Quick viewing(Text Mode)

Role of Signal Transduction in the Pathogenicity of Stagonospora Nodorum on Wheat

Role of Signal Transduction in the Pathogenicity of Stagonospora Nodorum on Wheat

Role of signal transduction in the pathogenicity of Stagonospora nodorum on wheat

TAN, Kar-Chun

B.Sc. Molecular Biology (1st Class Hons.)

This thesis is presented for the degree of Doctor of Philosophy of Murdoch University 2007

“We make our luck” Wordsfromateacher

I. Declaration

Ideclarethatthisthesisismyownaccountofmy researchandcontainsasitsmain content work which has not previously been submitted for a degree at any tertiary educationinstitution.

……….……...... TAN, Kar-Chun B.Sc. Murdoch (1st Class Hons.) Submission:1stJune2007 Revised:1stNovember2007

II. Acknowledgements

Firstandforemost,Iwouldliketoextendmyheartfelt thanks to both of my immediatesupervisorsintheACNFP,Prof.RichardOliverandDr.PeterSolomonfor taking me under their wings. You both have beenexcellent mentors to me since I steppedintoyourlabin2001.Iamgratefultobothofyouforgivingmeachancetodo someoutstandingresearchinyoulab. Also,Iwouldliketoexpressmysincerethankstoourcollaboratorsforlending their time and unique expertise to assist in giving this thesis a colourful life. Prof. HarveyMillarandDr.JoshuaHeazlewood,Ithankyoubothforhelpinguswiththe massspecwork.ThevaluabledatathatyouhavehelpedtoobtainearlyinmyPhD candidaturehaveopenedsomenewdoors.Assoc.Prof.RobertTrengove,Ithankyou foryourhelponmetabolomicsandtheworkontheRT4557compound.Yourskillsare invaluableandhighlyappreciated.Dr.GordonThompson,thankyouforyouradvice andhelponthetissuecrosssectioningwork.Ithasbeenagreatlearningexperience.I canconsidermyselfluckytobeabletostandontheshouldersofgiants. Special acknowledgements to Rohan Lowe for establishing the metabolomic SOP,Dr.JudithLichtenzveigforadviceonstats,Dr.MaryOliverforherhelpinproof reading this thesis, Super James for the help on the fungal genome, Kazza for you advice on plant infection assays and Lazza+Zippy+Kazza+Supa James for the gladiatorialsquashgames.HowcanIforgettheluvlyAmanda… Finally,Iwouldliketoextendabigthanktomyfamilyandfiancé.Bigthanks to my young sister YewFoon for constructive discussions. Dearest May, sorry for beingawaysolong.Reallyappreciatethatradiosongdedication.Wasitreallyforme orthefreemovieticket?Iguessalargepartofthisworkisdedicatedtoforkeepingme going.Bewithyousoon…

III. Gene nomenclature

Genesareshowninitalicswiththefirstletterinuppercase(eg. Abc1 ). arewritteninnonitalicswiththefirstletterinuppercase(eg.Abc1).Deletedgenesare writteninfulllowercaseitalics(eg. abc1 ).

IV. Front cover description

Top. 2D IEF/SDSPAGE overlayof Stagonospora nodorum wildtype(magenta)anda

Gαsubunitgene Gna1 deficientmutant(green).Theredarrowindicatesthelocationof a putative shortchain dehydrogenase , Sch1. Bottom. False colour light microscopeimagesof S. nodorum wildtype(bottomleft)andthe sch1 mutantcross sectionedpycnidia(bottomright).

V. Table of contents

I. DECLARATION ...... I

II. ACKNOWLEDGEMENTS ...... II

III. GENE NOMENCLATURE ...... III

IV. FRONT COVER DESCRIPTION ...... III

V. TABLE OF CONTENTS ...... IV

VI. LIST OF FIGURES AND TABLES ...... IX

VII. ABSTRACT ...... XI

VIII. ABBREVIATIONS ...... XIII

CHAPTER 1 - GENERAL INTRODUCTION ...... 1 1.1 Signal transduction in plant pathogenic fungi ...... 2 1.1.1 and cAMP signalling...... 2 1.1.2 Mitogen-activated protein kinase signalling...... 15 1.1.3 Phosphotidylinositol and calcium signalling...... 25 1.1.4 Two-component signalling...... 26 1.1.5 Genetic evidence of signal transduction effectors ...... 27 1.1.6 Biochemical evidence of signal transduction effectors ...... 33 1.2 Wheat - the cultivated cereal crop...... 34 1.3 Stagonospora nodorum , the cereal pathogen...... 37 1.3.1 Epidemiology and economical importance ...... 37 1.3.2 The infection life cycle ...... 40 1.3.3 Genetic manipulation...... 42 1.3.4 Signal transduction genes ...... 43 1.4 Fungal genome sequences and proteomics ...... 46 1.5 Project aims...... 49

CHAPTER 2 - GENERAL MATERIALS AND METHODS ...... 51 2.1 General solutions and buffers ...... 52 2.2 Media...... 54 2.3 General computational methods ...... 56 2.3.1 Image analysis ...... 56 2.3.2 In silico DNA and protein sequence analysis ...... 56 2.3.3 Statistical analysis...... 56 2.3.4 Gene content in the Stagonospora nodorum genome...... 57

2.4 Bacterial manipulation...... 57 2.4.1 Preparation of competent cells ...... 57 2.4.2 Bacterial transformation ...... 58 2.5 DNA manipulation...... 58 2.5.1 Genomic DNA extraction...... 58 2.5.2 Plasmid DNA isolation...... 59 2.5.3 DNA purification and elution from agarose gel ...... 59 2.5.4 DNA cloning ...... 59 2.5.5 Restriction digestion of DNA ...... 60 2.5.6 Polymerase chain reaction (PCR) ...... 60 2.5.7 DNA electrophoresis on agarose gel...... 61 2.5.8 Southern blotting ...... 61 2.5.9 DNA probe labelling ...... 62 2.5.10 DNA probe hybridisation ...... 62 2.6 RNA manipulation...... 63 2.6.1 RNA isolation...... 63 2.6.2 First strand cDNA synthesis ...... 63 2.6.3 Quantitative real-time polymerase chain reaction (qRT-PCR)...... 64 2.7 Determination of nucleic acid concentration ...... 64 2.8 Manipulation of Stagonospora nodorum ...... 65 2.8.1 Growth and maintenance of Stagonospora nodorum ...... 65 2.8.2 Pycnidiospore isolation...... 65 2.8.3 Preparation of fungal glycerol stock ...... 65 2.8.4 Preparation of fungal protoplasts...... 65 2.8.5 Fungal transformation ...... 66 2.8.6 Fungal growth assay ...... 67 2.9 Wheat manipulation...... 68 2.9.1 Growth and maintenance of Triticum aestivum (cv. Amery) ...... 68 2.9.2 Detached leaf assay...... 68 2.9.3 Whole plant spray...... 68 2.9.4 In planta sporulation assay...... 69

CHAPTER 3 - IDENTIFICATION OF Gααα PROTEIN -REGULATED EFFECTOR PROTEINS IN STAGONOSPORA NODORUM BY PROTEOMICS ...... 70 3.1 Introduction ...... 71 3.2 Methods ...... 72 3.2.1 Fungal growth conditions and harvesting method ...... 72 3.2.2 Protein extraction and solubilisation...... 72 3.2.2.1 Soluble intracellular fraction...... 72 3.2.2.2 Soluble extracellular fraction...... 73 3.2.3 Determination of protein concentration...... 74 3.2.4 SDS polyacrylamide gel electrophoresis ...... 75 3.2.5 First dimension protein separation via IEF ...... 75 3.2.6 Second dimension protein separation via SDS-PAGE ...... 76 3.2.7 Protein visualisation ...... 76

3.2.8 Gel image acquisition and analysis ...... 76 3.2.9 LC-MS/MS analysis and database searching...... 77 3.2.10 Enzymatic assay for mannitol dehydrogenase activity ...... 78 3.2.11 Signal peptide analysis...... 79 3.2.12 Statistical analysis of transcript abundance...... 79 3.3 Results...... 80 3.3.1 The determination of extracellular pH...... 80 3.3.2 Assaying for cytoplasmic contamination in the extracellular protein fraction ...... 80 3.3.3 Comparative extracellular proteome analysis...... 80 3.3.4 Comparative intracellular proteome analysis...... 81 3.3.5 Functional classification of differentially abundant proteins...... 81 3.3.6 qRT-PCR analysis of gene expression...... 89 3.3.7 Variants of Snp3 and serine protease precursor ...... 98 3.3.8 Qa-2 is located in a putative quinate gene cluster...... 98 3.3.9 Genomic organisation of other Gna1 protein effector genes ...... 100 3.4 Discussion...... 101 3.4.1 Comparative analysis of the intracellular proteome...... 101 3.4.2 Comparative analysis of the extracellular proteome...... 101 3.4.3 Transcript analysis of putative Gna1 -regulated genes ...... 106 3.4.4 Signal peptides and sub-cellular protein localisation...... 107 3.4.5 Identification of an extracellular malate dehydrogenase...... 108 3.4.6 Nucleotide degradation ...... 108 3.4.7 Protein folding and stabilisation...... 109 3.4.8 Protein/peptide degradation ...... 110 3.4.9 Cell wall degradation ...... 112 3.4.10 Quinate ...... 113 3.4.11 Association of putative Gna1 -regulated genes in probable gene clusters? ...... 114 3.4 Conclusion ...... 115

CHAPTER 4 - IDENTIFICATION OF MITOGEN -ACTIVATED PROTEIN KINASE -REGULATED EFFECTOR PROTEINS IN STAGONOSPORA NODORUM BY PROTEOMICS ...... 117 4.1 Introduction ...... 118 4.2 Methods ...... 118 4.3 Results...... 119 4.3.1 Comparative intracellular proteome analysis...... 119 4.3.2 Functional classification of differentially abundant proteins...... 119 4.3.3 qRT-PCR analysis of gene expression...... 122 4.3.4 Genomic organisation of putative Mak2 effector genes...... 126 4.4 Discussion...... 126 4.4.1 Difficulties in isolating extracellular proteins for proteomics ...... 126 4.4.2 Gna1 and Mak2 effector co-regulation ...... 128 4.4.3 Identification of a glucose repressible protein ...... 131 4.4.4 Identification of S. nodorum mannitol dehydrogenase...... 131

4.4.5 Association of SNOG_08282.1 with a probable gene cluster?...... 132 4.5 Conclusion ...... 132

CHAPTER 5 - ANALYSIS OF A PUTATIVE SHORT -CHAIN DEHYDROGENASE GENE (SCH 1) FOR ITS ROLE IN THE PATHOGENICITY OF STAGONOSPORA NODORUM ON WHEAT ....134 5.1 Introduction ...... 135 5.2 Materials and methods ...... 136 5.2.1 Sch1 gene knockout vector construction and gene deletion ...... 136 5.2.2 2D SDS-PAGE analysis ...... 138 5.2.3 Spore germination assay...... 138 5.2.4 Osmotolerance assays...... 138 5.2.5 Protoplasting of the sch1-42 mutant...... 139 5.2.6 Microscopy analysis and basic photography ...... 139 5.2.7 Histological staining of cross-sectioned tissues ...... 139 5.2.8 Leaf clearing and viability staining...... 141 5.2.9 Preparations of biological materials for polar metabolite analysis ...... 141 5.2.10 Metabolite extraction ...... 142 5.2.11 Derivatisation of metabolites ...... 143 5.2.12 GC-MS metabolite separation and detection...... 143 5.2.12.1 Electron ionisation...... 143 5.2.12.2 Positive chemical ionisation (PCI)...... 144 5.2.13 Metabolite identification...... 145 5.2.14 Metabolite normalisation ...... 145 5.2.15 Statistical analysis for metabolomic analysis...... 146 5.2.16 Determination of the RT4557 retention index...... 147 5.3 Results...... 148 5.3.1 Identification of Sch1 from Gna1 and Mak2 -deleted strains ...... 148 5.3.2 Polypeptide sequence analysis of Sch1 ...... 148 5.3.3 Sch1 expression...... 153 5.3.4 Deletion of Sch1 ...... 153 5.3.5 Proteomic confirmation of Sch1 deletion ...... 156 5.3.6 Comparative proteomic analysis of SN15 and sch1-42 ...... 156 5.3.7 Colony morphology of the sch1 mutants ...... 160 5.3.8 Osmotolerance assays...... 164 5.3.9 Pathogenicity assays...... 167 5.3.10 Spore phenotyping assays ...... 167 5.3.11 Sporulation of the sch1 mutants ...... 171 5.3.12 Pycnidial development of the sch1 mutants ...... 171 5.3.13 Protoplasting of sch1-42 ...... 182 5.3.14 In vitro metabolomic analysis ...... 182 5.3.15 Quantification of RT4557...... 184 5.3.16 Attempts to elucidate the molecular identify of RT4557 ...... 188 5.3.17 In planta metabolomic analysis ...... 191 5.3.18 Extracellular metabolome analysis of the sch1 mutants...... 193 5.4 Discussion...... 193 5.4.1 Sch1 encodes for a putative short-chain dehydrogenase...... 193

5.4.2 sch1 mutants are affected in vegetative development in vitro ...... 194 5.4.2 sch1 mutants are affected in vegetative development in vitro ...... 195 5.4.3 Sch1 is not required for vegetative proliferation within wheat...... 196 5.4.4 Disruption in pycnidial ontogeny...... 196 5.4.5 Sch1 is required for asexual sporulation ...... 197 5.4.6 Deletion of Sch1 resulted in the accumulation of the novel intracellular metabolite RT4557...... 198 5.4.7 Alterations in the extracellular metabolome of the sch1 mutants...... 200 5.4.8 Association between secondary metabolism and sporulation? ...... 200 5.4.9 Proteomic analysis ...... 201 5.4.10 On the accumulation and possible function of RT4557 ...... 201 5.5 Conclusion ...... 203

CHAPTER 6 - GENERAL DISCUSSION ...... 204 6.1 Confirmation of gene annotation via proteomics ...... 205 6.2 Relationship between protein and transcript abundance ...... 205 6.3 Putative gene clusters in S. nodorum ...... 207 6.4 Targeted deletion of other signalling effector genes...... 208 6.5 Potential antifungal targets...... 209 6.6 Fungal signal transduction and proteomics...... 210 6.6.1 Y2H and tandem affinity purification (TAP) ...... 211 6.6.2 Phosphoproteomics...... 212 6.6.3 Sub-cellular proteomics...... 212 6.7 Overall summary...... 213

REFERENCES ...... 214

APPENDICES ...... 251

VI. List of Figures and Tables

The heterotrimeric G protein pathway (Figure 1.1) ...... 4 The sequence relationship between fungal Galpha subunits (Figure 1.2) ...... 6 Heterotrimeric G protein pathway genes in plant pathogenic fungi (Table 1.1) ...... 7 Mitogen-activated protein kinase pathways in (Figure 1.3)...... 16 The amino acid sequence relationship between fungal MAPKs (Figure 1.4)...... 17 MAPK signalling genes in plant pathogenic fungi (Table 1.2) ...... 19 Wheat (Figure 1.5) ...... 35 Leading wheat producing countries (Table 1.3) ...... 36 Rainfall figure and disease prominence in Australia (Figure 1.6) ...... 38 Disease symptoms of wheat infected with Stagonospora nodorum (Figure 1.7) ...... 39 Host penetration and pycnidiation (Figure 1.8)...... 41 Rate of homologous gene recombination in S. nodorum (Table 1.4)...... 44 2D electrophoresis workflow (Figure 1.9) ...... 48 Enzymatic assay for mannitol dehydrogenase (Table 3.1)...... 82 Extracellular 2D proteome gels of SN15 and gna1-35 (Figure 3.1)...... 83 Differentially abundant extracellular protein spots of SN15 and gna1-35 (Table 3.2)...... 84 Intracellular 2D proteome gels of SN15 and gna1-35 (Figure 3.2)...... 86 Differentially abundant intracellular protein spots of SN15 and gna1-35 (Table 3.3) ...... 87 Functional classification of putative Gna1 -effector genes (Table 3.4) ...... 88 qRT-PCR analysis of genes that encode extracellular proteins (Figure 3.3)...... 91 qRT-PCR analysis of genes that encode intracellular proteins (Figure 3.4)...... 95 Gene expression profiles in planta (Figure 3.5)...... 97 MS peptide coverage of Snp3 (Figure 3.6) ...... 99 MS peptide coverage of a putative serine protease (Figure 3.7)...... 99 CipC and NmrA putative gene cluster (Table 3.5) ...... 102 SNOG_10217.1 putative gene cluster (Table 3.6) ...... 103 SNOG_13042.1 putative gene cluster (Table 3.7) ...... 104 SNOG_14370.1 putative gene cluster (Table 3.8) ...... 105 Intracellular 2D proteome gels of SN15 and mak2-65 (Figure 4.1)...... 120 Differentially abundant intracellular protein spots of SN15 and mak2-65 (Table 4.1 ...... 121 qRT-PCR analysis of genes that encode intracellular proteins (Figure 4.2)...... 123 Gene expression profiles in planta (Figure 4.3)...... 125 SNOG_08282.1 putative gene cluster (Table 4.2) ...... 127 Gna1 and Mak2 effector co-regulation (Figure 4.4) ...... 129 Sch1 knockout vector construction (Figure 5.1)...... 137 Mass spectrometry peptide coverage of Sch1 (Figure 5.2) ...... 149 Predicted motifs in Sch1 (Table 5.1)...... 150 Predicted secondary structure of Sch1 (Figure 5.3) ...... 151 BlastP analysis of Sch1 (Table 5.2) ...... 152 PCR and Southern analysis for Sch1 deletion (Figure 5.4) ...... 154 Proteomic confirmation of Sch1 deletion (Figure 5.5) ...... 155 Intracellular 2D proteome gels of SN15 and sch1-42 (Figure 5.6) ...... 157 Differentially abundant intracellular protein spots of SN15 and sch1-42 (Table 5.3)...... 158 3D imaging of spot C1 (Figure 5.7) ...... 159 Colony morphology of the sch1 mutants on agar media (Figure 5.8)...... 161 Colony diameter of the sch1 mutants on agar media (Figure 5.9) ...... 162 Morphology of the sch1 mutants in liquid culture (Figure 5.10) ...... 163 Trypan blue staining of infected wheat leaves (Figure 5.11) ...... 165 Infection assays (Figure 5.12)...... 166 Spore pellet and germination rate of the sch1 mutants (Figure 5.13)...... 168 The length of sch1-42 pycnidiospores (Table 5.4)...... 169 DIC images of pycnidiospores (Figure 5.14) ...... 169 Pycnidiospore count (Figure 5.15) ...... 170 Pycnidia size measurements in vitro (Figure 5.16)...... 172

Pycnidia size measurements in planta (Figure 5.17)...... 173 Pycnidiation pattern of the sch1 strains on wheat meal agar (Figure 5.18) ...... 174 Cross-section light microscopy analysis of sch1-42 pycnidia (Figure 5.19)...... 176 Cross-section TEM analysis of sch1-42 pycnidia (Figure 5.20)...... 178 Nuclei distribution (Figure 5.21)...... 180 Proprotoplasting of sch1-42 (Figure 5.22)...... 181 GC-MS ion chromatograms of Sch1 and sch1 strains (Figure 5.23)...... 183 Metabolite classification (Figure 5.24)...... 185 Principal component analysis (Figure 5.25)...... 186 Quantification of RT4557 (Figure 5.26) ...... 187 Fragmentation pattern of RT4557 via electron ionisation (Figure 5.27)...... 189 Positive chemical ionisation of RT4557 (Figure 5.28) ...... 190 Structural matches to RT4557 based on fragmentation profiles (Figure 5.29)...... 192 Alterations in the extracellular metabolome of the sch1 mutants (Figure 5.30)...... 194 Confirmation of gene prediction via MS-derived data (Table 6.1) ...... 206 The plasmid vector pBSK-phleo (Appendix A) ...... 252 qRT-PCR primer sequences (Appendix B)...... 253 Densitometry data of extracellular protein spots in Chapter 3 (Appendix C)...... 254 Supplementary BlastP data (Appendix D)...... 257 Densitometry analysis of intracellular protein spots in Chapters 3 and 4 (Appendix E)...... 259 Densitometry analysis of intracellular protein spots in Chapter 5 (Appendix F)...... 261 In vitro metabolomics data (Appendix G) ...... 262 The AMDIS mass spectrum format of RT4557 (Appendix H)...... 265 Peptide coverage of CipC (Appendix I)...... 266 Construction of the CipC knockout vector (Appendix J)...... 267 Peptide coverage of Sch2 (Appendix K) ...... 268 Construction of the Sch2 knockout vector (Appendix L) ...... 269 Peptide coverage of Sch3 (Appendix M) ...... 270 Construction of the Sch3 knockout vector (Appendix N) ...... 271 Peptide coverage of Nrd1 (Appendix O) ...... 272 Construction of the Nrd1 knockout construct (Appendix P)...... 274

VII. Abstract

Thefungus Stagonospora nodorum isthecausalagentofleafandglumeblotch diseaseonwheatandisanemergingmodelforthestudy of the interaction between plants and necrotrophic fungal pathogens. Signal transduction plays a critical role during infection by allowing the pathogen to sense and appropriately respond to environmental changes. The role of signal transduction in the pathogenicity of S. nodorum was analysed by the targeted inactivation of genes encoding a G α subunit

(Gna1 )andamitogenactivatedproteinkinase( Mak2 ).Strainscarryingtheinactivated geneswereimpairedinvirulenceanddemonstratedahostofphenotypicimpairments such as abolished sporulation. Therefore, it was hypothesised that Gna1 and Mak2 regulatedownstreameffectormoleculesthatarecriticalforpathogenicdevelopment.A

2D gelbased proteomic approach was used to compare the extracellular and intracellularproteomesofthewildtypefungusandsignallingmutantsfordifferencesin protein abundance. Tandem mass spectrometry (LCMS/MS) analysis and pattern matchingagainstthe S. nodorum genomesequenceledtotheidentificationof26genes from34differentiallyabundantproteinspots.Thesegenespossessprobablerolesin protein cycling, plant cell wall degradation, stress response, nucleotide metabolism, proteolysis,quinateandsecondarymetabolism.Aputativeshortchaindehydrogenase gene ( Sch1 ) was identified and its expression was shown to be reduced in both signallingmutants. The transcript level of Sch1 increasedduring the latterperiod of infectioncoincidingwithpycnidiation. Sch1 wasinactivatedbytargetedgenedeletion.

Mutants were able to effectively colonise the host but asexual sporulation was dramaticallyreducedandpycnidialontogenywasseverelydisrupted.Furthermore,the sch1 mutants showed alterations in the metabolome. GCMS analysis identified a

metabolite which accumulated in the sch1 mutants. Computational and database analysesindicatedthatthecompoundpossessesacycliccarbonbackbone.Basedon these findings, Sch1 may be a suitable target for fungicides that inhibit asexual sporulation and the accumulated compound may be used to design novel antifungal compounds. 2D SDSPAGE analysis identified increased abundance of another putative shortchain dehydrogenase ( Sch2 ) and a nitroreductase in the sch1 deleted background.ItwasalsoshownthatSch2 wasregulatedby Gna1 .

VIII. Abbreviations

ABC ATPbindingcassette AC Adenylyl(syn.adenylate)cyclase ACNFP AustralianCentreforNecrotrophicFungalPathogens AMDIS AutomatedMassSpectralDeconvolutionandIdentificationSystem ANOVA Analysisofvariance BCA Bicinchoninicacid BSA Bovineserumalbumin cAMP CyclicAMP CID Collisioninduceddissociation DAPI 4’,6diamido2phenylindole CAS Chemicalabstractsservice CHAPS 3[(3cholamidopropyl)dimethylammonio]1propanesulfonate Cpka CatalyticsubunitofproteinkinaseA CS Completesupplement CzV8CS CzapekDoxV8juicewithCS (k)Da (Kilo)Dalton(s) DAG Diacylglycerol DEPC Diethylpyrocarbonate DHN Dihydroxynapththalene DIC Differentialinterferencecontrast DLA Detachedleafassay DNase Deoxyribonuclease DOPA Dihydroxphenylalanine DTT Dithiothreitol EDTA Ethylenediaminetetraaceticacid ER Endoplasmicreticulum ESI Electrosprayionisation EST Expressedsequencetag F Faraday FPP Farnesyldiphosphate g Centrifugalforce g Gram GABA γaminobutyrate(syn. γaminobutyricacid) GC-MS Gaschromatographmassspectrometry GPCR Gproteincoupledreceptor GST GlutathioneS h Hour(s) HCA Hierarchicalcomponentanalysis HK Histidinekinase HMM HiddenMarkovmodel ICAT Isotopecodedaffinitytags IP 3 Inositol1,4,5trisphosphate IPG ImmobilisedpHgradient IPTG βD1thiogalactopyranoside J Joule(s)

LC-MS/MS Highperformanceliquidchromatographytandemmassspectrometry MALDI-ToF Matrixassistedlaserdesorption/ionisationtimeofflight MAPK Mitogenactivatedproteinkinase MAPKK Mitogenactivatedproteinkinasekinase MAPKKK Mitogenactivatedproteinkinasekinasekinase MM Minimalmedium MS Massspectrometer MSS Multiplesurfactantsolution MST Massspectraltag MW Molecularweight m/z Masstocharge NIST NationalInstituteofStandardsandTechnology NN Neuralnetwork NRPS Nonribosomalpeptidesynthetase Ohm OD Opticaldensity ORF Openreadingframe PCA Principalcomponentanalysis PCI Positivechemicalionisation PCR Polymerasechainreaction PKA ProteinkinaseA PKC ProteinkinaseC PKS Polyketidesynthase PMSF Phenylmethylsulfonylfluoride PPI Peptidylprolyl RGS RegulatorofGproteinsignalling RNase RT Retentiontime s Second(s) SAGE Serialanalysisofgeneexpression SDS Sodiumdodecylsulphate SDS-PAGE SDSpolyacrylamidegelelectrophoresis SE Standarderror SSH Suppressionsubtractivehybridisation TAE Tris,aceticacid,EDTA TAP Tandemaffinitypurification TCA Trichloroaceticacid TMS Trimethylsilylortransmethylsilylation UTR Untranslatedregion V Volt(s) X-Gal 5bromo4chloro3indoylβDgalactoside Y2H Yeasttwohybrid

Chapter 1 - General introduction

Chapter 1

1.1 Signal transduction in plant pathogenic fungi

Signaltransductioninplantpathogenicfungihasreceivedconsiderableattention foritspossiblerolesintheperceptionofhostandenvironmentalsignals(Bahn et al. ,

2007;Kronstad,2000).Thesesignalscaninfluencefungalsporegermination(Bagga&

Straney, 2000; Blakeman, 1975; Chaky et al. , 2001) penetration/proliferation

(Beckerman&Ebbole,1996;Emmett&Parberry,1975;Grambow,1977;Nierman et al. ,2005)andsporulation(Kihara et al. ,2007;Lee et al. ,2006).Perceivedsignalsare transducedwithinthefungusviaanintricateintracellularsignallingnetworktoelicita metabolic,developmentalorapathogenicresponse(Bagga&Straney,2000;DeZwaan et al. ,1999;Klose et al. ,2004).

Intenseresearchduringthepastdecadehasuncoveredanumberofsignalling pathways critical for development and pathogenicity. The heterotrimeric G protein pathwayutilisescyclicAMP(cAMP)asasecondaryintracellularmessengertoregulate effectorfunction.Themitogenactivatedproteinkinasecascadeundergoesaseriesof proteinphosphorylationeventsforsignalamplificationandtransduction.Evidenceof phosphotidylinositol/Ca 2+ and twocomponent signalling involvement in fungal phytopathogenicityhassurfacedjustrecently(Section1.1.3).ThisChapterwillattempt toprovideasummarylinkingsomepreviousandrecentfindingsontheregulationof developmentandvirulenceinfungi.

1.1.1 Heterotrimeric G protein and cAMP signalling

The heterotrimeric G protein family is a universal eukaryotic signalling component.Theheterotrimerconsistsofthe α, β, and γsubunits. Heterotrimeric G

2 Chapter 1

proteinsarecoupledtothecytoplasmicsideofamembraneboundGproteincoupled receptor (GPCR) (Figure 1.1). The heterotrimer is activated by the interaction of an extracellularligandwiththeGPCR,triggeringaconformationalchangewithinthe βγ subunits.ThiscausesthedisplacementofGDPbyGTPontheG αsubunitresultingin itsreleasefromtheparentaltrimer.Asaresult,theG αandG βγ subunitscaninteract withintracellulareffectorssuchasphosphodiesterase,phospholipases,adenylylcyclase

(AC)andionchannels(Simon et al. ,1991).Oncetheligandisnolongerpresent,an intrinsic GTPase located within the G α subunit catalyses GTP hydrolysis. GTPase activityispromotedbyafamilyofGTPaseactivatingproteinknownasregulatorofG proteinsignalling(RGS)(Ross&Wilkie,2000).Thispermitsthereassociationofthe

α subunit with the βγ heterodimer(Pennington,1994).Twoofthemostcommonly studiedGαfamiliesarethestimulatory(G αs)andinhibitory(G αi)families.TheG αs family is known to activate AC thus resulting in the production of a secondary messenger molecule cAMP from ATP. The G αi family prevents the activation of adenylylcyclase.cAMPinteractswithdownstreamcomponentssuchasproteinkinase

A(PKA).PKAiscomposedoftwocatalyticandtworegulatorysubunits.Thecatalytic subunitsareactivewhencAMPinteractswiththeregulatorysubunitscausingmolecular dissociation.Traditionally,G αproteinshavebeenviewedasthe“businessend”ofa heterotrimericGproteinbecauseitbindstoGTPandinteractswitheffectorswhereas theG βγfunctionasregulatorysubunits(Helper&Gilman,1992).However,agrowing body of evidence suggests that free G βγ subunits possess independent effector regulatingfunctions(Helper&Gilman,1992;Nishimura et al. ,2003;Schwindinger&

Robishaw,2001).

3 Chapter 1

Figure 1.1. An illustration of the heterotrimeric G protein signalling pathway in

eukaryotes.DiagramadaptedfromBorkovich(1996).

1The heterotrimeric G protein pathway (Figure 1.1)

Figure 1.1. An illustration of the heterotrimeric G protein signalling pathway in eukaryotes.DiagramadaptedfromBorkovich(1996).

4 Chapter 1

The first report a G αsubunit genecloned ina filamentousfungus wasin N. crassa (Turner&Borkovich,1993).Todate,threeG αsubunitgenes( Gna1 to 3)have beenreportedandcharacterisedin N. crassa .Mutationin Gna1 causedareductionin vegetative growth, increased sensitivity to osmotic stress, abberent conidiation and defectivemating(Ivey et al. ,1996).ThedeletionofthesecondG αsubunitgene Gna2 didnotproduceanyobviousdefectsin N. crassa .However,whenintroducedintoa gna1 background,thedoublemutationaccentuatedthe gna1 mutantphenotypeandthus suggestsoverlappingfunctions(Baasiri et al. ,1997).MutationofathirdG αsubunit gene Gna3 led to excess conidiation which was reversed by the addition of cAMP

(Kays et al. , 2000). It is evident that G α protein signalling plays a major role in developmentalregulationin N. crassa .Fromhere,questionsariseontheroleofG α proteinsignallinginplantpathogenicfungi.

Bolker(1998)devisedaclassificationschemethatplacesfungalG αproteinsintothree major classes based on amino acid sequence similarities (Figure 1.2). Other components of the heterotrimeric G protein pathway were also subjected to pathogenicity studies. This includes the G β subunit, AC, PKA, Ras and RGS. A summaryofpublishedstudiesdescribingcomponents of the heterotrimeric G protein pathwayinplantpathogenicfungiislistedinTable1.1.Dependingonthefungus,the deletionofgenesencodingcomponentsofthepathwayoftenresultinreducedfitnessin conidiation,sporegermination,asexualreproduction,formationofpenetrationstructure, vegetative growth, pigmentation and virulence. A brief discussion on the role

5 Chapter 1

Figure 1.2. PhylogramshowingtheaminoacidsequencerelationshipofGUmGpa4 αsubunits

UmGpa2 reportedfrom Neurospora crassa andplantpathogenicfungiusingTREEVIEW.Prefix BcBcg2 abbreviation of species; Nc, Neurospora crassaNcGna2; Um, Ustilago maydis ; Bc, Botrytis II RnRga3 cinerea ; Rn, Rosellinia necatrix ; Cp, Cryphonectria parasitica ; Mg, Magnaporthe CpCpg3 grisea ; Fo, Fusarium oxysporum ; Uh, UstilagoMgMagC hordei ; Ch, Cochliobolus

Bcg3 heterostrophus ,Aa, Alternaria alternata ;Ct, Colletotrichum trifolii .Gpa4isanunusual RnRga1

Gαproteinandhasbeenusedasanoutgroup.ThebarNcGna3 indicatestherelativemeasureof FoFga2 III thedistanceinthephylogenetictreeasgivenbyCLUSTALW. CpCpg2

MgMagA

UhFil1 UmGpa3

2The amino acid sequence relationship between fungaUmGpa1l Galpha subunits (Figure 1.2)

ChCga1

AaAga1

SnGna1

BcBcg1 I NcGna1

CpCpg1

MgMagB

RnRga2

FoFga1

CtCtg1 0.1

Figure 1.2.PhylogramshowingtheaminoacidsequencerelationshipofG αsubunits reported from Neurospora crassa and plant pathogenic fungi using TREEVIEW. Prefix abbreviation of species; Nc, Neurospora crassa ; Um, Ustilago maydis ; Bc, Botrytis cinerea ; Rn, Rosellinia necatrix ; Cp, Cryphonectria parasitica ; Mg, Magnaporthe grisea ;Fo, Fusarium oxysporum ;Uh, Ustilago hordei ;Ch, Cochliobolus heterostrophus , Aa, Alternaria alternata; Ct, Colletotrichum trifolii . Gpa4 is an unusualG αproteinandhasbeenusedasanoutgroup.Thebarindicatestherelative measureofthedistanceinthephylogenetictreeasgivenbyCLUSTALW.

