) Sulfide mineral fo MgrSiOO stabilities, In H. L. Barnes, Ed., Geochemistryof Hydrother- mal Ore Deposits, p. 236-333.J. Wiley & Sons, New York. fa FerStOO Bowen, N. L. (192E) The Evolution of the Igneous Rocks. alo Fe3A12S130l2 Princeton University Press, New Jersey. Deer, W. A., Howie, R. A. and Zussman, J. (1962)Rock- PTP u83412S13012 Forrning Minerals: vol. l-5. Longmans, Green & Co., Lon- don. sPs l{n3A12S13Ot2 Mueller, R. F. and Saxena, S. K. (1977) Chemical Petrology. en l,lC2Si2O6 Springer-Verlag,New York. Prewitt, C. T. (Editor) (19E0)Reviews in Mineralogy, vol. 7: di Cal,lCSl2O6 Pyroxenes. Mineralogical Society of America, Washington, D. C. tr ca2Mg5st8022 (oH) 2 Perchuk, L. L. (1973)Thermodynamic Regime of Deep-Seated ph1 KrMeUAlrsiroro(oH)O Petrogenesis.Academy of Sciences,U.S.S.R. (In Russian). Ramberg,H. (1952)The Origin of Metamorphic and Metasomat- eaa K2l,lg5A1A13s1502o(oH) ic Rocks. University of Chicago Press, Chicago, Illinois. 4 Winkler, H. G. F. (1974) Petrogenesisof Metamorphic Rocks. ab NaAlS13O8 Springer-Verlag,New York. an CaAl2St208 Manuscript received, February 17, 19E2; acceptedfor publication, May 3, 1962..
Recommended publications
  • 17. Clay Mineralogy of Deep-Sea Sediments in the Northwestern Pacific, Dsdp, Leg 20
    17. CLAY MINERALOGY OF DEEP-SEA SEDIMENTS IN THE NORTHWESTERN PACIFIC, DSDP, LEG 20 Hakuyu Okada and Katsutoshi Tomita, Department of Geology, Kagoshima University, Kagoshima 890, Japan INTRODUCTION intensity of montmorillonite can be obtained by sub- tracting the (001) reflection intensity of chlorite from the Clay mineral study of samples collected during Leg 20 of preheating or pretreating reflection intensity at 15 Å. the Deep Sea Drilling Project in the western north Pacific In a specimen with coexisting kaolinite and chlorite, was carried out mainly by means of X-ray diffraction their overlapping reflections make it difficult to determine analyses. Emphasis was placed on determining vertical quantitatively these mineral compositions. For such speci- changes in mineral composition of sediments at each site. mens Wada's method (Wada, 1961) and heat treatment Results of the semiquantitative and quantitative deter- were adopted. minations of mineral compositions of analyzed samples are The following shows examples of the determination of shown in Tables 1, 2, 3, 5, and 7. The mineral suites some intensity ratios of reflections of clay minerals. presented here show some unusual characters as discussed below. The influence of burial diagenesis is also evidenced Case 1 in the vertical distribution of some authigenic minerals. Montmorillonite (two layers of water molecules between These results may contribute to a better understanding silicate layers)—kaolinite mixture. of deep-sea sedimentation on the northwestern Pacific This is the situation in which samples contain both plate. montmorillonite and kaolinite. The first-order basal reflec- tions of these minerals do not overlap. When the (002) ANALYTICAL PROCEDURES reflection of montmorillonite, which appears at about 7 Å, Each sample was dried in air, and X-ray diffraction is absent or negligible, the intensity ratio is easily obtained.
