A-Site Disorder in Synthetic Fluor-Edenite, a Crystal-Structure Study

Total Page:16

File Type:pdf, Size:1020Kb

A-Site Disorder in Synthetic Fluor-Edenite, a Crystal-Structure Study 21 The Canadian Mineralogist Vol. 32, pp. 21-30 (1994) A-SITE DISORDER IN SYNTHETIC FLUOR-EDENITE, A CRYSTAL-STRUCTURE STUDY KATHLEEN F. BOSCHMANN, PETER C. BURNS, FRANK C. HAWTHORNE, MATI RAUDSEPP1 AND ALLAN C. TURNOCK Depanmentof Geological Sciences, Universityof Manitoba, Winnipeg, Manitoba R3T 2N2 ABS1RACT Large crystals of amphibole were synthesized by slow cooling of a bulk composition nominally that of end-member fluor-edenite. Electron-microprobe analysis shows the crystals to be zoned from a core composition close to end-member fluor-edenite to a rim composition close to the fluor-tremolite - fluor-pargasite join. The crystal structure of a fragment of average composition Na0 2(Ca1.926Mg0.183)(Mg4.636Al0.364)(Si6.507Al1.493)022F2, a 9.821(1), b 17.934(4), c 5.282(1) A, ,9j � 105.08(1)0, V 898.3(1) A, C21m, Z = 2, was refmed to an R index of 2.9% for 1068 observed reflections collected with MoKcx X-radiation. Tetrahedrally coordinated Al is ordered at T(l), and octahedrally coordinated Al is ordered at M(2). The Na within the A-site cavity occupies both the A(m) and A(2) sites, and site-occupancy refmement shows Na to be equally partitioned between these two sites. This ordering scheme can be explained on the basis of local bond-valence requirements of the anions coordinating the T(1) site. Keywords: amphibole, fluor-edenite, synthesis, crystal-structure refinement, ordering, electron-microprobe analyses. SOMMAIRE Nous avons reussi a synthetiser de gros cristaux d'amphibole en refroidissant lentement un melange d'une composition globale egale a celle du pole fluor-edenite. Une analyse a Ia microsonde electronique demontre que ces cristaux sont zones, d'un coeur dont Ia composition est celle qui etait prevue a une bordure dont Ia composition est proche de Ia solution solide fluor-tremolite - fluor-pargasite. La structure cristalline d'un fragment dont Ia composition moyenne serait Nao.912(Ca1.926Mgo.Js3)(M�.636Alo.364)(Si6.507Al1.493)022F2, a 9.821(1), b 17.934(4), c 5.282(1) A, � 105.08(1)0, V 898.3(1) 3 A , C2/m, Z = 2, a ete affinee jusqu'a un residu R de 2.9% en utilisant 1068 reflexions observees (rayonnement MoKcx). L'aluminium a coordinence tetraedrique occupe T(1), tandis que !'aluminium a coordinence octaedrique occupe M(2). Le Na du site A occupe les sites A(m) et A(2); l'affmement indique une repartition egale de l'atome Na entre ces deux sites. Ce schema de mise en ordre decoule des exigeances locales des valences de liaisons des anions en coordinence avec T(l). (Tradnit par Ia Redaction) Mots-cles: amphibole, fluor-edenite, synthese, affinement de Ia structure cristalline, mise en ordre, donnees de microsonde electronique. INTRODUCTION crystals. Na et al. (1986) reported the coexistence of diopside and sodian phlogopite up to 3 kbar within the There have been several attempts to synthesize field of edenite - richterite (- tremolite) solid solution, edenite, ideally NaCa2Mg5Si7Al022(0H)2, but none of and the results of Raudsepp et al. (1991) are broadly themhave been very successful. Widmark (1974) and compatible with this. Thus