6 Chapter 1 Table 1.1. HeterotrimericGproteinpathwaygenesreportedinplantpathogenicfungi.Continuedonthenextpage.

3Heterotrimeric G protein pathway genes in plant pathogenic fungi (Table 1.1) S.nodorum Gna1 (Solomon et al. ,2004b) TableA.alternate 1.1.HeterotrimericGproteinpathwaygenesreportedi Aga1 (Yamagishi et al. ,2006)nplantpathogenicfungi.Continuedonthenextpage.

Organism Gene Genbank acc Gene family Function Reference Stagonospora nodorum Gna1 AY327542 Gαprotein(ClassI) Pycnidiation,extracellularproteasesecretion,DOPA Solomon et al. (2004b) metabolismandvirulence Alternaria alternata Aga1 BAE71312 Gαprotein(ClassI) Conidialgermtubeformationandvirulence Yamagishi et al. (2006) Aspergillus niger PkaC CAA64172 CatPKAsubunit Overexpressioncausedhypersporulationand Bencina et al. (1997) alterationinvegetativegrowth Blumeria graminis f.sp. Bka1 CAB61490 CatPKAsubunit Complementationof M. grisea cpka mutantdefects Bindslev et al. (2001) hordei Botrytis cinerea Bcg1 CAC19871 Gαprotein(ClassI) Vegetativegrowth,conidiation,extracellular Gronover et al. (2001) proteasesecretionandvirulence Bcg2 CAC19872 Gαprotein(ClassII) Virulence Gronover et al. (2001) Bcg3 BAD93277 Gαprotein(Class Conidiation,conidiagerminationandvirulence Doehlemann et al. III) (2006) Bcgb1 BAD93278 Gβprotein Unknown Osada et al. (2005) Bac CAB77164 Adenylylcyclase Vegetativegrowth,conidiationandvirulence Klimpel et al. (2002) Cochliobolus Cga1 AAC23576 Gαprotein(ClassI) Appressoriumformationandfemalefertility Horwitz et al. (1999) heterostrophus Cgb1 AAO25585 Gβprotein Vegetativegrowth,appressoriumformation,female Ganem et al. (2004) fertility,pigmentationandvirulence Colletotrichum lagenarium Rpk1 AAK31209 RegPKAsubunit Vegetativegrowth,conidiation,appressorial Takano et al. (2001) penetrationhyphaeandvirulence Cpk1 Q9C1C2 CatPKAsubunit Appressorialpenetration,conidiagermination,lipid Yamauchi et al. metabolismandvirulence (2004) Cac1 BAD04045 Adenylylcyclase Appressorialpenetration,conidiagermination,lipid Yamauchi et al. metabolismandvirulence (2004) Colletotrichum trifolii Ctg1 AAC03782 Gαprotein(ClassI) Vegetativegrowth,conidiagerminationand Truesdell et al. (1999) virulence CtpkaC AAC04355 CatPKAsubunit Hostpenetrationandvirulence Yang&Dickman (1999a) CtPkaR AAC04356 RegPKAsubunit Unknown Yang&Dickman (1999b)

7 Chapter 1 B.gra minis Bka1 (Bindslev et al. ,2001) B.cinerea Bcg1 (Gronover et al. ,2001) Table 1.1.Continuedfromthepreviouspage.Bcg2 (Gronover et al. ,2001) Organism Gene Genbank acc Gene family Function Reference Cryphonectria parasitica Cpg1 AAA67706 Gαprotein(ClassI) Colonymorphology,femalefertility,pigmentation, Gao&Nuss(1996); hydrophobinsynthesisandvirulence Segers&Nuss(2003) Cpg2 AAA67707 Gαprotein(ClassIII) Vegetativegrowthandconidiation Gao&Nuss(1996) Cpg3 AAM14395 Gαprotein(ClassII) Unknown Parsley et al. (2003) Cpgb1 AAC49838 Gβprotein Vegetativegrowth,femalefertility,pigmentationand Kasahara&Nuss virulence (1997) Bdm1 AAF26212 Phosducin Vegetativegrowth,femalefertility,pigmentationand Kasahara et al. (2000) virulence Cprgs1 AAT92283 RGS Vegetativegrowth,pigmentation,hydrophobin Segers et al. (2004) synthesisandvirulence Fusarium oxysporum Fga1 BAB69488 Gαprotein(ClassI) Conidiation,heatresistanceandvirulence Jain et al. (2002) Fga2 BAD44729 Gαprotein(ClassIII) Heatresistanceandvirulence Jain et al. (2005) Fgb1 BAB69489 Gβprotein Vegetativegrowth,conidiation,conidiagermination, Jain et al. (2003); extracellularproteasesecretion,heatresistanceand PradosRosales et al. virulence. (2006) Magnaporthe grisea Pth11 AAD30438 Membraneprotein Appressoriumformationandvirulence DeZwaan et al. (1999) MagA AAB65425 Gαprotein(ClassIII) Asciformation Liu&Dean(1997) MagB AAB65426 Gαprotein(ClassI) Vegetativegrowth,conidiation,appressorium Liu&Dean(1997) formation,femalefertilityandvirulence MagC AAB65427 Gαprotein(ClassII) Conidiationandasciformation Liu&Dean(1997) Mgb1 BAC01165 Gβprotein Vegetativegrowth,conidiation,appressorium Nishimura et al. formationandvirulence (2003) Mac1 AAB66482 Adenylylcyclase Vegetativegrowth,conidiation,appressorium Choi&Dean(1997) formation,femalefertilityandvirulence Sum1 AAC34140 RegPKAsununit Restoregrowth,appressoriumformationsexualand Adachi&Hamer(1998) asexualmorphopgenesisin mac1 mutants Cpka AAA93199 CatPKAsubunit Appressoriumformation,penetration,lipid Mitchell&Dean mobilisationandvirulence (1995);Xu et al. (1997); Thineset al. (2000) Rgs1 ABC60049 RGS Appressoriumformation,negativelyregulates Liu et al. (2007) MagA,MagBandMagC,hyperconidiationin rga1 mutants.

8 Chapter 1

Table 1.1.Continuedfromthepreviouspage.

Organism Gene Genbank acc Gene family Function Reference Mycosphaerella MgTpk2 ABD92791 CatPKAsubunit Deletionincreasedmelanisation.Vegetativegrowth, Mehrabi&Kema graminicola pycnidiation in planta andvirulence (2006) MgBcy1 ABD92792 RegPKAsubunit Deletionreducedmelanisation.Vegetativegrowth, Mehrabi&Kema osmotolerance,pycnidiation in planta andvirulence (2006) Rosellinia necatrix Rga1 BAB20821 Gαprotein(ClassIII) Unknown Aimi et al. (2001) Rga2 BAB20820 Gαprotein(ClassI) Unknown Aimi et al. (2001) Rga3 BAB20819 Gαprotein(ClassII) Unknown Aimi et al. (2001) Sclerotinia sclerotiorum Pka1 AY545583 CatPKAsubunit Nodetectablephenotype Jurick et al. (2004) Ustilago hordei Fil1 AAC49880 Gαprotein(ClassIII) Filamentousgrowth,dimorphicswitchingofhaploid Lichter&Mills(1997) cellsandpigmentation Lichter&Mills(1998) Ustilago maydis Gpa1 UM05123 Gαprotein(ClassI) Nodetectablephenotype Regenfelder et al. (1997) Gpa2 UM02517 Gαprotein(ClassII) Nodetectablephenotype Regenfelder et al. (1997) Gpa3 UM04474 Gαprotein(ClassIII) Constitutivefilamentationofmutants,pheromone Regenfelder et al. response,sexualdimorphismandvirulence (1997) Gpa4 UM05385 Gαprotein(ClassIV) Nodetectablephenotype Regenfelder et al. (1997) Bpp1 AAN33051 Gβprotein Constitutivefilamentationofmutants,pheromone Muller et al. (2004) responseandsexualdimorphism Uac1 P49605 Adenylylcyclase Constitutivefilamentationofmutantsandvirulence Gold et al. (1994); Kruger et al. (1998) Ubc1 AAA57470 RegPKAsubunit Mutantsshowedmultiplebuddingphenotype, Gold et al. (1994); fungicideresistanceandnontumorinducing Ramesh et al. (2001) phenotype Uka1 AAC24243 CatPKAsubunit Nodetectablephenotype Durrenberger et al. (1998) Adr1 AAC24242 CatPKAsubunit Constitutivefilamentationofmutantsandvirulence Durrenberger et al. (1998) Ras2 AAO19639 Ras Gprotein Suppressorof adr1 mutation,regulatorofKpp2 Lee&Kronstad(2002); signalling,cellmorphologyandvirulence Muller et al. (2003a) Sql1 AF268097 Transcriptional AntagonisecAMPsignalling Loubradou et al. (2001) repressor Hgl1 AF274314 SubstrateforPKA Suppressorofthe adr1 phenotype.Pigmentationand Durrenberger et al. teliosporeformation. (2001)

9 Chapter 1

ofheterotrimericGproteinsignallinginvirulenceanddevelopmentofplantpathogenic fungiisprovidedbelow.

Inthecornsmutfungus Ustilago maydis , the process of mating requires the fusion of haploid cells to form an infective dikaryotic hyphae that is regulated by heterotrimericGproteinandmitogenactivatedproteinkinasesignalling(Feldbrugge et al. ,2004).Geneticevidencesuggeststhatthesetwopathwaysregulatetheexpression ofgenesinthe aand bmatingloci.The alocuscontainsthepheromone( Mfa1/2 )and receptor ( Pra1/2 ) genesrequired for mating recognition whereas the b locus encodes two proteins which form an active heterodimeric transcription factor (bE/ bW) after hyphal fusion (Feldbrugge et al. , 2004). Both pathways converged downstream to regulate1. Crk1 ,anovelMAPKgenerequiredforfilamentation,matingandvirulence

(Garrido et al. ,2004)and 2. Prf1 ,thetranscriptionfactorgenerequiretopromotethe expression of a and b genes (Kaffarnik et al. , 2003). The heterotrimeric G protein pathway plays an important role in morphogenesis (Feldbrugge et al. , 2004). The deletion of the Uac1 adenylyl cyclase gene resulted in a constitutive filamentous phenotype(Gold et al. ,1994),abolishedresponsetopheromoneandhenceresultedin matingdeficienciesandabolishedpathogenicity(Gold et al. ,1994;Kruger et al. ,1998).

TheadditionofcAMPrestoredthebuddingphenotype(Gold et al. ,1994).Suppressor mutationofthe Ubc1 PKAregulatorysubunitgenerestoredbuddinggrowthtothe uac1 mutant (Gold et al. , 1994). Deletion of Ubc1 alone resulted in a multiple budding phenotypeandresistancetocertainfungicides(Gold et al. ,1994;Ramesh et al. ,2001).

TwoPKAcatalyticsubunitgenes, Adr1 and Uka1 wereidentifiedandcharacterisedby

Durrenberger et al. (1998). The deletion of Uka1 did not produce a noticeable

10 Chapter 1

phenotype but adr1 mutants showed a similar phenotype to the uac1 mutant.

Furthermore, PKA assays suggests that Adr1 is the likely partner for Ubc1

(Durrenberger et al. ,1998).Regenfelder et al. (1997)identifiedanddisruptedfourG α subunitgenes( Gpa1 to 4).Normally,G αsubunitswillrangefrom350to380amino acidsinlength(Birnbaumer,1992).ThepredictedsizeofGpa1to3isconsistenttothe proposed figure. However, Gpa4 encodes a predicted 580 amino acid polypeptide.

Deletion of Gpa1 , 2 and 4didnotproduceanoticeablephenotype.However, gpa3 mutantswerenonpathogenic,unabletomateandshowedconstitutivefilamentationin ahaploidstrain(Regenfelder et al. ,1997).TheG βsubunitBpp1wasidentifiedasa epistaticpartnerforGpa3butinterestinglyisdispensibleforpathogenicity (Muller et al. ,2004).Kruger et al. (1998)proposedthatGpa3actsupstreamtoUac1basedon evidencederivedfromtwoexperiments:1. the gpa3 mutantrespondedtocAMPand 2.

Uac1 deletion in a constitutively active Gpa3 background resulted in phenotypes indistinguishablefrom uac1 mutants(Kruger et al. ,1998).

The heterotrimeric G protein/cAMP pathway of the rice blast fungus

Magnaporthe grisea is well characterised for its role in appressorium morphogenesis and sexual development. Pth11 encodes a predicted membrane protein originally identified through a screen for defective mutants generated via restriction enzyme mediatedintegration(DeZwaan et al. ,1999). pth11 mutantscanformappressoriabutat areducedfrequencycomparedtothewildtype.Mutants were also less pathogenic.

ThesedefectscanbeovercomebyexogenouscAMPandthissuggeststhatPth11may functionupstreamoftheintracellularcAMPpathway(DeZwaan et al. ,1999).Three

GαsubunitgeneswereidentifiedandcharacterisedviagenedeletionbyLiu&Dean

11 Chapter 1

(1997).Thedeletionof MagC and MagA thatcodeforClassIIandIIIG αsubunits, respectively, resulted in defects in conidiation and asci maturation but were fully virulent.However,mutationin MagB (aClassIGαsubunitgene)causedareductionin conidialattachmenttohydrophobicsurfaces,defectivegermtubeandareductioninthe ability to infect rice (Liu & Dean, 1997). Similar to pth11 mutants, magB mutants showedreducedabilitytoformappressoria.TheadditionofcAMPwasabletorestore appressoriumformationsimilartothewildtype(Liu&Dean,1997).Thisindicates theinvolvementof MagB incAMPsignalling.AllthreeG αsubunitsweresubjectedto negativeregulationbyRgs1,aRGSprotein(Liu et al. ,2007).TheG βsubunitgene

Mgb1 wasidentifiedandclonedbyNishimura et al. (2003).Mutantscarryingthe Mgb1 deletionwereunabletoformappressoriawithoutexogenouscAMP. Inaddtion, two critical pieces of evidence that further implicate Mgb1 functioning as a positive regulatorofcAMPproductionare1. mgb1 mutantswerereducedincAMPleveland 2. strainscarryingmultiplecopiesof Mgb1 possessedhighercAMPlevelthanthewild type (Nishimura et al. , 2003). The adenylyl cyclase Mac1 required for cAMP productiondownstreamoftheheterotrimericGproteincomplexwerealsocriticalfor appressoriummorphogenesis(Choi&Dean,1997). Sum1 is aregulatoryPKAsubunit gene identified though a screening for repressor mutation of the mac1 phenotype

(Adachi&Hamer,1998).IntheabsenceofcAMP,theproposedfunctionofSum1was tonegativelyregulatethecatalyticPKAsubunitCpka via physical association. The role of Cpka includes lipid mobilisation during appressorium morphogenesis, appressoriumformationandvirulence(Mitchell&Dean,1995;Thines et al. ,2000).

12 Chapter 1

ThreeG αsubunitgeneshavebeeninactivatedinthegraymoldfungus Botrytis cinerea .Gronover et al. (2001)inactivated Bcg1 and Bcg2 whichcodesforaClassI and II G α protein, respectively. The deletion of the Bcg2 has little bearing on the phenotypeofthefungusbutresultedinaslightreductioninvirulence.Incontrast, bcg1 mutantswerereducedinvegetativegrowth,extracellularproteasesecretion(discussed below),lossofasexualsporulationandattenuated virulence.TheadditionofcAMP restored wildtype morphology indicating that Bcg1 is involved in cAMP signalling

(Gronover et al. , 2001). This is further supported from evidence derived from the deletionoftheACgene Bac .Mutantsshowedsimilarphenotypeto bcg1 deletantsbut werestillcapableofcausingadelayedinfection.Inadditionmutantswerealsoreduced inintracellular cAMP level which thusfarbeckons anexplanation astoanalternate mechanism for cAMP production (Klimpel et al. , 2002). The sequence of Bcg3

(encodingaClassIIIG αprotein)wasinitiallyreportedbyOsada et al. (2005).Therole of Bcg3 duringinfectionwasinvestigatedviatargetedgenedeletionbyDoehlemann et al. (2006).Conidiaofthe bcg3 mutantgerminatednormallyonhydrophobicsurfaces butgerminationratewasreducedinthepresenceofcarbonsourceswhencomparedto the wildtype (Doehlemann et al. , 2006). A similar defect was observed for bac mutants.Theabilityofthe bcg3 mutanttocauseinfectionwasdelayedduetoreduced numberofpenetrations.Like bcg1 deletants, bcg3 mutantswereresponsivetocAMP whichrestoredthegerminationandpenetrationdefect.Therefore,itwasproposedthat

Bcg3 isresponsibleforcAMPmediatedpenetrationandsporulation whereas Bcg1 is responsibleforcAMPsignallingduringpathogenicgrowth(Doehlemann et al. ,2006).

13 Chapter 1

Inthesoutherncornleafblightfungus Cochliobolus heterostrophus ,theClassI

GαsubunitgeneCga1 isrequiredforfemalefertility.Thefrequencyofappressorium formationwasgreatlyreducedin cga1 mutantsbutretainedfullabilitytoinfectcorn

(Horwitz et al. ,1999).Hence,itispossiblethattheappressoriumof C. heterostrophus isdispensibleforinfection(Ganem et al. ,2004). Cgb1 isthesoleG βsubunitgenein C. heterostrophus (Ganem et al. ,2004).The cgb1 mutantsshowedoverlappingphenotype withcga1 mutantswiththeexceptionofreducedconidiationandinabilitytoinfectcorn

(Ganem et al. , 2004). This suggests that Cgb1 canfunction independently of Cga1 .

Growthofyoungvegetativehyphaewasalsoaffectedin cgb1 mutants.Mutantsalso showedsymptomsofhyphalcelldeathasindicatedbyanincreaseinDNAdegradation

(Ganem et al. ,2004).

Thusfar,discussionsonheterotrimericGproteinsignallinghavebeenfocused onnecrotrophicandnonobligatefungi.Theobligatebiotroph Blumeria graminis f.sp. hordei isthecausalagentofbarleypowderymildew. B. graminis f.sp. hordei isableto form appressoria shortly after conidial germination. Gene expression analysis and pharmacological studies linked the cAMP pathway to conidial germination and appressorialmorphogenesisin B. graminis f.sp. hordei (Hall et al. ,1999;Kinane et al. ,

2000). A consistent genetic manipulation procedure for B. graminis f. sp. hordei remains elusive. To functionally characterise signalling components in the obligate fungus, Bindslev et al. (2001) were able to introduce the powdery mildew protein kinaseAcatalyticsubunitgene Bka1 ,intoa Cpka deficientmutantof M. grisea .Bka1 isanorthologofCpkaandwasabletorestoredefectsinpathogenicityandappressoria maturationin Cpka deficient M. grisea (Bindslev et al. ,2001;Hall et al. ,1999).This

14 Chapter 1

illustratesthestrongconservationofsignallingcomponentsinregulatingdevelopment acrossdifferentclassesofphytopathogenicfungi.

1.1.2 Mitogen-activated protein kinase signalling

Mitogenactivated protein kinases (MAPK) are a conserved family of protein kinasesfoundineukaryotes.MAPKsareactivatedbymitogenactivatedproteinkinase kinases (MAPKK) via phosphorylation, which in turn are activated by mitogen activatedproteinkinasekinasekinases(MAPKKK).MAPKcascadesareimplicatedin theregulationofdiversecellularprocessessuchasthecellcycle(Dangi et al. ,2006;

Torii et al. ,2006),transformation(Kennedy&Davis,2003),cell/tissuedifferentiation

(Puri et al. ,2000),stressresponse(Jonak et al. ,1996)andimmuneactivation(Ashwell,

2006). In baker’s yeast , five functional MAPK cascades havebeenidentified(Figure1.3). Fus3 and Kss1 MAPKpathwaysplayanoverlapping role in pheromone response and mating (Elion et al. , 1990; Elion et al. , 1991). The

Kss1 pathway also regulates filamentous growth (Madhani et al. , 1997). Cellular integrity is maintained by the Slt2 pathway (Mazzoni et al. , 1993) and the Hog1 pathway is required for osmotolerance (Brewster et al. , 1993). Finally, the Smk1

MAPKpathwayregulatestheassemblyofascosporecellwall(Brewster et al. ,1993).

MAPKsinplantpathogenicfungicanbedividedintothreemajorgroupsbased onaminoacidsequenceresemblancestoyeastFus3,Kss1,Slt2andHog1MAPKs(Xu,

2000)(Figure1.4).Furthermore,componentsupstreamtotheseMAPKsalsoshowed strongsimilarititestotheiryeastcounterparts(Table1.2).Almostallreportsindicate that the perturbation of MAPK signalling in plant pathogenic fungi resulted in

15 Chapter 1

4 Mitogen-activated protein kinase pathways in yeast (Figure 1.3)

Figure 1.3 .SimplifiedMAPKpathwaysin S. cerevisiae showingcomponentsofthe five cascades regulating mating response, filamentous growth, cell integrity, osmotoleranceandasexualsporulation.ModifiedfromXu(2000).

16 Chapter 1

ScSmk1 ScSlt2 ClCpmk2 AoMpkA ChMps1 MgSlt2 Slt2 5The amino acid sequence relationship betweenBgMpk2 fungal MAPKs (Figure 1.4) BcBmp3 MrMps1 CoMaf1 FgMgv1 ScHog1 BcSak1 MgHog1 BoSrm1 Hog1 ChHog1 CpCpmk1 CoOcs1 MrOsm1 ScFus3 ScKss1 UmKpp6 UmKpp2 MgFus3 SnMak2 AbAmk1 BoBmk1 ChChk1 BgMpk1 Fus3/Kss1 BcBmp1 SsSmk1 GgGmk1 MrPmk1 CpCpmk2 CoCmk1 VdVmk1 FgGpmk1 FoFmk1 FsMapk ClCpmk1 0.1 Figure 1.4. Phylogram showing the amino acid sequence relationship of MAPKs of Saccharomyces cerevisiae and plant pathogenic fungi using TREEVIEW.Prefixabbreviationofspecies;Sc, Saccharomyces cerevisiae ;Sn, Stagonospora nodorum ; Ab, Alternaria brassicicola ; Ao, Aspergillus oryzae ; Bo, Bipolaris oryzae ;Bg, Blumeria graminis ;Bc, Botrytis cinerea ;Cl, Claviceps purpurea ;Ch, Cochliobolus heterostrophus ;Co, Colletotrichum lagenarium ;Cp, Cryphonectria parasitica ; Fg, Fusarium graminearum ; Fo, Fusarium oxysporum ; Fs, Fusarium solani ; Gg, Gaeumannomyces graminis ; Mr, Magnaporthe grisea ; Mg, Mycosphaerella graminicola ; SS, Sclerotinia sclerotiorum ;Um, Ustilago maydis ;Vd, Verticillium dahliae .TheSmk1MAPK of S. cerevisiae wasusedasanoutgroup.Thebarindicatestherelativemeasure ofthedistanceinthephylogenetictreeasgivenbyCLUSTALW. 17 Chapter 1

phenotypesthatwerecompromisedindevelopmentandvirulence.Alimiteddiscussion on the role of MAPK signalling in development and virulence of several plant pathogenicfungiisprovidedbelow.

Afterthematingresponsein U. maydis ,theMAPKpathwaytakesovertherole ofplantpenetration(Feldbrugge et al. ,2004).TheFus3 likeMAPKgene,Kpp6 was identified via RNA fingerprinting. The kpp6 mutants were able to mate and form appressoriabutlosttheabilitytopenetratethehost(Brachmann et al. ,2003).Itwas proposed that the Fuz7 MAPKK activates Kpp6 (Brachmann et al. , 2003). However fuz7 mutants were attenuated in mating, incapable of forming appressoria and conjugation tube and were nonpathogenic (Banuett & Herskowitz, 1994). In fact,

Fuz7isacomponentofaMAPKpathwaythatregulatestheexpressionof a/bgenes, appressoriumandconjugationtubeformation(Feldbrugge et al. ,2004).TheMAPK pathwayisactivatedbyRas2(Lee&Kronstad,2002)whichinturn,isactivatedbya

CDC25like guanyl nucleotide exchange factor Sql2 (Muller et al. , 2003a).

Components of the MAPK cascade consists of the Ubc2 (Ste50) adaptor protein,

Kpp4/Ubc4MAPKKK,Fuz7/Ubc5MAPKKandKpp2/Ubc3MAPK.Thepresenceof

Ras interacting domains in Kpp4 and Ubc2 indicates the probable site of Ras2 activation(Mayorga&Gold,2001).Notsurprisingly, ubc2 , kpp4 and kpp2 mutants showed a similar phenotype to fuz7 except that kpp2 mutants were only reduced in virulence (Muller et al. , 1999; Muller et al. , 2003b). Doubledeletionsof Kpp2 and

Kpp6 abolished pathogenic development whereas single gene deletion caused a reduction in virulence. This indicates that both MAPKs share partial redundant functions(Brachmann et al. ,2003).

18 Chapter 1 6MAPK signalling genes in plant pathogenic fungi (Table 1.2)

Table 1.2.MAPKsignallinggenesreportedinplantpathogenicfungi.Continuedonthenextpage.

Organism Gene Genbank acc Gene fa mily Function Reference Stagonospora nodorum Mak2 AAX63387 MAPK( Fus3/Kss1 ) Vegetativegrowth,pycnidiationandvirulence Solomon et al. (2005b) Alternaria brassicicola Amk1 AAS20192 MAPK( Fus3/Kss1 ) Anastamosis Cravenet al. (2006) Aspergillus oryzae MpkA BAD12561 MAPK( Slt2 ) Unknown Mitzutani et al. (2004) Bipolaris oryzae Bmk1 BAD42855 MAPK( Fus3/Kss1 ) Vegetativegrowth,conidiationandvirulence Moriwaki et al. (2007) Srm1 BAE48722 MAPK( Hog1 ) Tolerancetohyperosmotic,UVandoxidative Moriwaki et al. (2006) stresses Blumeria graminis f.sp. Mpk1 AAG53654 MAPK( Fus3/Kss1 ) Transcriptaccumulationduringtheformationof Zhang&Gurr(2001) hordei theconidialprimaryandappressorialgermtubes Mpk2 AAG53655 MAPK( Slt2 ) Transcriptaccumulationduringtheformationof Zhang&Gurr(2001) theconidialprimaryandappressorialgermtubes Botrytis cinerea Bmp1 AAG23132 MAPK( Fus3/Kss1 ) Conidialgermtubemorphogenesis,unableto Zheng et al. (2000); germinateonhydrophobicsurfacesandvirulence Doehlemann et al. (2006) Bmp3 ABJ51957 MAPK( Slt2 ) Vegetativegrowth,conidiation,sclerotia Rui&Hahn(2007) formation,reducedfungicidetoleranceand virulence BcSak1 CAJ85638 MAPK( Hog1 ) Vegetativegrowth,sclerotiaformation, Segmuller et al. (2007) osmotolerance,tolerancetooxidativestress, conidiationandvirulence AAP72037 MAPKKK( Ssk22 ) Conidiation,cercosporinbiosynthesisand Shim&Dunkle(2003) Cercospora zeae-maydis Czk3 virulence Claviceps purpurea Cpmk1 CAC47939 MAPK( Fus3/Kss1 ) Virulence Mey et al. (2002b) Cpmk2 CAC87145 MAPK( Slt2 ) Conidiation,cellwallstructureandvirulence Mey et al. (2002a) Cochliobolus Chk1 AAF05913 MAPK( Fus3/Kss1 ) Vegetativegrowth,cellularintegrity,conidiation, Lev et al. (1999);Lev& heterostrophus pseudotheciaformation,melaninbiosynthesis, Horwitz(2003);Eliahu et appressoriumformation,cellulasegeneexpression al. (2007) andvirulence Mps1 ABM54149 MAPK( Slt2 ) Cellularintegrityandmelaninbiosynthesis Eliahu et al. (2007) Hog1 BAD99295 MAPK( Hog1 ) Activatedduringosmoticstress Kojima et al. (2004) Colletotrichum CgMek1 AF169644 MAPKK( Ste7 ) Celldivisionaftersporegermination, Kim et al. (2000) gloeosporioides appressoriumformationandvirulence

19 Chapter 1

Table 1.2.Continuedfromthepreviouspage.

Organism Gene Genbank acc Gene family Function Reference Colletotrichum lagenarium Maf1 AAL50116 MAPK( Slt2 ) Appressoriumformation,conidiationandvirulence Kojima et al. (2002) Cst1 BAC11803 Transcrp.factor Formationoflipidbodiesinappressoria,infectious Tsuji et al. (2003) (Ste12 ) hyphaeformationandvirulence Ocs1 BAD11137 MAPK( Hog1 ) Osmotoleranceand ocs1 mutantsshowedincrease Kojima et al. (2004) resistancetofungicide Cmk1 AAD50496 MAPK( Fus3/Kss1 ) Conidiation,germination,melaninmetabolismand Takano et al. (2000) virulence Cryphonectria parasitica Cpmk1 AAO27796 MAPK( Hog1 ) Conidiation,pigmentation,osmotolerance, Park et al. (2004b) hydrophobinbiosynthesisandvirulence Cpmk2 AAP86959 MAPK( Fus3/Kss1 ) Vegetativegrowth,conidiationandvirulence Choi et al. (2005) Cpkk1 AF069777 MAPKK(Mkk1/2 ) Hyperphosphorylationduringactivemycelialgorwth Turina et al. (2006) Cpkk2 AY623045 MAPKK( Ste7 ) Unknown Turina et al. (2006) Fusarium graminearum Gpmk1 AF448230 MAPK( Fus3/Kss1 ) Vegetativegrowth,conidiation,cellwalldegrading Jenczmionka et al. ,peritheciadevelopmentandvirulence (2003);Jenczmionka& Schafer(2005) Mgv1 AF492766 MAPK( Slt2 ) Vegetativegrowth,femalefertility,cellwall Hou et al. (2002) integrityandvirulence Fusarium oxysporum Fmk1 AAG01162 MAPK( Fus3/Kss1 ) Expressionofgenesencodingforpectinolytic DiPietro et al. (2001) enzymes,hydrophobicityandvirulence Fusarium solani FsMapk Q00859 MAPK( Fus3/Kss1 ) Unknown Li et al. (1997) Gaeumannomyces graminis Gmk1 AAG44657 MAPK( Fus3/Kss1 ) Complementationof M. grisea Pmk1 mutation Dufresne&Osbourn (2001) Magnaporthe grisea Pmk1 AAC49521 MAPK( Fus3/Kss1 ) Appressoriumformation,lipidmobilisationand Xu&Hamer(1996); virulence Thines et al. (2000) Mst7 EAA49142 MAPKK( Ste7 ) Appressoriumformationandvirulence Zhao et al. (2005) Mst11 EAA56368 MAPKKK( Ste11 ) Appressoriumformationandvirulence Zhaoet al. (2005)

20 Chapter 1

Table 1.2.Continuedfromthepreviouspage.

Organism Gene Genbank acc Gene family Function Reference Magnaporthe grisea Mps1 AAC63682 MAPK( Slt2 ) Appressoriumformation,cellwallintegrity, Xu et al. (1998) conidiation,femalefertilityandvirulence Mmk2 EAA56511 MAPKK(Mkk1/2 ) Phenotypesimilarto mps1 mutants Zhao et al. (2005) Bck1 EAA49225 MAPKKK( Bck1 ) Phenotypesimilarto mps1 mutants Zhao et al. (2005) Mst50 EAA52507 Adaptorprotein InteractswithMst11,Mst7,Ras1,Ras2andMgb1, Park et al. (2006) (Ste50 ) hostpenetrationandvirulence Osm1 AAF09475 MAPK( Hog1 ) Osmotolerance,arabitolaccumulationandformation Dixon et al. (1999) ofmultipleappressoriafromasinglegermtube Pbs2 EAA48205 MAPKK( Pbs2 ) Phenotypesimilarto osm1 mutants Zhao et al. (2005) Ssk2 EAA48525 MAPKKK( Ssk2 ) Phenotypesimilarto osm1 mutants Zhao et al. (2005) Ras1 EAA53749 Ras Gprotein InteractswithMst11andMst50 Park et al. (2006);Zhao et al. (2005) Ras2 EAA53026 Ras Gprotein InteractswithMst11andMst50 Park et al. (2006);Zhao et al. (2005) Cdc42 AF250928 Smallrholike InteractswithMst50 Park et al. (2006) GTPase Mst12 AAL27626 Transcrip.Factor Appressorialpenetration,invasivegrowthand Park et al. (2002) (Ste12) virulence Mycosphaerella MgFus3 AAX81518 MAPK( Fus3/Kss1 ) Pycnidiation,vegetativegrowth,melanisation, Cousin et al. (2006) graminicola stomatalpenetrationandvirulence MgSlt2 AAY98511 MAPK( Slt2 ) Vegetativegrowth,pycnidiation,fungicide Mehrabi et al. (2006a) resistance,melanisationandvirulence MgHog1 ABD92790 MAPK( Hog1 ) Osmotolerance,yeastlikegrowth,fungicide Mehrabi et al. (2006b) resistanceandvirulence

21 Chapter 1

Table 1.2.Continuedfromthepreviouspage.