    [Show full text]
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • AMPHIBOLES: Crystal Chemistry, Occurrence, and Health Issues
    AMPHIBOLES: Crystal Chemistry, Occurrence, and Health Issues 67 Reviews in Mineralogy and. Geochemistry 67 TABLE OF CONTENTS 1 Amphiboles: Crystal Chemistry Frank C. Hawthorne, Roberta Oberti INTRODUCTION 1 CHEMICAL FORMULA 1 SOMi : ASPECTS OF CHEMICAL ANALYSIS 1 Chemical composition 1 Summary 6 CALCULATION OF THE CHEMICAL FORMULA 7 24 (O, OH, F, CI) 7 23 (O) 8 13 cations 8 15 cations 8 16 cations 8 Summary 8 AMPIIIBOI I S: CRYSTAL STRUCTURE 8 Space groups 9 Cell dimensions 9 Site nomenclature 9 The C2/m amphibole structure 10 The P2/m amphibole structure 12 The P2/a amphibole structure 12 The Pnma amphibole structure 12 The Pnmn amphibole structure 14 The C1 amphibole structure 17 STACKING SEQUENCES AND SPACE GROUPS 18 BOND LENGTHS AND BOND VALENCES IN [4IA1-FREE AMPHIBOLES 19 THE DOUBLE-CHAIN OF TETRAHEDRA IN [4IA1 AMPHIBOLES 19 Variation in <T-0> bondlengths in C2/m amphiboles 21 Variation in <T-0> bondlengths in Pnma amphiboles 25 THE STEREOCHEMISTRY OF THE STRIP OF OCTAHEDRA 27 The C2/m amphiboles: variation in mean bondlengths 27 The Pnma amphiboles with B(Mg,Fe,Mn): variation in mean bondlengths 30 v Amphiboles - Table of Contents The Pnma amphiboles with BLi: variation in mean bondlengths 32 THE STEREOCHEMISTRY OF THE M (4) SITE 34 The calcic, sodic-calcic and sodic amphiboles 35 Amphiboles with small B cations (magnesium-iron-manganese- lithium, magnesium-sodium and lithium-sodium) 36 The C2/m amphiboles: variation in <M(4)-0> bondlengths 36 The Pnma amphiboles: variation in <MA-0> bondlengths 36 I III! STEREOCHEMISTRY OF THE A SITE 37 The C2/m amphiboles 37 The PU a amphibole 40 The Pnma amphiboles 40 The Pnmn amphiboles 41 THE STEREOCHEMISTRY OF THE 0(3) SITE 41 The C2/m amphiboles 41 UNIT-CELL PARAMETERS AND COMPOSITION IN C2/m AMPHIBOLES 42 SUMMARY 46 ACKNOWLEDGMENTS 46 REFERENCES 47 APPENDIX 1: CRYSTAL-STRUCTURE REFINEMENTS OF AMPHIBOLE 51 Z Classification of the Amphiboles Frank C.
    [Show full text]
  • Mineralogy, Fluid Inclusion, and Stable Isotope Studies of the Hog Heaven Mining District, Flathead County, Montana
    Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Spring 2020 MINERALOGY, FLUID INCLUSION, AND STABLE ISOTOPE STUDIES OF THE HOG HEAVEN MINING DISTRICT, FLATHEAD COUNTY, MONTANA Ian Kallio Follow this and additional works at: https://digitalcommons.mtech.edu/grad_rsch Part of the Geological Engineering Commons MINERALOGY, FLUID INCLUSION, AND STABLE ISOTOPE STUDIES OF THE HOG HEAVEN MINING DISTRICT, FLATHEAD COUNTY, MONTANA by Ian Kallio A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science in Geoscience Geology Option Montana Tech 2020 ii Abstract The Hog Heaven mining district in northwestern Montana is unique in that it is a high- sulfidation epithermal system containing high Ag-Pb-Zn relative to Au-Cu, with a very high Ag to Au ratio (2,330:1). The deposits are hosted within the Cenozoic Hog Heaven volcanic field (HHVF), a 30 to 36 Ma suite that consists predominantly of rhyodacite flow-dome complexes and pyroclastic rocks. The HHVF is underlain by shallow-dipping siliclastic sediments of the Mesoproterozoic Belt Supergroup. These sediments are known to host important SEDEX (e.g., Sullivan) and red-bed copper (e.g., Spar Lake, Rock Creek, Montanore) deposits rich in Ag-Pb- Zn-Cu-Ba. The HHVF erupted through and deposited on the Belt strata during a period of Oligocene extension. Outcrops and drill core samples from Hog Heaven show alteration patterns characteristic of volcanic-hosted, high-sulfidation epithermal deposits. Vuggy quartz transitions laterally into quartz-alunite alteration where large sanidine phenocrysts (up to 4 cm) have been replaced by fine-grained, pink alunite, and/or argillic alteration that is marked by an abundance of white kaolinite-dickite clay.