the edenite end-member Hinrichsen & Schi.irmann (1977) both reported the has not been synthesized as yet, and there is a strong synthesis of edenite, but the run yields were low, and possibility that it may not be stable. On the other hand, Greenwood (1979) concluded that Widmark (1974) fluor-edenite has been synthesized on end-member had synthesized overgrowths of tremolite on his seed composition (Graham & Navrotsky 1986). Raudsepp 'Present address: Department of Geological Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4. 22 TilE CANADIAN MINERALOGIST et al. (1991) attempted to synthesize large crystals of fluor-edenite by slow cooling of the nominal bulk composition from above the liquidus. Although elec­ tron-microprobe analysis showed that the crystals depart from the ideal fluor-edenite composition, the crystals were sufficiently large to characterize by crystal-structure refinement; the results are presented here. EXPERIMENTAL Synthesis Forty mg of starting materials (fused silica glass, y-Al203, CaF2, Na2C03, MgO) were sealed in a -1A-- 4 x 23 mm Pt tube and placed in a conventional verti­ cal quench-furnace. The run was held at 1240°C for 1 h and then cooled to 816°C over a period of 332 h. Further experimental details are given by Raudsepp et al. (1991). In general, the run products were >90% amphibole, with minor forsterite, plagioclase, clinopyroxene and cristobalite. One particular run gave one large crystal (-10 x 3 mm) with minor fine-grained non-amphibole phases; this crystal was gently crushed to give more conveuiently sized fragments, one of which was used in thepresent study. Collection of the X-raydata An irregular lath-like fragment of synthetic fluor­ edenite was mounted on a Nicolet R3m automated four-circle diffractometer. Twenty-two reflections were centered using graphite-monochromated MoKa X-radiation. The unit-cell dimensions (Table 1) were derived from the setting angles of twenty-two auto­ matically aligned reflectionsby least-squares methods. A total of 1435 reflections was measured over the range (3° < 29 < 60°) with index ranges 0 � h � 13, 0 � k � 25, -7 � l � 7; reflections forbidden by the C face-centering were omitted. Two standard reflections were measured every fifty reflections; no significant changes in their net intensities occurred during data TABLE 1. MISCELLANEOUS INFORMATION FOR FLUOR-EDENITE Space group C2/m Crystal size (mm) 0.1Ox0.24x0. 1 0 FIG. 1. Difference-Fourier sections throughthe centralA(2/m) site with the A cation removed from the structural model: a(A) 9.821(1) Total Ref. 1435 (a) (100) section at x = 0; (b) (010) section at y = \12; (c) b!Al 17.934(4) [l(obsl > 2.5a(l)) 1068 section through the electron-density maxima on the 2-fold c(A) 5.282(1) axis and in the mirror plane, approximately parallel to Pl0l 105.08(1) Final Rlobs) 2.9% (201).In (a) and (b), the contour interval is 1 e/A3• In (c), VIA3l 898.3(1) Final wR!obs) 3.0% the contour interval is 1 e/A3 below 6 e!A3, and 0.1 e!A3 above 6 e/M; only this close contouring at high levels of Ideal cell contents: 2(NaCsaMg,Si,AIO,.F2l density brings out the separate maxima on the 2-fold axis cell contents: Analyzed 2!Na..812Cs,..,.Mo..so1Aio.