List of Mineral Symbols

Total Page:16

File Type:pdf, Size:1020Kb

List of Mineral Symbols THE CANADIAN MINERALOGIST LIST OF SYMBOLS FOR ROCK- AND ORE-FORMING MINERALS (January 1, 2021) ____________________________________________________________________________________________________________ Ac acanthite Ado andorite Asp aspidolite Btr berthierite Act actinolite Adr andradite Ast astrophyllite Brl beryl Ae aegirine Ang angelaite At atokite Bll beryllonite AeAu aegirine-augite Agl anglesite Au gold Brz berzelianite Aen aenigmatite Anh anhydrite Aul augelite Bet betafite Aes aeschynite-(Y) Ani anilite Aug augite Bkh betekhtinite Aik aikinite Ank ankerite Aur auricupride Bdt beudantite Akg akaganeite Ann annite Aus aurostibite Beu beusite Ak åkermanite An anorthite Aut autunite Bch bicchulite Ala alabandite Anr anorthoclase Aw awaruite Bt biotite* Ab albite Atg antigorite Axn axinite-(Mn) Bsm bismite Alg algodonite Sb antimony Azu azurite Bi bismuth All allactite Ath anthophyllite Bdl baddeleyite Bmt bismuthinite Aln allanite Ap apatite* Bns banalsite Bod bohdanowiczite Alo alloclasite Arg aragonite Bbs barbosalite Bhm böhmite Ald alluaudite Ara aramayoite Brr barrerite Bor boralsilite Alm almandine Arf arfvedsonite Brs barroisite Bn bornite Alr almarudite Ard argentodufrénoysite Blt barylite Bou boulangerite Als alstonite Apn argentopentlandite Bsl barysilite Bnn bournonite Alt altaite Arp argentopyrite Brt baryte, barite Bow bowieite Aln alunite Agt argutite Bcl barytocalcite Brg braggite Alu alunogen Agy argyrodite Bss bassanite Brn brannerite Amb amblygonite Arm armangite Bsn bastnäsite Bra brannockite Ams amesite As arsenic Bau baumstarkite Bnt braunite Amp amphibole* Ass arseniosiderite Bel bellidoite Brv bravoite Anl analcime Acr arsenocrandallite Bnj benjaminite Bhp breithauptite Ana anapaite Asf arsenoflorencite Brd berdesinskiite Btt briartite Ant anatase Apd arsenopalladinite Ber berryite Bri britholite And andalusite Apy arsenopyrite Brh berthierine Bro brochantite Bdk brodtkorkite Cp chalcopyrite Clf columbite-(Fe) Daq daqingshanite-(Ce) Brk brookite Cm chaméanite Clm columbite-(Mn) Dar darapiosite Brc brucite Chm chamosite Cls colusite Dbl daubréelite Bul bultfonteinite Cha chatkalite Cnl connellite Def defernite Bst bustamite Crl cheralite Cu copper Del delafossite Bu bukovite Cvt chernovite-(Y) Ckt cookeite Dll dellaite Bur buryatite Chv chevkinite Cpr cooperite Dmd diamond Cdm cadmoselite Cap chlorapatite Crd cordierite Dsp diaspore Clv calaverite Chl chlorite* Cor coronadite Dcn dickinsonite Cal calcite Cld chloritoid Crr corrensite Dck dickite Cdr calderite Chn chondrodite Crn corundum Dg digenite Ccn cancrinite Csl chrisstanleyite Cos cosalite Di diopside Cf canfieldite Chr chromite Csb costibite Dis dissakisite Cbc carbocernaite Cb chrysoberyl Cou coulsonite Djr djerfisherite Cnt carnotite Ccl chrysocolla Cv covellite Dju djurleite Car carrollite Ctl chrysotile Cdl crandallite Dol dolomite Cpl caryopilite Chk chukhrovite Crs cristobalite Do domeykite Cst cassiterite Cin cinnabar Crk crookesite Drv dravite Ctm catamarcaite Clt clausthalite Cry cryolite Dfr dufrénite Cat cattierite Cch clinochlore Cpt cryptomelane Duf dufrénoysite Cay caysichite-(Y) Chu clinohumite Cbn cubanite Dum dumortierite Cel celadonite Cmm clinomimetite Cum cummingtonite Du duranusite Cls celestine Cpt