    [Show full text]
  • Geology and Hydrothermal Alteration of the Duobuza Goldrich Porphyry
    doi: 10.1111/j.1751-3928.2011.00182.x Resource Geology Vol. 62, No. 1: 99–118 Thematic Articlerge_182 99..118 Geology and Hydrothermal Alteration of the Duobuza Gold-Rich Porphyry Copper District in the Bangongco Metallogenetic Belt, Northwestern Tibet Guangming Li,1 Jinxiang Li,1 Kezhang Qin,1 Ji Duo,2 Tianping Zhang,3 Bo Xiao1 and Junxing Zhao1 1Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, CAS, Beijing, 2Tibet Bureau of Geology and Exploration, Lhasa, Tibet and 3No. 5 Geological Party, Tibet Bureau of Geology and Exploration, Golmu, China Abstract The Duobuza gold-rich porphyry copper district is located in the Bangongco metallogenetic belt in the Bangongco-Nujiang suture zone south of the Qiangtang terrane. Two main gold-rich porphyry copper deposits (Duobuza and Bolong) and an occurrence (135 Line) were discovered in the district. The porphyry-type mineralization is associated with three Early Cretaceous ore-bearing granodiorite porphyries at Duobuza, 135 Line and Bolong, and is hosted by volcanic and sedimentary rocks of the Middle Jurassic Yanshiping Formation and intermediate-acidic volcanic rocks of the Early Cretaceous Meiriqie Group. Simultaneous emplacement and isometric distribution of three ore-forming porphyries is explained as multi-centered mineralization generated from the same magma chamber. Intense hydrothermal alteration occurs in the porphyries and at the contact zone with wall rocks. Four main hypogene alteration zones are distinguished at Duobuza. Early-stage alteration is dominated by potassic alteration with extensive secondary biotite, K-feldspar and magnetite. The alteration zone includes dense magnetite and quartz-magnetite veinlets, in which Cu-Fe-bearing sulfides are present.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Characterization of Elastic Tensors of Crustal Rocks with Respect to Seismic Anisotropy
    Characterization of Elastic Tensors of Crustal Rocks with respect to Seismic Anisotropy Anissha Raju Department of Geological Sciences University of Colorado, Boulder Defense Date: April 5th, 2017 Thesis Advisor Assoc. Prof. Dr. Kevin Mahan, Department of Geological Sciences Thesis Committee Dr. Vera Schulte-Pelkum, Department of Geological Sciences Prof. Dr. Charles Stern, Department of Geological Sciences Dr. Daniel Jones, Honors Program ACKNOWLEDGEMENTS I would like to thank Dr. Kevin Mahan and Dr. Vera Schulte-Pelkum for overseeing this thesis and initiating a seismic anisotropy reading seminar. Both have been very supportive towards my academic development and have provided endless guidance and support even prior to starting this thesis. Huge thanks to Dr. Charles Stern and Dr. Daniel Jones for serving on the committee and for their excellent academic instruction. Dr. Charles Stern has also been a big part of my academic career. I sincerely appreciate Dr. Sarah Brownlee for allowing me to use her MATLAB decomposition code and her contributions in finding trends in my plots. Thanks to Phil Orlandini for helping me out with generating MTEX plots. Special thanks to all the authors (listed in Appendix A) for providing me their sample elastic stiffness tensors and allowing it to be used in this study. I would also like to express my gratitude to Undergraduate Research Opportunity Program (UROP) of University of Colorado Boulder for partly funding this study. Last but not least, I would like to thank my family and friends for being supportive
    [Show full text]
  • 06 11 09 Separation & Preparation of Biotite and Muscovite Samples For
    06 11 09 Separation & Preparation of Biotite and Muscovite samples for 40Ar/39Ar analysis Karl Lang When dealing with detrital samples, sample contamination is a big problem. To avoid this at all costs be clean, this means handling samples one at a time and cleaning all equipment entirely after each sample handling. Only handle samples in a quite (i.e. not windy) environment, where there is little chance of spilling or blowing samples away. Handle samples over clean copier paper, and change the paper after each sample. Use compressed air (either canned or from a compressor) to clean all equipment in separation stages and methanol to keep equipment dirt and dust free in the preparation stages. This can be often be tedious work, I recommend finding a good book on tape or podcast to listen to. Estimate times to completion are stated. Detrital Samples Separation I. Sample drying (1-3 days) For detrital samples it is likely that samples will be wet. Simple let the samples dry in the open air, or under a mild lamp on paper plates. It may be necessary to occasionally stir up samples to get them to dry faster, if you do this, clean the stirrer after each sample. Split samples using a riffle splitter to obtain a quantity for the rest of the process, do this in the rock room. II. Sample Sieving (3-7 days) First locate a set of sieves that can be intensively cleaned. There are a set of appropriate sieves in 317 for this use, be careful using other's sieves as you will likely bend the meshes during cleaning.