-1Si�..,AI1,492)022F21 and within the mirror plane, and emphasizes the minimum R = IIIFoi·IFcl}f IIFol at thecentral (0 \12 0) position;this minimum is dot-shaded wR = !Iw!JFoJ·JFcJl'IIwf'!I"'· w=1 to distinguish it fromthe surrounding maxima. A-SITE DISORDER IN FLUOR-EDENITE 23 collection. An empirical absorption-correction based TABLE 2. ANAL POSITIONAL PARAMifrERS AND EQUIVALENT ISOTROPIC DISPLACEMENi PARAMETERS on 396 psi-scan intensities was applied, reducing R (.A2x104) FOR FLUOR-EDENITI: (azimuthal) from 1.3 to 0.9%. The data were corrected for Lorentz, polarization and background effects, and X y 11 u..,... reduced to structure factors; of the 1435 reflections n1l 0.28176(8) 0.08479(4) 0.3025(2) 82(2) measured, there were 1068 unique observed [I � 2.5o(I)] reflections. n2l 0.29057(8) 0.17251(4) 0.8113(2) 71(2} M(1) 0 0.08902(7) 1/2 66(4) Structure refinement M(2) 0 0.17547(7) 0 64(4) M(3) 0 0 0 66(6) Scattering curves for neutral atoms, together with M(4) 0 0.27854(5) 1/2 115(3) anomalous dispersion corrections, were taken from Cromer & Mann (1968) and Cromer & Liberman A(m)** 0.0415(9) 1/2 0.0953(20) 200* (1970), respectively. The Siemens SHELXTL PLUS A(2)** 0 0.4765(5) 0 200* (PC Version) system of programs was used throughout 0(1) 0.1084(2) 0.0860(1) 0.2182(4} 97(5) this study. R indices are of the form given in Table 1, 0(2) 0.1191(2) 0.1714(1) 0.7312(4) 91(5) and are expressed as percentages. Least-squares refinement of the structure in the 0(3) 0.1044(3) 0 0.7133(5} 107(7) space group C2/m, with starting parameters taken from 0(4) 0.3656(2) 0.2504(1) 0.7884(4) 115(6) Hawthorne (1983) and an isotropic displacement 0(5) 0.3511 (2) 0.1391(1) 0.1108(4) 128(6) model, converged to an R index of 5.1%. Conversion 0(6) 0.3462(2) 0.1164(1) 0.6075(4) 133(6) to an anisotropic displacement model, together with the refinement of all parameters, converged to a 0(7) 0.3448(3) 0 0.2784(7) 129(8) wR R index of 3.2% and a index of 3.3%. A model . with weighted structure-factors and an isotropic fixed during refinement • * A(ml and A(2) populations are 0.24(1 land 0.25(1l Na, extinction correction was tried but did not lead to any respectively. improvement in the refinement. As is usual for amphi­ boles with a fullA -site, the A(2/m) displacement factor was found to be very large (U "' 0.16), indicative of significant positional disorder in the cavity sur­ TABLE 3. ANISOTROPIC DISPLACEMENT PARAMETERS CA"x104) rounding theA site (Hawthorne & Grundy 1972). This FOR FLUOR-EDENITE feature is of considerable interest in the present case u, u22 u.. u.. u,. u,. because of the fairly simple composition of the amphi­ 78(4) 84(3) 80(3) -2(3) 14(3) -3(2) bole.
Recommended publications
  • AMPHIBOLES: Crystal Chemistry, Occurrence, and Health Issues
    AMPHIBOLES: Crystal Chemistry, Occurrence, and Health Issues 67 Reviews in Mineralogy and. Geochemistry 67 TABLE OF CONTENTS 1 Amphiboles: Crystal Chemistry Frank C. Hawthorne, Roberta Oberti INTRODUCTION 1 CHEMICAL FORMULA 1 SOMi : ASPECTS OF CHEMICAL ANALYSIS 1 Chemical composition 1 Summary 6 CALCULATION OF THE CHEMICAL FORMULA 7 24 (O, OH, F, CI) 7 23 (O) 8 13 cations 8 15 cations 8 16 cations 8 Summary 8 AMPIIIBOI I S: CRYSTAL STRUCTURE 8 Space groups 9 Cell dimensions 9 Site nomenclature 9 The C2/m amphibole structure 10 The P2/m amphibole structure 12 