clinoptilolite Cup cuprite Dus dusmatovite Cln celsian Cpx clinopyroxene* Cbs cuprobismutite Eas eastonite Crt cerite-(Ce) Czo clinozoisite Cui cuproiridsite Ecn ecandrewsite Css cerussite Ctn clintonite Crh cuprorhodsite Eck eckermannite Cer cervantite Cbt cobaltite Cus cuspidine Ecl eclarite Cvl cervelleite Cpn cobaltpentlandite Cy cylindrite Ed edenite Cbz chabazite Coe coesite Dal daliranite Elb elbaite Ccm chalcoalumite Cof coffinite Dan danalite Eld eldragónite Cc chalcocite Cdw coldwellite Dbr danburite Ell ellenbergerite Chp chalcophyllite Clr coloradoite Dnt dantopaite Emp emplectite Eng enargite Fer feruvite Ghv genthelvite Hyn haüyne En enstatite Fnl fianelite Ger germanite Hz heazlewoodite Eos eosphorite Fis fischesserite Gdf gersdorffite Hd hedenbergite Ep epidote Fiz fizélyite Gbs gibbsite Hdl hedleyite Erl erlichmanite Flc fletcherite Gir giraudite Hlv helvite Es eskebornite Fl fluorite Gld gladite Hem hematite Ess esseneite Fed fluoro-edenite Gl glaucodot Hm hemusite Euc eucairite Fap fluorapatite Glt glauconite* Hnm henrymeyerite Ecl euclase Fapo fluorapophyllite Gln glaucophane Hc hercynite Ecr eucryptite Fel fluorellestadite Go godlevskite Hrd herderite Eud eudialyte Foi foitite Gt goethite Hes hessite Fab fabrièsite Fo forsterite Au gold Het heterosite Ffd fairfieldite Fos foshagite Gf goldfieldite Hul heulandite Fam famatinite Fr franckeite Glm goldmanite Hil hillebrandite Fa fayalite Fnk franklinite Gm gormanite Hoc hocartite Fbr ferberite Fbg freibergite Goy goyazite Hod hodrushite Fgs fergusonite Fri friedrichbeckeite Gft graftonite Hög högbomite Frh ferhodsite Frd friedrichite Gdd grandidierite Hol hollandite Fsk ferrisicklerite Frb frohbergite Gr graphite Hlw hollingworthite Fac ferro-actinolite Fnd frondelite Gre greenalite Hmq holmquistite Faln ferriallanite-(Ce) Fro froodite Gck greenockite Hol holtite Fal ferroalluaudite Fub furutobeite Grg greigite Hns hörnesite Fed ferro-edenite Gad gadolinite Grs grossular Hbl hornblende* Fhb ferro-hornblende Ghn gahnite Gru grunerite Hbn hübnerite Fks ferrokësterite Glx galaxite Gu gudmundite Hu humite Frrh ferrorhodsite Gn galena Gp gypsum Hur hureaulite Fsl ferroselite Gab galenobismutite Hag hagendorfite Hrb hurlbutite Fs ferrosilite Gal gallite Hak hakite Hut hutchinsonite Frt ferrorichterite Grt garnet* Hl halite Ht huttonite Ftw ferrotitanowodginite Ged gedrite Ham hambergite Hgr hydrogrossular Fts ferrotschermakite Gh gehlenite Hmr hammarite Hhl hydrohalite Fwg ferrowodginite Gkl geikielite Hs hastingsite Hjs hydroniumjarosite Htc hydrotalcite Kls kalsilite Lmp lamprophyllite Mkw mackinawite Hap hydroxylapatite Knk kaòkite Lan lanarkite Mhg maghagendorfite Hel hydroxylellestadite Kan kanonaite Lgt langite Mgh maghemite Hhd hydroxylherderite Kln kaolinite Lar larnite Maf magnesio- Hapk hydroxy- Kar karelianite Ltp latrappite arfvedsonite apophyllite-(K) Kto katoite Lmt laumontite Mcd magnesiochloritoid Ida idaite Ktp katophorite Lau launayite Mcr magnesiochromite Ik ikunolite Ke keilite Lrt laurite Mfr magnesioferrite Ill illite* Ktb kentbrooksite Ltt lautite Mft magnesio-foitite Ilm ilmenite Kem kermesite Lws lawsonite Mht magnesio- Ilv ilvaite Kst kësterite Lzl lazulite hastingsite Ins inesite Kfs K-feldspar* Lzr lazurite Mhb magnesio- Ing ingodite Kil killalaite Pb lead hornblende Irs irarsite Kmz kimzeyite Lpc lepidocrocite