Organism Gene Genbank acc Gene family Function Reference Sclerotinia sclerotiorum Smk1 AAQ54908 MAPK( Fus3/Kss1 ) Regulatesclerotialformation.Pathwayinhibitedby Chen et al. (2004) cAMP. SsRas AY664402 Ras Gprotein ActivaroroftheSmk1pathway.Requiredfor Chen et al. (2004) sclerotiaformation. Ustilago maydis Ras2 AAO19639 Ras Gprotein Suppressorof adr1 mutation,regulatorofKpp2 Lee&Kronstad(2002); signalling,cellmorphologyandvirulence Muller et al. (2003a) Sql2 AAO19638 CDC25likeguanyl ActivateRas2 Muller et al. (2003a) nucleotideexchange factor Kpp6 CAD43731 MAPK( Fus3/Kss1- Hostpenetrationandvirulence Brachmann et al. (2003) like ) Kpp2/Ubc3 AAF15528 MAPK( Fus3/Kss1 ) Filamentousgrowth,attenuationinpheromone Mayorga&Gold response,formationofdikaryotichyphae,induction (1999);Muller et al. ofpheromoneresponsivegenes,conjugationtube (1999) andreducedvirulence Fuz7/Ubc5 EAK82569 MAPKK(Mkk1/2 ) Filamentformation,attenuationinformationof Banuett&Herskowitz conjugationtube,tumorinduction,teliospore, (1994) germination,appressoriumformationandnon virulent Kpp4/Ubc4 AAN63948 MAPKKK( Ste11 ) Suppressorofthe uac1 mutation Andrews et al. (2000); Muller et al. (2003b) Ubc2 AAK49432 Adaptorprotein Suppressorofthe uac1 mutation,pheromone Mayorga&Gold(2001) (Ste50 ) responseandvirulence Verticillium dahliae Vmk1 AAW71477 MAPK( Fus3/Kss1 ) Conidiation,microsclerotiaformationandvirulence Rauyaree et al. (2005)

22 Chapter 1

TheroleofMAPKsignallinginthevirulenceof M. grisea hasbeenatopicof intenseresearchduringthepastdecade.The Fus3/Kss1 typeMAPKgenePmk1 was thefirstMAPKgenereportedin M. grisea (Xu&Hamer,1996). Pmk1 wasstrongly expressedintheappressoriumrelativetotheconidia,germtube,vegetativehyphaeand conidiophorethussuggestingapossibleroleinappressoriummorphogenesis(Bruno et al. ,2004).Theinactivationof Pmk1 resultedinmutantsthatwereunabletoproduce appressoria(Xu&Hamer,1996).Othercomponentsofthe Pmk1 cascadewerelater identified.Zhao et al. (2005)wereabletoidentifygenesencodingMst7MAPKKand

Mst11 MAPKKK based on sequence homology to yeast Ste7 MAPKK and Ste11

MAPKKK.PhosphorylationassaysindicatedthatadominantactiveMst7wasableto phosphorylate Pmk1. Not surprisingly, mutants carrying a deletion in these genes showed similar phenotype to the pmk1 mutants (Zhao et al. , 2005). The Ste12 transcription factor Mst12 was proposed as an effector of Pmk1 signalling (Talbot,

2003).Mst1maydirectlyinteractwithPmk1basedonyeasttwohydridanalysis(Y2H)

(Park et al. , 2002). Unlike pmk1 , mst12 mutants were able toformappressoria but failedtopenetrateandgrowinvasivelyinthehost(Park et al. ,2002;Park et al. ,2004a).

Mst12 deletion also caused a disturbance in microtuble organisation which was postulatedtobeassociatedwithappressorialdevelopment(Park et al. ,2004a).Cross signallingbetweenthecAMPpathwayand Pmk1 MAPKcascadeswasevidentasthe additionofcAMPrestoredtheearlystageofappressoriummorphogenesisinthe pmk1 mutants. Furthermore, mgb1 mutants shared similar defects in appressorium morphogenesistowhichtheadditionofcAMPwasonlyabletorestoretheearlystage ofappressoriummorphogenesis(Nishimura et al. ,2003).ItwaspostulatedthatMgb1 acts upstream of the Pmk1 MAPK signalling to regulate appressorial penetration and

23 Chapter 1

infectioushyphalgrowth(Nishimura et al. ,2003).Thishypothesiswaslatersupported byaclassicalY2HexperimentshowingapositiveinteractionbetweenMgb1andthe

MAPK cascade scaffolding protein Mst50 yeast Ste50 ortholog. Not surprisingly,

Mst50interactedwithMst7andMst11(Park et al. ,2006).The Slt2 and Hog1 type

MAPKcascadeshavebeencharacterisedbytheXulaboratory.Mutantsofthe Slt2 type

MAPK geneMps1 showedanincreasesensitivitytocellwalldigestingenzymesand hencewerecompromisedincellularintegrity(Xu et al. ,1998).Furthermore,mutants wereabletoformappressoriabutunabletopenetratethehostandwerenonpathogenic.

The deletion of Mmk2 and Bck1 which codes for Mmk1/Mmk2type MAPKK and

Bck1typeMAPKKKproducedmutantsthatwereidenticaltothe mps1 mutants(Zhao et al. ,2005).Thedeletionofthe Hog1 orthologOsm1 resultedinincreasedsensitivity toosmoticstress,aphenotypeobservedwith hog1 mutantsofyeast.Inaddition,osm1 mutantsformedmultipleappressoriafromthegermtubeandaccumulatedarabitolinthe appressorium(Dixon et al. ,1999).Thedeletionof Pbs2 and Ssk2 whichencodePbs2 type MAPKK and Ssk2/Ssk22type MAPKKK produced mutants that were phenotypically similar to the osm1 mutants (Zhao et al. , 2005). Thus, three MAPK cascades were proposed for M. grisea : 1. Mst11Mst7Pmk1, 2. MgBck1MgMmk2

Mps1 and 3. MgSsk2MgPbs2Osm1 (Zhao et al. , 2005). The latter two cascades showedsomefunctionalconservationwiththeiryeastcounterparts.

TheroleofthreeMAPKsin B. cinerea wasexaminedviagenedeletion.Bmp1 isanorthologof M. grisea Pmk1.A bmp1 mutantwasdefectiveinhostpenetrationand infection(Zheng et al. ,2000).UponfurtherexaminationbyDoehlemann et al. (2006), the bmp1 mutantwasfoundtobedefectiveinsporegerminationinthepresenceofa

24 Chapter 1

carbon source and hydrophobic surfaces. The addition of cAMP restored wildtype germination rate on carbon source and hence indicated evidence of crosssignalling betweentheMAPKandheterotrimericGproteinpathways(Doehlemann et al. ,2006).

The role of B. cinerea Bmp3 Slt2 typeMAPK gene(sequenceorthologof M. grisea

Mps1)wasrecentlyreportedbyRui&Hahn(2007)usingageneknockoutapproach.

The bmp3 mutantshowedanincreaseinsusceptibilitytofungicide,oxidativestressand lackedtheabilitytospreadwithinthehostafterpenetration.Conidiationandsclerotia formationwerealsocompromised.Growthofthe bmp3 mutantwasreduced,which was more pronounced under low osmolarity conditions. However, under high osmolarity the growth rate of the mutant was comparable to the wildtype (Rui &

Hahn,2007).Incontrast,mutantsdefectiveinthe Hog1 typeMAPKgene BcSak1 were moresensitivetoosmoticstress,showedincreasedsclerotiaproductionandweremore resistanttofungicidethatthewildtype(Segmuller et al. ,2007).Thissuggeststhattwo

MAPKpathwaysmaybeinvolvedinestablishinganosmoequilibriationin B. cinerea .

1.1.3 Phosphotidylinositol and calcium signalling

In contrast to heterotrimeric G protein and MAPK signalling, phospholipase/Ca 2+ signal transduction in plant pathogenic fungi have received relativelylittleattention.Thephosphotidylinositol/Ca 2+ signallingpathwayisinitiated uponphopholipaseCactivationwhichconvertsphosphotidylinositolbiphosphate into diacylglycerol (DAG) and inositol1,4,5triphosphate (IP 3) (Rhee et al. , 1989).

PhosphotidylinositolsignallingcanbeactivatedbytheG βγ subunitsortyrosinekinase linkedreceptors(Berridge,1993;Park et al. ,1993).DAGactivatesproteinkinaseC

2+ whereasIP 3causesthereleaseofintracellularCa fromstoragebodieswithinthecell

25 Chapter 1

(Berridge, 1993; Irvine, 1990; Nishizuka, 1988). Ca 2+ functions as a secondary messenger for many proteins including Ca 2+ /calmodulindependent protein kinases

(Cruzalegui & Bading, 2000). In the anthracnose fungus Colletotrichum gloeosporioides ,hardsurfacecontactinducesgerminationandappressoriumformation.

A calmodulingenewas upregulated during hardsurface contact which suggests the possibleinvolvement of the Ca 2+ pathwayinthe early stage of infection (Kim et al. ,

1998). To test this possibility, the fungus was supplemented with pharmacological antagonists of phospholipase C, calmodulin and Ca 2+ /calmodulindependent protein kinase.Sporegerminationandappressoriumformationwerereduced.Thisstrongly suggeststhathardsurfacecontactinducesCa 2+ signallingthatregulatetheearlystageof infection(Kim et al. ,1998).ItisinterestingtonotethataSte7MAPKKCgMek1is alsorequiredforsporegerminationandappressoriumformationin C. gloeosporoides

(Kim et al. ,2000).Furtherresearchisrequiredtodetermineapossiblelinkbetweenthe twopathwaysanditsregulationofearlyinfection.Recently,aphospholipaseCgene

(Cplc1 )wasshowntobeanimportantpathogenicityfactorofthechestnutblightfungus

Cryphonectria parasitica (Chung et al. ,2006). Cplc1 isinvolvedintheregulationofa laccasegenepreviouslyknowntoberegulatedbyheterotrimericGproteinsignalling and hypovirus infection (Chen et al. , 1996; Dawe & Nuss, 2001). Three genes encoding Ca 2+ /calmodulin protein kinases were identified in Stagonospora nodorum

(Solomon et al. ,2006c).TheroleofthesegeneswillbediscussedinSection1.3.4.

1.1.4 Two-component signalling

Inmanybacteria,twocomponentsignallingsystemsareusedtosenseavariety ofenvironmentalstimulisuchasstresses(Bourret et al. ,1991;Mascher et al. ,2006).

26 Chapter 1

Twocomponent systems consist of a sensor histidine kinase (HK) that autophosphorylateonaconservedhistidineresidueduringactivation.Thephosphate moeityisthentransferredtoaconservedaspartategroupofaresponseregulatorprotein andthusformingatwocomponentsignallingsystem(West&Stock,2001;Wolanin et al. ,2002).Thepresenceoftwocomponentsignalling inplantpathogenicfungiisa relativelyrecentdiscovery. Whole genomeanalysis of C. heterostrophus , B. cinerea and Gibberella moniliformis revealsanextensivenumberofputativehistidinekinases thataredividedinto11classesbasedonaminoacidsequencerelationship(Catlett et al. ,

2003).In C. heterostrophus ,theClassIIIHKDic1actasapositiveupstreamregulator of Hog1 signalling which is required for osmotolerance and regulation of fungicide tolerance(Yoshimi et al. ,2005).Twoconservedresponseregulators,Ssk1andSkn7, were identified as immediate effectors of Dic1 based on sequence homology to conservedcomponentsinyeast(Izumitsu et al. ,2007).Bothregulatorsplayanadditive roletoosmotoleranceandfungicidesensitivity.Phosphorylation assays indicatethat

Ssk1activatesthe Hog1 cascadewhereasSkn7participatesinanunidentifiedpathway also require for osmotolerance and fungicide adaptation (Izumitsu et al. , 2007).

Reduction in osmotolerance and alterations in fungicide adaption of Class III HKs mutantsin B. cinerea and M. grisea wereobserved(Motoyama et al. ,2005;Viaud et al. ,2006).

1.1.5 Genetic evidence of signal transduction effectors

Mutationalanalysis offungalsignal transduction componentshasprovidedan insightintophenotypicregulationandthecontributiontofungalvirulence.However,it cannotbefullyconcludedthatreducedfitnessinpathogenicityisduetoinappropriate

27 Chapter 1

signallingorthepleiotrophiceffectofthemutation.Hence,understandingtheprecise mechanismofsignalregulationbyidentifyingandfunctionallycharacterisingeffector moleculesremainsthenextchallengingstepinpathogenicitystudies.

Gronover et al. (2004) used a cDNA suppression subtractive hybridisation

(SSH)approachtoidentifyeffectorsof Bcg1 signallingin B. cinerea duringinfection.

Genes encoding putative secondary metabolism proteins such as cytochrome P450 monooxygenasesandapolyketidesynthase(PKS)were identified as Bcg1 regulated.

Furthermore,genesforproteasesandcellwalldegradingenzymesweredownregulated inthe bcg1 mutant(Gronover et al. ,2004).

In U. maydis ,the bE/ bWheterodimerbindstothepromotersequenceof Lga2 and induces gene expression (Romeis et al. , 2000). Lga2 encodes a putative mitochondrial matrix protein that is required to maintain mitochondrial functions

(Bortfeld et al. ,2004;Urban et al. ,1996).Regulationof bE/ bWeffectorswerefurther examined by Brachmann et al. (2001) using RNA fingerprinting. Ten genes were identified as bregulated. These genes encode disulphide isomerase, exochitanase, cation antitransporter, ATPase, acyl transferase, capsule associate protein, DNA polymeraseXandthreeunknownproteins.Fromthis,abinducedDNApolymeraseX and brepressed unknown protein were tested for their role in virulence via targeted gene deletion. No discernablephenotypeswereobserved in either ofmutants when comparedtothewildtype(Brachmann et al. ,2001).

28 Chapter 1

Gene expression profiles of morphologically altered U. maydis strains were examined by Andrews et al. (2004) and GarciaPedrajas & Gold (2004) by SSH analysis. To do this, mRNAs from U. maydis haploid budding wildtype and a constitutivelyfilamentousuac1 mutantwereusedtoconstructfilamentdownregulated andupregulatedcDNAlibraries.Genesthatcodeforaconidiophoresurfaceprotein, endo1,4βxylanase, γaminobutyrate (GABA) permease, GABA aminotransferase, sterol desaturase, amino acid permease, UDPglucose dehydrogenase and phosphate transporters (phosphate acquisition) showed greater expression in the budding form

(GarciaPedrajas&Gold,2004).Genesthatcodeforanandseveral unknownproteinsshowedgreaterexpressioninthefilamentousform(Andrews et al. ,

2004). Deletion oftheoxidoreductase gene resulted in slightly reduced growth rate comparedtothewildtype(Andrews et al. ,2004).Larraya et al. (2005)cameacross similar findings using serial analysis of gene expression (SAGE) to compare the transcriptprofileofwildtype, ubc1 and adr1 mutants.SAGEtagsforgenesinvolved inphosphateacquisitionwereelevatedinthePKAactive ubc1 mutantascomparedto the wildtype and PKA inactive adr1 mutant. The ubc1 mutant showed defects in phosphate accumulation presumably due to an increase in cell wall permeability

(Larraya et al. ,2005).Nevertheless,thisindicatesaroleofcAMPintheregulationof phosphatemetabolismin U. maydis .

The availability of fungal genome sequences permits large scale global gene expression analysis. Eichhorn et al. (2006) used a global microarray approach to analyse gene expression in U. maydis . The expression profile of an Adr1 overexpressing strain was compared to the wildtype. Of the 847 differentially

29 Chapter 1

expressedgenesobserved,nineofthesegenesshowedincreasedtranscriptabundancein the Adr1 overexpressing mutant and are located in three gene clusters in different chromosomes.Sequenceanalysisindicatesthatsomeofthesegenesmayplayarolein ironacquisition.TwoofthesegenesthatcodeforLornithineN5monooxygenaseand nonribosomal peptide synthetase (NRPS) were previously characterised for their involvement in iron siderophore biosynthesis (Mei et al. , 1993; Yuan et al. , 2001).

AttenuationinsiderophorebiosynthesisdidnotaffecttheabilityofU. maydis toinfect

(Mei et al. ,1993).However,nonsiderophoreironacquiringgenesthatcodeforaniron permease and multicopper oxidase (located within a putative gene cluster in chromosome 4) were inactivated and resulting mutants were reduced in virulence

(Eichhorn et al. ,2006).

TheheterotrimericGproteinpathwayof C. parasitica isrequiredforvirulence, maintenanceofcolonymophologyandsporulation(Gao&Nuss,1996;Kasahara&

Nuss,1997).MutantsoftheheterotrimericGproteinpathwayshowedsimilar,butnot identical, phenotypes to strains infected with the hypovirus CHV1EP713 (Dawe &

Nuss,2001).Microarraysconsistingof2,200geneswereprobedwithcDNAsfrom wildtype, cga1 , cpgb1 mutantsandahypovirusinfectedstraintoidentify genes that areregulatedbyheterotrimericGproteinsignallingandhypovirusinfection(Dawe et al. ,2004).Theexpressionprofileof cga1 (216genes)and cpgb1 (163genes)mutants sharedaconsiderableoverlap(100 genes)withgenesthatareexpressedinthesame directions.Someofthegenesthatshowedincreasedexpressioninallstrainsrelativeto the wildtype code for glutathione Stransferase, oxidoreductase, cytochrome P450,

TOXD and omethyltransferase (Dawe et al. , 2004). Genes that showed decreased

30 Chapter 1

expression encode a transcription factor Mst12, aspergillopepsin II, nucleases, acid proteinaseandendothiapepsin(Dawe et al. ,2004).Furthermore,a45geneoverlapwas observedbetween the hypovirusinfectedstrainand cga1 /cpgb1 strains which mostly occurinthesamedirection.Thisdatasupportthehypothesisthatmodificationsofthe heterotrimeric G protein pathway contributed significantly to hypovirusmediated phenotypeinC. parasitica (Dawe et al. ,2004).Furthermore,constitutiveactivationof

Cpg1 and Cprgs1 deletion resulted in an easily wettable mutant phenotype that was likelyduetoareductioninthetranscriptaccumulation of the hydrophobinencoding genecryparin(Segers&Nuss,2003;Segers et al. ,2004).Interestingly,theexpression ofthecyparingeneisalsopositivelyregulatedbytheCpmk1MAPKthusindicating evidenceofcrosssignalling(Park et al. ,2004b).

The maize pathogen Cochliobolus carbonum iswellstudied forits rolein the production of HCtoxin (Walton, 2006) and cell wall degrading enzymes (Apel

Birkhold&Walton,1996;Kim et al. ,2001;ScottCraig et al. ,1990;ScottCraig et al. ,

1998; Wegener et al. , 1999). A gene orthologous to yeast Snf1 was identified and characterisedin C. carbonum (Tonukari et al. ,2000).Inyeast,theSnf1proteinkinase isacentralcomponentofthesignallingpathwaythatregulatestheactivationofglucose repressed genes during glucose starvation (Carlson, 1999). The deletion of Ccsnf1 caused a reduction in pathogenicity of C. carbonum on maize. Furthermore, genes codingforxylanases,axyloxidase,polygalacturonasesandglucanaseswerereducedin expressioninthe ccsnf1 mutantwhencomparedtothewildtype(Tonukari et al. ,2000).

Enzymaticactivitiesofsomecellwalldegradingenzymescorrelatedgeneexpression.

Growthofthe ccsnf1 mutantwasreducedwhengrownonplantcellwallcomponents

31 Chapter 1

(Tonukari et al. ,2000).Itisinterestingtonotethatasimilarphenotypewasobserved withmutantsdeficientinahistonehistonedeacetylase gene Hdc1 (Baidyaroy et al. ,

2001).

The disruption of a Hog1 type MAPK Srm1 in Bipolaris oryzae , the causal agent of brown leaf spot disease on rice, rendered the pathogen more sensitive to hyperosmotic, UV and oxidative stresses (Moriwaki et al. , 2006). Susceptibility to oxidativestressmaybeexplainedbythelackofexpressionofacatalasegeneinthe srm1 mutant.

Melanin is required for appressorial morphogenesis in M. grisea and the anthracnosefungus Colletotrichum lagenarium (Howard&Valent,1996;Kubo et al. ,

1999). Cmk1 encodes a putative Fus3/Kss1 class MAPK in C. lagenarium and is essential for conidial germination, formation of appressoria and for pathogenicity on cucumber(Takano et al. ,2000).Theexpressionofmajormelaninbiosyntheticgenes coding for scytalone dehydratase, PKS and trihydroxynaphthalene reductase were greatly reduced in the cmk1 mutant (Takano et al. , 2000). In addition, melanin biosynthesisin C. lagenarium mayberegulatedbyasecondpathway. Cmr1 encodesa transcriptionfactorthatregulatesthesamesetofmelaninbiosyntheticgenesas Cmk1 but regulation occurs only in the hyphae (Tsuji et al. , 2000). The cmr1 mutants accumulatedscytalone,anintermediateofdihydroxynapththalenemelaninbiosynthesis

(Tsuji et al. ,2000).

32 Chapter 1

Fusarium oxysporum isa soilborne vascularwilt fungus. The deletion of a

Fus3/Kss1 MAPKgene Fmk1 resultedinlossofvirulenceandadrasticreductionofthe cellwalldegradingenzymepectate(DiPietro et al. ,2001).Orthologousto Fmk1 ,

Chk1 in C. heterostrophus isrequiredforwildtypeexpressionofgenescoding fora cellobiohydrolaseandendoglucanase.The chk1 mutantswerereducedinpathogenicity

(Lev et al. ,1999;Lev&Horwitz,2003).Inaddition, Chk1 andanotherMAPKgene

Mps1 regulatetheexpressionofmelaninbiosyntheticgenesthoughanoveltranscription factorCmr1(Eliahu et al. ,2007).

1.1.6 Biochemical evidence of signal transduction effectors

Intheheadblightfungus Fusarium graminearum , the Fus3 /Kss1type MAPK gene Gpmk1 is required for pathogenicity, conidiation and asexual reproduction

(Jenczmionka et al. , 2003). Enzymatic analysis indicates that gpmk1 mutants were significantly reduced in extracellular xylanotic, proteolytic and lipolytic activities

(Jenczmionka&Schafer,2005).Similarobservationsweremadewith bcg1 and fgb1 mutants of B. cinerea and F. oxysporum , respectively. A growth assay using casein agar indicates that bcg1 mutant of B. cinerea was reduced in extracellular protease activity (Gronover et al. ,2001).The fgb1 mutants of F. oxysporum defective in G β proteinshowedreducedsecretedgeneralproteaseactivity(PradosRosales et al. ,2006).

Evidence of secondary metabolite regulation by MAPK signalling has been shownbytwostudies.Cercosporinisaphotoactivatedphytotoxinproducedbymany

Cercospora species. Genes involved in cercosporin biosynthesis and transport have been identified (Choquer et al. , 2005; Choquer et al. , 2007; Dekkers et al. , 2006;

33 Chapter 1

Upchurch et al. ,2001).Cercosporinbiosynthesisappearstoberegulated by MAPK

(Shim&Dunkle,2003).In F. graminearum ,the Mgv1 MAPKgeneplaysasignificant signallingrole.Thedeletionof Czk3 ,aputativeMAPKKKgene,resultedinabolished cercosporin production in the gray spot pathogen of maize Cercospora zeae-maydis

(Hou et al. ,2002).Trichotheceneissynthesisedbyenzymesencodedinagenecluster

(Brown et al. ,2004).

1.2 Wheat - the cultivated cereal crop

Wheat ( Triticum spp.) was first given a modern taxonomic description in the

“Species Plantarum” by a Swedish botanist, Carl Linnaeus in 1753 (Linnaeus, 1753)

(Figure1.5A).Einkornwheat( T. monococcum )andemmerwheat( T. turgidum ) are consideredas“foundercrops”oftheFertileCrescentlocatedinpresentdayIraq,Syria, southeastTurkeyandthePalestineregion(Zohary&Hopf,2000)(Figure1.5B).DNA fingerprintingsuggeststhatcultivatedT. monococcum mayhaveoriginatedfromwild einkornsintheKaracadağmountainsintheFertileCrescent(Heun et al. ,1997)(Figure

1.5B). Evidence of deliberate cultivation stemmed from the discovery of numerous quantitiesofT. monococcum grainscollectedinTellAbuHureyra,anancientsettlement locatedintheFertileCrescentdatingbacktothe10 th and9 th millenniaBC(Hillman,

1975;Moore,1982;Zohary&Hopf,2000)(Figure1.5B).Ithasbeenpostulatedthat wheat domestication enabled early settlers to shift from a lifestyle of hunting and gathering to establishing ancient settlements and civilisations in the Fertile Crescent

(Harlan&Zohary,1966)(Figure1.5C).

34 Chapter 1

A B 

7Wheat (Figure 1.5)  

C

D

Figure 1.5. A. Photograph of the common bread wheat, Triticum aestivum L (http://calphotos.berkeley.edu ). B. ThelocationoftheKaracadağregion( )andTell Abu Hureyra ( ) in the Fertile Crescent (green) are indicated (http://earthobservatory.nasa.gov/ ). C. (Toprow)Acarvingimpressionexcavatedfrom Tell esSuleimeh ( ) showing evidence of ploughing (approx. 2,400 BC) (Postgate, 1992). D. Examples of wheatbasedproducts. The illustration includeswheatbased beer,breakfastcereals,breads,pastaandbiscuits. 35 Chapter 1

8Leading wheat producing countries (Table 1.3)

Table 1. 3. Top20wheatproducersin2005(Food

and Agriculture Organisation of the United

Nations; http://faostat.fao.org ). Australia was

ranked as the seventh largest wheat producer in

theworld. Country Million metric tonnes China 97 India 72 USA 57 Russia 48 France 37 Canada 27 Australia 25 Germany 24 Pakistan 22 Turkey 21 Ukraine 19 UK 15 Iran 14 Argentina 13 Kazakhstan 11 Poland 9 Egypt 8 Italy 8 Romania 7 Uzbekistan 6 Worldtotal 631

36 Chapter 1

Inmoderndays,wheatisamajorcerealcropcultivatedgloballyforitsgrains whichareusedtomakemanyfoodproducts(Figure1.5D).Itwasestimatedthat631 million tonnes of wheat were produced globally in 2005 (Food and Agriculture

Organisation of the United Nations; http://faostat.fao.org ). Australiais considered as oneof the world’sleadingproducerof wheat with an estimate of 24 million tonnes harvestedin2005(Table1.3).WheatispredominantlygrownintheSouthEasternand

SouthWestern regions of Australia where the recorded annual rainfall figure ranges from 200 to 600 mm (Figure 1.6A) (Australian Bureau of Meteorology; www.bom.gov.au ).TheestimatedgrossvalueofwheatproducedinAustraliabetween

2004and2005isoverAUD$4billion.Asignificantportionofwheatisexportedto major international markets such as Indonesia, Middle East, South Korea, China and

Japan (Australian Bureau of Statistics; www.abs.gov.au). Thus, wheat represents a majorfoodsourceandexportincomeforAustralia.

1.3 Stagonospora nodorum , the cereal pathogen

1.3.1 Epidemiology and economical importance

The ascomycete Stagonospora (syn. Septoria ) nodorum (Berk.) Castell. &

Germano[family:Dothideomycetes;teleomorph: Phaeosphaeria (syn. Leptosphaeria ) nodorum (Müll.)Hedjar.]isamajorfungalpathogenonwheat,causingleafandglume blotch diseases (Weber, 1922) (Figure 1.7A and B). Stagonospora leaf and glume blotchisprevalentinthewheatgrowingregionofAustralia(Figure1.6B).Thedisease cancausebetweenfiveto15%yieldlossinSouthWesternAustraliaalone(Brennan&

Murray,1998).However,yieldlossesupto31%havebeenreportedunderconditions favourableforinfection(Bhathal et al. ,2003).

37 Chapter 1

(Brennan&Murray,1998).

9Rainfall figure and disease prominence in Australia (Figure 1.6) A

B

(%)

Figure 1.6 . A. Major wheat growing regions in Australia (Statistics

Yearbook Australia 2006; www.abs.gov.au ). B. Estimated loss in

wheatyielddueto S. nodorum (Brennan&Murray,1998).

38 Chapter 1

A B (Douaiher et al. ,2004;Richardson&Noble,1970)

10Disease symptoms of wheat infected with Stagonospora nodorum (Figure 1.7)

C D 10 m O 10 m

SL S

V

C C SL

E

10 m

Figure 1.7 .Diseasesymptomsofwheatinfectedwith Stagonospora nodorum . A.Leaf blotch (http://pubs.caes.uga.edu/caespubs/pubcd/B1190.htm ). B. Glume blotch

(http://ohioline.osu.edu/acfact/0002.html ) disease. Morphology of the C. pycnidial primodium (immature) and D. mature pycnidium (Douaiher et al. 2004).Key=O, ostiole;S,spore;C,conidiogeneouscell;V,pycnidialcavityandSL,subparietallayer.

E.Cameralucidadrawingsofasexualpycnidiospores(Richardson&Noble,1970). 39 Chapter 1

1.3.2 The infection life cycle

Thelifecycleofthepathogenincludesasexualandanasexualstage.Asexual spores ofS. nodorum ,calledpycnidiospores,areproducedwithinsolid blackfruiting bodiescalledpycnidia.Thesefruitingbodiesare160to210 mindiameter(Cunfer&

Ueng, 1999; Douaiher et al. , 2004) (Figure 1.7C and D). The inner surface of the pycnidial wall consists of a subparietal layer thatismadeupofconidiogenouscells.

Sporogenesisoccursviaenteroblasticphialidicconidiogenesis(Sunny&Zeyen,1977;

Sutton&Waterston,1966).Mitoticdivisionoccursatthetipoftheconidiogenouscell whichresultsinanelongatedcell.Theformationofaseptumwithintheelongatedcell gives rise to a pycnidiospore which is oriented towards the ostiole (Douaiher et al. ,

2004). When mature, the pycnidium releases a pink cirrhus from the ostiole which contains a mixture of pycnidiospores and mucilaginous exudates (Langeron &

Vanbreuseghem,1952)(Figure1.8).Pycnidiosporessporesaretypically14.2to32 m inlengthandseptated(Cunfer&Ueng,1999;Richardson & Noble, 1970) (Figure

1.7E). Pycnidiospores can be dispersed locally via rainfall splashes (Faulkner &

Colhoun,1976)andareconsideredasamajorsourceofsecondaryinoculumwhichcan leadtothegenerationofaclonalphenotypeinspatialareasofinfection(Sommerhalder et al. ,2006).

The sexual cycle is initiated from the development of sexual fruting bodies calledpseudotheciawhichproduceascosporesandareconsideredtobeamajorsource of primary inoculum in an epidemic (Sommerhalder et al. , 2006). Ascospores are

40 Chapter 1

11Host penetration and pycnidiation (Figure 1.8)

i ii

i ii

Figure 1. 8. Top . Anecroticlesiononawheatleafcausedby S. nodorum . i.

Trypan blue staining of the lesion showing fungal penetration. Red arrows

indicatefungalentryviathestomata.Blackarrowsindicateepidermalpenetration

attempts. ii. Thereleaseofpycnidiospores(pinkchirri)frommaturepycnidia.

41 Chapter 1

disseminatedvialongdistanceairbornedispersalundermoistconditions(Arseniuk et al. , 1998; Bathgate & Loughman, 2001; Keller et al. , 1997; von Wechmar, 1966).

However, pseudothecia and ascospores are difficult to induce under laboratory conditionsfordetailedstudies.

Spores of S. nodorum are a major source of inoculum for the onset of an epidemic(Eyal,1999).Theinfectionprocessisinitiatedoncecontactismadewiththe host surface. Germination occurs soon after, giving rise to vegetative hyphae which thenproliferate alongthesurface ofthehost looking for weaknesses or openings to enter. The hyphae can attempt to penetrate the host epidermis (Karjalainen &

Lounatmaa,1986;Solomon et al. ,2004b)orinvadethroughthestomata(Solomon et al. ,2004b)(Figure1.8).Onceinsidetheleaf,thefunguswillcontinuetoproliferate andcausenecrotictissuedamage.Itislikelythat S. nodorum usesanarrayofcellwall degrading enzymestoassist in theinfection process (Lehtinen, 1993; Magro, 1984).