The P2/a amphibole structure 12 The Pnma amphibole structure 12 The Pnmn amphibole structure 14 The C1 amphibole structure 17 STACKING SEQUENCES AND SPACE GROUPS 18 BOND LENGTHS AND BOND VALENCES IN [4IA1-FREE AMPHIBOLES 19 THE DOUBLE-CHAIN OF TETRAHEDRA IN [4IA1 AMPHIBOLES 19 Variation in <T-0> bondlengths in C2/m amphiboles 21 Variation in <T-0> bondlengths in Pnma amphiboles 25 THE STEREOCHEMISTRY OF THE STRIP OF OCTAHEDRA 27 The C2/m amphiboles: variation in mean bondlengths 27 The Pnma amphiboles with B(Mg,Fe,Mn): variation in mean bondlengths 30 v Amphiboles - Table of Contents The Pnma amphiboles with BLi: variation in mean bondlengths 32 THE STEREOCHEMISTRY OF THE M (4) SITE 34 The calcic, sodic-calcic and sodic amphiboles 35 Amphiboles with small B cations (magnesium-iron-manganese- lithium, magnesium-sodium and lithium-sodium) 36 The C2/m amphiboles: variation in <M(4)-0> bondlengths 36 The Pnma amphiboles: variation in <MA-0> bondlengths 36 I III! STEREOCHEMISTRY OF THE A SITE 37 The C2/m amphiboles 37 The PU a amphibole 40 The Pnma amphiboles 40 The Pnmn amphiboles 41 THE STEREOCHEMISTRY OF THE 0(3) SITE 41 The C2/m amphiboles 41 UNIT-CELL PARAMETERS AND COMPOSITION IN C2/m AMPHIBOLES 42 SUMMARY 46 ACKNOWLEDGMENTS 46 REFERENCES 47 APPENDIX 1: CRYSTAL-STRUCTURE REFINEMENTS OF AMPHIBOLE 51 Z Classification of the Amphiboles Frank C.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • (Fe-Mg Amphibole) in Plutonic Rocks of Nahuelbuta Mountains
    U N I V E R S I D A D D E C O N C E P C I Ó N DEPARTAMENTO DE CIENCIAS DE LA TIERRA 10° CONGRESO GEOLÓGICO CHILENO 2003 THE OCCURRENCE AND THERMAL DISEQUILIBRIUM OF CUMMINGTONITE IN PLUTONIC ROCKS OF NAHUELBUTA MOUNTAINS CREIXELL, C.(1*); FIGUEROA, O.(1); LUCASSEN, F.(2,3), FRANZ, G.(4) & VÁSQUEZ, P.(1) (1)Universidad de Concepción, Chile, Depto. Ciencias de la Tierra, Barrio Universitario s/n, casilla 160-C (2)Freie Universität Berlin, FB Geowissenschaften, Malteserstr. 74-100, 12249 Berlin, Germany (3)GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany; [email protected] (4)TU-Berlin, Petrologie-EB15, Strasse des 17.Juni 135, 10623 Berlin, Germany; *Present Address: MECESUP-Universidad de Chile, Depto. de Geología, Plaza Ercilla 803, casilla 13518, [email protected] INTRODUCTION The “cummingtonite series” (Leake, 1978) are characterised by magnesio-cummingtonite (Mg7Si8O22(OH)2) and grunerite (Fe7Si8O22(OH)2) end-members. Cummingtonite is mainly produced under amphibolite-facies conditions, but the entire stability range cover at least a field of 400 to 800° C, at pressures between <1 to 15 kbar (Evans and Ghiorso, 1995, Ghiorso et al., 1995). Natural cummingtonite occurs in several metamorphic rock types (i.e. Kisch & Warnaars, 1969, Choudhuri, 1972) and also can coexist with incipient melt in high-grade gneisses in deep- crustal levels (Kenah and Hollister, 1983). For igneous rocks, cummingtonite had been described in some rhyolites at Taupo Zone, New Zealand (Wood & Carmichael, 1973) and as a stable phase in plutonic rocks (e.g. Bues et al., 2002). In the present study, we describe the occurrence of cummingtonite in Upper Palaeozoic plutonic rocks and their amphibolite xenoliths from the Nahuelbuta Mountains, south central Chile (37°-38°S, for location see fig.