Mkt magnesio- Ish ishiharaite Kns kinoshitalite Lpd lepidolite* katophorite Iso isocubanite Krk kirkiite Lct leucite Mrt magnesiorichterite Ifp isoferroplatinum Kch kirschsteinite Lvc lévyclaudite Mrb magnesioriebeckite Ism isomertieite Klo klochite Lib libethenite Mst magnesiostaurolite Ixl ixiolite Kl klockmannite Lid liddicoatite Mta magnesiotaaffeite Ja jamesonite Kob kobellite Lil lillianite Mtm magnesiotaramite Jd jadeite Krn kornerupine Lnd lindströmite Mgs magnesite Jhn jahnsite Kt kotulskite Lin linnaeite Mgt magnetite Jag jagüéite Knn krennerite Lcb lipscombite Mjt majorite Jrs jarosite Krp krupkaite Lph lithiophilite Mal malachite Jh johannsenite Krt kruaite Lz lizardite Mld maldonite Jo jonassonite Kry kryzhanovskite Lol löllingite Mlv manganilvaite Jsv johnsomervilleite Kup kupèikite Ldn londonite Mng manganite Jrd jordanite Ku kuranite Lop loparite Mtb manitobaite Js-â joséite-â Kut kutnohorite Lou loughlinite Mth marathonite Jul julgoldite Ky kyanite Lud ludlamite Mrc marcasite Jnt junoite Laf laforêtite Lue lueshite Mrg margarite Krs kaersutite Ltk laitakarite Luz luzonite Ma marialite Mtg mattagamite Mtc monticellite Opx orthopyroxene* Pwg phosphowalpurgite Mau maucherite Mnt montmorillonite Os osmium Pcz pieczkaite Maw mawsonite Mor mordenite Osm osumilite Pie piemontite Med medaite Mmt morimotoite Otr ottrélite Pgt pigeonite Me meionite Msb mössbauerite Our ourayite Pi pirquitasite Mtk melanotekite Mul mullite Pad padìraite Plt platarsite Mln melanterite Ms muscovite Pd palladium Pt platinum Mel melilite Nad nadorite Pdg palladogermanide Pl plagioclase Mlt melonite Ngy nagyágite Pal palygorskite Pjr plumbojarosite Mnv menshikovite Nas nasinite Plv paolovite Pmc plumbomicrolite Mrk merenskyite Njs natrojarosite Pg paragonite Plk polkanovite Mrh merrihueite Ntr natrolite Par paratellurite Pol pollucite Mrt mertieite (I or II) Nau naumannite Prg pargasite Plb polybasite Mer merwinite Nek nekrasovite Pst parisite Plc polycrase-(Y) Mes messelite Ne nepheline Prk parkerite Pld polydymite Mec metacinnabar Nes nesquehonite Pav pavonite Pln polylithionite Mia miargyrite Ney neyite Pea pearceite Pou poudretteite Mch michenerite Nc nickeline Pct pectolite Pov povondraite Mc microcline Nic nickelphosphide Pek pekoite Pwl powellite Mic microlite Nis nickelskutterudite Pn pentlandite Prh prehnite Mie miessiite Nrb norbergite Per periclase Ptl pretulite Mih miharaite Nst norsethite Prv perovskite Prm prismatine Mil milarite Nsn nosean Prr perrierite Prs proustite Mlr millerite Obt oberthürite Prt pertlikite Psm pseudomalachite Mim mimetite Oft oftedalite Pet petalite Pss pseudosinhalite Min minnesotaite Ojl ojuleaite Pv petrovicite Pmp pumpellyite Mtd mitridatite Ol olivine* Ptk petrukite Put putoranite Mlb molybdenite Old oldhamite Ptz petzite Pyg pyrargyrite Mnz monazite Omp omphacite Pha pharmacosiderite Py pyrite Mon moncheite Orc orcelite Phk phenakite Pya pyroaurite Mnb montbrayite Orp orpiment Phg phengite Pcl
Recommended publications
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • The Behavior of Molybdenum., Tungsten, and Titanium