    [Show full text]
  • GEOLOGY 9 Investigations Into Mineral Occurences in the Nickel
    GEOLOGY 9 Investigations into Mineral Occurences in the Nickel Plate Ore April 1942 R. Haywood-Farmer ACKTTP'. Jinxes T,I:TS The author wishes to acknowledge the able assistance and timely hints and suggestions given by Dr. H.V.Warren in connection with this work. Wy thanks are also due to Dr. Warren for his work on duplicate sections and for his help in the photography. The author would also like to acknowledge the assistance of the Messrs. H. -Thompson and C, Hey for their help in the laboratory. T? ^T T? University of British Columbia «• April, 1942. Table of Contents Introduction Conclusions (summary) Preliminary Observations Cobalt Identification Tests to Identify Cobalt Minerals Results of Etch Tests and Micr<£fehemical Tests Size of the Cobalt Inclusions Relationship Between the Minerals Comparison of Assays with Estimated Values (10) Conclusions Investigations into Mineral Oocurances in the Nickel Plate Ore Introduction Object of Investigation The work was done in an effort to identify the cobalt bearing minerals > and to find the relationship between the cobalt minerals and the other metallic minerals present* The association of the gold in the ore was considered in wiaw of future mineral dressing work for the recovery of cobalt and gold* It was hoped, that by microscopic work an answer could be obtained as to the possibility of making a high grade cobalt concentrate* At present, no recovery of cobalt is made from the ore* The concentrator heads run about 0*4 ounces in gold and about 0*05$ cobalt* The ore, after mining is ground
    [Show full text]
  • The Origin and Formation of Clay Minerals in Soils: Past, Present and Future Perspectives
    Clay Minerals (1999) 34, 7–25 The origin and formation of clay minerals in soils: past, present and future perspectives M. J. WILSON Macaulay Land Use Research Institute, Craigiebuckler, Aberdeen AB15 8QH, UK (Received 23 September 1997; revised 15 January 1998) ABSTRACT: The origin and formation of soil clay minerals, namely micas, vermiculites, smectites, chlorites and interlayered minerals, interstratified minerals and kaolin minerals, are broadly reviewed in the context of research over the past half century. In particular, the pioneer overviews of Millot, Pedro and Duchaufour in France and of Jackson in the USA, are considered in the light of selected examples from the huge volume of work that has since taken place on this topic. It is concluded that these early overviews may still be regarded as being generally valid, although it may be that too much emphasis has been placed upon transformation mechanisms and not enough upon neoformation processes. This review also highlights some of the many problems pertaining to the origin and formation of soil clays that remain to be resolved. It has long been recognized that the minerals in the detail remained to be filled in, as well as a time that clay (<2 mm) fractions of soils play a crucial role in immediately pre-dated the widespread utilization in determining their major physical and chemical soil science of analytical techniques such as properties, and inevitably, questions concerning scanning electron microscopy, electron probe the origin and formation of these minerals have microanalysis, Mo¨ssbauer spectroscopy, electron assumed some prominence in soil science research. spin resonance spectroscopy and infrared spectro- This review considers some important aspects of scopy.