    [Show full text]
  • Wang Et Al., 2001
    American Mineralogist, Volume 86, pages 790–806, 2001 Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy ALIAN WANG,* BRAD L. JOLLIFF, LARRY A. HASKIN, KARLA E. KUEBLER, AND KAREN M. VISKUPIC Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis, Missouri 63130, U.S.A. ABSTRACT This study reports the use of Raman spectral features to characterize the structural and composi- tional characteristics of different types of pyroxene from rocks as might be carried out using a por- table field spectrometer or by planetary on-surface exploration. Samples studied include lunar rocks, martian meteorites, and terrestrial rocks. The major structural types of quadrilateral pyroxene can be identified using their Raman spectral pattern and peak positions. Values of Mg/(Mg + Fe + Ca) of pyroxene in the (Mg, Fe, Ca) quadrilateral can be determined within an accuracy of ±0.1. The preci- sion for Ca/(Mg + Fe + Ca) values derived from Raman data is about the same, except that correc- tions must be made for very low-Ca and very high-Ca samples. Pyroxenes from basalts can be distinguished from those in plutonic equivalents from the distribution of their Mg′ [Mg/(Mg + Fe)] and Wo values, and this can be readily done using point-counting Raman measurements on unpre- pared rock samples. The correlation of Raman peak positions and spectral pattern provides criteria to distinguish pyroxenes with high proportions of non-quadrilateral components from (Mg, Fe, Ca) quadrilateral pyroxenes. INTRODUCTION pyroxene group of minerals is amenable to such identification Laser Raman spectroscopy is well suited for characteriza- and characterization.
    [Show full text]
  • List of Abbreviations
    List of Abbreviations Ab albite Cbz chabazite Fa fayalite Acm acmite Cc chalcocite Fac ferroactinolite Act actinolite Ccl chrysocolla Fcp ferrocarpholite Adr andradite Ccn cancrinite Fed ferroedenite Agt aegirine-augite Ccp chalcopyrite Flt fluorite Ak akermanite Cel celadonite Fo forsterite Alm almandine Cen clinoenstatite Fpa ferropargasite Aln allanite Cfs clinoferrosilite Fs ferrosilite ( ortho) Als aluminosilicate Chl chlorite Fst fassite Am amphibole Chn chondrodite Fts ferrotscher- An anorthite Chr chromite makite And andalusite Chu clinohumite Gbs gibbsite Anh anhydrite Cld chloritoid Ged gedrite Ank ankerite Cls celestite Gh gehlenite Anl analcite Cp carpholite Gln glaucophane Ann annite Cpx Ca clinopyroxene Glt glauconite Ant anatase Crd cordierite Gn galena Ap apatite ern carnegieite Gp gypsum Apo apophyllite Crn corundum Gr graphite Apy arsenopyrite Crs cristroballite Grs grossular Arf arfvedsonite Cs coesite Grt garnet Arg aragonite Cst cassiterite Gru grunerite Atg antigorite Ctl chrysotile Gt goethite Ath anthophyllite Cum cummingtonite Hbl hornblende Aug augite Cv covellite He hercynite Ax axinite Czo clinozoisite Hd hedenbergite Bhm boehmite Dg diginite Hem hematite Bn bornite Di diopside Hl halite Brc brucite Dia diamond Hs hastingsite Brk brookite Dol dolomite Hu humite Brl beryl Drv dravite Hul heulandite Brt barite Dsp diaspore Hyn haiiyne Bst bustamite Eck eckermannite Ill illite Bt biotite Ed edenite Ilm ilmenite Cal calcite Elb elbaite Jd jadeite Cam Ca clinoamphi- En enstatite ( ortho) Jh johannsenite bole Ep epidote
    [Show full text]
  • Highly Aluminous Hornblende from Low-Pressure Metacarbonates And
    American Mineralogist, Volume 76, pages 1002-1017, 1991 Highly aluminous hornblendefrom low-pressuremetacarbonates and a preliminary thermodynamicmodel for the Al content of calcic amphibole Ar-rnnr Lfcrn, JoHN M. Frnnv Department of Earth and Planetary Sciences,The Johns Hopkins University, Baltimore, Maryland 21218, U.S.A. Ansrucr Calcic amphiboles in carbonate rocks at the same metamorphic grade from the Waits River Formation, northern Vermont, contain 2.29-19.06wto/o AlrO, (0.38-3.30Al atoms per formula unit, pfu). These Al-rich amphibole samplesare among the most aluminous examples of hornblende ever analyzed. The amphibole-bearing metacarbonatesare in- terbedded with andalusite-bearingpelitic schists and therefore crystallized at P < 3800 bars. Theseresults demonstrate that factors in addition to pressuremust control Al content in hornblende. We have identified temperature,mineral assemblage,mineral composition, and rock chemistry [especiallyFe/(Fe + Mg)] as other important factors. To explore semiquantitatively the dependenceof the Al content of calcic amphibole on P, T, and coexisting mineral assemblage,a simple thermodynamic model was developed for mineral equilibria involving tremolite-tschermakite ([CarMgrSi'O'r(OH)r]- [CarMg.AloSi6Orr(OH)r])amphibole solutions. The model uses the thermodynamic data base of Berman (1988), with the addition of new values for standard-stateenthalpy and entropy for pure end-member tschermakite derived from experimental and field data on the Al content in tremolite coexisting with diopside, anorthite, and quartz. Calculated phase equilibria lead to three conclusions:(l) At a specifiedP and T, the Al content of calcic amphibole is strongly dependenton the coexisting mineral assemblage.(2) No uni- versal relationship exists between the Al content of amphibole and P.