    The behavior of molybdenum, tungsten, and titanium in the porphyry copper environment Item Type text; Dissertation-Reproduction (electronic) Authors Kuck, Peter Hinckley Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 08/10/2021 00:24:06 Link to Item http://hdl.handle.net/10150/565421 THE BEHAVIOR OF MOLYBDENUM., TUNGSTEN, AND TITANIUM IN THE PORPHYRY COPPER ENVIRONMENT Peter' 'Hinckley Kuck A Dissertation Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES. In Partial.Fulfillment of the Requirements. ' ■ For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College ■ THE UNIVERSITY OF ARIZONA 1 9 7 8 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my Peter Hinckley Kuck direction by ___________ , , The Behavior of Molybdenum, Tungsten, and Titanium entitled ________________________________________________________ in the Porphyry Copper Environment be accepted as fulfilling the dissertation requirement for the Doctor of Philosophy degree of _______________________________________________________ Dissertation Director Date As members of the Final Examination Committee, we certify that we have read this dissertation and agree that it may be presented for final defense. \ R A j r i A hi / 7IT 2 / 1 r 7 - Final approval and acceptance of this dissertation is contingent on the candidate's adequate performance and defense thereof at the final oral examination. STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of.
    [Show full text]
  • Metamorphism of Sedimentary Manganese Deposits
    Acta Mineralogica-Petrographica, Szeged, XX/2, 325—336, 1972. METAMORPHISM OF SEDIMENTARY MANGANESE DEPOSITS SUPRIYA ROY ABSTRACT: Metamorphosed sedimentary deposits of manganese occur extensively in India, Brazil, U. S. A., Australia, New Zealand, U. S. S. R., West and South West Africa, Madagascar and Japan. Different mineral-assemblages have been recorded from these deposits which may be classi- fied into oxide, carbonate, silicate and silicate-carbonate formations. The oxide formations are represented by lower oxides (braunite, bixbyite, hollandite, hausmannite, jacobsite, vredenburgite •etc.), the carbonate formations by rhodochrosite, kutnahorite, manganoan calcite etc., the silicate formations by spessartite, rhodonite, manganiferous amphiboles and pyroxenes, manganophyllite, piedmontite etc. and the silicate-carbonate formations by rhodochrosite, rhodonite, tephroite, spessartite etc. Pétrographie and phase-equilibia data indicate that the original bulk composition in the sediments, the reactions during metamorphism (contact and regional and the variations and effect of 02, C02, etc. with rise of temperature, control the mineralogy of the metamorphosed manga- nese formations. The general trend of formation and transformation of mineral phases in oxide, carbonate, silicate and silicate-carbonate formations during regional and contact metamorphism has, thus, been established. Sedimentary manganese formations, later modified by regional or contact metamorphism, have been reported from different parts of the world. The most important among such deposits occur in India, Brazil, U.S.A., U.S.S.R., Ghana, South and South West Africa, Madagascar, Australia, New Zealand, Great Britain, Japan etc. An attempt will be made to summarize the pertinent data on these metamorphosed sedimentary formations so as to establish the role of original bulk composition of the sediments, transformation and reaction of phases at ele- vated temperature and varying oxygen and carbon dioxide fugacities in determin- ing the mineral assemblages in these deposits.