Asexualsporulationoccurssevendayspostinfection(Solomon et al. ,2006e).

1.3.3 Genetic manipulation

The development of S. nodorum froma sporepropaguleto infectioushyphae duringpathogenesisrequiresgeneticandbiochemicalcoordination.Onewaytostudy developmental processes in S. nodorum is at the molecular level. Genetic transformationof S. nodorum wasfirstreportedbyCooley et al. (1988).Thefungus was successfully transformed with a hygromycin phosphotransferase gene which confersresistancetohygromycinB.ThreegtoeightgofDNAareroutinelyused per5x10 7protoplaststofacilitatehomologousrecombination.Constructionofagene

42 Chapter 1

knockoutvectorrequiresaflankingregionofonekborgreatertoachievehomologous generecombinationofatleast2%oftransformantsscreened(Solomon et al. ,2006b)

(Table1.4).Thisindicatesthat S. nodorum isageneticallytractableorganismandis ideal for molecular genetic analysis using targeted gene disruption to identify pathogenicitygenes.

1.3.4 Signal transduction genes

Signal transduction in S. nodorum was investigated for a potential role in virulence on wheat. Heterotrimeric G protein signalling was the first pathway investigatedforitsroleinpathogenicity.AcDNAencodingtheG α gene Gna1 was initiallyidentifiedfromacDNAlibraryderivedfrom S. nodorum grownonwheatcell wall. The deletion of this gene resulted in mutants that produced extensive aerial hyphae, showed radial crevassing when grown on synthetic media and increased sensitivity to osmotic stress. Moreover, pycnidiation and asexual sporulation in the gna1 mutants were notobserved under in vitro and in planta conditions. The gna1 mutants also secreted a large quantity of tyrosine, phenylalanine and dihydroxyphenylalanine (DOPA) into the extracellular enviroment. Hence, gna1 mutantsmaybedefectiveinDOPAmelaninbiosynthesis.Inaddition,the gna1 mutants showedareductioninextracellularproteaseandcellwalldegradingenzymeactivities

(Solomon et al. , 2004b). Cytological analysis indicated that the gna1

43 Chapter 1

(Solomon et al. ,2006b)

12Rate of homologous gene recombination in S. nodorum (Table 1.4) Nia1Howard et al. (1999) Odc1–Bailey et al. (2000) Snp1Bindschedler et al. (2003) Gox1Solomon&Oliver(2004) Mpd1Solomon et al. (2005a) Gna1–Solomon et al. (2004b) Ptr1Solomon et al. (2003) Mls1Solomon et al. (2004a) Mak2Solomon et al. (2005b)

Table 1.4 .Rateofhomologousgenerecombinationin S. nodorum fromselected publications.AdaptedfromSolomon et al. (2006b).

Gene 5’ flank 3’ flank Total Gene Rate Reference (kb) (kb) transformants KOs (%) Nia1 1 4.8 26 6 23 Howard et al. (1999) Odc1 1 1 150 3 2 Bailey et al. (2000) Snp1 1+ 1+ 79 10 13 Bindschedler et al. (2003) Ptr2 0.5 1.2 37 24 65 Solomon et al. (2003) Gox1 0.3 0.8 45 4 9 Solomon&Oliver(2004) Mls1 0.9 0.8 48 2 4 Solomon et al. (2004a) Gna1 0.6 0.5 50 2 4 Solomon et al. (2004b) Mpd1 0.3 0.8 60 2 3 Solomon et al. (2005a) Mak2 0.2 0.2 101 14 4 Solomon et al. (2005b)

44 Chapter 1

mutantsmaybedefectiveinpenetrationofwheatleafepidermis.Consequently,these phenotypicdefectsmayattributetothereducedabilityofthe gna1 mutantstocolonise thehosttissue.AputativeG βsubunitgenewasinactivatedinalaterexperimentand the phenotype of the resulting mutants were similar to the gna1 mutants (Solomon, unpublished data ).

TheroleofMAPKsignallingin S. nodorum virulenceonwheatwaselucidated by Solomon et al. (2005b). Mak2 was cloned using degenerate PCR. Sequence analysis indicates that Mak2 belongs to the Fus3/Kss1 MAPK class (Figure 1.4).

Mutantscarryingthedeletedgenewerereducedinvegetativegrowthandshowedradial crevassing. Similar to gna1 deletants, the mak2 mutation were abolished in pycnidiation.Mutantswereunabletopenetratetheepidermalsurfacebutcanstillenter thestomataofwheat.However, mak2 mutantswereunabletofurthercolonisethehost beyondpenetrationandhencewascompletelynonpathogenic.

Theroleofphosphotidylinositol/Ca 2+ signallinginthevirulenceofS. nodorum was examined by Solomon et al. (2006c). Three putative Ca 2+ /calmodulin protein kinase genes, CpkA , CpkB and CpkC , were inactivated by targeted deletion. The disruptionof CpkB didnotresultinadiscernablephenotype.However,thedeletionof

CpkA causedareductioninasexualsporulationandalteredpigmentationinresponseto growth in the dark. The deletion of CpkC resulted in delayed lesion formation and reducedasexualsporulationduringinfection.

45 Chapter 1

Perturbation of the heterotrimeric G protein, MAPK and Ca 2+ /calmodulin signalling pathways have resulted in developmental defects and reduced/abolished virulence in S. nodorum onwheat.Hence,theidentificationofmolecules that were altered in these developmentally challanged mutants represent a critical step towards understandingtheintricacyofthesignallingnetworkandpathogenicityinS. nodorum .

1.4 Fungal genome sequences and proteomics

GenomesequencesofM. grisea and U. maydis wererecentlyreportedbyDean et al. (2005) and Kamper et al. (2006).Inaddition,completegenomesequencesof other phytopathogenic fungi such as S. nodorum , F. graminearum , Fusarium verticillioides , Mycosphaerella graminicola , Nectria haematococca , B. cinerea ,

Sclerotinia sclerotiorum and Aspergillus flavus are publicly available. Genome sequencing undoubtedly opens new doors for designing genome arrays for gene expressionstudiesinplantpathogenicfungi(Guldener et al. ,2006).Theexpressionof alargenumberofgenescanbesimultaneouslyanalysedwithamicroarray(Fraser&

Fleischmann, 1997) and could be used to elucidate gene regulation by signal transductionpathways.Transcriptomicscanprovideausefuloverviewofglobalgene expression, although it cannot discriminate the cellular localisation of a gene, end productandformsofposttranslationalmodificationsthatmaybecriticalforitsactivity

(Patterson & Aebersold, 1995). Annotation of genome sequences will provide an opportunityforalargescaleproteomeanalysis.Inthepostgenomicera,proteomicsare rapidlygainingstatusforexpressionanalysisoffunctionalendproductsoftranscription

(Gygi et al. ,1999a).Thestateandabundanceofaproteinoften dictate its activity withinacell.

46 Chapter 1

Theterm‘proteomic’iscoinedtoencompassafieldthatattemptstounderstand the expression, function and regulation of the entire set of proteins encoded by an organism(Wasingeretal.,1995;Zhuetal.,2003).Italsoenablestheidentificationof proteinsthatareregulatedbyposttranslationalmodificationsprevalentduringasignal transduction event such as phosphorylation/dephosphorylation or alterations in sub cellularlocalisation(Patterson&Aebersold,1995). Dissection and identification of thesetargetsthataremodulatedbysignallingcascadeswouldrequireacomplexglobal analysistolookforchangesintheabundanceofdownstream targetsbetween two or moredifferenttissues,celltypeortreatmentsofidenticaltissueandcelltypes.Oneof the most commonly used proteomic techniques to monitor these changes at the proteomelevelistwodimensional(2D)gelelectrophoresis(Herbert et al. ,2001).

Current 2D electrophoresis technology is largely based on the technique describedbyO'Farrell(1975)wherebyacomplexmixtureofproteinsisseparatedbased ontheirisolectricpropertiesandmolecularweight(MW).2Delectrophoresisconcerns theanalysisofproteinprofilesbetweensamplepairs(cellsatdifferentstagesofgrowth andmutantversuswildtypeorganism)orchemicallytreatedcells.Proteinsamplesare solubilised in a chaotrophic buffer. This is followed by protein separation via isoelectric focusing (IEF) and electrophoresis via sodium dodecyl sulphate polyacrylamidegelelectrophoresis(SDSPAGE).Proteinspotscanbedetectedwitha varietyofstainingmethodssuchasCoomassiedye,silverprecipitationorfluorescent dyes. Protein spots of interest are excised and subjected to proteolysis. The serine protease trypsin is often used to digest the protein spot. The protease hydrolyses

47 Chapter 1

132D electrophoresis workflow (Figure 1.9) (Graves&Haystead,2003;Weistermeir&Naven,2002)

A

Protein spot is excised for further analysis (B)

B

Figure 1.9 .Typicalworkflowof2Delectrophoresis.Adaptedfrom A. Graves&

Haystead(2003)and B. Weistermeir&Naven(2002).

48 Chapter 1

peptide bonds at the carboxyl side of lysine and arginine residues. Trypsinated peptides are subjected to mass spectrometry analysis to provide peptide mass fingerprints,collisioninduceddissociation(CID)ionspectraoraminoacidsequences depending on the equipment used. The availability of annotated fungal genome sequences and expressed sequence tag (EST) databases such as Cogeme

(http://cogeme.ex.ac.uk/ ) will greatly facilitate in the identification of the protein of interestfrommassspectrometryderiveddata(Figure1.9).

1.5 Project aims

OneofthegoalsoftheAustralianCentreforNecrotrophic Fungal Pathogens

(ACNFP)istoidentifypathogenicitygenesin S. nodorum .Geneshavebeenselected foranalysisthroughasystematicprocessorbasedonpublishedinformation.Functional analysisofthesegeneshasbeenprimarilyconductedthroughtargetedgenedisruption andresultingmutantsthentestedforalterationsinpathogenicity.TheaimofthisPhD candidatureistoidentifykeymetabolicweaknessesin S. nodorum toaidinfacilitating thedevelopmentofcropprotectionstrategies.

HeterotrimericGproteinandMAPKsignallingarecriticalpathogenicityfactors in S. nodorum .Thehostofphenotypicdefectsandimpairedvirulenceassociatedwith gna1 and mak2 mutantspresentanattractiveoptiontoidentifymoleculareffectors.Itis hypothesisedthatalterationsintheabundanceorstate ofsignalling effectors may be crucial in determining the outcome of development and virulence of S. nodorum .

Hence, the primary aim of this project is to use a proteomic approach to identify signalling effectors. Functional analysis of signalling effector genes via molecular

49 Chapter 1

geneticsmayprovideafurtherunderstandingofthemechanismofsignaltransduction inthevirulenceof S. nodorum onwheat.Goalsandexperimentalapproachesarelisted below.

1. ProteomicanalysisofSN15andsignallingmutants.Identificationof

Gna1 and Mak2 effectorproteinsatthesubcellularlevel.

2. Identification of differentially abundant protein spots via mass

spectrometry.

3. Transcript expression analysis of genes that corresponded to

differentiallyabundantproteins.

4. Targeteddisruptionofputative Gna1 and Mak2 regulatedgenes.

5. Analysisofmutantsforalterationsinpathogenicity.

6. Detailedphenotypicanalysisofmutantsusingavariety of classical

plantpathologyandmoleculartechniques.

7. Identificationofpotentialantifungaltargets.

50

Chapter 2 - General materials and methods

51 Chapter 2

2.1 General solutions and buffers

50xcomplete 20g.L1bactocasaminoacid(Difco) supplement(CS) 20g.L1bactopeptone(Difco) 20g.L1bactoyeastextract(Difco) 3g.L1adenine 20mg.L1biotin 20mg.L1nicotinicacid 20mg.L1paminobenzoicacid 20mg.L1pyridoxine 20mg.L1thiamin ColloidalCommassieG250 17%(w/v)ammoniumsulphate stainingsolution 0.1%(w/v)CoomassieG250(BioRad) (Neuhoff et al. ,1988) 3%(v/v)phosphoricacid(Sigma) 34%(v/v)methanol Coomassiedestainingsolution 50%(v/v)acetonitrile 10mMammoniumhydrogencarbonate Denaturationsolution 0.5MNaOH 1.5mMNaCl DEPCtreatedwater 1mLdiethylpyrocarbonate(DEPC)(Sigma) To1Lwithsteriledeionisedwater Incubatedat37oCovernightpriortoautoclaving Depurinationsolution 0.2MHCl 4’,6diamino2phenylindole, 10mgDAPI(Invitrogen) dilactate(DAPI)stock(5mg.mL1) 2mLsteriledeionisedwater DIGEasyHybsolution DIGEasyHybgranules(Roche) Dissolvein64mLsteriledeionisedwater EquilibrationbufferI 6Murea(Sigma) withdithiothreitol(DTT) 0.375MTrispH8.8(Invitrogen) 2%(w/v)SDS 20%(v/v)glycerol 2%(w/v)DTT(Sigma) EquilibrationbufferII 6Murea(Sigma) withiodoacetamide 0.375MTrispH8.8(Invitrogen) 2%(w/v)SDS 20%(v/v)glycerol 2.5%(w/v)iodoacetamide(Sigma) Formalaceticalcohol(Sass,1958) 3.7%(v/v)formaldehyde

52 Chapter 2

5%(v/v)glacialaceticacid 47%(v/v)ethanol 10xLigationbuffer 300mMTrisCl(pH7.8) 100mMMgCl 2 100mMDTT 10mMATP Multiplesurfactantsolution(MSS) 40mMTris(Invitrogen) (Herbert,1999) 2%(w/v)CHAPS(Sigma) (Herbert et al. ,1998) 2%(w/v)SB310(Sigma) (Rabilloud,1998) 5MUrea(Sigma) 2MThiourea(Sigma) 2mMTributylphosphine(Sigma) 0.2%(v/v)BioLyte310(BioRad) Neutralisationsolution 1MTrispH7.5 1.5MNaCl 1 0.025Mphosphatebuffer(pH7.0) 3.55g.L Na 2HPO 4 10xPhosphatebufferedsaline 80g.L1NaCl (PBS) 2g.L1KCl 1 14.4g.L Na 2HPO 4 1 2.4g.L KH 2PO 4 Peptideextractionsolution 50%(v/v)acetonitrile 5%(v/v)formicacid Peptideresuspensionsolution 5%(v/v)acetonitrile 0.1%(v/v)formicacid 2xRapidligationbuffer 60mMTrisCl(pH7.8) 20mMMgCl 2 20mMDTT 2mMATP 10%polyethyleneglycol Sorbitol,Tris, 1.2Msorbitol andcalciumchloride 10mMCaCl 2 (STC)buffer 10mMTrisHClpH7.5 20xSSC 175g.L1NaCl 88.2g.L1trisodiumcitrate SMbuffer 0.1MNaCl 8mMMgSO 4.7H 2O 50mMTrisClpH7.5

53 Chapter 2

0.01%(w/v)gelatin Spurr’sresin 26gNonenylsuccinicanhydride(ProSciTech) (Spurr,1969) 10gVinylcyclohexenedioxide(ProSciTech) 6gDiglycidylether(ProSciTech) 0.4gDimethylaminoethanol(ProSciTech) Sterilesalthomogenisation 0.4MNaCl buffer(Aljanabi&Martinez,1997) 10mMTrisClpH8.0 2mMEDTApH8.0 Transformationsolution 60%PEG4000(BDH,UK) 10mMTrispH7.5 10mMCaCl 2 10xTris/glycinerunningbuffer 30.3g.L1Tris (Sambrook et al. ,1989) 144.0g.L1glycine 10.0g.L1SDS Trypanbluestain 50%(v/v)ethanol (Bruzzese&Hasan,1983) 10mLlacticacid (Shipton&Brown,1962) 10gphenol 16mL60%glycerol 10mgtrypanblue(Sigma) Trypsinsolution 12.5 g.mL1trypsin(Roche) 10mMammoniumhydrogencarbonate 2.2 Media

Benzimidazoleagar 150mg.L1benzimidazole (Benedikz et al. ,1981) (ICNBiomedicals) 5g.L1agar(BBL) CzapekDoxV8juice 45g.L1CzapekDoxagar(Oxoid) completesupplement 200mL.L1filteredV8juice(Campbell's, (CzV8CS)medium Australia) 30mMCaCO 3 1xCS 200 g.mL1hygromycinB(Roche)ifnecessary 50mg.L1phleomycin(InvivoGen)ifnecessary 10g.L1agar(BBL)ifnecessary adjusttopH6.0withNaOH. CzV8bottomprotoplastagar 45.4g.L 1CzapekDoxagar(Oxoid) 1Msorbitol 200mL.L1V8juice(Campbell’s,Australia)

54 Chapter 2

10g.L1agar(BBL) adjusttopH6.0withNaOH. CzV8topprotoplastagar 45.4g.L1CzapekDoxliquid(Oxoid) 1Msorbitol 200mL.L1V8juice(Campbell’s,Australia) 7.5g.L1agar(BBL) adjusttopH6.0withNaOH LuriaBertani(LB)medium 10g.L1bactopeptone(Difco) 5g.L1yeastextract(Difco) 10g.L1sodiumchloride 15g.L1agar(BBL)ifnecessary 100 g.mL1 ampicillinifnecessary 25 g.mL1 kanamycinifnecessary 12 g.mL1 tetracyclineifnecessary 0.5mMIPTGifnecessary 80 g.mL 1XGalifnecessary Minimalmedium(MM) 1g.L1dipotassiumhydrogenphosphate 2g.L1sodiumnitrate 1xtracesolution Carbonsource(seetext) 15g.L1agar(BBL)ifnecessary adjusttopH6.0withHCl

SOCmedium 20g.L1bactopeptone(Difco) (Sambrook et al. ,1989) TopLBagar 10g.L1bactopeptone(Difco) 5g.L1sodiumchloride 6g.L1agarose Wheatmealagar 15g.L1wheatmeal 15g.L1agar(BBL)

55 Chapter 2

2.3 General computational methods

2.3.1 Image analysis

Images were viewed and edited using Adobe Photoshop version 6.0 (Adobe,

USA)unlessstatedotherwise.

2.3.2 In silico DNA and protein sequence analysis

GeneralDNAandproteinsequenceanalyseswereperformedwithVectorNTI suite(Invitrogen).GenomebrowsingwasperformedwithACNFPbrowseversion1.0.1

(Hane,MurdochUniversity).PhylogenetictreeswereconstructedusingTREEVIEW

1.6.6 (Page, 1996) based on sequence alignments generated from CLUSTALW

(Thompson et al. ,1994).AnalysisforNterminalsignalpeptidewasperformedwith

SignalP 3.0 (Bendtsen et al. , 2004; Nielsen et al. , 1997; Nielsen & Krogh, 1998), cellularlocalisationpredictionwasperformedwithPSORTII(Horton&Nakai,1997), identificationofconsensusmotifswasperformedwithMotifScan(Falquet et al. ,2002), secondarystructurepredictionwasperformedwith3DJIGSAW(Bates&Sternberg,

1999; Bates et al. , 2001), conserved domain prediction with CDD Blast (Marchler

Bauer et al. ,2007)andBlastanalysisusingtheNCBIGenbankdatabase(Altschul et al. ,1997).

2.3.3 Statistical analysis

Unless stated, all replicate numerical data were analysed with the JMP IN version 5.1 software (SAS Institute Inc. USA). Unpairedttest wasused to test for significant differences between two groups of data. Oneway analysis of variance

(ANOVA)setfortheTukeyKramertestwasusedformultiplegroupcomparisonsthat

56 Chapter 2

weregreaterthantwo.Whenstated,Dunnett’stestwasusedtoanalysewhethermeans are different from the mean of a control group. The sample was considered significantlydifferentifp<0.05.

2.3.4 Gene content in the Stagonospora nodorum genome

The S. nodorum genome was sequenced by the Broad Institute (Hane, manuscript in prep. ).Genewise,Fgenesh,Fgenesh+andGeneidprogramswereusedto predictforgenesinthegenome.Thisledtotheidentificationof16,597putativegenes.

These genes were designated with a “SNOG” prefix

(http://www.broad.mit.edu/annotation/genome/stagonospora_nodorum/Home.html).

2.4 Bacterial manipulation

2.4.1 Preparation of competent Escherichia coli cells

E. coli DH10bcompetentcellswerepreparedaccordingtoInoue et al. (1990).

Briefly, cells from an original stock stored in 25% (w/v) glycerol in 80 oC were inoculatedinto50mLofLBbroth.Cellswereallowedtogrowovernightat37 oCina

CertomatRshakersetat225rpm.Followingthis,20mLoftheovernightculturewas inoculatedinto500mLofSOCbrothandshakenat180 rpm in 37 oC until thecell density(OD 600nm )reached0.68.Allcompetentcellpreparationworkfromhereonwas performed at 4 oC. Cells were pelleted by centrifugation at 5,000 g for 10 min.

Following this, the cell pellet was resuspended and washed twice in sterile icecold waterandoncewith10mLofsterileicecold10%(w/v)glycerol.Thepelletwasthen resuspended in three mL of 10% (w/v) icecold glycerol and partitioned into 50 L aliquots.Thiswasthenimmersedintoliquidandstoredat80 oCuntiluse.

57 Chapter 2

2.4.2 Bacterial transformation

Bacterial transformation was performed as described by Inoue et al. (1990).

CompetentcellswerethawedonicepriortotransformationwithplasmidDNA.The appropriateplasmidwasmixedwiththecellsuspensionandwasleftoniceforfivemin.

Transformation was performed via electroporation using a BioRad electroporation devicesetat200 ,25 F,and2.5V.Thecompetentcellswereallowedtorecoverin onemLofLBbrothshakingat225rpmin37 oCforonehpriortoselectiononLBagar withtheappropriateantibioticsin37 oCovernight.

2.5 DNA manipulation

2.5.1 Genomic DNA extraction

GenomicDNAextractionwasperformedusingtwomethods.Fortheuseof quantitativerealtimePCR(qRTPCR)andSouthernblotting,genomicDNAwasauto extracted using a Retsch MM301 autolyser and Qiagen BioSprint 15. For PCR screening,genomicDNAwasextractedaccordingtothemethoddescribedbyAljanabi

&Martinez(1997)withmodifications.Briefly,myceliawereharvestedinan1.5mL

Eppendorf tube and ground with a mortar and pestle in 400 L of sterile salt homogenisation buffer. Following this, 80 L of 10% (w/v) SDS and 160 g of proteinaseK(Promega)wasaddedtothehomogenate.Themixturewasincubatedat

65 oCforonehfollowedbytheadditionof300 LofsaturatedNaClsolution.Cellular debriswasremovedviacentrifugationat10,000 gfor30min.Thesupernatantcarrying genomicDNAwasretainedandprecipitatedwithanequalvolumeofisopropanolin

20 oCforoneh.TheDNAwaspelletedbycentrifugation,washedin70%ethanoland

58 Chapter 2

aspirated. Finally, the DNA pellet was resuspended in 300 to 500 L of sterile deionisedwater.

2.5.2 Plasmid DNA isolation

PlasmidDNAextractionsfrom E. coli werecarriedoutusingtheWizardPlus

SV Minipreps kit according to the manufacturer’s instruction (Promega, Madison) to obtainpureplasmidforcloningandDNAsequencing.

2.5.3 DNA purification and elution from agarose gel

DNA was eluted and purified using an Ultraclean 15 DNA Purification Kit accordingtothemanufacturer(MOBIO,California).

2.5.4 DNA cloning

The cloning of geleluted PCRamplified fragments with an A overhang was performed with a pGEMT Easy Vector kitaccording to the manufacturer (Promega,

Madison). Subcloning of restriction enzymegenerated DNA fragments for gene recombination and the construction of gene knockout vectors was performed using pBSKphleo(suppliedbyDr.PeterSolomon,seeAppendixA).Theligationreaction consistedofoneLof10xbuffer,100ngofpBSKphleo(orsubclones),one

WeissunitofT4DNAligaseandinsertfragmenttoamolarratioof3:1insert:vector.

Thereactionvolumewasmadeupto10 Lwithsteriledeionisedwater.Theligation reactionwasperformedatroomtemperatureforonehpriortotransformationinto E. coli DH10bvectordescribedbelow. E. coli transformants were selectedon LB agar

59 Chapter 2

with ampicillin. Restriction fragment length polymorphism and PCR were used to screenforcoloniescarryingthecorrectinsert.

2.5.5 Restriction enzyme digestion of DNA

DNA was digested with restriction enzymes purchased from Promega

(Madison).Eachreactionwasperformedina15 Lvolumeunlessstatedotherwise.

Thecontentofarestrictiondigestcontained1.5 Lofreactionbuffer,1.5 Lof10x bovine serum albumin (BSA), five units of restriction enzyme and DNA. Sterile deionisedwaterwasusedtomakeupthereactionvolume.Reactionswereperformedat

37 oCforonehunlessstatedotherwise.

2.5.6 Polymerase chain reaction (PCR)

PCRreactionswereroutinelyperformedina20or50 Lvolumecontaininga variable amount of DNA, one M of forward and reverse primers (Geneworks,

Australia), 0.2 L of Taq polymerase (Promega, Madison), and 0.2 mM dNTPs

(Promega, Madison) and 1 x Taq PCR polymerisation reaction buffer (Promega,

Madison) equivalent to 10 mM TrisHCl pH 9.0, 50 mM KCl, 0.1% Triton X100.

Thermocyclingreactionswereperformedasfollows:at95 oC(twomin)followedby35 to40cyclesof95 oC(onemin)denaturation,5560 oCannealing(onemin),72 oC(two min)amplificationfollowedbyafinal72 oC(fivemin)extension,andafinal14 oChold.

Perkin Elmer GeneAmp PCR System 2400 and Eppendorf Mastercycler ep thermocyclers were used for reaction amplification. The annealing temperature is primerdependent.PCRamplificationofDNAfragmentsaboveonekbwasperformed withTaKaRaEx Taq (TakaraBio.Inc.,Japan).

60 Chapter 2

2.5.7 DNA electrophoresis on agarose gel

DNAwaselectrophoresedinahorizontalgelapparatus(BioRad).TheDNA samplewasmixedwith6xDNAloadingbuffer(Promega,Madison)priortoloading onto the agarose gel (Progen, Queensland). The gel was run in 1 x TAE gel electrophoresis buffer at 70 to 100 V unless stated otherwise. The agarose gel was stained with 0.5 g.mL1ethidiumbromidefor30minpriortovisualisation of DNA under UV light with a BioRad Gel Doc 1000. Gel images were captured with

MolecularAnalyst(BioRad).

2.5.8 Southern blotting

Gene copy number and the verification of a successful gene knockout were determined by a Southern analysis. Genomic DNA (10 g) was digested with the appropriaterestrictionenzymeina300 Lreactionovernight.Thiswasconcentrated down to a40 L volume via isopropanol precipitation and loaded on a large format horizontalgelelectrophoresisapparatus(BioRad).ThedigestedDNAwasallowedto run overnight at 20 mA in a 0.7% (w/v) TAE gel. The DNA was transferred to

HybondN+ nylon membrane (Amersham Pharmacia Biotech, Sweden) using a

VacuGene XL vacuum blotting system (Amersham Pharmacia Biotech, Sweden).

Firstly,theagarosegelcontainingdigestedDNAwasloadedontotheapparatusandset at50mbarvacuum.FiftymLof0.2MHClwasimmediatelypouredontothegelto allow for depurination. The solution was discarded after 20 min and denaturation solutionwasappliedtothegelandremovedafterafurther20min.Thisprocesswas repeatedwith50mLneutralisationsolution.TheDNAwastransferredin20xSSCfor

61 Chapter 2

oneh.Themembranewaswashedin5xSSC,blotteddryandtheDNAwasfixedby

UVirradiationat150mJwithaBioRadGSGeneLinker.

2.5.9 DNA probe labelling

ThelabellingofDNAprobeandSouthernhybridisationwascarriedoutwitha

Digoxigenin (DIG) High Prime DNA Labelling and Detection Starter Kit 2 (Roche,

Mannheim). The DNA probe was created by random priming. This involved incubatingonetotwogDNAwithoneLofDIGHighPrimesolution(consistsof

Klenowpolymerase,DIGUTP,dNTP,andrandomprimers)at37 oCovernightina20

L reactionvolume.ThelabellingreactionwasterminatedbyaddingtwoL0.2M

EDTA. Labelling efficiency was determined according to the manufacturer’s instruction (Roche). After this, the freshly labelledprobewas denatured at 95 oC for fiveminandsnapchillediniceforafurtherfivemin.Priortohybridisation,thefreshly labelledprobewasaddedto10mLprehybridisationsolutionandfilteredthrougha0.45

m filter (Millipore). Previously used probes were denatured at 70 oC prior to hybridisation.

2.5.10 DNA probe hybridisation

PriortoSouthernhybridisation,thenylonmembranecontaininggenomicDNA of interest was prehybridised in DIG Easy Hyb solution for one h at 42 oC. The prehybridisationsolutionwasremovedandthedenaturedDNAprobe(25ng.mL1DIG

Easy Hyb) was then added to the membrane and was allowed to hybridise at 42 oC overnight.Followingthis,excessprobeswereremovedandhybridisationwascarried outbystringencywashesat65 oCwith0.5x SSC, 0.1% (w/v) SDS. The hybridised

62 Chapter 2

probe was immunologically labelled and detected via CDPStar chemiluminescent substrate (Roche, Mannheim) upon exposure to Lumifilm (Boehringer Mannheim,

Indianopolis)overnight.ThiswasthendevelopedinaFujiXrayfilmprocessorFPM

3000.

2.6 RNA manipulation

2.6.1 RNA isolation

RNAisolationwascarriedoutwiththeTRIzol ®reagent(GibcoBRL)according tothemanufacturer'sinstruction.Briefly,freezedriedmyceliaina1.5mLEppendorf tubewashomogenisedinonemLofTRIzolwithamortarandpestle.Thehomogenate wasallowedtostandforfiveminatroomtemperaturepriortotheadditionof200 Lof chloroformandwasvigorouslymixedbybriefshaking.Themixturewasallowedto standforthreeminatroomtemperaturebeforecentrifugationat12,000 gfor15minat

4oC.Followingthis,thewhiteaqueoustopphasewasretainedandreextractedtwicein

TRIzol.RNAwasprecipitatedwith500 Lofisopropanolandthepelletwaswashed in75%ethanol.TheRNApelletwasaspiratedandresuspended in 50 L of sterile

DEPCtreated water. The resuspended RNA was DNasetreated with DNAfree ™ reagent(Ambion)toremovecarryoverDNA.

2.6.2 First strand cDNA synthesis

FirststrandcDNAwassynthesisedwithaniScript ™cDNAsynthesiskit(Bio

Rad)according to the manufacturer's instructions. Thefirst strandsynthesis reaction wasperformedina20 LvolumecontainingonegoftotalRNA,1xiScriptreaction mixandoneLofiScriptreversetranscriptase.Thereactionwascarriedoutat25 oC

63 Chapter 2

forfivemin,42 oCfor30minand85 oCforfivemininanEppendorfMastercyclerep thermocycler.ThefirststrandDNAwaskeptat20oCuntilrequired.

2.6.3 Quantitative real-time polymerase chain reaction (qRT-PCR)

GenetranscriptabundancewasanalysedwithqRTPCR.Thereactionconsisted of 10 L iO  SYBR R Green Supermix (BioRad), 500 nM of forward and reverse primersandfiveLofa1:10to1:70dilutionoftheDNasetreatedRNAsampleina20

Lreactionvolume.PrimersusedfortheexperimentarelistedinAppendixB.

(SNOG_01139.1) or elongation factor 1 α (EF1 α; SNOG_11663.1) were used as constitutively expressed gene controls for expression normalisation. SN15 genomic

DNA was used as a standard at 25, 7.5, 2.5 and 0.75 ng per reaction. The thermocycling reaction was performed in a Rotor Gene RG3000 (Corbett Research,

Australia)asfollows:95 oC(3min)followedby40cyclesof94 oC(10s)denaturation,

57 oC(20s),72 oC(30s)extension.Thesamplespectrumwasacquiredusing470nm excitation filter and detected at 510 nm with a gain of +5. Rotor Gene 6 (Corbett

Research, Australia) software was used to analyse the data. All reactions were performedinduplicate.

2.7 Determination of nucleic acid concentration

DNAandRNAconcentrationsweredeterminedspectrophotometricallyusinga

NanoDrop DN1000 or a Perkin Elmer Lambda 25 UV/VIS spectrophotometer measuringatawavelengthof260nm.AnOD 260nm readingof1.00isequivalenttoa concentrationof50 g.mL1DNAor40 g.mL1RNA(Sambrook et al. ,1989).