    [Show full text]
  • Cl-Rich Amphiboles As Record for Hydrothermal Processes at Very
    Cl-rich amphiboles as record for hydrothermal processes at very high temperatures in the deep oceanic crust: brine/rock interaction experiments and investigation on natural rocks Von der Naturwissenschaftlichen Fakultät der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des Grades Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von Adriana Miriam Currin Sala, M. Sc (Niederlande) 2018 Referent: Prof. Dr. rer. nat. Jürgen Koepke Korreferenten: Prof. Dr. rer. nat. Wolfgang Bach Prof. Dr. sci. nat. Ulrich Heimhofer Tag der Promotion: 15.11.2018 2 Abstract Interactions between rock and high temperature seawater-derived fluids are recorded in hydrothermal veins and dykelets that cross-cut layered olivine gabbros deep in the plutonic section of the Samail Ophiolite, Wadi Wariyah, Sultanate of Oman. Here we present a study – using petrographic, microanalytical, isotopic, and structural methods – of amphiboles found in the aforementioned veins and dykelets, which show a conspicuous compositional variation from high-Ti magnesiohastingsite and pargasite via magnesiohornblende and edenite, to Cl-rich ferropargasite and hastingsite (with up to 5.4 wt% Cl) and actinolite. These minerals record a wide range of formation conditions from magmatic to hydrothermal at varying water/rock ratios and salinities, while the formation of super Cl-rich amphibole suggests the occurrence of phase separation, and 87Sr/86Sr and stable δ18O isotope analyses confirm the influence of a hydrothermal fluid in a rock-dominated environment. A parallel experimental study was conducted at hydrothermal (500 – 750 °C) and magmatic (900 °C) conditions at pressures of 2 kbar, and fO2 close to NNO, with an amphibole-containing natural olivine gabbro and saline fluid (6, 20 and 50 wt% NaCl).
    [Show full text]
  • The Tremolite-Actinolite-Ferro–Actinolite Series
    American Mineralogist, Volume 85, pages 1239–1254, 2000 The tremolite-actinolite-ferro–actinolite series: Systematic relationships among cell parameters, composition, optical properties, and habit, and evidence of discontinuities JENNIFER R. VERKOUTEREN1,* AND ANN G. WYLIE2 1Chemical Sciences and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, U.S.A. 2Laboratory for Mineral Deposits Research, Department of Geology, University of Maryland, College Park, Maryland 20742, U.S.A. ABSTRACT Unit-cell parameters, optical properties, and chemical compositions have been measured for 103 samples in the tremolite-actinolite-ferro-actinolite series. The average values of the non-essential constituents are: TAl = 0.10(11), CAl = 0.06(6), B(Fe, Mn, Mg) = 0.09(7), BNa = 0.04(5), ANa = 0.09(9), and Cr, Ti, and K ≅ 0. Asbestiform actinolite samples have lower Al contents than massive or “byssolitic” actinolite samples. Unit-cell parameters for end members tremolite and ferro-actino- lite based on regressions of the data are: a = 9.841 ± 0.003 Å, 10.021 ± 0.011 Å; b = 18.055 ± 0.004 Å, 18.353 ± 0.018 Å; c = 5.278 ± 0.001 Å, 5.315 ± 0.003 Å; and cell volume = 906.6 ± 0.5 Å3, 944 ± 2 Å3. The changes in a, b, and cell volume with ferro-actinolite substitution are modeled with quadratic functions, and the change in c with ferro-actinolite substitution is modeled with a linear function. There is a positive correlation between c and Al that results in a discrimination between asbestiform and massive or “byssolitic” habits for c and for the refractive indices.