    [Show full text]
  • Chemical and Structural Evolution of “Metamorphic Vermiculite” in Metaclastic Rocks of the Betic Cordillera, Málaga, Spain: a Synthesis
    249 The Canadian Mineralogist Vol. 44, pp. 249-265 (2006) CHEMICAL AND STRUCTURAL EVOLUTION OF “METAMORPHIC VERMICULITE” IN METACLASTIC ROCKS OF THE BETIC CORDILLERA, MÁLAGA, SPAIN: A SYNTHESIS MARÍA DOLORES RUIZ CRUZ§ Departamento de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, Campus de Teatinos, E-29071 Málaga, Spain JOSÉ MIGUEL NIETO Departamento de Geología, Facultad de Ciencias Experimentales, Universidad de Huelva, E-21071 Huelva, Spain ABSTRACT Vermiculite-like minerals from a metamorphic sequence of the Betic Cordillera, near Málaga, southeastern Spain, were investigated in detail by X-ray diffraction, electron-microprobe analysis, and transmission-analytical electron microscopy. Our results reveal that the chlorite-to-biotite transformation is much more complex than previously assumed. In addition to mixed- layer minerals with a mica:chlorite ratio of 2:1 and 1:1, which had previously been identifi ed, mixed-layer phases with very high and very low chlorite:vermiculite ratios have been identifi ed, together with true vermiculite, as intermediate steps in the chlorite-to-biotite transformation. The observed sequence is: chlorite → random to ordered 1:2 mica–chlorite mixed-layer phases → regular 1:1 chlorite–vermiculite mixed-layer phases → Vrm-rich chlorite–vermiculite mixed-layer phases → vermiculite → biotite. This sequence includes a continuous increase of interlayer cation content, and is similar to that described in the smectite- to-illite transformation. The high Na content of most of these phases suggests that in the absence of K-feldspar, two parallel sites of reactants, chlorite + phengite and chlorite + albite, account for the formation of vermiculitic phases, and later, of biotite. Keywords: mixed-layer minerals, metamorphic vermiculite, X-ray diffraction, electron-microprobe analysis, transmission elec- tron microscopy, analytical electron microscopy, Betic Cordillera, Spain.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Anorogenic Alkaline Granites from Northeastern Brazil: Major, Trace, and Rare Earth Elements in Magmatic and Metamorphic Biotite and Na-Ma®C Mineralsq
    Journal of Asian Earth Sciences 19 (2001) 375±397 www.elsevier.nl/locate/jseaes Anorogenic alkaline granites from northeastern Brazil: major, trace, and rare earth elements in magmatic and metamorphic biotite and Na-ma®c mineralsq J. Pla Cida,*, L.V.S. Nardia, H. ConceicËaÄob, B. Boninc aCurso de PoÂs-GraduacËaÄo em in GeocieÃncias UFRGS. Campus da Agronomia-Inst. de Geoc., Av. Bento GoncËalves, 9500, 91509-900 CEP RS Brazil bCPGG-PPPG/UFBA. Rua Caetano Moura, 123, Instituto de GeocieÃncias-UFBA, CEP- 40210-350, Salvador-BA Brazil cDepartement des Sciences de la Terre, Laboratoire de PeÂtrographie et Volcanologie-Universite Paris-Sud. Centre d'Orsay, Bat. 504, F-91504, Paris, France Accepted 29 August 2000 Abstract The anorogenic, alkaline silica-oversaturated Serra do Meio suite is located within the Riacho do Pontal fold belt, northeast Brazil. This suite, assumed to be Paleoproterozoic in age, encompasses metaluminous and peralkaline granites which have been deformed during the Neoproterozoic collisional event. Preserved late-magmatic to subsolidus amphiboles belong to the riebeckite±arfvedsonite and riebeckite± winchite solid solutions. Riebeckite±winchite is frequently rimmed by Ti±aegirine. Ti-aegirine cores are strongly enriched in Nb, Y, Hf, and REE, which signi®cantly decrease in concentrations towards the rims. REE patterns of Ti-aegirine are strikingly similar to Ti-pyroxenes from the IlõÂmaussaq peralkaline intrusion. Recrystallisation of mineral assemblages was associated with deformation although some original grains are still preserved. Magmatic annite was converted into magnetite and biotite with lower Fe/(Fe 1 Mg) ratios. Recrystallised amphibole is pure riebeckite. Magmatic Ti±Na-bearing pyroxene was converted to low-Ti aegirine 1 titanite ^ astrophyllite/aenigmatite.