64 Chapter 2

2.8 Manipulation of Stagonospora nodorum

2.8.1 Growth and maintenance of Stagonospora nodorum

Stagonospora nodorum SN15 (obtained from Department of Agriculture,

WesternAustralia)wasroutinelymaintainedonCzV8CS agar medium, andwasused throughoutthestudyasthewildtypestrain.Thefunguswaslefttogrowat20 oCina

12hdark/12hnearUVlightcycletoinducepycnidiation.Allother S. nodorum strains weregrowninasimilarmanner.

2.8.2 Pycnidiospore isolation

Pycnidiosporeswereharvestedfromagarplatecultures by flooding with five mL of sterile deionised water followed by gentle scrapings of the mycelial surface.

Flooded plates were left to stand for 10 min to allow spore resuspension prior to collection. This step was repeated with an additional seven mL of sterile deionised water.Thesporesuspensionwasfilteredthrougha20mLsyringe(Terumo)partially filledwithsterileglasswooltoremovemycelialdebris.Sporeswerethenpelletedby centrifugationat5,000 gfor10min.Thesporepelletwaswashedandresuspendedin steriledeionisedwater.

2.8.3 Preparation of fungal glycerol stock

All S. nodorum strainswerestoredin80 oCassporesorscrapedmyceliain20%

(w/v)glycerol.

2.8.4 Preparation of fungal protoplasts

Protoplast preparation was performed according to Solomon et al. (2004b).

65 Chapter 2

Briefly, spores (5 x 10 8) were inoculated into a conical flaskcontaining 100 mL of

CzV8CSbrothandincubatedinthedarkovernightinaCertomatRshaker(Braun)at

170rpm.Themycelialsuspensionwasharvestedbycentrifugationat7,500 gfor10 minat4 oC.Theresultingsupernatantwasdiscardedandthemyceliawereresuspended andwashedwith50mLof600mMMgSO 4.Followingthis,thewashedmyceliawas resuspended in 25 mL of 1.2 M MgSO 4 buffered to pH 5.8 with 10 mM K 2HPO 4 containing 15 mg.mL1 Glucanex (Novo Nordisk, Switzerland). The solution was transferredtoasterileglasspetridishandincubatedat28 oCfortwoh.Thesolution was transferred to a 50 mL centrifuge tube and overlaid with five mL of solution containing600mMsorbitoland10mMTrispH7.5.Followingcentrifugationat4,000 g for 25 min at 4 oC, the resulting protoplast layer located within the interface was removedandresuspendedinanequalvolumeofasolutionconsistingofoneMsorbitol and10mMTrispH7.5.Themixturewascentrifugedat1,530 gforfivemintoobtain aprotoplastpellet.ThispelletwasthenwashedandresuspendedinSTCbuffer.

2.8.5 Fungal transformation

FungaltransformationwasperformedasdescribedbySolomon et al. (2004b).

Briefly,theprocedurewasperformedbymixing2.5x10 7to1x10 8protoplastswith

6.75to8.85 gknockoutvectorgeneratedbyPCRamplification.Thereactionvolume was made up to 125 L with STC buffer and was allowed to incubate at room temperaturefor20min.Afterincubation,200 Lofthetransformationsolutionwas added to the STC mixture. Thiswas mixedby inversionandincubatedforfivemin before a further 200 L transformation solution was added and mixed. Following incubation for five min, a final 800 L was added and mixed. The mixture was

66 Chapter 2

aliquotedoutas300 LportionsintofivemLtopprotoplastCzV8agar,mixed,and pouredontoCzV8protoplastagarmedium.Theprotoplastswereincubatedinthedark at22 oCfor24hbeforebeingcoveredwithfivemLtopprotoplastCzV8agarcontaining phleomycin. Thiswas incubatedin thedark for one week toallowthe transformed protoplaststodevelop.

TransformedcolonieswererandomlyselectedandplatedoutontoCzV8Csagar containingphleomycin.ThesewerethenincubatedundernearUVlightforaweekor untilmaturepycnidiawerepresent.Transformantswerethenfurtherpurifiedbysingle sporeisolation.Thiswasperformedbyharvestingpycnidiosporeswithafinewireand resuspendedinsteriledeionisedwater.Thesuspensionwasdilutedsothat100 Lof thissuspensioncarrying100sporeswereplatedonto CzV8CS agar with phleomycin andincubatedforfourdaysundernearUVlight.

2.8.6 Fungal growth assay

Fungalgrowthassaysinminimalmedium(MM)brothwereperformedina96 wellmicrotitreplate(Solomon et al. ,2006c).Briefly,eachwellcomposedof200 L

MM broth containing 25 mM of the appropriate carbon source. The well was inoculatedwith10,000sporesorsteriledeionisedwaterasanegativecontrolandthe absorbancewasmeasuredwithaBeckmanCoulterDTX880MultimodeDetectorata wavelengthof595nm.Themicrotitreplatewasthenwrappedandincubatedinthe darkat20 oC.Asecondabsorbancereadingwastakenaftersevendays.Thenetgrowth was calculated from the subtracting the absorbance value at day 0 with the second reading.Theassaywasperformedinbiologicalduplicate.

67 Chapter 2

2.9 Wheat manipulation

2.9.1 Growth and maintenance of Triticum aestivum (cv. Amery)

Wheat Triticum aestivum (cv. Amery) was routinely grown in 10 cm pots containing Perlite (P500) and grade two vermiculite (The Perlite and Vermiculite

Factory, Australia) for two weeks at 20 oC in a 12 h light/dark cycle prior to manipulation. Forthe detached leafassay (DLA), 10cmpots were seeded with 40 seedswhereaswholeplantsprayexperimentsrequired10seedsperpot.

2.9.2 Detached leaf assay

Theabilityoffungalmutantstoproliferatewithinthehosttissuefromasingle pointinoculationwasassayedonthefirsttrueleaffromtwoweekoldwheatseedlings

(cv.Amery)usingaDLAmethodmodifiedfromthose described by Benedikz et al.

(1981).Twocmofthedetachedwheatleavesdistalendwasremoved.Thenextfourto fivecmportionwasembeddedontobenzimidazoleagaradaxialsideup.Thedetached leavewaschallengedwith5x10 3sporesin0.02%(v/v)Tween20orsmallmycelial agarplugs(~onemmonallsides).Thiswasallowedtoincubateina12hlight/dark cycleat25 oCtoenablediseasedevelopment.Thesizeofthelesionwasmeasuredwith acaliper.

2.9.3 Whole plant spray

Whole plant spray infection was performed as described by Solomon et al.

(2005a).Eachtreatmentconsistedoftwoweekoldwheatplants(cv.Amery),which weresprayedwith1.3x10 7sporesin0.02%(v/v)Tween20usinganairbrush(Paasche

AirbrushCo.,USA).Eachtreatmentwasperformedineightreplicatepotsunlessstated

68 Chapter 2

otherwise. After spraying, treated plants were coveredindarknessfortwodaysand incubatedat20 oCpriortogrowthunderthenormalgrowthconditionforafurtherfive days.Infectionsymptomsweregivenonascaleof0to10basedonvisualscoring.A scoreof0indicatesnodiseasesymptomswereobservedwhereasascoreof10indicates thattheplantiscompletelynecrotic.

2.9.4 In planta sporulation assay

Sporulation assays were performed on infected plant material. For infected detachedleafassays,14dayoldinfectedleaveswereharvestedandsubmergedinone mLofsteriledeionisedwaterforonehwithgentleinversionstocollectspores.Wheat leaveswereremovedandsporeswerecollectedbycentrifugationat 5,000 g. Spores werethenresuspendedin50to300 Lofsteriledeionisedwaterandcountedwitha haemocytometer.Forwholeplantsprays,fivecmportionsofthefirsttrueleafwere harvestedsevendayspostinfectionandembeddedontobenzimidazoleagar.Pycnidia andsporeswerelefttodevelopforfivedaysina12hlight/darkcycleat25 oCbefore sporeharvestingandquantification.

69

Chapter 3 - Identification of G ααα protein-regulated

effector proteins in Stagonospora nodorum by

proteomics

70 Chapter 3

3.1 Introduction

TheheterotrimericGproteinisasignallingcomponentcommontoeukaryotic organisms. In the mammalian system, heterotrimeric G protein signalling regulates metabolicenzymeactivity,ionchannels,secretorymachineries,embryodevelopment, steroid production and carbohydrate metabolism (Neves et al. , 2002). In other biologicalsystems,hetetrotrimericGproteinsignallingisresponsibleforcelldivision in arthropods (Afshar et al. , 2004; Fuse et al. , 2003), pheromone response in yeast

(Blumer & Thorner, 1991) and chemotaxis in the slime mould Dictyostelium discoideum (Kimmel&Parent,2003).Recentgeneticevidence on the model plant

Arabidopsis thaliana indicatesthatheterotrimericGproteinsignallingplaysimportant rolesinplantdevelopmentanddefenceagainstfungal pathogens(Lease et al. ,2001;

Trusov et al. , 2006). Heterotrimeric G protein signalling regulates development and virulence in many plant pathogenic fungi (Chapter 1). These examples illustrate the functional diversity of heterotrimeric G protein signalling in eukaryotic organisms.

Hence it is considered thatheterotrimeric G proteinregulatesaplethora ofsignalling effectorsthatmayparticipatetomaintaincellularfunction(Komatsu et al. ,2005;Neves et al. ,2002).

A Gα subunit gene Gna1 (SNOG_10086.1) of S. nodorum was functionally disrupted by Solomon et al. (2004b)andmutants were reducedinpathogenicityand demonstrated developmental impairments (Chapter 1). It is hypothesised that these impairmentsarearesultofchangesinthestateand/orabundanceofsignallingeffectors of Gna1 .Recentstudieshaveusedglobaltranscriptomicapproachestofurtherdissect heterotrimeric G protein signalling in plant pathogenic fungi (Andrews et al. , 2004;

71 Chapter 3

Dawe et al. ,2004;Eichhorn et al. ,2006;GarciaPedrajas&Gold,2004;Gronover et al. ,2004;Larraya et al. ,2005).Inthisstudy,acomparativeproteomicapproachwas usedtoanalyse S. nodorum SN15anda gna1 mutant(gna1-35 )foralterationsofprotein abundanceatthesubcellularlevel.

3.2 Methods

3.2.1 Fungal growth conditions and harvesting method

Fungal strains were grown on CzV8CS agar plates for two weeks prior to harvestbymycelialscraping.Approximately100to150mgofmyceliawasinoculated intoaconicalflaskcontaining100mLofMMbrothsupplementedwithglucosetoa finalconcentrationof3%(w/v).Thefunguswasallowedtogrowinthedarkat22 oCin aBraunshakersetat150rpmforthreedays.Thefunguswasharvestedusingcheese clothfiltration,rinsedwithsterilewater,immersedinliquidnitrogenandfreezedried overnight (Heto MAXI dry lyo freezedryer). For extracellular protein analysis, the fungus was grown in a similarmanner except that10 mMglutamatewasused asa carbonandnitrogensource.

3.2.2 Protein extraction and solubilisation

3.2.2.1 Soluble intracellular fraction

Freezedried mycelia were homogenised in liquid nitrogencooled mortar and pestlewithfivemLof10mMTrispH7.6withonemMphenylmethylsuphonylfluoride

(PMSF)(Sigma).Glassbeads(106micron)(Sigma)wereusedtoassisttissuegrinding.

Thecrudehomogenatewascollectedandcentrifugedat20,000 gfor1hat4 oC.The

72 Chapter 3

resultingsupernatantwasretainedandincubatedwith20unitsofDNase(Sigma)and20 units of RNase (Sigma) for 1 h at room temperature to degrade nucleic acids.

Followingthis,proteinswereprecipitatedwithninevolumesof100%analyticalgrade methanolat80 oCovernight.Precipitatedproteinswerecollectedbycentrifugationat

4,000 gfor15minat4oCfollowedbytwowashesin50mLof90%icecoldmethanol.

The protein pellet was air dried for one h. Protein solubilisation step involved the additionof300to600 LMSSbuffertotheproteinpelletfollowedbysonicationwith aprobetipMisonixSonicatorXL2015withanoutputof95Wanda25%.s 1pulsar dutycycle.Thisstepwasperformedwiththesampletubeplacedonicetoavoidsample overheating. Following this, the protein sample was continuously mixed with an

Eppendorf Thermomixer comfort for one to two h to aid protein solubilisation.

Insoluble proteins were collected and removed by two rounds of centrifugation at

20,000 gfor15minatroomtemperature.TheresolubilisedproteininMSSbufferwas storedat80 oCuntilrequired.

3.2.2.2 Soluble extracellular fraction

Cellfreesupernatantwasobtainedbyfilteringthefungalbrothincheesecloth toremovesubstantiallygrownmycelia.Thecrudesupernatantwasfilteredthrougha

Millipore0.22 mmembranetofurtherremovecellulardebris.Proteininthefiltered supernatantwasprecipitatedwiththeadditionoftrichloroaceticacid(TCA)toafinal concentrationof5%(w/v).TheTCA/supernatantmixturewaslefttoprecipitatefortwo h at 4 oC under constant agitation. The precipitated protein was pelleted by centrifugationat4,000 gfor15minandwashedthreetimeswithicecold80%acetone.

Theproteinpelletwasaspiratedatroomtemperaturefor30minpriortosolubilisation

73 Chapter 3

inMSSbufferwithoutsonication.Theresolubilisedproteinwasstoredat80 oCuntil required.

3.2.3 Determination of protein concentration

Protein concentration was determined using the bicinchoninic acid (BCA)

(Smith et al. , 1985) or RC-DC Lowry kit (BioRad). Firstly, the BCA method was performedbycombiningonemLsolutioncontaining2%CuSO 4and98%BCA(Sigma,

StLouis)with50 Lofdilutedcrudeproteinextract.Thiswasincubatedat37 oCfor onehtoenablethereductionofCu 2+ toCu 1+ bythepeptidebondsofproteins.BCA chelates Cu 1+ , thus forming a purple complex which was measured spectrophotometrically at OD 562 nm . A standard curve was constructed from a serial dilutionofonemg.mL1BSA(Sigma,StLouis)withsteriledeionisedwater.

Protein samples derived from the MSS solubilisation require concentration determination with a RC-DC Lowry kit. This was performed according to the manufacturer's instruction with recommended modifications. Briefly, 25 L of the crudeproteinextract(dilutedinMSSifnecessary)wasmixedbyvortexingwith125 L

RCreagentIreagent.Thiswaslefttostandforoneminpriortotheadditionof125 L of RC reagentIItoprecipitatetheprotein.Themixturewasvortexedandcentrifugedat

15,000 gforfivemin.Theproteinpelletwasthenwashedwith500 LR CreagentI and160 LR CreagentII.Thepelletwasresuspendedin127 Lreagentconsistingof

2.5 L of DC reagent S and 124.5 L of DC reagent A and incubated at room temperatureforfivemin.ColourimetricanalysiswasperformedbyaddingonemLof

DCreagentBandincubatingatroomtemperaturefor15minpriortoOD 750nm reading.

74 Chapter 3

Protein concentration was determined from a standard curve constructed from determiningtheBSAabsorbanceatconcentrationsfrom0.3to1.5 g. L1.

3.2.4 SDS polyacrylamide gel electrophoresis

Crude protein extracts were routinely examined for quality with SDSPAGE priortofurthermanipulation.SDSPAGEwas performedina discontinuoussystem using a 4% (w/v) stacking/12% (w/v) resolving acrylamide/bisacrylamide gel

(Laemmli, 1970). Electrophoresis was performed with a mini BioRad Protean III apparatussetat80Vfor10minfollowedby120Vuntilthebromophenoldyefront reachedtheendofthegel.

3.2.5 First dimension protein separation via IEF

Firstdimensionisoelectricfocusingwasusedforseparatingproteinsbasedon their isoelectric point. This was performed using seven cm linear immobilised pH gradient (IPG) acrylamide strips (BioRad). Typically, 100 g to 300 g of protein solubilisedinMSSbufferwasloadedintopH58linearIPGstripsandrehydratedat50

VinaProteanIEFCell(BioRad)for16to20h.Intracellularproteinsampleswere focusedinthesameapparatusprogrammedforrapidramping,250Vfor15min,14,000

Vh andheldat 500Vafterfocusing. Stripswere covered with mineral oil during rehydrationandIEFtopreventsampleevaporation.Extracellularproteinsampleswere focusedasdescribedabovewiththefollowingexceptions: 1. The focusing condition wassetat12,000Vhand 2. pH310linearIPGstripswereused.

75 Chapter 3

3.2.6 Second dimension protein separation via SDS-PAGE

Seconddimensionelectrophoresisseparatesproteinsbysize.Excessmineraloil wasremovedfromthefocusedIPGstripbydraining.ProteinsintheIPGstripwere reduced and alkylated in equilibration buffer I and II containing DTT and iodoacetamiderespectively,for20mineach.Theequilibratedstripwasplacedontoa

12% SDS polyacrylamide gel and sealed with 0.5% (w/v) agarose made from 1 x

Tris/glycine running buffer with a trace of bromophenol blue as a tracking dye.

ElectrophoresiswasperformedwithaminiBioRadProteanIIIapparatussetat80V for30minfollowedby120Vuntilthebromophenolbluedyefronthasreachedtheend ofthegel.

3.2.7 Protein visualisation

ProteingelswerevisualisedviacolloidalCoomassieG250staining(Neuhoff et al. , 1988). After electrophoresis, the polyacrylamide gel was stained overnight in colloidal Coomassie G250 stain. Following this, the gel was destained in several washes of 0.5% (v/v) phosphoric acid to attain a sufficiently clear background for visualisation.

3.2.8 Gel image acquisition and analysis

GelimagewascapturedusingProXPRESSdensitometryscanner(PerkinElmer) andvisualisedwithProFinder(PerkinElmer).ScanningparametersfortheProFinder softwareweresetforaresolutionof100microns, using bottom illumination andan emissionwavelengthspectrumof530nm.Imageacquisitionwascarriedoutusingan exposure time of three s after a flatfield has been established. Following this, spot

76 Chapter 3

detection and analysis was performed by eye in conjuction with the ProGENESIS

Workstation 2005 software (Perkin Elmer and Linear Dynamics). Replicate 2D gels were used to create average gels of SN15 and gna1-35 for comparisons. Software parameters as follows: background subtraction was set at the "ProGENESIS background" option, spots were manually matched and volume normalisation was performedusingthe"totalspotvolume"option.MatchingproteinspotsfromSN15and gna1-35 wereconsidereddifferentiallyabundantifthenormaliseddensitometryvalues weresignificantlydifferentaccordingtoanunpairedttest(p<0.05)withanaverageof

>twofolddifference.Experimentswereperformedinbiologicaltriplicate.

3.2.9 LC-MS/MS analysis and database searching

Tryptic peptides were analysed by liquid chromatographytandem MS (LC

MS/MS) as described by Taylor et al. (2005). Briefly, selected protein spots were subjectedtoingeltrypsindigestion.TrypticdigestswereanalysedonanAgilent1100 series capillary LC system coupled to an Applied Biosystems QSTAR Pulsar i LC

MS/MS system equipped with the IonSpray source in positive ion mode. Data produced by this method were used for searching the Mascot search engine (Matrix

Sciences) for protein identifications. The CID data from each sample were exported fromAnalystQSusingapurposebuiltscriptobtainedfromMatrixSciences(thisscript centroidedthesurveyscanions(TOFMS)ataheightpercentageof50%andamerge distanceof0.1amu(forchargestatedetermination),centroidedMS/MSdataataheight percentageof50%andamergedistanceoftwoamu,rejectaCIDiflessthan10peaks, discardedionswithchargeequalandgreaterthan5+). Search parameters atMascot employed a peptide tolerance of ± two Da and MS/MS tolerance of ± 1.2 Da, no

77 Chapter 3

variable modifications, allow up to one miss cleavage for trypsin digest and the instrument type was set to ESIQUADTOF. Searches were performed against a customdatabasebuiltfromaninhousesetofESTsfrom S. nodorum (1,772sequences derived from infected plant materials, growth on cell wall and oleate) and predicted genes in the genome of S. nodorum (Broad Inst., Massachusetts). Function was assignedtothematchedproteinbyBlastPhomologysearchoftheNCBInonredundant proteindatabase.Anexpectedvaluecutoffscoreof10 8 wasappliedtoallNCBInon redundant searches. The Blast2GO software (http://www.blast2go.de ) was used to obtain gene ontologyinformationfor allgenesunder default settings (Conesa et al. ,

2005). The FunCat database (http://mips.gsf.de/projects/funcat ) was used to assign functionalcategoriesbasedonsignificantgeneontologymatchesofeachgene(Ruepp et al. ,2004).

3.2.10 Enzymatic assay for mannitol dehydrogenase activity

Protein fractions of SN15 and gna135 were assayed for mannitol dehydrogenase activity according to Noeldner et al. (1994). Briefly, freezedried myceliaweregroundtoafinepowderunderliquidnitrogenusingamortarandpestle.

Thegroundmaterialwasresuspendedin10mMTrisClpH7.6supplementedwith10 mM PMSF. The crude protein extract was desalted on a PD10 Sephadex column accordingtothemanufacturer’sinstructions(Amersham).Tomeasuretheactivityof mannitoldehydrogenase,areactionmixturewasmadeuptoonemLwith50mMTris

Cl(pH7.6)containing0.25mMNADPH,50 Lofdesaltedproteinextractand0.8M fructose to start the reaction. Mannitol dehydrogenase activity was measured at

+ OD 340nm toobservetheconversionofNADPHtoNADP .Theassaywasperformedat

78 Chapter 3

30 oC. Specific activity of the enzyme was determined as activity per mg of total protein.

3.2.11 Signal peptide analysis

Polypeptide sequences were analysed for Nterminal signal peptides with the softwarepredictionengineSignalP3.0.Positivesignalpeptidepredictionwasscored onthebasisofagreementbetweentheneuralnetwork(NN)andhiddenMarkovmodel

(HMM)predictionalgorithmstrainedoneukaryoticproteinsequences.

3.2.12 Statistical analysis of transcript abundance

Quantitative RTPCR was performed as described in Chapter 2. Analysis of gene expression was performed from transcripts extracted under a similar in vitro growthconditionusedforproteinextractionforproteomicanalysis.Theexpressionof each gene was normalised and correlated with protein abundance data to identify possible correlations. To keep statistical analysis consistent with the model set for protein abundance, gene expression between SN15 and gna1-35 was deemed differentiallyabundantifthenormalisedtranscriptabundancevaluesweresignificantly different according to an unpaired ttest (p < 0.05) with an average of > twofold difference.Theexpressionofputative Gna1 regulatedgeneswasalsoexaminedduring

SN15 infection on wheat. Oneway ANOVA set for TukeyKramer analysis was performedinconjunctionwithaDunnett’scontrolgroupforstatisticalanalysis.Gene expressionwasconsideredsignificantlydifferentifp<0.05withanaverageof>two folddifferenceofthenormalisedtranscriptabundanceofeachtimepointsrelativetothe

Dunnett’scontrolgroup.

79 Chapter 3

3.3 Results

3.3.1 The determination of extracellular pH

Priortoproteinisolation,extracellularsupernatantsofSN15and gna1-35 were checkedforpHtoensurethatthegrowingconditionremainssimilarforbothstrains.

The average extracellular pH of SN15 and gna1-35 was 8.1 and 8.2 (n = 3), respectively.Thiswasnotstatisticallydifferent.

3.3.2 Assaying for cytoplasmic contamination in the extracellular protein fraction

TheextracellularandintracellularproteinfractionsofSN15andgna1-35 were assayed for the cytoplasmic enzyme marker mannitol dehydrogenase. No mannitol dehydrogenaseactivitywasdetectedintheextracellularproteomefraction(Table3.1).

This indicates that intracellular protein contamination in the extracellular protein fractionisnegligible.

3.3.3 Comparative extracellular proteome analysis

TheextracellularproteomesofSN15and gna1-35 wereanalysedforchangesin proteinabundanceusing2Dgelelectrophoresis.A totalof189uniqueproteinspots wereidentifiedfromSN15and gna1-35 .Ofthese,25(13.2%)spotswereconsidered differentiallyabundantbyProGENESIS(Figure3.1;AppendixC).Ofthesechanges,

17proteinspotswerereducedinabundancein gna1-35 whereaseightshowedincrease inabundance.LCMS/MSwasusedtoobtainpeptide spectra and the resulting data werematchedagainstthe S. nodorum predictedproteinsettofindthematchinggenes

(Table3.2;AppendixD).

80 Chapter 3

3.3.4 Comparative intracellular proteome analysis

TheintracellularproteomesofSN15and gna1-35 weremethanolextractedfrom mycelia grown in MM broth supplemented with glucose and separated via 2D gel electrophoresis(Figure3.2).Atotalof475uniqueproteinspotswereidentifiedfrom

SN15and gna1-35 .Ofthese,six(1.3%)spotsweredeemeddifferentiallyabundantby

ProGENESIS(Figure3.2;AppendixE).Ofthesechanges,fivespotsweresignificantly lessabundantin gna1-35 whereasonespotshowedincreaseinabundance.LCMS/MS wasusedtoobtainpeptidespectraandtheresultingdatawerematchedagainstthe S. nodorum predictedproteinsettofindthematchinggene(Table3.3;AppendixD).

3.3.5 Functional classification of differentially abundant proteins

Thirtyonespotswereidentified.Ofthese,22spotsweredecreasedandnine spotswereincreasedinabundancein gna1-35 .Twentytwogeneswereidentifiedfrom theseproteinspots.Thesegenesweredividedintofivefunctionalcategoriesbasedon theFunCatclassificationschemeofgeneontologypredictions (Table 3.4). Fourteen genes did not receive a functional assignment and hence were classified as FunCat unassigned genes. These genes encodea putative Concanamycin C induced protein

(CipC ), a glutathione Stransferase 2 ( Gst2), shortchain dehydrogenases, tyrosinase, cell wall glucanase, vacuolar targeting protein, tyrosinase/oxidase and unknown

81 Chapter 3

Figure14 Enzymatic assay for mannitol dehydrogenase (Table 3.1)

Table 3.1. Enzymaticassayforthecytoplasmicenzymemannitoldehydrogenasein proteinfractionsofSN15and gna1-35 .

Specific activity of mannitol dehydrogenase (nmol NADPH -1.min -1.mg protein -1) Strain Extracellular fraction Intracellular fraction SN15 0 383.1 gna1-35 0 394.4

82 Chapter 3

A 3 pH 10 15Extracellular kDa 2D proteome gels of SN15 and gna1-35 (Figure 3.1) 250

75

50 E2 E3 E4 E1 37 E13 E14 E12 E8 E9 E7 E5 E15 25 E6 E11 E10 E16 E18 E17

E19 15 E21 E20 E23 E24 E22 E25

B

250

75

50 E2 E3 E4 E1 E13 E14 E8 E9 37 E12 E5 E7

E15 E6 E11 E10 25 E16 E18 E17

E19 15 E21 E20 E23 E24 E25 E22

Figure 3.1. Representative 2D gels of A. SN15 and B. gna1-35

extracellularproteomes.Differentiallyabundantspotsareindicated.

83 Chapter 3 .

Figure16Differentially abundant extracellular protein spots of SN15 and gna1-35 (Table 3.2)

Table 3.2. IdentificationofdifferentiallyabundantextracellularproteinswithLCMS/MS.Mascotwasusedtopatternmatchedthemass spectrometrydatawiththeS. nodorum wholegenomeannotatedproteinsettogiveagenematch.Folddifferenceofmatchingproteinspots wascalculatedfromnormalisedspotvalueofSN15relativeto gna1-35 .Folddifferencedesignatedby()indicatesproteinspotsthatwere notobservedin gna1-35 proteomegelwhereas(++)designatespotsthatwerenotobservedintheSN15proteomegel.Molecularweight

(MW)isgiveninkDa.BlastPidentityandEvaluearegiveninAppendixD.Continuedonthenextpage.

Spot Fold Observed Broad acc Theoretical BlastP functional match (organism; Genbank acc ID) Mascot score diff (% coverage) pI MW ID pI MW E1 4.4 5.65 33.1 SNOG_00656.1 6.14 36.7 Putativevacuolartargetingprotein( Candida albicans ; 215(25.6) XP_711465.1) E2 6.73 38.0 SNOG_11078.1 6.06 37.8 Hypotheticalprotein(NmrAlikedomain)( Gibberella zeae ; 832(54.1) XP_384929) E3 6.90 37.6 SNOG_11078.1 6.06 37.8 Hypotheticalprotein(NmrAlikedomain)( Gibberella zeae ; 778(54.1) XP_384929) E4 7.09 37.4 SNOG_11078.1 6.06 37.8 Hypotheticalprotein(NmrAlikedomain)( Gibberella zeae ; 911(54.1) XP_384929) E5 2.7 5.80 29.3 SNOG_15451.1 5.48 33.2 Acetylxylanesterase( Aspergillus oryzae ;BAD12626.1) 121(17.8) E6 +3.3 6.64 26.3 SNOG_14370.1 5.09 45.8 Tyrosinase,putative( Aspergillus fumigatus ;EAL86390.1) 394(26.5) E7 2.4 7.14 30.2 SNOG_06492.1 7.71 40.6 Subtilisinlikeprotease( Phaeosphaeria nodorum ;AAP30889.1) 226(17.2) E7 2.4 7.14 30.2 SNOG_05974.1 9.33* 35.8* Malatedehydrogenase( Paracoccidioides brasiliensis ;AAP37966.2) 189(23.0) E8 6.7 7.68 29.8 SNOG_06492.1 7.71 40.6 Subtilisinlikeprotease( Phaeosphaeria nodorum ;AAP30889.1) 278(25.9) E8 6.7 7.68 29.8 SNOG_05974.1 9.33* 35.8* Malatedehydrogenase( Paracoccidioides brasiliensis ;AAP37966.2) 72(10.3)

84 Chapter 3

Table 3.2. Continuedfromthepreviouspage. Spot Fold Observed Broad acc Theoretical BlastP match (organism; Genbank acc ID) Mascot score diff (% coverage) pI MW ID pI MW E9 8.39 29.8 SNOG_06492.1 7.71 40.6 Subtilisinlikeprotease( Phaeosphaeria nodorum ;AAP30889.1) 365(28.0) E10 8.5 8.25 26.7 SNOG_06492.1 7.71 40.6 Subtilisinlikeprotease( Phaeosphaeria nodorum ;AAP30889.1) 457(38.5) E11 17.0 7.70 26.8 SNOG_06492.1 7.71 40.6 Subtilisinlikeprotease( Phaeosphaeria nodorum ;AAP30889.1) 311(29.4) E12 4.81 28.5 SNOG_12730.1 4.64 41.2 Putativeprotein( Neurospora crassa ;CAC28723.1) 59(7.8) E13 4.98 28.6 SNOG_12730.1 4.64 41.2 Putativeprotein( Neurospora crassa ;CAC28723.1) 264(25.1) E14 5.15 28.0 SNOG_12730.1 4.64 41.2 Putativeprotein( Neurospora crassa ;CAC28723.1) 262(22.5) E14 5.15 28.0 SNOG_01569.1 4.79 49.4 Cellwallglucanase( Aspergillus fumigatus ;XP_748349.1) 131(16.9) E15 4.55 27.7 SNOG_06180.1 4.74 22.4 Hypotheticalprotein( Chaetomium globosum ; EAQ89481.1) 60(4.4) E16 ++ 4.73 23.6 SNOG_05918.1 5.01 24.4 Hypotheticalprotein( Aspergillus niger ;CAJ18289.1) 187(28.4) E16 ++ 4.73 23.6 SNOG_08052.1 4.69 26.5 PoorBlastPmatch 142(15.8) E17 ++ 5.10 23.9 SNOG_05918.1 5.01 24.4 Hypotheticalprotein( Aspergillus niger ; CAJ18289.1) 182(28.4) E17 ++ 5.10 23.9 SNOG_08052.1 4.69 26.5 PoorBlastPmatch 86(15.8) E18 ++ 5.28 24.0 SNOG_05918.1 5.01 24.4 Hypotheticalprotein( Aspergillus niger ;CAJ18289.1) 223(28.4) E19 +5.6 6.47 18.0 SNOG_13504.1 6.27 19.7 Predictedprotein( Chaetomium globosum ;EAQ87808.1) 261(44.7) E20 ++ 7.73 <15.0 SNOG_16063.1 6.28 18.0 RNaseT1(Aspergillus oryzae ;CAA30560.1) 91(21.3) E21 +3.2 4.97 <15.0 SNOG_00848.1 4.74* 14.4* Peptidylprolylisomerase( Neurospora crassa ;CAA06962.1) 305(41.7) E22 ++ 5.21 <15.0 SNOG_10685.1 5.41 33.6 PoorBlastPmatch 98(23.3) E23 6.83 <15.0 SNOG_06491.1 5.13 37.6 Serineproteaseprecursor( Fusarium oxysporum ;AAC27316.2) 315(15.6) E24 7.52 <15.0 SNOG_06491.1 5.13 37.6 Serineproteaseprecursor( Fusarium oxysporum ;AAC27316.2) 312(15.6) E25 7.78 <15.0 SNOG_06491.1 5.13 37.6 Serineproteaseprecursor( Fusarium oxysporum ;AAC27316.2) 288(15.1) *Predictionbasedonreannotatedvalues.RefertoChapter6.