    [Show full text]
  • High-REE Gabbroids and Hornblendites of the Ilmeny Mountains (Urals)
    Russian Geology and Geophysics © 2019, V.S. Sobolev IGM, Siberian Branch of the RAS Vol. 60, No. 3, pp. 309–325, 2019 DOI:10.15372/RGG2019023 Geologiya i Geofizika High-REE Gabbroids and Hornblendites of the Ilmeny Mountains (Urals) V.G. Korinevsky , E.V. Korinevsky Institute of Mineralogy, Ural Branch of the Russian Academy of Sciences, Ilmeny State Reserve, Miass, Chelyabinsk Region, 456317, Russia Received 5 Octoder 2017; received in revised form 17 July 2018; accepted 17 September 2018 Abstract—Chaotically localized isolated small bodies of metaultrabasic rocks have been found in the quartzite-schist strata of the Ilmeny metamorphic complex in the South Urals. These are metamorphosed rootless blocks and lumps of serpentinite melange within the so-called Urazbaevo olistostrome. Sometimes they contain lumpy inclusions of massive anorthite gabbroids with gabbro, ophitic, and cumulative textures, free of crystallization schistosity, and of different mineral compositions. The rocks have abnormally high contents of Al2O3, CaO, MgO, and REE and low contents of SiO2 and are characterized by weak secondary alteration. Seldom, inclusions of horn- blendites, along with anorthite, spinel, apatite, enstatite, diopside, and rutile, are present. Some gabbroid and hornblendite bodies have abnormally high contents of REE, with a strong predominance of LREE (81–93% of the total REE). The maximum contents of REE have been established in zoisite amphibolites (170–850 ppm) and apatite–garnet hornblendites (up to 450 ppm). The conclusion has been drawn that the rocks formed in the basement of the Earth’s crust and got with protrusions of serpentinite melange to the surface. Keywords: zoisite gabbro, anorthite–amphibole gabbroids, hornblendites, metaultrabasic rocks, REE, Ilmeny complex, Urals INTRODUCTION mann et al., 2000, Table 4) and is within 189–192 ppm in the hornblendites.
    [Show full text]
  • Structural and Thermodynamic Properties of Ca-Al-Bearing Amphiboles
    Structural and thermodynamic properties of Ca-Al-bearing amphiboles vorgelegt von Diplom-Mineraloge Jens Najorka Vom Fachbereich 9 - Bauingenieurwesen und Angewandte Geowissenschaften - der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Gerhard Franz Berichter: PD Dr. Matthias Gottschalk Berichter: Prof. Dr. Wilhelm Heinrich Tag der wissenschaftlichen Aussprache: 16. Februar 2001 Berlin 2001 D83 EIDESSTATTLICHE ERKLÄRUNG Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbständig und nur mit den angegebenen Mitteln angefertigt habe. Berlin, 12.12.2000 1 DANKSAGUNG Am erfolgreichen Abschluß dieser Arbeit waren viele Personen beteiligt. Ohne ihre Hilfe wäre es mir viel schwerer gefallen, sie fertigzustellen. Deshalb spreche ich allen an dieser Stelle meinen herzlichsten Dank aus. Die Anregungen zu dieser Arbeit und die Möglichkeiten zu ihrer Verwirklichung verdanke ich Prof. W. Heinrich und Dr. M. Gottschalk. Ihr stetes Interesse am Fortgang der Arbeit war mir sehr wertvoll und hat zum Gelingen maßgeblich beigetragen. Für die Zusammenarbeit an der TU-Berlin bin ich Prof. G. Franz sehr verbunden. Besonderer Dank gilt Dr. M. Gottschalk für die stimulierenden Diskussionen über Thermodynamik und Röntgendiffraktometrie, Dr. M. Andrut für die Hilfe bei der Infrarotspektroskopie, Dr. R. Wirth für die Anleitung und Zusammenarbeit am Transmissionselektronenmikroskop, Frau O. Appelt und Dr.