    [Show full text]
  • Petrology of Nepheline Syenite Pegmatites in the Oslo Rift, Norway: Zr and Ti Mineral Assemblages in Miaskitic and Agpaitic Pegmatites in the Larvik Plutonic Complex
    MINERALOGIA, 44, No 3-4: 61-98, (2013) DOI: 10.2478/mipo-2013-0007 www.Mineralogia.pl MINERALOGICAL SOCIETY OF POLAND POLSKIE TOWARZYSTWO MINERALOGICZNE __________________________________________________________________________________________________________________________ Original paper Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: Zr and Ti mineral assemblages in miaskitic and agpaitic pegmatites in the Larvik Plutonic Complex Tom ANDERSEN1*, Muriel ERAMBERT1, Alf Olav LARSEN2, Rune S. SELBEKK3 1 Department of Geosciences, University of Oslo, PO Box 1047 Blindern, N-0316 Oslo Norway; e-mail: [email protected] 2 Statoil ASA, Hydroveien 67, N-3908 Porsgrunn, Norway 3 Natural History Museum, University of Oslo, Sars gate 1, N-0562 Oslo, Norway * Corresponding author Received: December, 2010 Received in revised form: May 15, 2012 Accepted: June 1, 2012 Available online: November 5, 2012 Abstract. Agpaitic nepheline syenites have complex, Na-Ca-Zr-Ti minerals as the main hosts for zirconium and titanium, rather than zircon and titanite, which are characteristic for miaskitic rocks. The transition from a miaskitic to an agpaitic crystallization regime in silica-undersaturated magma has traditionally been related to increasing peralkalinity of the magma, but halogen and water contents are also important parameters. The Larvik Plutonic Complex (LPC) in the Permian Oslo Rift, Norway consists of intrusions of hypersolvus monzonite (larvikite), nepheline monzonite (lardalite) and nepheline syenite. Pegmatites ranging in composition from miaskitic syenite with or without nepheline to mildly agpaitic nepheline syenite are the latest products of magmatic differentiation in the complex. The pegmatites can be grouped in (at least) four distinct suites from their magmatic Ti and Zr silicate mineral assemblages.
    [Show full text]
  • Infrare D Transmission Spectra of Carbonate Minerals
    Infrare d Transmission Spectra of Carbonate Mineral s THE NATURAL HISTORY MUSEUM Infrare d Transmission Spectra of Carbonate Mineral s G. C. Jones Department of Mineralogy The Natural History Museum London, UK and B. Jackson Department of Geology Royal Museum of Scotland Edinburgh, UK A collaborative project of The Natural History Museum and National Museums of Scotland E3 SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. Firs t editio n 1 993 © 1993 Springer Science+Business Media Dordrecht Originally published by Chapman & Hall in 1993 Softcover reprint of the hardcover 1st edition 1993 Typese t at the Natura l Histor y Museu m ISBN 978-94-010-4940-5 ISBN 978-94-011-2120-0 (eBook) DOI 10.1007/978-94-011-2120-0 Apar t fro m any fair dealin g for the purpose s of researc h or privat e study , or criticis m or review , as permitte d unde r the UK Copyrigh t Design s and Patent s Act , 1988, thi s publicatio n may not be reproduced , stored , or transmitted , in any for m or by any means , withou t the prio r permissio n in writin g of the publishers , or in the case of reprographi c reproductio n onl y in accordanc e wit h the term s of the licence s issue d by the Copyrigh t Licensin g Agenc y in the UK, or in accordanc e wit h the term s of licence s issue d by the appropriat e Reproductio n Right s Organizatio n outsid e the UK. Enquirie s concernin g reproductio n outsid e the term s state d here shoul d be sent to the publisher s at the Londo n addres s printe d on thi s page.