85 Chapter 3 A 5 pH 8 17 Intracellular kDa 2D proteome gels of SN15 and gna1-35 (Figure 3.2)

250

75

50

37

C4

25 C1 C2

C6

15 C8 C7

B

250

75

50

37

C4

25 C2 C1

C6

15 C8 C7

Figure 3.2. Representative 2D gels of A. SN15 and B. gna1-35

intracellularproteomes.Differentiallyabundantspotsareindicated.

86 Chapter 3

18Differentially abundant intracellular protein spots of SN15 and gna1-35 (Table 3.3)

Table 3.3. Identificationofdifferentiallyabundan tintracellularproteinswithLC MS/MS.Mascotwasusedtopattern matchedthemass spectrometrydatawiththe S. nodorum wholegenomeannotatedproteinsettogiveagenematch.Folddifferenceofmatchingproteinspots iscalculatedfromnormalisedspotvalueofSN15relativeto gna1-35. BlastPidentityandEvaluearegiveninAppendix D.Molecular weight(MW)isgiveninkDa.

Spot Fold Observed Broad acc Theoretical BlastP functional match (organism; Genbank acc ID) Mascot score diff (% coverage) pI MW ID pI MW C1 2.7 5.81 27.1 SNOG_13042.1 5.41 28.9 Shortchaindehydrogenase,putative( Aspergillus fumigatus ; 683(49.1) EAL86301) C2 17.5 5.94 28.5 SNOG_10217.1 5.46 31.8 Shortchaindehydrogenase/reductaseSDR( Solibacter usitatus ; 480(29.4) ZP_00520385.1) C4 7.2 6.06 29.2 SNOG_07541.1 6.20 27.9 ProteasomecomponentPre8( Aspergillus funigatus ;XP_748923.1) 294(40.2) C6 3.5 7.43 23.3 SNOG_07604.1 6.53 24.4 Glutathionetransferase2( Aspergillus fumigatus ;AAX07319.1) 74(14.2) C7 +4.7 7.43 <15.0 SNOG_11441.1 6.49 16.5 3dehydroquinatedehydratase( Aspergillus fumigatus ;XP_754140.1) 228(42.1) C8 19.2 5.70 <15.0 SNOG_11081.1 5.21 15.1 CipCprotein( Emericella nidulans ;CAC87272.1) 414(46.2)

87 Chapter 3

Figure19Functional classification of putative Gna1 -effector genes (Table 3.4)

Table 3. 4.Functionalclassificationofputative Gna1 effectorgenes.

Functional classification Broad acc ID Spot identity Protein/peptide degradation ProteasomecomponentPre8 SNOG_07541.1 C4 Subtilisinlikeprotease(Snp3) SNOG_06492.1 E7,E8,E9,E10andE11 Serineproteaseprecursor SNOG_06491.1 E23,E24andE25 Protein folding and stabilisation Peptidylprolylisomerase SNOG_00848.1 E21 C-compound and carbohydrate metabolism Acetylxylanesterase SNOG_15451.1 E5 Malatedehydrogenase SNOG_05974.1 E7andE8 3dehydroquinatedehydratase SNOG_11441.1 C7 Nucleotide/nucleoside/nucleobase metabolism RNaseT1 SNOG_16063.1 E20 FunCat unassigned CipCprotein SNOG_11081.1 C8 Cellwallglucanase SNOG_01569.1 E14 Vacuolartargetingprotein SNOG_00656.1 E1 GlutathioneStransferase2 SNOG_07604.1 C6 Shortchaindehydrogenase SNOG_10217.1 C2 Shortchaindehydrogenase SNOG_13042.1 C1 Tyrosinase/oxidase SNOG_14370.1 E6 Unknownprotein SNOG_05918.1 E16,E17andE18 Unknownprotein SNOG_08052.1 E16andE17 UnknownproteinwithanNmrAlikedomain SNOG_11078.1 E2,E3andE4 Unknownprotein SNOG_13504.1 E19 Unknownprotein SNOG_10685.1 E22 Unknownprotein SNOG_06180.1 E15 Unknownprotein SNOG_12730.1 E12,E13andE14

88 Chapter 3

proteins.Genesthatcodeforasubtilisinlikeprotease(Snp3 ),aputativeserineprotease and a proteasome subunit (Pre8 ) were placed into the category of protein/peptide degradation. Another gene involved in determining protein fate, encodes a putative peptidylprolyl isomerase (Ppi). RNase T1 is implicated in nucleotide degradation.

Genes encoding a putative cell wall degradation enzyme acetyl xylan esterase, the quinate pathway enzyme 3dehydroquinate dehydratase ( Qa-2) and malate dehydrogenase were placed into the Ccompound and carbohydrate metabolism category.

3.3.6 qRT-PCR analysis of gene expression

Theexpressionofgenesthatcodefor Gna1 effectorproteinswasexaminedwith qRTPCR. Comparative gene expression of SN15 and gna1-35 were analysed from transcripts extracted under similar in vitro growth conditions used for proteomic analysis. The normalised expression of each gene was compared with protein abundancedatatoidentifycorrelationsofproteinandtranscriptabundances(Figure3.3;

Figure 3.4). Expression of these genes was normalised against actin transcript abundance. Of the 22 genes examined, 12 showed a positive correlation between proteinandtranscriptabundance.Tengenesshowednocorrelation.

The expression of these putative Gna1 regulated genes was analysed during

SN15infectiononwheat.Thiswasperformedtoelucidatewhethergenesareexpressed orshoweddifferentialpatternofexpressionduring host infection (Figure 3.3; Figure

3.4).Expressionofthesegeneswerenormalisedagainst EF1 α transcript abundance.

The in planta transcriptionpatternofthe22putative Gna1 regulatedgeneswasdivided

89 Chapter 3

intosixuniqueexpressionprofiles(Figure3.5).Tenofthe22putative Gna1 regulated genesshowedincreasedexpressionduringlateinfectioncoincidingwithpycnidiation.

These genes code for putative shortchain dehydrogenases, Pre8 , glutathione S transferase 2, Qa-2, tyrosinase/oxidase, PPI and RNase T1 and two genes encoding proteins of unknown function (SNOG_06180.1 and SNOG_08052.1). Four genes showedgreatertranscriptionduringdayonepostinfection.ThesegenescodeforCipC,

Snp3,acetylxylanesteraseandanunknownfunctionprotein(SNOG_13504.1).Two genesshowedabiphasicexpressionpatternduringearlyandlateinfection.Thesegenes encode a putative vacuolar targeting protein and a protein of unknown function

(SNOG_12730.1). Incontrast,a geneencoding an unknown protein with an NmrA domain ( NmrA ) showed greater expression during the mid infection sampling time point.Interestingly,geneexpressionwasnotobservedforfourputative Gna1 regulated genes during infection. These genes encode a cell wall glucanase, serine protease precursorandtwoproteinsofunknownfunction(SNOG_10685.1andSNOG_05918.1).

Collectively,17ofthe22genesshowedadifferentialgeneexpressionpatternduring infection.

90 Chapter 3

SNOG_00656.1: Vacuolar targeting protein SNOG_00656.1: Vacuolar targeting protein (Spot E1) (Spot E1) 1.5 0.05 A a B b a b a a 20 qRT-PCR1.2 analysis of genes that encode extracellular0.04 proteins (Figure 3.3) 0.9 0.03

0.6 0.02 expression abundance 0.3 0.01 Normalised relative Normalised transcript 0 0 SN15 gna1-35 1 3 5 8 Strain Days post infection

SNOG_11078.1: Unknown protein with NmrA SNOG_11078.1: Unknown protein with NmrA domain (Spot E2, E3 and E4) domain (Spot E2, E3 and E4) 1.4 0.07 1.2 A A A a B B B b 0.06 a b b b 1 0.05 0.8 0.04 0.6 0.03 expression

abundance 0.4 0.02 0.2

Normalised relative 0.01 Normalised transcript 0 0 SN15 gna1-35 1 3 5 8 Strain Days post infection

SNOG_15451.1: Acetyl xylan esterase (Spot E5) SNOG_15451.1: Acetyl xylan esterase (Spot E5) 1.4 0.07 1.2 A a B b 0.06 a b b b 1 0.05 0.8 0.04 0.6 0.03 abundance 0.4 expression 0.02

Normalised relative 0.2 0.01 Normalised transcript 0 0 SN15 gna1-35 1 3 5 8 Strain Days post infection

SNOG_14370.1: Tyrosinase (Spot E6) SNOG_14370.1: Tyrosinase (Spot E6) 4.5 0.26 4 A a B a 0.24 a a a b 0.22 3.5 0.2 3 0.18 0.16 2.5 0.14 2 0.12 1.5 0.1 abundance expression 0.08 1 0.06 Normalised relative 0.5 0.04 Normalised transcript 0.02 0 0 SN15 gna1-35 1 3 5 8 Strain Days post infection

SNOG_06492.1: Subtilisin-like protease SNOG_06492.1: Subtilisin-like protease (Spot E7, E8, E9, E10 and E11) (Spot E7, E8, E9, E10 and E11) 1.5 0.07 a b a b 1.2 A A A A A a B B B B B b 0.06 0.05 0.9 0.04 0.6 0.03 expression abundance 0.02 0.3 Normalised relative

Normalised transcript 0.01 0 0 SN15 gna1-35 1 3 5 8 Strain Days post infection

Figure 3.3.Continuedonthenextpage.

91 Chapter 3

SNOG_00656.1: Vacuolar targeting protein SNOG_00656.1: Vacuolar targeting protein (Spot E1) (Spot E1) 1.5 0.05 A a B b a b a a 1.2 0.04

0.9 0.03

0.6 0.02 expression abundance 0.3 0.01 Normalised relative Normalised transcript 0 0 SN15 gna1-35 1 3 5 8 Strain Days post infection

SNOG_11078.1: Unknown protein with NmrA SNOG_11078.1: Unknown protein with NmrA domain (Spot E2, E3 and E4) domain (Spot E2, E3 and E4) 1.4 0.07 1.2 A A A a B B B b 0.06 a b b b 1 0.05 0.8 0.04 0.6 0.03 expression

abundance 0.4 0.02 0.2

Normalised relative 0.01 Normalised transcript 0 0 SN15 gna1-35 1 3 5 8 Strain Days post infection

SNOG_15451.1: Acetyl xylan esterase (Spot E5) SNOG_15451.1: Acetyl xylan esterase (Spot E5) 1.4 0.07 1.2 A a B b 0.06 a b b b 1 0.05 0.8 0.04 0.6 0.03 abundance 0.4 expression 0.02

Normalised relative 0.2 0.01 Normalised transcript 0 0 SN15 gna1-35 1 3 5 8 Strain Days post infection

SNOG_14370.1: Tyrosinase (Spot E6) SNOG_14370.1: Tyrosinase (Spot E6) 4.5 0.26 4 A a B a 0.24 a a a b 0.22 3.5 0.2 3 0.18 0.16 2.5 0.14 2 0.12 1.5 0.1 abundance expression 0.08 1 0.06 Normalised relative 0.5 0.04 Normalised transcript 0.02 0 0 SN15 gna1-35 1 3 5 8 Strain Days post infection

SNOG_06492.1: Subtilisin-like protease SNOG_06492.1: Subtilisin-like protease (Spot E7, E8, E9, E10 and E11) (Spot E7, E8, E9, E10 and E11) 1.5 0.07 a b a b 1.2 A A A A A a B B B B B b 0.06 0.05 0.9 0.04 0.6 0.03 expression abundance 0.02 0.3 Normalised relative

Normalised transcript 0.01 0 0 SN15 gna1-35 1 3 5 8 Strain Days post infection

Figure 3.3.Continuedonthenextpage.

92 Chapter 3

SNOG_05974.1: Malate dehydrogenase SNOG_05974.1: Malate dehydrogenase (Spot E7 and E8) (Spot E7 and E8) 1.4 0.2 1.2 A A a B B a a a a a 1 0.15 0.8 0.1 0.6 expression

abundance 0.4 0.05 0.2 Normalised relative Normalised transcript 0 0 SN15 gna1-35 1 3 5 8 Strain Days post infection

SNOG_12730.1: Unknown protein SNOG_12730.1: Unknown protein (Spot E12, E13 and E14) (Spot E12, E13 and E14) 1.5 0.07 A A A a B B B b 0.06 a b b a 1.2 0.05 0.9 0.04 0.6 0.03 expression abundance 0.02 0.3 Normalised relative

Normalised transcript 0.01 0 0 SN15 gna1-35 1 3 5 8 Strain Days post infection

SNOG_01569.1: Cell wall glucanase (Spot E14) 1.4 1.2 A a B b 1 0.8 SNOG_01569.1expression 0.6 notobserved in planta

abundance 0.4

Normalised relative 0.2 0 SN15 gna1-35 Strain

SNOG_06180.1: Unknown protein (Spot E15) SNOG_06180.1: Unknown protein (Spot E15) 1.5 0.024 A a B b 0.022 a a b b 1.2 0.020 0.018 0.016 0.9 0.014 0.012 0.6 0.010

expression 0.008 abundance 0.3 0.006

Normalised relative 0.004 Normalised transcript 0.002 0 0.000 SN15 gna1-35 1 3 5 8 Strain Days post infection

SNOG_05918.1: Unknown protein (Spot E16, E17 and E18) 2 1.8 1.6 A A A a B B B a 1.4 SNOG_05918.1expression 1.2 1 notobserved in planta 0.8

abundance 0.6 0.4

Normalised relative 0.2 0 SN15 gna1-35 Strain Figure 3.3.Continuedonthenextpage.

93 Chapter 3

SNOG_06491.1 (Spot E23, E24 and E25) 1.6 1.4 A A A a B B B b 1.2 1 SNOG_06491.1expression 0.8 notobserved in planta 0.6 abundance 0.4

Normalised relative 0.2 0 SN15 gna1-35 Strain

Constituitive transcript expression control Constituitive transcript expression control 0.3 0.4 a a 0.35 a a a a α α α α 0.25 α α α α 0.3 0.2 0.25 0.15 0.2 0.1 0.15

relative to EF1 0.1 Actin expression relative to EF1 0.05 Actin expression 0.05 0 0 SN15 gna1-35 1 3 5 8 Strain Days post infection Figure 3.3. Comparisons of extracellular protein ( ) and tra nscript ( )

abundanceofputative Gna1 regulatedgenesfromstrainsgrowninMMbroth

supplementedwithglutamateasacarbonandnitrogensource(leftcolumn).

Expressionofthesegeneswasalsoexaminedduring wheat infection (right

column).Uppercasealphabetslocatedontopofbargraphssignifysignificant

differences in protein abundance whereas lowercase alphabets denote

significant differences in transcript abundance. The underlined alphabet

denotes a Dunnett’s control group used for oneway ANOVA analysis.

Standarderrorbarsareshown.

94 Chapter 3

SNOG_13042.1: Short chain dehydrogenase SNOG_13042.1: Short chain dehydrogenase (Spot C1) (Spot C1) 0.03 1.4 a a a b 21qRT-PCR1.2 analysisA of a genes that encodeB b intracellular proteins0.025 (Figure 3.4) 1 0.02 0.8 0.015 0.6 0.01 abundance 0.4 expression 0.2 0.005 Normalised relative 0 Normalised transcript 0 SN15 gna1-35 1 3 5 8 Strain Days post infection

SNOG_10217.1: Short chain dehydrogenase SNOG_10217.1: Short chain dehydrogenase (Spot C2) (Spot C2) 1.4 0.25 A a B b a a a b 1.2 0.2 1 0.8 0.15 0.6 0.1 expression

abundance 0.4 0.2 0.05 Normalised relative Normalised transcript 0 0 SN15 gna1-35 1 3 5 8 Strain Days post infection

SNOG_07541.1: Proteasome component Pre8 SNOG_07541.1: Proteasome component Pre8 (Spot C4) (Spot C4) 1.8 0.03 1.6 A a B a a a a b 1.4 1.2 0.02 1 0.8 0.6 0.01 expression abundance 0.4

Normalised relative 0.2 Normalised transcript 0 0 SN15 gna1-35 1 3 5 8 Strain Days post infection

SNOG_07604.1: Glutathione transferase 2 SNOG_07604.1: Glutathione transferase 2 (Spot C6) (Spot C6) 1.6 0.6 1.4 A a B a 0.5 a a a b 1.2 1 0.4 0.8 0.3 0.6 0.2 abundance 0.4 expression 0.2 0.1 Normalised relative Normalised transcript 0 0 SN15 gna1-35 1 3 5 8 Strain Days post infection

SNOG_11441.1: 3-dehydroquinate dehydratase SNOG_11441.1: 3-dehydroquinate dehydratase (Spot C7) (Spot C7) 7 0.04 A a B a a a a b 6 0.032 5 4 0.024 3 0.016 expression

abundance 2 1 0.008 Normalised relative Normalised transcript 0 0 SN15 gna1-35 1 3 5 8 Strain Days post infection

Figure 3.4.Continuedonthenextpage.

95 Chapter 3

SNOG_11081.1: CipC protein (Spot C8) SNOG_11081.1: CipC protein (Spot C8) 1.4 2.8 a b b b 1.2 A a B b 2.4 1 2 0.8 1.6 0.6 1.2 expression abundance 0.4 0.8

Normalised relative 0.2 0.4 Normalised transcript 0 0 SN15 gna1-35 1 3 5 8 Strain Days post infection

Constituitive transcript expression control Constituitive transcript expression control 0.3 0.4 a a a a a a 0.35 α α α α 0.25 α α α α 0.3 0.2 0.25 0.15 0.2 0.1 0.15

relative to EF1 0.1 Actin expression relative to EF1 0.05 Actin expression 0.05 0 0 SN15 gna1-35 1 3 5 8 Strain Days post infection Figure 3.4. Comparisons of intracellular protein ( ) and transcript ( )

abundanceofputative Gna1 regulatedgenesfromstrainsgrowninMMbroth

(left column). Expression of these genes was also examined during wheat

infection(rightcolumn).Uppercasealphabetslocatedontopofbargraphs

signify significant differences in protein abundance whereas lowercase

alphabets denote significant differences in transcript abundance. The

underlined alphabet denotes a Dunnett’s control group used for oneway

ANOVAanalysis.Standarderrorbarsareshown.

96 Chapter 3 22Gene expression profiles in planta (Figure 3.5 )

i ii iii iv v vi

SNOG_11081.1 SNOG_11078.1 SNOG_00656.1 SNOG_13042.1 SNOG_05974.1 SNOG_01569.1 SNOG_06492.1 SNOG_12730.1 SNOG_10217.1 SNOG_05918.1 SNOG_13504.1 SNOG_07541.1 SNOG_10685.1 SNOG_15451.1 SNOG_07604.1 SNOG_06491.1 SNOG_11441.1 SNOG_14730.1 SNOG_06180.1 SNOG_08052.1 SNOG_00848.1 SNOG_16063.1 Figure 3.5 .Expressionprofilesofputative Gna1 regulatedgenesduringinfectiononwheat.Geneexpressionprofilesweresortedbasedon theirrelativetranscriptabundanceduringinfection; i. maximaltranscriptlevelduringhostpenetration, ii. maximaltranscriptlevelduring tissuecolonisation, iii. maximaltranscriptlevelduringhostpenetrationandsporulation, iv. maximaltranscriptlevelduringsporulation, v. constanttranscriptlevelthroughtheinfectionperiodand vi .geneexpressionnotobserved.

97 Chapter 3

3.3.7 Variants of Snp3 and serine protease precursor

LCMS/MS and Mascot analysis of spot E7, E8, E9, E10 and E11 have identifiedSnp3,aproteasepreviouslycharacterisedbyBindschedler et al. (2003).The predicted polypeptide MW (40.6 kDa) was approximately 10 kDa greater than the observedvalue(26.7to30.2kDa)inthe2Dgel.Referringtothemassspectrometry peptidecoverageofSnp3,thefirst109peptidesfromtheNterminalwerenotcovered by mass spectrometryderived data (Figure 3.6). A theoretical MW was recalculated basedontheSnp3sequencefromaminoacid110to287.TherepredictedMWis28.7 kDawhichwassimilartotheobservedvalue.ThissuggeststhataportionoftheN terminalofSnp3maybeabsentinspotE7,E8,E9,E10andE11.Thisrequiresfurther studies.

Aputativeserineproteaseprecursorgene(SNOG_06491.1)islocatedadjacent

(5.8kb)toSnp3 insupercontig9.ThepolypeptideofSNOG_06491.1wasidentifiedin spotE23,E24andE25.Thepredictedpolypeptideismuchlargerthantheexperimental value(Table3.2).CDDBlastanalysisoftheSNOG_06491.1polypeptideindicatestwo predicted domains;asubtilisin Nterminal region anda peptidase S8 subtilasefamily domain(Figure3.7).Thelatterdomainwasnotconfirmedbypeptidecoverage.

3.3.8 Qa-2 is located in a putative quinate gene cluster

Qa-2 (SNOG_11441.1) is associated with quinate metabolism. Analysis of predicted genes proximal to Qa-2ledtotheidentificationofaputativequinategene cluster(Hane, manuscript in preparation ).

98 Chapter 3

23 MS peptide coverage of Snp3 (Figure 3.6)

24 MS peptide coverage of a putative serine protease (Figure 3.7)

1 MKLSVLLALL PLALA APAPV IVPRAGSPIP GRFIVKMKNE NLQQLVDTAL 51 KLLRKDPAHV YKFAGFGGFA ADMADDIVEL IRNLPGVEYV EQDAVVKANL 101 GEIDSIEKR A FTTQSSSTWG LSR VSHINRQ TSGTSYTYDS SAGQGTCVYV 151 VDTGIETSHP EFEGRATFLA NFAGDGQNSD GNGHGTHCAG TIGSKTYGVA 201 K KASLYAVKV LDASGSGSNS GVIAGINYVA NDAK TR SCPN GAVGSMSLGG 251 SKSTAVNSAV ANAVTAGVFF AVAAGNDGAD ASRYSPASEV SAFTVGATDS 301 SDR VASFSNY GTLVDMHAPG VSILSTWLNG GTNTISGTSM ATPHVAGVAA 351 YILALEGK IS PAALSTRLTT LATKDK ITGL KGSTKNYLAF NGNPSG Figure 3.6 . Peptide coverage of Snp3 ( SNO G_06492.1) from mass

spectrometryanalysisoftrypsindigestsofspotE7toE11(red).Thepredicted

Nterminalsignalpeptideisshowninbold.

Peptide coverage

Figure 3.7. CDDBlast analysis of the SNOG_06491.1 predicted polypeptide

detectedtwoproteaseassociateddomains.Massspectrometryanalysisoftrypsin

digestsofspotE23toE25(arrow)onlycoveredthepredictedsubtilisindomain.

99 Chapter 3

3.3.9 Genomic organisation of other Gna1 protein effector genes

The localisation of Qa-2 within a putative gene cluster has prompted further investigations into the genomic structure of other putative Gna1 regulated genes to identifycontiguousarraysofgenesthatmayparticipateinametabolicprocess.Broad designated genes were considered for analysis based on significant BlastP hits, the presence of a conserved domain or inhouse prediction with the UNVEIL software trainedongenesfullysupportedbyESTdata(Hane, unpublished data ).

CipC and NmrA arelocated5.4kbapartinsupercontig18.Genesproximalto

CipC and NmrA encode putative PKSs, transporters, , fatty acid enzymesandmethyltransferases(Table3.5).Genesproximaltoaputativeshortchain dehydrogenase gene (SNOG_10217.1) encode an acylCoA oxidase, a lipase, a transcription factor, an oxidoreductase and methyltransferases (Table 3.6). Genes proximal to a second putative shortchain dehydrogenase gene (SNOG_13042.1) encodeaputativePKS,methyltransferasesandoxidoreductases(Table3.7).

PolypeptidesequenceanalysisofSNOG_14370.1indicatedthatitissimilartoa putative tyrosinase of A. fumigatus . One of the characteristics of tyrosinases is the presenceoftwocopperbindingsitesdistinguishablebytwoconservedmotifs.Analysis oftheSNOG_14370.1polypeptidewithMotifScanindicatedthepresenceofonlyone copperbindingmotif.ThesizeoftheSNOG_14370.1polypeptide(45.7kDa)ismuch less than the characterised 68.6 kDa tyrosinase of N. crassa (Genbank acc. YRNC).

YRNC contained two putative copperbinding sites (Motif Scan). Hence,

100 Chapter 3

SNOG_14370.1mayencodeauniqueoxidase.Furthermore,SNOG_14370.1islocated withinaputativeironmetabolismgenecluster(Table3.8).

3.4 Discussion

3.4.1 Comparative analysis of the intracellular proteome

Impairmentsin gna1-35 arelikelytobeduetoalossofsignallingcoordination ofeffectorsthatarecriticalformaintainingnormalfungaldevelopment.Comparative intracellular proteomic analysis of SN15 and gna1-35 was performed to identify changesinproteineffectorsingna1-35 .

3.4.2 Comparative analysis of the extracellular proteome

Theextracellularsecretomeoffungiisofconsiderablescientificandcommercial interest.Alargeamountofresearchhasbeendevotedtoidentifyingsecretedmolecules that determine the outcome of plantmicrobe interactions (Rep, 2005), phytopathogenicity (Belien et al. , 2006), decomposition/carbon cycling (Leschine,

1995) and the exploitation of fungal proteins for biotechnological and commercial purposes(deVries,2003;Subramaniyan&Prema,2002).Thisisthefirstreportthat providesaspecificanalysisofextracellularproteomeregulationbyasignallingpathway inaplantpathogenicfungus.

101 Chapter 3

Figure25 CipC and NmrA putative gene cluster (Table 3.5) Table 3.5. BlastPanalysisofpredictedgenesproximalto CipC and NmrA ina70.6kbregionofsupercontig18 BroadID E-value % aa Organism Match (Genbank acc ID) similarity SNOG_11060.1 8E46 31% Aspergillus fumigatus βlactamase(XP_747079) SNOG_11061.1 1E149 47% Magnaporthe grisea MDReffluxpumpABC3(AAZ81480) SNOG_11063.1 4E55 66% Magnaporthe grisea Hypotheticalprotein(XP_360219) SNOG_11066.1* 0.0E 45% Botryotinia fuckeliana Polyketidesynthase(AAR90244) SNOG_11067.1 Predictedprotein SNOG_11068.1 0.0E 42% Neurospora crassa Hypotheticalprotein(XP_958827) SNOG_11070.1 4E36 29% Aspergillus fumigatus Exopolyphosphatase(XP_748002) SNOG_11071.1 1E42 48% Coccidioides immitis Hypotheticalprotein(EAS28904) SNOG_11072.1 9E108 37% Aspergillus fumigatus MFStoxineffluxpump(XP_754099) SNOG_11073.1 7E50 41% Aspergillus fumigatus Shortchaindehydrogenase/reductasefamily (XP_749056) SNOG_11074.1 9E77 37% Aspergillus fumigatus Aminotransferase(XP_754156) SNOG_11076.1^ 0.0E 73% Cochliobolus heterostrophus Polyketidesynthase(AAR90268) SNOG_11078.1 1E-53 37% Gibberella zeae Hypothetical protein with NmrA domain (XP_384929) SNOG_11079.1 Predictedprotein SNOG_11080.1 4E54 47% Aspergillus nidulans Hypotheticalproteinwith phospholipase/carboxyesterasedomain(XP_682091) SNOG_11081.1 3E-17 44% Emericella nidulans CipC protein (CAC87272) SNOG_11082.1 0.0E 49% Aspergillus fumigatus SignaltransductionproteinSyg1(XP_753707) SNOG_11084.1 Predictedprotein SNOG_11086.1 Predictedprotein SNOG_11087.1 4E46 37% Aspergillus fumigtus MFStransporter(XP_747222)

*MergerofSNOG_11065.1andSNOG_11066.1(Hane, unpublished data ). ^MergerofSNOG_11075.1andSNOG_11076.1(Hane, unpublished data ).

102 Chapter 3 Figure26SNOG_10217.1 putative gene cluster (Table 3.6)

Table 3.6. BlastPanalysisofpredictedgenesproximaltoSNOG_10217.1ina34.6kbregionofsupercontig16.

Broad ID E-value % aa Organism Match (Genbank acc ID) similarity SNOG_10209.1 3E14 33% Herpetosiphon aurantiacus Methyltransferasetype11(ZP_01426122) SNOG_10210.1 5E127 55% Aspergillus terreus Methionineaminopeptidase2(XP_001209448) SNOG_10211.1 Predictedprotein SNOG_10216.1 1E41 45% Coccidioides immitis Hypotheticalproteinwithphosphotransferasedomain (EAS32640) SNOG_10217.1 9E-29 36% Solibacter usitatus Short-chain dehydrogenase (YP_827156) SNOG_10219.1 6E26 34% Aspergillus fumigatus AcylCoAoxidase(XP_747031) SNOG_10221.1 8E36 31% Neurospora crassa RelatedtointegralmembraneproteinPTH11 (CAC28570) SNOG_10222.1 7E36 33% Aspergillus fumigatus CytochromeP450monooxygenase(XP_751878) SNOG_10223.1 9E49 32% Aspergillus fumigatus Lipase(XP_748709) SNOG_10225.1 3E49 43% Aspergillus fumigatus Methyltransferase(XP_755772) SNOG_10226.1 8E38 35% Gibberella zeae Hypotheticalprotein(XP_389194) SNOG_10228.1* 4E51 88% Aspergillus terreus SmallnuclearribonucleoproteinSMD3 (XP_001210791) SNOG_10229.1 4E55 61% Magnaporthe grisea Hypotheticalprotein(XP_364641) SNOG_10230.1 4E109 49% Aspergillus fumigatus TranscriptionfactorRfeF(XP_751806) *MergerofSNOG_10227.1andSNOG_10228.1(Hane, unpublished data ).

103 Chapter 3

Figure27SNOG_13042.1 putative gene cluster (Table 3.7)

Ta ble 3.7. BlastPanalysisofpredictedgenesproximaltotheSNOG_13042.1ina35.4kbregionofsupercontig25. Broad ID E-value % aa Organism Match (Genbank acc ID) similarity SNOG_13032.1 0.0E 75% Aspergillus fumigatus Polyketidesynthase,putative(EAL87813) SNOG_13033.1 2E171 76% Aspergillus fumigatus Oxidoreductase(XP_749850) SNOG_13034.1 2E124 85% Aspergillus fumigatus Shortchaindehydrogenase(EAL87811) SNOG_13035.1 9e121 68% Aspergillus fumigatus FADdependentoxidase,putative(EAL87810) SNOG_13036.1 9E119 82% Aspergillus fumigatus MFSmonocarboxylatetransporter,putative (EAL87809) SNOG_13037.1 3E74 46% Neurospora crassa Hypotheticalprotein(XP_958575) SNOG_13039.1 1E40 34% Aspergillus flavus omethyltransferaseOmtB(AAS90034) SNOG_13040.1 1E48 30% Leptosphaeria maculans CytochromeP450monooxygenaseSirC(AAS92547) SNOG_13041.1 1E24 25% Aspergillus flavus omethyltransferaseOmtA(AAS90041) SNOG_13042.1 5E-26 32% Aspergillus fumigatus Short-chain dehydrogenase, putative (EAL86301) SNOG_13043.1 5E108 51% Gibberella zeae Hypotheticalprotein/FAD/FMNcontaining dehydrogenasedomain(XP_390785) SNOG_13044.1 4E35 33% Coccidioides immitis Predictedprotein(EAS31229) SNOG_13045.1 9E60 33% Gibberella fujikuroi CytochromeP450monooxygenase(CAA75566)

104 Chapter 3

28SNOG_14370.1 putative gene cluster (Table 3.8)

Table 3.8. BlastPanalysisofpredictedgenesproximalSNOG_14370.1ina23.9kbregionofsupercontig31. Broad ID E-val ue % aa Organism Match (Genbank acc ID) similarity SNOG_14362.1 2E109 45% Neosartorya fischeri SiderophorebiosynthesisacetylaseAceI,putative (XP_001259091) SNOG_14364.1 9E38 38% Neosartorya fischeri LornithineN5oxygenaseSidA(XP_001260287) SNOG_14365.1 0.0E 50% Aspergillus fumigatus ABCmultidrugtransporter(MTABC3domain*) (XP_748663) SNOG_14368.1 0.0E 68% Cochliobolus miyabeanus Nonribosomalpeptidesynthetase(ABI51982) SNOG_14370.1 5E-35 31% Aspergillus fumigatus Tyrosinase, putative (XP_748428) SNOG_14372.1 1E65 34% Cryptococcus neoformans Effluxprotein(XP_569134) *MTABC3–ironhomeostasisdomain.

105 Chapter 3

TheextracellularpHofSN15and gna1-35 growninMMbrothwerealkaline, presumablyduetoglutamatedepletion.Theexperimentwasperformedtoensurethat changes observed in the extracellular proteome between SN15 and gna1-35 were directly due to Gna1 deletion and not pH alteration. According to Solomon et al.