    [Show full text]
  • Amphibole Crystallization Conditions As Record of Interaction Between
    SILEIR RA A D B E E G D E A O D L Special Session, “A tribute to Edilton Santos, a leader in Precambrian O E I G C I A Geology in Northeastern Brazil”, edited by A.N. Sial and V.P. Ferreira O BJGEO S https://doi.org/10.1590/2317-4889202020190101 Brazilian Journal of Geology D ESDE 1946 Amphibole crystallization conditions as record of interaction between ultrapotassic enclaves and monzonitic magmas in the Glória Norte Stock, South of Borborema Province 1,2 1,3 3 Vinícius Anselmo Carvalho Lisboa * , Herbet Conceição , Maria Lourdes Silva Rosa , Gisele Tavares Marques4 , Cláudio Nery Lamarão4 , André Luiz Rezende Lima3 Abstract The Glória Norte Stock (GNS) is made up of predominantly porphyritic biotite- amphibole-bearing quartz monzonite, enclosing a large number of microgranular mafic enclaves (MME). The GNS MME are fine-grained rocks with rounded and ellipsoid shapes that show sharp and gradational contacts with the host rocks, suggesting they coexisted with the host monzonite as magmas. The studied amphibole crystals of the two rock types are calcic and correspond to pargasite, edenite, and magnesium-hornblende. Their compositions are influenced by substitutions involving Al3+, Na+, Fe2+, Si4+ and Mg2+ ions, reflecting the decrease in temperature and the increase in oxygen fugacity. They pres- ent low Ti and Al contents, and varied Si content (6.2–7.7 apuf). The mg# values range from 0.48–0.84. Pressures for the crystallization of the MME amphiboles vary between 2.6 and 7.8 kbar and the temperatures of solidus and liquidus were estimated between 600–659 and 887–908°C, respectively.
    [Show full text]
  • Crystal-Chemistry and Short-Range Order Of
    Short-range order in fluoro-amphiboles CRYSTAL-CHEMISTRY AND SHORT-RANGE ORDER OF FLUORO-EDENITE AND FLUORO-PARGASITE: A COMBINED X-RAY DIFFRACTION AND FTIR SPECTROSCOPIC APPROACH 1,2 1,2 GIANCARLO DELLA VENTURA , FABIO BELLATRECCIA , FERNANDO 3 4 CÁMARA AND ROBERTA OBERTI 1) Dipartimento di Scienze, Università di Roma Tre, Largo S. Leonardo Murialdo 1, I-00146 Roma, Italy 2) INFN, Laboratori Nazionali di Frascati, Roma 3) Dipartimento di Scienze della Terra, via Valperga Caluso 35, I-10125 Torino 4) CNR-Istituto di Geoscienze e Georisorse, UOS Pavia, via Ferrata 1, I-27100 Pavia, Italy 1 Short-range order in fluoro-amphiboles ABSTRACT In this study we address the crystal-chemistry of a set of five samples of F-rich amphiboles from the Franklin marble (USA), using a combination of microchemical (EMPA), SREF, and FTIR spectroscopy methods. The EMPA data show that three samples fall into the compositional field of fluoro-edenite (Hawthorne et al., 2012), whereas two samples are enriched in high-charged C cations, and - although very close to the CR3+ boundary - must be classified as fluoro-pargasite. Mg is by far the dominant C cation, Ca is the dominant B cation (with BNa in the range 0.00-0.05 apfu, atoms per formula unit), and Na is the dominant A cation, with A (vacancy) in the range 0.07- 0.21 apfu; WF is in the range 1.18-1.46 apfu. SREF data show that: TAl is completely ordered at the T(1) site; the M(1) site is occupied only by divalent cations (Mg and Fe2+); CAl is disordered between the M(2) and M(3) sites; ANa is ordered at the A(m) site, as expected in F-rich compositions.
    [Show full text]