    [Show full text]
  • Pyrostilpnite Ag3sbs3 C 2001-2005 Mineral Data Publishing, Version 1
    Pyrostilpnite Ag3SbS3 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Crystals tabular {010} giving flat rhombic forms; also laths by elongation k [001], to 1 mm; as subparallel sheaflike aggregates. Twinning: On {100} with (100) as composition plane. Physical Properties: Fracture: Conchoidal. Tenacity: Somewhat flexible in thin plates. Hardness = 2 VHN = 95–115, 107 average (100 g load). D(meas.) = 5.94 D(calc.) = 5.97 Optical Properties: Transparent. Color: Hyacinth-red; lemon-yellow by transmitted light. Streak: Yellow-orange. Luster: Adamantine. Optical Class: Biaxial (+). Orientation: Y = b; X ∧ c = 8–11◦. α = Very high. β = Very high. γ = Very high. R1–R2: (400) 36.3–36.9, (420) 36.3–36.5, (440) 36.1–35.8, (460) 35.7–35.1, (480) 34.9–34.2, (500) 33.9–33.2, (520) 32.3–31.8, (540) 30.8–30.3, (560) 29.6–29.2, (580) 28.6–28.2, (600) 27.8–27.5, (620) 27.1–26.7, (640) 26.6–26.2, (660) 26.2–25.8, (680) 25.9–25.4, (700) 25.6–25.2 ◦ 0 Cell Data: Space Group: P 21/c. a = 6.84 b = 15.84 c = 6.24 β = 117 09 Z=4 X-ray Powder Pattern: Pˇr´ıbram, Czech Republic. 2.85 (100), 2.65 (50), 2.42 (50), 1.895 (50b), 1.887 (50b), 1.824 (20b), 1.813 (20b) Chemistry: (1) (2) (3) Ag 59.44 59.7 59.76 Sb 22.30 23.7 22.48 S 18.11 16.8 17.76 Total 99.85 100.2 100.00 (1) St.
    [Show full text]
  • Cobalt Mineral Ecology
    American Mineralogist, Volume 102, pages 108–116, 2017 Cobalt mineral ecology ROBERT M. HAZEN1,*, GRETHE HYSTAD2, JOSHUA J. GOLDEN3, DANIEL R. HUMMER1, CHAO LIU1, ROBERT T. DOWNS3, SHAUNNA M. MORRISON3, JOLYON RALPH4, AND EDWARD S. GREW5 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Northwest, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. 4Mindat.org, 128 Mullards Close, Mitcham, Surrey CR4 4FD, U.K. 5School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. ABSTRACT Minerals containing cobalt as an essential element display systematic trends in their diversity and distribution. We employ data for 66 approved Co mineral species (as tabulated by the official mineral list of the International Mineralogical Association, http://rruff.info/ima, as of 1 March 2016), represent- ing 3554 mineral species-locality pairs (www.mindat.org and other sources, as of 1 March 2016). We find that cobalt-containing mineral species, for which 20% are known at only one locality and more than half are known from five or fewer localities, conform to a Large Number of Rare Events (LNRE) distribution. Our model predicts that at least 81 Co minerals exist in Earth’s crust today, indicating that at least 15 species have yet to be discovered—a minimum estimate because it assumes that new minerals will be found only using the same methods as in the past. Numerous additional cobalt miner- als likely await discovery using micro-analytical methods.
    [Show full text]
  • New Minerals Approved Bythe Ima Commission on New
    NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI.
    [Show full text]