(2004b), defects in general extracellular protease activity of the gna1 mutants were morepronouncedatanalkalinepH.ChangesinpHareknowntoaffecttheexpression ofsecretedproteinsandsecondarymetabolitebiosynthesisinotherfungi(Cotton et al. ,

2003;Espeso et al. ,1993;Hube et al. ,1994;Poussereau et al. ,2001;Rollins,2003).

Hence,regulationoftheextracellularproteomeofS. nodorum by Gna1 underdifferent pHconditionsshouldbeconsideredforfutureinvestigation.

3.4.3 Transcript analysis of putative Gna1 -regulated genes

Itwouldbedesirabletoperformcomparativeandquantitativefungalproteomics oninfectedplantmaterials.However,thisapproachiscomplicatedbyseveraltechnical difficulties.Forinstance, gna1-35 poorlyinfectswheat,soobtainingsufficientfungal proteinsfrominfectedplantmaterialsforexperimentscanbedifficult.Contamination byplantproteinsalsorepresentsamajortechnicaldifficultyforcomparativeproteomic studies. To gain an insight into the regulation of putative Gna1 regulated genes in planta , qRTPCR was used to monitor transcript abundance at different stages of infection.Timepointssampledwere1,3,5and8 days postinfection. These time pointswerechosentoreflectthedevelopmentalstagesof S. nodorum duringinfection in DLAs (Solomon et al. , 2006e). Pycnidiospore germination and host penetration occur during the first day of infection. Once host penetration is successful, the pathogenisabletoproliferatewithintheplanttissue.Thisstageisrepresentedbythree

106 Chapter 3

and five days postinfection. The onset of pycnidiation occurs at five days post infection.Thecompletionoftheinfectioncyclecanberepresentedbypycnidiationand sporulationateightdayspostinfection(Solomon et al. ,2004b).The in vitro growth conditionusedforproteomicanalysisisreflectiveofanutrientrichenvironment.This inpartmimicsthein planta conditionwherenutrientisabundantfromtheonsetofhost penetrationuntilasexualsporulationin S. nodorum (Waters, personal communications ).

In a closely related fungal pathogen M. graminicola, the expression of carbon metabolism genes in a nutrientrich environment in vitro and during in planta sporulationwasnotsignificantlydifferent(Keon et al. ,2005).

3.4.4 Signal peptides and sub-cellular protein localisation

Signalpeptidesareshortpeptidesequencesthatdirectposttranslationalprotein localisation to subcellular compartments such as membrane and extracellular localisation. A bioinformatics approach was used to validate the subcellular localisationofallputative Gna1 effectorproteins.Allintracellularproteinsreturneda negativepredictionforsignalpeptides.Nterminalsignalpeptideswerepredictedfor

12 ofthe16extracellularproteins. SignalPdidnot conclusively predict Nterminal signal peptides for four predicted polypeptides; malate dehydrogenase

(SNOG_05974.1), unknown protein (SNOG_08052.1), RNase T1 (SNOG_16063.1) and NmrA (SNOG_11078.1). PPI (SNOG_00848) contains an Nterminal signal peptideandalsoaCterminal“KDEL”sequenceimplicatedinsubcellulartrafficking through endoplasmic reticulum (ER) retention. Classical protein secretion to the extracellularenvironmentinitiatesuponproteinmigrationtotheERwhichrequiresan

Nterminal signal peptide (Conesa et al. , 2001). Nonclassical protein secretion does

107 Chapter 3

notfollowthisroute.Hence,itislikelythatsignalpeptidedeficientproteinsidentified inthisstudyaresecretedthroughanER/Golgiindependentproteinsecretorypathway

(Nickel,2003).

3.4.5 Identification of an extracellular malate dehydrogenase

Malate dehydrogenase is a key citric acid cycle enzyme involved in the reversible conversion of malate to oxaloacetate intracellularly. The putative malate dehydrogenase colocalised with Snp3 in spot E7 and E8. This observation was confirmedwithLCMS/MSofbiologicalreplicatesofspotE7andE8.Theappearance of putative malate dehydrogenase in the extracellular proteome is surprising as the enzymeisclassicallyassociatedwiththecytoplasmandmitochondria.SignalPanalysis indicates that the putative malate dehydrogenase does not carry an Nterminal signal peptide. Assays for the cytoplasmic enzyme mannitol dehydrogenase indicated that cytoplasmic contamination was negligible. Malate dehydrogenase orthologs were foundinthesecretomeof A. flavus duringgrowthontheflavanoidrutin(Medina et al. ,

2005),cellfreefiltratesoftheprotozoan Trichomonas vaginalis (Addis et al. ,1997) andcellwallpreparationsofthelegume Medicago sativa (Bailey et al. ,2001).The biologicalroleofextracellularmalatedehydrogenasesisunknown.

3.4.6 Nucleotide degradation

A putative extracellular RNase T1 represented in spot E20 suggests that extracellularnucleicacidmetabolismmayberegulatedby Gna1 .TheRNaseT1family possesses a twostage endonucleolytic activity. The enzyme cleaves nucleoside 3' phosphates and 3'phosphooligonucleotides ending in GP with 2',3'cyclic phosphate

108 Chapter 3

intermediates.Proteomicanalysisof A. flavus secretomerevealedaputativesecreted

RNase(Medina et al. ,2005).TwopossiblerolesforextracellularRNasearedescribed.

Since S. nodorum isanecrotrophicorganism,thedegradationofhosttissuecanresultin thereleaseofnucleicacids.ExtracellularRNasesmayparticipateinRNAdegradation toproducebasicphosphate,carbonandnitrogencompoundsfornutritionalassimilation

(Lindberg & Drucker, 1984). Increased expression of RNase T1 during infection implicates a probable role in nucleotide acquisition from the host plant (Figure 3.3).

RNase may also play a role in disabling the host during fungal colonisation. For example,aclassofsecretedtoxinresemblingtheRNaseT1familyknownasribotoxin, hasbeenshowntobecytotoxicbyinterferingwithproteinsynthesisthroughribosomal inactivation(Madan et al. ,1997a;Madan et al. ,1997b;Wool et al. ,1992).

3.4.7 Protein folding and stabilisation

SNOG_00848.1 matched to NcFKP22 of N. crassa , a characterised PPI

(Solscheid & Tropschug, 2000). PPIs or cyclophilins interact with the immunosuppressivedrugcyclosporinA(Siewers et al. ,2005).Theenzymecatalyses theisomerisationofthe cis and transpeptidebondsontheNterminalsideofproline residues (Gothel & Marahiel, 1999; Schreiber, 1992). The presence of a KDEL sequence suggests that S. nodorum PPI may be ERlocalised. PPI showed greater abundance in the gna1-35 extracellular proteome. Transcript abundance did not correlate with protein abundance. This suggests that either nontranscriptional regulationortheperturbationofthesecretorypathway through Gna1 deletionwhich resulted in extracellular localisation. Heterotrimeric G protein signalling has been implicatedtomodulatesecretion,vesicletraffickingandmembranetraffickingeventsin

109 Chapter 3

othersystems(Gasman et al. ,1998;Neves et al. ,2002;Schwiebert et al. ,1994;Vitale et al. , 1996). The role of cyclophilins in fungal phytopathogenicity has been determined in M. grisea and B. cinerea . The cyclophilin Cyp1 is required for the formationofinfectiousstructureandvirulenceofM. grisea (Viaud et al. ,2002).The cyp1 mutant also showed a reduction in intracellular lipid bodies and extensive vacuolation (Viaud et al. ,2002).Thedeletionofthe Bcp1 cyclophilin in B. cinerea resultedinthereductioninpathogenicity.Unlikethewildtype,the bcp1 mutantwas insensitivetovegetativegrowthinhibitionbycyclosporinA(Viaud et al. ,2003).

3.4.8 Protein/peptide degradation

A protein orthologous to a putative 20S proteasome Pre8 component of A. fumigatus wasidentifiedasreducedinabundancein gna1-35 .TheobservedMWfor the SNOG_07541.1 protein is 27.9 kDa which is consistent with the MW of 20S proteasomesubunitsdescribedbyCoux et al. (1996).The20Sproteasomecomponent is a part of the 26S proteasome complex that participates in the degradation of ubiquinatedproteins,anintegralprocessofintracellularproteincycling.

Solomon et al. (2004b)observedthattheactivityofthesubtilisinlikeprotease

Snp3wasgreatlyreducedingna1-35 .Transcriptandproteinabundancedatafromthis studysupportedtheobservation.Snp3isanalkalinetrypsinlikeproteasediscoveredin thedeletionbackgroundofanotheralkalineprotease,Snp1(Bindschedler et al. ,2003).

However, Snp1 wasshownto be dispensablefor pathogenicity and the role of Snp3 duringinfectionhasyettobedetermined.Bindschedler et al. (2003) suggested that

Snp1 and Snp3 may play a synergistic role in proteolysis during pathogenesis. The

110 Chapter 3

creationofadoublemutantdefectiveinbothproteasesisrequiredtotestthehypothesis.

The in planta transcriptionprofilesuggeststhattheexpressionof Snp3 isbiphasicand maybeinvolveinmultiplestagesofinfection.Theserineproteaseprecursoridentified inspotE23,E24and25mayhaveNterminalzymogenicfragmentsposttranslationally cleavedduringproteaseactivation(Jain et al. ,1998).Thusitispossibletoinferthatthe serine protease precursor was originally transcribed as a zymogen that required structural alterations to become active and prevent inappropriate selfproteolysis

(Stennicke&Salvesen,2000).

RegulationofproteasesecretionbyG αsignallinginphytopathogenicfungiwas firstreportedbyGronover et al. (2001)throughthedeletionof Bcg1 in B. cinerea .Ina laterexperiment,Gronover et al. (2004) identifiedanumberofproteaseencodinggenes downregulated in the bcg1 mutant via SSH analysis. This includes a metalloproteinase, aorsin, polyporopepsin, acid protease, penicillolysin precursor and tripeptidylpeptidaseI precursor. Similarly,the inactivation of a putativeG βsubunit gene Fgb1 in F. oxysporum resulted in a significant loss in general extracellular proteaseactivity(PradosRosales et al. ,2006).Theexpressionofanacidproteasegene

Acp1 inthesoftrotfungus Sclerotinia sclerotiorum increasedwhengivenexogenous cAMP which indicates the involvement of the cAMP/protein kinase A signalling pathway (Girard et al. , 2004). The role of fungal extracellular proteases during infection is yet to be fully defined. Plant cell walls are composed of glycine, hydroxyproline and prolinerich proteins that are capable of altering cell wall properties in order to restrict pathogen invasion (GarciaMuniz et al. , 1998; Otte &

Barz,1996;Otte&Barz,2000;Showalter,1993).Fungalextracellularproteasesmay

111 Chapter 3

functiontobreakdowncellwallproteinstofacilitateinvasion.Proteolysismayalso provideanutritionalsupportforfungalgrowthduringcolonisationofthehosttissue.

Snp3 wasexpressedthroughouttheinfectionprocesswhichsuggeststhatextracellular proteindegradationmaybeimportantduringinfection.Takencollectively,resultsfrom thisstudyandrecentfindingsin B. cinerea , F. oxysporum and S. slerotiorum provide evidence for heterotrimeric G protein/cAMPregulated protease metabolism in pathogenicfungi.

3.4.9 Cell wall degradation

Itiswidelyconsideredthatnecrotrophicfungirequirealargearrayofcellwall degrading enzymes to break through the host cell wall barrier and possibly acquire nutrients during plant pathogenesis and saprotrophy (Walton,1994).Thisstudyhas identifiedaputativecellwalldepolymeraseacetylxylanesteraseimplicatedincarbon metabolism(SNOG_15451.1).Proteinandtranscriptabundancewerereducedin gna1-

35 which suggests that the gene is controlled at the transcriptional level. Gene expression analysis during infection indicates that expression is maximal during the early stage of infection coinciding with host penetration. As gna1-35 showed a reductioninitsabilitytocolonisethehosttissue,theputativeacetylxylanesterasemay functioninparalleltoothercellwalldegradingenzymestodegradethehostcellwallto facilitatepenetration,tissuecolonisationandliberatingcarbonsourcesforgrowth.To test this hypothesis, the deletion of SNOG_15451.1 must be performed and mutants characterised.

112 Chapter 3

This study has thus far identified three putative cell wall degrading enzymes regulated by Gna1 . It is long known that culture filtrates of S. nodorum showed polygalacturonase, xylanase and cellulase activities (Magro, 1984). Furthermore, xylanase, glucosidase, galactosidase and butyrate esterase enzyme activities were detected in SN15butweresignificantly reduced in gna1-35 (Solomon et al. , 2004b).

Theseenzymeswerenotidentifiedinthisstudythrough2Delectrophoresiswhichcould beduetoseveralreasons.ThepHrangeforgrowth prior to protein extraction was limited. As described above, alterations in extracellular pH may influence protein secretion.Plantcellwallcomponentswerenotusedasanutrientsourceforproteomic analysis due to the possibility of exogenous protein contamination. Finally, 2D electrophoresis is resolutionlimited. Proteins with extremes in MW and pI, hydrophobic or low abundance may not be well represented for detection (Celis &

Gromov,1999).Thusthe in vitro environmentusedinthisstudymaynotbeoptimal fortheexpressionandsecretionofsomecellwalldegradingenzymes.

3.4.10 Quinate metabolism

Quinateisacommonplantmetabolite.Mostfungiare capable of assimilating quinateasacarbonsourceviathe βketoadipatepathway(Giles et al. ,1991;Harwood

&Parales,1996).AputativeQa2showedincrease proteinabundance in gna1-35 .

Qa2 catalyses the reversible conversion of 3dehydroquinate to 3dehydroshikimate.

Bothcompoundsareintermediatesofthearomaticaminoacidbiosynthesisandquinate catabolismpathways.In N. crassa ,thedeletionthetheGαsubunitgene Gna3 resulted intheincreaseexpressionof Qa-2(Kays et al. ,2000).TheadditionofcAMPoverrides theexpressionof Qa-2duringcarbonstarvationthusindicatingasignaltransduction

113 Chapter 3

regulatedcarbon sensing system in N. crassa (Kays et al. ,2000).Thissuggeststhat heterotrimeric G protein/cAMP signalling plays a suppressive role in quinate metabolism,atleastfor S. nodorum and N. crassa .

3.4.11 Association of putative Gna1 -regulated genes in probable gene clusters?

In fungi, secondary metabolism genes are often arranged in a genetic cluster

(Keller et al. , 2005). Gene clustering has been demonstrated for the biosynthetic pathwayofsterigmatocystintoxinin A. nidulans (Brown et al.,1996).In S. nodorum , genesthatencodeCipC,NmrA,tyrosinaselikeoxidaseandshortchaindehydrogenases arelocated in genomicregionswhichcontaingenes that are characteristic of a gene cluster(Keller et al. ,2005).

NmrA and CipC were transcriptionally downregulated in the gna1-35 . The

NmrApolypeptidecontainedadomainassociatedwitharegulatorofthetranscription factorAreA(CDDBlast).Thefunctionof NmrA isunknown.CipCwasfirstidentified asacocanamycinAinducedproteinthatwasaccumulatedin A. nidulans inresponseto concanamycinA(Melin et al. ,2002).Transcriptsofa CipC orthologin G. fujikuroi accumulatedinresponsetonitrogenstarvation(Teichert et al. ,2004).A CipC ortholog in U. maydis wasinducedduringfilamentousgrowthcausedbytheoverexpressionof the bE/ bWheterotrimerandaGTPbindingproteinRac1(Bohmer et al. ,2007).CipC orthologswereexpressedintheectomycorrhizalfungiPaxillus involutus and Lacarria bicolour duringsymbiosis(LeQuere et al. ,2004;Morel et al. ,2005;Peter et al. ,2003)

114 Chapter 3

andsaprophyticgrowthofa Termitomyces funguscommonlyassociatedwithtermites

(Johjima et al. ,2006).Thefunctionof CipC isunknown.

GenesproximaltoSNOG_10217.1codeforputativelipidmetabolismandredox proteins.Genesrequiredforde novo secondarymetabolitebiosynthesissuchasPKSs andNRPSswerenotobserved.Thegibberellinbiosynthesisgeneclusterof G. fujikuroi consist of genes that synthesise gibberellins in a series of reactions from farnesyldiphosphate (FPP) (Tudzynski, 1999; Tudzynski et al. , 2003). The farnesylpyrophosphatesynthasegeneresponsibleforFPPbiosynthesislocatedoutside ofthegiberellingenecluster(Homann et al. ,1996).Thegibberellingeneclusterdoes notcontaingenesthatencodePKSsandNRPSs.ItisprobablethatSNOG_10217.1and proximal genes may participate in the modification of a metabolite backbone. This hypothesisispurelyspeculativebutitisnotedthat S. nodorum mutants defective in

SNOG_10217.1 were altered in the metabolome profile. This will be discussed in greaterdetailinChapter5.

Geneexpressionandmetabolomicexperimentsarecurrentlybeingconductedto determine a possible link between heterotrimeric G protein signalling and secondary metabolismin S. nodorum .

3.4 Conclusion

Results from this study have confirmed the initial finding by Solomon et al.

(2004b) on the reduction in extracellular alkaline protease activities in gna1-35.

Alterations in the abundance of proteins associated with nucleotide degradation,

115 Chapter 3

proteosomalfunction,protein folding, carbon metabolismandnucleotide degradation were also observed in the signalling mutant. A large number of putative Gna1 regulated genes showed similar a transcriptional profile to Gna1 whereby expression were maximal during the latter stage of infection [see Solomon et al. (2004b)]. In addition,bioinformaticanalysisindicatesthatsomeputative Gna1 regulatedgenesmay beassociatedwithinputativegeneclusters.Thetranscriptionprofileofputativecluster associatedgenesandthemetabolomeof gna1 mutantsareundercurrentinvestigation.

The research conducted in this chapter has fulfilled the first three project objectives listedinChapter1.

116

Chapter 4 - Identification of mitogen-activated

protein kinase-regulated effector proteins in

Stagonospora nodorum by proteomics

117 Chapter 4

4.1 Introduction

For most organisms, adaptation to environmental changes requires an initial perceptiontoastimulus.Oncethestimulusisrecognised,asignalisrelayedwithinthe cellwhichinstigateschangesineffectorfunctionsthatallowtheorganismtoadaptto the environment. A major area of fungal research in recent years is dedicated to understanding the role of signal transduction in phytopathogenicity in particular

MAPK signalling. This is mediated through a protein kinase cascade that involves seriesofsignalamplificationthroughphosphorylation.MAPKsignallingisimplicated in growth, differentiation, survival and pathogenesis in many plant pathogenic fungi

(Xu, 2000). Despite a wealth of studies on MAPK signalling and fungal virulence

(Chapter1),littleisknownaboutdownstreameffectorsthatcontributetotheinfection process.

S. nodorum Mak2 (SNOG_03299.1)isaFus3 /Kss1 typeMAPKgenerequired forsporulationandvirulence(Solomon et al. ,2005b)(Chapter1).Acomparative2D

SDSPAGEapproachwillbeusedtoanalysetheintracellularproteomeofSN15anda mak2 mutant ( mak2-65 ) for proteins differing in abundance. These proteins will be analysed with LCMS/MS and mass spectra obtained will be matched to Broad predictedgenesinthe S. nodorum genome.Theaimofthisexperimentistoidentify

Mak2 signalling protein effectors that may contribute to the phenotype of the mak2 mutant.

4.2 Methods

AsdecribedinChapters2and3.

118 Chapter 4

4.3 Results

4.3.1 Comparative intracellular proteome analysis

The intracellular proteomes of SN15 and mak2-65 were methanolextracted frommyceliagrowninMMbrothsupplementedwithglucoseandseparatedvia2Dgel electrophoresis(Figure4.1).Atotalof475uniqueproteinspotswereidentifiedfrom

SN15and mak2-65 .Ofthese,sixspots(1.3%)weredeemeddifferentiallyabundantby

ProGENESIS(Figure4.1;AppendixE).Ofthesechanges,fivespotsweresignificantly lessabundantin mak2-65 whereasonespotshowedincreaseinabundance.LCMS/MS wasusedtoobtainpeptidespectraandtheresultingdatawerematchedagainstthe S. nodorumpredictedproteinsettoidentifythematchinggene(Table4.1;AppendixD).

4.3.2 Functional classification of differentially abundant proteins

Sevengeneswereidentifiedfromsixdifferentiallyabundantspots.TheFunCat classificationschemebasedongeneontologypredictionswasusedtoplacethesegenes intofourfunctionalcategories.Theunknowncategoryconsistedofgenesthatcodefor a putative shortchain dehydrogenase (SNOG_10217.1), glutathione Stransferase 2

(Gst2;SNOG_07604.1),(SNOG_08775.1)andaglucoserepressibleprotein like protein ( Grg1 ). S. nodorum Grg1 wasnotannotatedbytheBroadInstituteand hencewasidentifiedthroughamatchwithacDNA(FP1_B06)derivedfromgrowthon cell wall. A second putative shortchain dehydrogenase gene (SNOG_08282.1) was classified into the lipid and isoprenoid metabolism category. A 20S proteasome component Pre8 (Pre8 ; SNOG_07541.1), identified in spot C4, was placed in the

119 Chapter 4

A 5 pH 8 kDa 29Intracellular 2D proteome gels of SN15 and mak2-65 (Figure 4.1) 250 75

50

37

C4

25 C2 C3 C5 C6

15

C14 B 250

75

50

37

C4 25 C2 C3 C6 C5

15

C14

Figure 4.1. Representative 2D gels of A. SN15 and B. mak2 -65

intracellularproteomes.Differentiallyabundantspotsareindicated. 120 Chapter 4

30Differentially abundant intracellular protein spots of SN15 and mak2-65 (Table 4.1 )

Table 4.1. IdentificationofdifferentiallyabundantintracellularproteinswithLCMS/MS.Mascotwasusedtopatternmatchedthemass

spectrometrydatawiththe S. nodorum wholegenomeannotatedproteinsettogiveagenematch.Folddifferenceofmatchingproteinspots

wascalculatedfromnormalisedspotvalueofSN15relativeto mak2-65 .Folddifferencedesignatedby()indicatesproteinspotsthatwere

notobservedin mak2-65 proteomegel.Molecularweight(MW)isgiveninkDa.BlastPidentityandEvaluearegiveninAppendixD.

Fold Observed Broad acc Theoretical Mascot score Spot diff pI MW ID pI MW BlastP functional match (organism; Genbank acc ID) (% coverage) C2 15.2 5.94 28.5 SNOG_10217.1 5.46 31.8 Shortchaindehydrogenase/reductaseSDR( Solibacter usitatus ; 514(38.5) ZP_00520385.1) C3 3.1 6.04 26.1 SNOG_08775.1 5.37 27.6 HADsuperfamilyhydrolase( Aspergillus fumigatus ;XP_753809.1) 130(28.1) C3 3.1 6.04 26.1 SNOG_15488.1 5.64 28.6 Mannitoldehydrogenase( Phaeosphaeria nodorum ;AAX14688.1) 128(13.9) C4 6.06 29.2 SNOG_07541.1 6.20 27.9 ProteasomecomponentPre8( Aspergillus fumigatus ;XP_748923.1) 294(40.2) C5 17.6 7.59 24.8 SNOG_08282.1 5.64 27.2 Shortchaindehydrogenase( Aspergillus fumigatus ;XP_746365.1) 507(34.1) C6 3.5 7.43 23.3 SNOG_07604.1 6.53 24.4 Glutathionetransferase2( Aspergillus fumigatus ;AAX07319.1) 74(14.2) C9 +6.2 5.57 <15.0 *FP1_B06 5.71 9.0 Glucoserepressiblegeneproteinlikeprotein( Magnaporthe grisea ; 55(39.3) AAX07712.1) *ThematchingcDNAdesignationderivedfrom S. nodorum growthonplantcellwallisgiven.GenenotannotatedbytheBroad.

121 Chapter 4

protein/peptidedegradationcategory.Mannitoldehydrogenase(SNOG_15488.1)was colocalised with the putative hydrolase in spot C3 and was classified in the C compoundandcarbohydratemetabolismcategory.

4.3.3 qRT-PCR analysis of gene expression

TheexpressionofgenesthatcodeforMak2 effectorproteinswasexaminedwith qRTPCR. Comparative gene expression of SN15 and mak2-65 was analysed from transcripts extracted under a similar in vitro growth condition used for proteomic analysis. The normalised expression of each gene was compared with protein abundancedatatoidentifypossiblecorrelations.ThesedataaresummarisedinFigure

4.2.Expressionofthesegeneswerenormalisedagainstactintranscriptabundance.Of six genes examined (excluding mannitol dehydrogenase), only three showed a correlationbetweenproteinandtranscriptabundance.ThesegenesareSNOG_10217.1,

SNOG_08282.1and Gst2 .The in vitro expressionofthemannitoldehydrogenasegene in mak2-65 iscurrentlybeingexamined.

The expression of these putative Mak2 regulated genes was analysed during

SN15infectiononwheat.Thiswasperformedtoelucidatewhethergenesareexpressed or showed differential pattern of expression during host infection (Figure 4.2).

ExpressionofthesegeneswerenormalisedagainstEF1 αtranscriptabundance.The in planta transcriptionpatternofthesixputativeMak2 regulatedgeneswasdividedinto two expression profiles (Figure 4.3). Five of the six putative Mak2 regulated genes showedincreasedexpressionduringthelateonsetofinfectioncoincidingpycnidiation and sporulation. These genes code for the putative shortchain dehydrogenase

122 Chapter 4

SNOG_10217.1: Short chain dehydrogenase SNOG_10217.1: Short chain dehydrogenase (Spot C2) (Spot C2) 1.4 0.25 1.2 A a B b a a a b 0.2 31qRT-PCR 1analysis of genes that encode intracellular proteins (Figure 4.2) 0.8 0.15 0.6 0.1 expression

abundance 0.4 0.2 0.05 Normalised relative Normalised transcript 0 0 SN15 mak2-65 1 3 5 8 Strain Days post infection

SNOG_08775.1: HAD superfamily hydrolase SNOG_08775.1: HAD superfamily hydrolase (Spot C3) (Spot C3) 1.6 0.6 A a B a a a b b 1.4 0.5 1.2 1 0.4 0.8 0.3 0.6 0.2 expression abundance 0.4 0.2 0.1 Normalised relative Normalised transcript 0 0 SN15 mak2-65 1 3 5 8 Strain Days post infection

SNOG_07541.1: Proteasome component Pre8 SNOG_07541.1: Proteasome component Pre8 (Spot C4) (Spot C4) 1.8 0.03 1.6 A a B a a a a b 1.4 1.2 0.02 1 0.8 0.6 0.01 expression abundance 0.4

Normalised relative 0.2 Normalised transcript 0 0 SN15 mak2-65 1 3 5 8 Strain Days post infection

SNOG_08282.1: Short chain dehydrogenase SNOG_08282.1: Short chain dehydrogenase (Spot C5) (Spot C5) 1.4 0.08 1.2 A a B b 0.07 a b b b 1 0.06 0.8 0.05 0.04 0.6 0.03 expression

abundance 0.4 0.02 0.2 Normalised relative

Normalised transcript 0.01 0 0 SN15 mak2-65 1 3 5 8 Strain Days post infection

SNOG_07604.1: Glutathione transferase 2 SNOG_07604.1: Glutathione transferase 2 (Spot C6) (Spot C6) 1.6 0.6 A a B b a a a b 1.4 0.5 1.2 1 0.4 0.8 0.3 0.6 0.2 abundance 0.4 expression 0.2 0.1 Normalised relative Normalised transcript 0 0 SN15 mak2-65 1 3 5 8 Strain Days post infection Figure 4.2.Continuedonthenextpage.

123 Chapter 4

FP-1_B06: Glucose-repressible gene protein-like FP-1_B06: Glucose-repressible gene protein-like protein (Spot C9) protein (Spot C9) 9 7.0 8 A a B a 6.0 a a a b 7 5.0 6 5 4.0 4 3.0 3 expression

abundance 2.0 2

Normalised relative 1.0 1 Normalised transcript 0 0.0 SN15 mak2-65 1 3 5 8 Strain Days post infection

Constituitive transcript expression control Constituitive transcript expression control 0.3 0.4 a a 0.35 a a a a α α α α 0.25 α α α α 0.3 0.2 0.25 0.15 0.2 0.1 0.15

relative to EF1 0.1 Actin expression relative to EF1 0.05 Actin expression 0.05 0 0 SN15 mak2-65 1 3 5 8 Strain Days post infection Figure 4. 2. Comparisons of intracellular protein ( ) and transcript ( )

abundanceofputative Mak2 regulatedgenesfromstrainsgrowninMMbroth

(left column). Gene expression was also examined during wheat infection

(right column). Uppercase alphabets located on top of bar graphs signify

significant differences in protein abundance whereas lowercase alphabets

denote significant differences in transcript abundance. The underlined

alphabet denotes a Dunnett’s control group used for oneway ANOVA

analysis.Standarderrorbarsareshown.

124 Chapter 4

32Gene expression profiles in planta (Figure 4.3)

i ii iii

SNOG_08282.1 SNOG_10217.1 SNOG_15488.1 SNOG_08775.1 SNOG_07541.1 SNOG_07604.1 Grg1

Figure 4.3. Expression profilesof putative Mak2 regulatedgenesduring wheat

infection.Geneexpressionprofilesweresortedbasedontheirrelativetranscript

abundanceduringinfection; i. maximaltranscriptlevelduringhostpenetration,ii.

maximal transcript level during sporulation and iii. constant transcript level

throughtheinfectionperiod.

125 Chapter 4

(SNOG_10217.1),hydrolase, Gst2 ,Pre8 and Grg1 .Onlyonegene,encodingaputative shortchain dehydrogenase (SNOG_08282.1), showed maximal expression during the early stage of infection. Mannitol dehydrogenase showed constitutive expression throughoutinfection(Solomon et al. ,2006d).

4.3.4 Genomic organisation of putative Mak2 effector genes

Bioinformaticanalysesofsomeputative Gna1 regulatedgeneshaveledtothe identification of possible gene clusters (Chapter 3). This has prompted a similar investigation into genomic regions surrounding putative Mak2 regulated genes to identifycontiguousarraysofgenesthatmayparticipateinametabolicprocess.From the analysis, genomic regions associated with putative shortchain dehydrogenase genes,SNOG_10217.1andSNOG_08282.1containedgenesthatencodeproteinswith putative secondary metabolism function. The genome organisation of the proximal

SNOG_10217.1 region in supercontig 16 was previously discussedin Chapter3. A large number of genes in proximal to SNOG_08282.1encode proteins with putative redoxfunctions(Table4.2).AputativePKS,transporter,methyltransferasesandtwo genesthatcodeforlipidmetabolismproteinswerealsoobserved.

4.4 Discussion

4.4.1 Difficulties in isolating extracellular proteins for proteomics

The Mak2 ortholog Gpmk1 in F. graminearum regulates the induction of extracellularlipases,proteasesandcellwalldepolymerases(Jenczmionka&Schafer,

2005).Thispromptedaninitialinvestigationintotheextracellularproteomeof mak2-

65 to identify changes that may provide an explaination for the mutant phenotype.

126 Chapter 4 33SNOG_08282.1 putative gene cluster (Table 4.2)

Table 4.2. BlastPanalysisofpredictedgenesproximaltotheputativeshortchaindehydrogenase(SNOG_08282.1)ina

52.2kbregionofsupercontig12. Broad I D E-value % aa Organism Match similarity (Genbank acc ID) SNOG_08259.1 0.0E 49% Aspergillus terreus HypotheticalproteinwithaSAM:diacylglycerol3amino3 carboxypropyltransferasedomain(XP_001208848) SNOG_08260.1 Predictedprotein SNOG_08261.1 Predictedprotein SNOG_08262.1 2E30 36% Deinococcus geothermalis Lipase,activesite(YP_594288) SNOG_08263.1 Predictedprotein SNOG_08265.1 1E49 41% Leptosphaeria maculans AlcoholdehydrogenaseIV(ABB55460) SNOG_08266.1 2E29 26% Chaetomium globosum Hypotheticalproteinwithmethyltransferasedomain (EAQ84242) SNOG_08267.1 8E93 55% Debaryomyces hansenii HypotheticalproteinwithNmrAdomain(XP_459312) SNOG_08268.1 2E86 35% Aspergillus fumigatus CytochromeP450(XP_747131) SNOG_08269.1 Predictedprotein SNOG_08270.1 1E55 39% Aspergillus fumigatus CytochromeP450(XP_746900) SNOG_08274.1* 0.0E 52% Nectria haematococca Polyketidesynthase(AAS48892) SNOG_08275.1 3E16 35% Gibberella zeae Hypotheticalprotein(XP_382501) SNOG_08276.1 2E159 65% Aspergillus terreus Predictedproteinwithamonooxygenasedomain (XP_001216123) SNOG_08277.1 6E65 70% Cochliobolus heterostrophus 1,3,6,8tetrahydroxynaphthalenereductase(ABK63477) SNOG_08278.1 1E49 45% Aspergillus nidulans Hypotheticalprotein(atrazinedegradationfamily) (XP_681862) SNOG_08280.1 2E78 53% Aspergillus fumigatus Shortchaindehydrogenase(XP_748189) SNOG_08281.1 1E54 29% Fusarium oxysporum Putativeoxidoreductase(CAJ85791) SNOG_08282.1 2E-40 54% Aspergillus fumigatus Short chain dehydrogenase (XP_746365) SNOG_08285.1 4E44 29% Cercospora nicotianae Cercosporintoxinbiosynthesisprotein(ABC79591) SNOG_08286.1 3E55 36% Aspergillus oryzae UnnamedproteinproductwithaZndependenthydrolase domain(BAE63022) SNOG_08287.1 7E87 55% Aspergillus fumigatus Hypotheticalprotein(XP_748585) SNOG_08288.1 9E59 38% Aspergillus fumigatus MFSmonocarboxylatetransporter(XP_748652) *mergerofSNOG_08272.1,SNOG_08273.1andSNOG_08274.1(Hane, unpublished data ).