    [Show full text]
  • (Fe-Mg Amphibole) in Plutonic Rocks of Nahuelbuta Mountains
    U N I V E R S I D A D D E C O N C E P C I Ó N DEPARTAMENTO DE CIENCIAS DE LA TIERRA 10° CONGRESO GEOLÓGICO CHILENO 2003 THE OCCURRENCE AND THERMAL DISEQUILIBRIUM OF CUMMINGTONITE IN PLUTONIC ROCKS OF NAHUELBUTA MOUNTAINS CREIXELL, C.(1*); FIGUEROA, O.(1); LUCASSEN, F.(2,3), FRANZ, G.(4) & VÁSQUEZ, P.(1) (1)Universidad de Concepción, Chile, Depto. Ciencias de la Tierra, Barrio Universitario s/n, casilla 160-C (2)Freie Universität Berlin, FB Geowissenschaften, Malteserstr. 74-100, 12249 Berlin, Germany (3)GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany; [email protected] (4)TU-Berlin, Petrologie-EB15, Strasse des 17.Juni 135, 10623 Berlin, Germany; *Present Address: MECESUP-Universidad de Chile, Depto. de Geología, Plaza Ercilla 803, casilla 13518, [email protected] INTRODUCTION The “cummingtonite series” (Leake, 1978) are characterised by magnesio-cummingtonite (Mg7Si8O22(OH)2) and grunerite (Fe7Si8O22(OH)2) end-members. Cummingtonite is mainly produced under amphibolite-facies conditions, but the entire stability range cover at least a field of 400 to 800° C, at pressures between <1 to 15 kbar (Evans and Ghiorso, 1995, Ghiorso et al., 1995). Natural cummingtonite occurs in several metamorphic rock types (i.e. Kisch & Warnaars, 1969, Choudhuri, 1972) and also can coexist with incipient melt in high-grade gneisses in deep- crustal levels (Kenah and Hollister, 1983). For igneous rocks, cummingtonite had been described in some rhyolites at Taupo Zone, New Zealand (Wood & Carmichael, 1973) and as a stable phase in plutonic rocks (e.g. Bues et al., 2002). In the present study, we describe the occurrence of cummingtonite in Upper Palaeozoic plutonic rocks and their amphibolite xenoliths from the Nahuelbuta Mountains, south central Chile (37°-38°S, for location see fig.
    [Show full text]
  • Wang Et Al., 2001
    American Mineralogist, Volume 86, pages 790–806, 2001 Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy ALIAN WANG,* BRAD L. JOLLIFF, LARRY A. HASKIN, KARLA E. KUEBLER, AND KAREN M. VISKUPIC Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis, Missouri 63130, U.S.A. ABSTRACT This study reports the use of Raman spectral features to characterize the structural and composi- tional characteristics of different types of pyroxene from rocks as might be carried out using a por- table field spectrometer or by planetary on-surface exploration. Samples studied include lunar rocks, martian meteorites, and terrestrial rocks. The major structural types of quadrilateral pyroxene can be identified using their Raman spectral pattern and peak positions. Values of Mg/(Mg + Fe + Ca) of pyroxene in the (Mg, Fe, Ca) quadrilateral can be determined within an accuracy of ±0.1. The preci- sion for Ca/(Mg + Fe + Ca) values derived from Raman data is about the same, except that correc- tions must be made for very low-Ca and very high-Ca samples. Pyroxenes from basalts can be distinguished from those in plutonic equivalents from the distribution of their Mg′ [Mg/(Mg + Fe)] and Wo values, and this can be readily done using point-counting Raman measurements on unpre- pared rock samples. The correlation of Raman peak positions and spectral pattern provides criteria to distinguish pyroxenes with high proportions of non-quadrilateral components from (Mg, Fe, Ca) quadrilateral pyroxenes. INTRODUCTION pyroxene group of minerals is amenable to such identification Laser Raman spectroscopy is well suited for characteriza- and characterization.
    [Show full text]