127 Chapter 4

Generalextracellularproteaseactivitiesofmak2-65 arecomparabletoSN15(Solomon et al. , 2005b). However, this does not account for other possible changes in the extracellular proteome of the mak2 mutant. Several attempts were made to isolate extracellular proteinsfrom mak2-65 .Thiswashinderedbytechnicaldifficultiesthat haveresultedfromthemutantphenotype.Forinstance, mak2-65 grewpoorlyinMM broth supplemented with glutamate as a carbon source. Consequently, extracellular proteinsobtainedwereinsufficientinquantityfor2Dgelelectrophoresis.Glucosewas consideredasanalternativecarbonsourcebutledtotheproductionofpolysaccharides thatinterferedwithdownstream2DSDSPAGEmethods(datanotshown).Hence,the development of an alternative culturing technique is required to culture mak2-65 to produceasufficientamountofextracellularproteinsforproteomicanalysis.

4.4.2 Gna1 and Mak2 effector co-regulation

Proteinspotsthatwerecoregulatedbybothsignallingpathwayswereidentified bycomparingtheintracellularproteomeprofileofSN15, gna1-35 and mak2-65 (Figure

4.4).SNOG_10217.1showed17.5and15.2foldreductionin proteinabundancein gna1-35 and mak2-65 ,respectively.ThetranscriptabundanceofSNOG_10217.1was significantlyreducedinbothmutants,suggestingtranscriptionalregulationby Gna1 and

Mak2 signalling.

Gna1 and Mak2 signalling affects the protein abundance of Pre8 in spot C4.

Proteomic analysis of M. grisea led tothe identificationof twoputativeproteasome subunits that showed increased abundance during appressorium morphogenesis and

128 Chapter 4

34 Gna1 and Mak2 effector co-regulation (Figure 4.4) SNOG_10217.1: Short-chain dehydrogenase (Spot C2) 1.4 1.2 1 0.8 0.6

abundance 0.4 0.2 Normalisedrelative 0 SN15 gna1-35 mak2-65 Strain

SNOG_07541.1: Proteasome component Pre8 (Spot C4) 1.4 1.2 1 0.8 0.6

abundance 0.4 0.2 Normalisedrelative 0 SN15 gna1-35 mak2-65 Strain

SNOG_07604.1: Glutathione transferase 2 (Spot C6) 1.4 1.2 1 0.8 0.6

abundance 0.4 0.2 Normalisedrelative 0 SN15 gna1-35 mak2-65 Strain

Figure 4. 4. Gna1 and Mak2 co regulation of

effectors.Relativeprotein( )andtranscript( )

abundance are shown for each gene. Standard

errorbarsareshown.

129 Chapter 4

undernutrientstarvation(Kim et al. ,2004).Incidently,appressoriummorphogenesisin

M. grisea isregulatedbyheterotrimericGproteinandMAPKsignalling(Talbot,2003).

Gna1 and Mak2 signalling affects the protein abundance of Gst2

(SNOG_07604.1)inspotC6. Gst2 wasplacedintheunknowncategorybytheFunCat classificationscheme.However,CDDBlastanalysisofGst2indicatesconservedamino andcarboxyldomainscommontotheGSTfamilywerepresent(Sheehan et al. ,2001).

GSTsarebestcharacterisedinmammalsandplantswheretheycatalysetheconjugation of reduced glutathione on nonpolar compounds that contain an electrophilic carbon, sulphurornitrogenatom(Hayes et al. ,2005).WellknownrolesforGSTsincludethe detoxificationofxenobiotics(Kelly et al. ,2000),oxidativestressprotection(Hurst et al. ,1998;Yang et al. ,2002),steroidbiosynthesis(Johansson&Mannervik,2001)and aminoaciddegradation(FernandezCanon&Penalva,1998).AputativeGSTgenein theblackspotdiseasefungus Alternaria brassicicola showedincreaseexpressionwhen the fungus was exposed to isothiocyanate, heavy metals and 1chloro2,4 dinitrobenzene(Sellam et al. , 2006). Three GST genes were identifiedin B. cinerea andwereshowntoberegulatedbyaputativeGproteincoupledreceptor(Gronover et al. ,2005).

Heterotrimeric G protein and MAPK signalling are normally considered as distinct signalling pathways in eukaryotic organisms. However, crosssignalling do occur.Forexample,thecoordinationofpheromoneresponsein S. cerevisiae during thematingprocessbythe Gpa1 heterotrimericGproteinand Fus3 MAPKpathwayshas beendescribed(Dohlman&Thorner,2001).Regulationofappressoriumformationby

130 Chapter 4

signaltransductionpathwaysiswelldescribedinM. grisea (Chapter1).Thetwomajor signalling pathways involved in this process are the MagB heterotrimeric G protein

(Choi&Dean,1997;Liu&Dean,1997;Mitchell&Dean,1995)and Pmk1 MAPK pathways(Park et al. ,2006;Xu&Hamer,1996;Zhao et al. ,2005;Zhao&Xu,2007).

Despite a multitude of studies on the regulation of appressorium morphogenesis by heterotrimericGproteinandMAPKsignalling,knowledgeofdownstreameffectorsof thesepathwaysatthisstageislacking.

4.4.3 Identification of a glucose repressible protein

Aproteinthatresembledtheputativeglucoserepressible protein of M. grisea accumulatedin mak2-65 . Grg1 wasfirstidentifiedin N. crassa andgeneexpression was inducible by carbon starvation (McNally & Free, 1988) . In addition, a Grg1 orthologinPodospora anserina wasdownregulatedinresponsetothedeletionofthe

GRISEA transcription factor associated with fungal lifespan (Kimpel & Osiewacz,

1999). Like NcGrg1 , PaGrg1 is upregulated under a carbon limiting environment.

Thefunctionof Grg1 in N. crassa and P. anserina isunknown.

4.4.4 Identification of S. nodorum mannitol dehydrogenase

MannitoldehydrogenasecolocalisedwithaputativehydrolaseinspotC3which islessabundantinmak2-65 .Mannitoldehydrogenaseisanenzymeofthepostulated mannitol cycle that reduces fructose to mannitol. Mannitol accumulates to a great quantitywithinthemyceliumofmanyfungi(Solomon et al. ,2007).However,therole of mannitol in fungi remains largely an enigma. Solomon et al. (2006d) recently showed that the metabolism of mannitol was required for asexual sporulation in S.

131 Chapter 4

nodorum .TheMAPKMpkCin A. fumigatus isrequiredforpolyolutilisation(Reyes et al. , 2006). A narrow range IPG strip would be desirable to separate mannitol dehydrogenase and theputativehydrolasefrom spot C3. Metabolomic analysis may provideaninsightintomannitolmetabolismof mak2-65 .

4.4.5 Association of SNOG_08282.1 with a probable gene cluster?

ThefunctionofSNOG_08282.1isunclearbutgeneontology and the FunCat classification scheme have placed it as a lipid/isoprenoid metabolism gene.

SNOG_08282.1 is located within a probable gene cluster in S. nodorum . This hypothesis is speculative and requires further investigation. A recent study of Mak2

MAPK in N. crassa by Li et al. (2005) has shed new light into MAPK effector regulation. Subtractive transcript enrichment of N. crassa Mak2 deficient strains identified three genes designated Mkr2 , Mkr3 and Mkr6 that code for a shortchain dehydrogenase,pyridoxal reductaseand unknownprotein, respectively. These genes weredownregulatedinthe N. crassa mak2 mutantandaregeneticallyclusteredwitha polyketidesynthase.Geneticmicrosyntenywasobservedbetweenthe Mkr clusterin N. crassa andanuncharacterisedgenomicregionin M. grisea (Li et al. ,2005).

4.5 Conclusion

Thedeletionof Mak2 in S. nodorum hasledtomajorphenotypicimpairments such as abolished pathogenicity and sporulation on wheat (Solomon et al. , 2005b).

Proteomicswasusedtogainacomparativeinsightinto the intracellular proteome of

SN15 and mak2-65 in an effort to identify effector proteins associated with the phenotypeofthemak2 mutant. Gna1 and Mak2 coregulationwasobserved.Oneof

132 Chapter 4

thecoregulatedgenesisaputativeshortchaindehydrogenase(SNOG_10217.1).The role of this gene in S. nodorum pathogenicity will be discussed in Chapter 5.

BioinformaticanalysisofasecondMak2 regulatedputativeshortchaindehydrogenase gene(SNOG_08282.1)suggeststhatitmaybeassociatedwithapotentialgenecluster.

Thisstudyhasaltogetherfulfilledthesecondandthirdaimsandpartiallyfulfilledthe firstaimsetinChapter1.

133

Chapter 5 - Analysis of a putative short-chain

dehydrogenase gene (Sch1 ) for its role in the

pathogenicity of Stagonospora nodorum on

wheat

134 Chapter 5

5.1 Introduction

Asexualreproductionisregardedasakeytoinvasivespreadandgenerationof anepidemicbymanyfungalpathogens(Kohn,1995).Sporulationisamajormodeof asexual reproduction. Dissection of the molecular mechanism that triggers and maintainsthedevelopmentofasexualsporulationisessentialfordevelopingstrategies tointerferewiththefungallifecycle.Theroleofsignaltransductioninpathogenesis has been extensively investigated in phytopathogenic fungi in particular, the involvementoftheheterotrimericGproteinandMAPKsignallingpathways[reviewed by Xu (2000); Lee et al. (2003); Bolker (1998) and Chapter 1]. Mutants carrying impairments in these signalling pathways are often perturbed in asexual sporulation

(Table 1.1 and 1.2). It is probable that signalling effectors critical for asexual sporulation are altered in these signalling mutants. However, knowledge on such componentsinplantpathogenicfungiisscarceandneedsfurtherinvestigation.

In S. nodorum , mutants defective in the Class I Gα subunit Gna1 and the

Fus3/Kss1 MAPK Mak2 failed to produce pycnidia and were unable to sporulate

(Solomon et al. , 2004b; Solomon et al. , 2005b). Proteomic analysis has led to the identificationofSNOG_10217.1asaneffectorgeneofGna1 and Mak2 signallingthat encodesanovelshortchaindehydrogenase(Chapters3and4).Targetedgenedeletion wasusedtoinactivatethegenetodetermineitsroleduringinfectiononwheat.From hereon,SNOG_10217.1isreferredtoas Sch1 (shortch aindehydrogenase1)whereas thederivedpolypeptidewillbereferredtoasSch1.

135 Chapter 5

5.2 Materials and methods

5.2.1 Sch1 gene knockout vector construction and gene deletion

Sch1 wasdeletedbygenereplacement(Figure5.1).The5'and3'untranslated region (UTR) of Sch1 was PCR amplified with the primer pairs 5'FwdXhoI

R567/5'RevHindIIIR567 and 3'FwdPstIR567/3'RevNotIR567, respectively.

Restrictionsiteswereintroducedintotheprimersequencestofacilitatecloningwiththe phleomycinselectablemarkerplasmidvectorpBSKphleoconstructedbySolomon et al. (2006c).Toachievethis,the5' Sch1 UTRamplicon(562bp)wasintroducedinto

Xho Iand Hin dIIIsitesofpBSKphleotogivepBSKphleo5'Sch1.Followingthis,the

3' Sch1 UTRamplicon(850bp)wasclonedinto Pst I and Not I sites of pBSKphleo

5'Sch1 to give the knockout vector pBSKSch1KO. A 3.52 kb gene deletion KO constructwasPCRamplifiedfrompBSKSch1KOusingtheprimerpairR567FwdKO andR567RevKO.ThePCRamplifiedproductwasthenpurifiedwithaQIAquickPCR

Purification Kit (Qiagen) and used in the transformation of SN15 as described in

Chapter2.Resultingphleomycinresistanttransformantswereselectedbysinglespore isolation.PCRwasusedtoscreentransformantsforgeneknockoutstrains.Theprimer pair R5675'KOScr (5’TTCGCGCTCGCTCGTATGCA3’) and R5673'KOScr (5’

TCGCTGTGCCAGTAAAACGAGG3’) designed to flank the homologous recombinedgeneknockoutvectorwasusedtoscreenfor sch1 mutants.Transformants carryinganintact Sch1 geneproduceda4.2kbampliconwhereasasubstitutionwiththe

KOconstructproduceda5.5kbPCRproduct.

136 Chapter 5

35 Sch1 knockout vector construction (Figure 5.1)

Probe i

ii

iii

Figure 5.1. i. The Sch1 knockout vector was constructed by ligating PCR

amplified 5' and 3' UTR region of Sch1 to the Xho I/ Hin dIII and Pst I/ Not I

restrictionsitesofpBSKphleo,respectively. ii. TheknockoutvectorwasPCR

amplified and transformed into SN15 to facilitate iii. homologous gene

replacement.Restrictionsitesareasfollows, X. Xho I; H. Hin dIII; P. Pst Iand N.

Not I.Primersareasfollows:

Xho I 1. 5'FwdXhoIR567(5’CTCGAG ATCTACGCCTTGGTCCAGTG3’ ) Hin dIII 2. 5'RevHindIIIR567(5’AAGCTT TAGCTGCGGAGTCGTGATCT3’) Pst I 3. 3'FwdPstIR567(5’CTGCAG GAAGGGCAGATGAGTGTAA3’) Not I 4. 3'RevNotIR567(5’GCGGCCGC TACACATAAACTTAGACTTG3’) 5. R567FwdKO(5’CCTTGGTCCAGTGGAATCGGA3’) 6. R567RevKO(5’ CGACCTCGTCATCGTATGGAAAACT3’) Boldtextreferstointroducedrestrictionsitesusedforcloning.

137 Chapter 5

5.2.2 2D SDS-PAGE analysis

AsdescribedinChapter3.

5.2.3 Spore germination assay

Toassesssporegerminationfrequencies,germinationassayswereperformedby inoculating150sporesonto0.5%agaroseoverlaidthinlyonamicroscopeglassslide.

Sporeswerelefttogerminateforsixhpriortoscoringunderalightmicroscopeforthe presence of outgrowing hyphae. Onehundred spores were counted in biological triplicates. Oneway ANOVA using the TukeyKramer test was used to statistically analysethedataforsignificantdifferences(p<0.05).

5.2.4 Osmotolerance assays

Osmotoleranceassayswereperformedusingtwomethods.Thefirstassaywas performedonCzV8CSmediumsupplementedwith0,0.25,0.5,0.75and1MNaClina standardsizePetridish.Themediumwasinoculatedatthecentrewithamycelialplug

(~0.7x~0.7cm).Thefunguswaslefttogrowonthemediumfortwoweeksandthe diameterwasmeasured.Thesecondmethodwasperformedinasimilarfashionasthe carbontestdescribedinChapter2withtheadditionofNaCltofinalconcentrationsof0,

0.25,0.5,0.75and1MNaCl.TwentyfivemMglucosewasusedasacarbonsource.

TenLofcrushedmyceliumfromastockOD 595nm absorbanceof0.05wasusedasan inoculum.AnOD 595nm readingwastakenatday0andagainatdayfour.Netgrowth was determined by subtracting the optical density of day 0 from day four. The experimentwasperformedwithfivebiologicalreplicates.

138 Chapter 5

5.2.5 Protoplasting of the sch1-42 mutant

The sch1-42 mutantwastestedforthecapabilityofproducing protoplasts for genetictransformation.SN15andEctwereusedascontrolstrains.Thiswascarried outaccordingtoChapter2withmodifications.Thesemodifications were 1. 3 x 10 6 spores of sch1-42 and 2. mycelia from a two week old CzV8CS plate cultures pulverised with mortar and pestle, were grown for 20 h in CzV8 broth prior to the protoplastingprocedure.ProtoplastsgeneratedfromSN15andEctwereresuspendedin twomLofSTCbufferanddiluted500foldwhereasprotoplastsderivedfrom sch1-42 wereresuspendedin40 LofSTCpriortovisualisationwithalightmicroscope.

5.2.6 Microscopy analysis and basic photography

Light microscopy analysis was performed with an Olympus BH2 compound microscopyfittedwithOlympusDP12imageacquirementhardware.Stereomicroscopy was performed with an Olympus SZ ST stereo microscope unless stated. All photographsexceptforlightmicroscopyimagesweretakenwithaNikonCoolpix995.

5.2.7 Histological staining of cross-sectioned tissues

Tissues for crosssection histological examination were fixed and degassed overnightinformalaceticalcoholsolutioninaglassvial(Sass,1958).Forembedding inparaffin,thetissuewasdehydratedinanascendingseriesofethanol(70%,90%and

100%ethanol,threehforeachstep).Thetissuewasthencleared in tworounds of chloroformpriortoinfiltrationwithmoltenparaffinwax(Paraplast).Theparaffinblock containing the tissue was sectioned at 10 mwitha LeicaRM225microtome. The section was embedded onto a glass slide at 60 oC overnight. Prior to staining and

139 Chapter 5

microscopicanalysis,thewaxwasremovedfromthesectionandwashedbytworounds ofxyleneforfivemineach.

For embedding in Spurr’s resin (Spurr, 1969), the fixedtissuewas washedin severalchangesof0.025Mphosphatebufferanddehydratedinanascendingseriesof acetone(30%,50%,70%,90%and100%acetone,twochangesofeachsolutionand15 min for each change). The tissue was then infiltrated with an ascending series of

Spurr’sresin(5%,10%,20%,40%and80%Spurr’sresininacetone,twohforeach step).Thetissuewasthentransferredto100%Spurr’sresinfortwohandagainfor overnight incubation. The resin block was then cut into one m sections with a

ReichertJung2050microtome.Eachsectionwasfixedontoaglassslidebyincubation at60 oCovernight.Priortostainingandmicroscopicanalysis,theresinwasremoved fromthetissuesectionwithsaturatedpotassiumhydroxideinethanol.Thesectionwas thenwashedinwateranddriedat60 oC.

For nonspecific tissue staining, the paraffin section was stained with 1% toluidinebluestain.Theresinsectionwasstainedwithamixtureof1%methyleneblue and1%azurIIin1%sodiumtetraboratesolution(Richardson et al. ,1960).

The paraffin section was stained with 4’,6diamidino2phenylindole dilactate

(DAPI)(Kubista et al. ,1987)accordingtothemanufacturer’sinstruction(Invitrogen).

ThestainedsamplewasviewedunderanOlympusBX51compoundmicroscopefitted withaURFLTUVfilter.Fluorescentexcitationwassetat358nm.

140 Chapter 5

Brightfieldordifferentialcontrastinterference(DIC)modewasusedtoviewall othercrosssectionedlightmicroscopetissueimages.Alllightmicroscopeimageswere capturedwiththeDPcontrollersoftware(Olympus).

For transmission electron microscopy(TEM)analysis,tissues fixedinSpurr’s resinwerecutintointo80nmsectionswithaReichart Ultracut E. Thesection was mounted onto a copper grid 200 mesh (ProSciTech) and stained for 20 min in a saturatedsolutionofuranylacetate.Followingthis,thesectionwaswashedtwicein distilled water, stained in lead citrate for four min and washed again with several changesofdistilledwater(Venable&Coggshall,1965).TEMwasusedtoviewthe stainedspecimen.ThiswasperformedwithaPhillipsCM100BiotransmissionEMset at80kVhightension.

5.2.8 Leaf clearing and viability staining

Diseasedleaftissuewasclearedandstainedwithtrypanblueusingamodified protocoldescribedbyBruzzese&Hasan(1983)andShipton&Brown(1962).This involved boiling the infected leaf in trypan blue stain for five min. Prior to light microscopyanalysis,thestainedleafwaswashedinseveralroundsof100%ethanolto removeexcessstain.

5.2.9 Preparations of biological materials for polar metabolite analysis

Growthoffungalstrainsandmetaboliteanalysiswereperformedasdescribed bySolomon et al. (2004b)withmodifications.HalfastandardsizePetridishoftwo weekoldfungusapproximatedto250mgofmyceliawasinoculatedintoaconicalflask

141 Chapter 5

containing25mLofMMbrothsupplementedwith25mMglutamateasthesolecarbon sourceandapieceofpolyethylenefoam(~2x~2x~0.5cm).Thefoamwasusedto mimic the physical in planta environment. The fungus was allowed to grow with shakingat140rpmforthreedaysat22 oC.Thefoampiecewiththeattachedfungus was collected, washed with icecold sterile deionised water and snapfrozen priorto metaboliteextraction.Fortheanalysisofextracellularmetabolites,onemLofculture supernatantwascollectedandlyophilised(HetoMAXIdrylyo).Thesupernatantwas derivedfromafourdayoldfungalculturegrowninasimilarfashionasdescribedbut supplementedwith10mMglucoseasacarbonsource.Thelyophilisedsupernatantwas processedinmethanolasdescribedbelow.Biologicaltriplicateswereused.

5.2.10 Metabolite extraction

Thefrozensamplewasgroundinliquidnitrogenwithamortarandpestle.Fifty to100mgoffinelygroundsamplewascollectedandplacedinapreweighedtwomL tube containing one mL methanol and 50 L of 0.2 g. L1 ribitol. This was re weighted to obtainthefresh weightof the collected sample. Theremainder ground samplewascollectedinasimilarfashionbutwithoutmethanolandribitol.Thetissue was DNAextracted using the DNA BioSprint according to Chapter 2. The DNA concentrationwasdeterminedforthe usedofmetabolite normalisation. The sample immersed in methanol was briefly vortexed and incubated at 70 oC for 15 min and shaken at 1,000 rpm (Eppendorf Thermomixer comfort). The sample was then centrifuged at 20,000 g for five min. The methanolic supernatant containing polar metaboliteswasretained.Thecentrifugedpelletwasreextractedwith500 Lofsterile deionisedwaterand375 Lofchloroformbyincubationat37 oCforfiveminshakenat

142 Chapter 5

1,000rpm.Thepolarphasewasretainedaftercentrifugationandcombinedwiththe methanolsupernatant.Thepolarmetaboliteextractwaslyophilised(HetoMAXIdry lyo).Formetabolomicanalysisofinfectedplantmaterials,detachedleafassayswere used for infection. Diseased lesions were excised from nine days postinfected

(coincidingwithpycnidiation)detachedwheatleaves.Metaboliteextractionofexcised lesionswascarriedasdescribedabove.

5.2.11 Derivatisation of metabolites

The metabolite sample was derivatised by methoxyamination of the carbonyl groups by the addition of 50 L methoxyamine hydrochloride (Sigma) in pyridine

(Solomon et al. ,2006a).Thiswaslefttoincubatefor90minat30 oCwithshakingat

1,200rpm(EppendorfThermomixercomfort).Followingthis,80 LofNmethylN

(trimethylsilyl)trifluoroacetamide (Sigma) was added to the sample to facilitate trimethylsilylation(TMS).Themixturewasincubatedat37 oCfor30min.Afterthis, thesamplewascentrifugedat20,000 gforoneminand100 Lofthesupernatantwas transferredintoa12x32mmglassvial(Alltech,UK)priortogaschromatographmass spectrometry(GCMS)analysis.

5.2.12 GC-MS metabolite separation and detection

5.2.12.1 Electron ionisation

GCMSanalysisofderivatisedandmethylsilylatedmetaboliteswasperformed accordingtoSolomon et al. (2006a)usingelectronionisation.Briefly,sampleswere injected into the GCMS equipment as one L derivatised metabolites in a 1:20

143 Chapter 5

(sample:methanol) split ratio. The GCMS equipment consisted of an Agilent 7680 autosampler, an Agilent 6890 gas chromatograph and an Agilent 5973N quadrupole massspectrometer(Agilent,USA).PerflurotributylaminewasusedtoautotunetheGC

MS. A 30 m HP50+ column with a 250 m internal diameter and 0.25 m film thickness was used for gas chromatography (J & W Scientific, USA). Injection temperature was 230 oC, interface temperature was 300 oC and the ion source temperaturewas230 oC.Heliumwasusedasacarriergas.Theheliumflowratewas retention timelocked to elute mannitolTMS at 24.3 min. The temperature gradient consisted of an initial temperature of 70 oC for five min before reaching the final temperatureof300 oCforthreemin.Thetemperaturerampratewassetat5 oCpermin.

PolarmetaboliteswereseparatedintheGCina57minretentionruntime.

5.2.12.2 Positive chemical ionisation (PCI)

PCIwasperformedusingtheGCMSequipmentsdescribedaboveaccordingto the HP 5973 MSD PCI/NCI manual (Hewlett Packard). Briefly, extra high purity methane(>99.97%)wasfittedasachemicalionisationsourceandusedasacarriergas.

TheGCMSwassetforpositiveionpolarityandautotunedwithperfluror5,8dimethyl

3,6,9trioxidodecane.A30mHP50+columnwitha 250 m internal diameter and

0.25 mfilmthicknesswasusedforgaschromatography(J&WScientific,USA).Ion source temperature was set at 250 oC, quadrupole temperature was set at 106 oC and interfacetemperaturewassetat320 oC.PolarmetaboliteswereseparatedintheGCina

61minretentionruntime.

144 Chapter 5

5.2.13 Metabolite identification

GCMS mass spectra were analysed with the Automated Mass Spectral

DeconvolutionandIdentificationSystem(AMDIS)version2.64(NationalInstituteof

StandardsandTechnology,USA,http://chemdata.nist.gov/massspc/amdis/ )usingboth auto and manual deconvolution to detect polar metabolites. Autodeconvolution parametersweresettoaminimummatchfactorof10,oneadjacentpeaksubtraction, medium resolution, low sensitivity and a medium peak shape requirement. The metabolitewasanalysedwithaninhousemetabolitestandardlibraryandametabolite library obtained from the Max Planck Institute Golm Metabolome Database

(http://csbdb.mpimpgolm.mpg.de/csbdb/gmd/gmd.html ). Identified metabolites were giventhefollowingnomenclature;forexample,anAMDISoutputofLPhenylalanine

(2TMS)withachromatographicretentiontime(RT)of21.8493wasgivenas“RT21.85

LPhenylalanine(2TMS)”.Unidentifiedmetaboliteswereclassifiedtentativelybythe best matching spectrum from above libraries and given a nomenclature as “RT

[Metabolite(TMS)]”.

5.2.14 Metabolite normalisation

To quantify and analyse polar metabolites from fungal strains for differential abundance, the integrated signal calculated by AMDIS through manual and auto deconvolution,wascollectedforeachmetaboliteandnormalisedaccordingly.Detected metaboliteswereselectedforanalysisundertwoconditions.Firstly,atentativematch musthaveanAMDISminimumabundancevaluegreaterthan0.005%andsecondly,the metabolitemustbepresentinmorethanonebiologicalreplicate. Thenormalisation processfromhereonisasdescribedbySolomon et al. (2006a)withmodifications.The

145 Chapter 5

integratedsignalareaofeachmetabolitewasdividedbytheintegratedsignalareaof ribitol(5TMS)whichelutesataretentiontimeof20.57mintogiveanarea.ribitol 1 value.Thisvaluewasthendividedbythefreshweightofthetissueusedformetabolite extractionandagainbytheDNAconcentrationpermgoffreshweighttogiveavalue of area.ribitol 1.fresh weight1.DNA concentration 1 for normalised metabolite abundance. An average was calculated from the normalised value of biological replicatestogiveavg( N1 ).

5.2.15 Statistical analysis for metabolomic analysis

Principalcomponentanalysis(PCA)wasusedtoanalysethelog 10 (R1 )valuesof theallthemetabolitederivatives.PCAisamultivariateanalysisprocedurethatisused for the simplification of data for the identification of patterns of similarities and differences. PCA is able to separate variances into unique coordinates; the greatest varianceofthedataisplottedonthefirstcoordinateknownasprincipalcomponentone and the second greatest variance into an alternate coordinate known as principal componenttwoandsoon.PCAwasperformedwiththeJMPINversion5.1software afterlog 10 transformationofavg( N1 )givingrisetolog 10 (R1 )(Desbrosses et al. ,2005).

Often, metabolites that are not detected in some samples were classified as missing values. A zero was given to missing values to facilitate PCA hence, log 10 (R1 ) = 0

(Desbrosses et al. ,2005).OnewayANOVAsetforTukeyKrameranalysiswasused to compare the normalised value of each metabolite for significant differences.

Metabolite abundance was considered significantly different if the normalised values fromboth sch1 mutantsweredifferenttobothSN15andEct(p<0.05).

146 Chapter 5

5.2.16 Determination of the RT4557 retention index

TheretentionindexofRT4557wasestimatedfromastandardcurveconstructed withtheretentiontimeof nalkanestandards.Theretentionindexofthe nalkaneswas calculatedaccordingtovandenDool&Kratz(1963)usingthefollowingformula;

 t − t  I =100N +100n Ra RN  a    tR( N +n) − tRN 

where; Ia representsthe retentionindexofthecomponent N isthenumberofcarbonofthelower nalkane N isthedifferenceincarbonnumberofthetwonalkanesthatbracketthe compound tRa istheretentiontimeofthecomponent tRN istheretentiontimeofthelower nalkane tR(N+n) istheretentiontimeofthehigher nalkane

Fromhere,alinearformulawasconstructedtoelucidatetheretentionindexof

RT4557basedontherelationshipbetweentheretentionindexandRTofC15,C19,

C22,C28andC38 nalkanes;

I a = 65.36tRa − .1 53

147 Chapter 5

5.3 Results

5.3.1 Identification of Sch1 from Gna1 and Mak2 -deleted strains

The protein spot C2 was reduced in abundance in gna1-35 and mak2-65

(Chapters 3 and 4). LCMS/MS data of spot C2 were matched against the Broad annotated S. nodorum genomewiththeMascotsoftware.Thiswasabletoproducea significantmatchtoapolypeptideencodedbySNOG_10217.1locatedinsupercontig

16 (Figure 5.2). Two predicted introns within Sch1 were confirmed by peptide coverage.ThepredictedpolypeptidelengthofSch1is299aminoacids.

5.3.2 Polypeptide sequence analysis of Sch1

Examinationofthepolypeptidesequencerevealedanumberofmotifscommon totheshortchaindehydrogenasefamily(Oppermann et al. ,2003)(Table5.1).Amino acid sequence analysis using the 3DJIGSAW software indicates that the secondary structureofSch1consistedofaseriesofalternating αhelicesand βsheets(Figure5.3).

PSORT II prediction indicates that Sch1 is likely to reside in the cytoplasm (65.2% likelihood). Top NCBI BlastP matches for Sch1 were fungal predicted proteins possessingapredictedshortchaindehydrogenasedomain(Table5.2).Nosignificant

BlastP matches to fungal genes documented for pathogenesis were observed. The genome sequence of the dothideomycete Pyrenophora tritici-repentis is available in

NCBIasunassembledtraces.CrossspeciesMegablastandtBlastNof Sch1 nucleotide andproteinsequencesdidnotresultinamatchtoP. tritici-repentis traces.Aputative

GoldbergHognessboxcorepromotersiteislocated663basepairsupstreamof Sch1 .

148 Chapter 5

Spot C2 A 1. FGENESH 00290212213 Score: 480 Queries matched: 10 Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide (Brot&Weissbach,1983). 2 429.86 428.86 429.30 -0.44 0 21 1.1 3 VLAK 8 409.68 817.35 817.42 -0.07 0 18 2.3 5 SLAPSDTK 16 466.22 930.43 930.50 -0.07 0 65 4.1e-05 1 ADVLESVAK 36Mass 20 spectrometry 530.26 peptide 1058.51 coverage 1058.60 of Sch1-0.08 (Figur 1 e 5.2) 51 0.00099 1 KADVLESVAK 27 601.33 1200.64 1200.71 -0.07 0 51 0.00086 1 TVLITGVSGGIGK 38 867.89 1733.77 1733.88 -0.11 0 96 1.7e-08 1 AADITDEASVAALFAAAK 39 900.42 1798.82 1798.94 -0.12 0 43 0.0034 1 DVYPLLEPTQPELSAK 40 915.93 1829.84 1829.96 -0.13 0 (81) 5.4e-07 1 AIAESWATAGASGIVITGR 41 610.96 1829.86 1829.96 -0.10 0 90 6.5e-08 1 AIAESWATAGASGIVITGR 45 652.65 1954.93 1955.04 -0.11 1 45 0.0016 1 RDVYPLLEPTQPELSAK B Spot C2 (repeat) 1. cDNA FP-1_F01. Score: 343 Queries matched: 14 Frame: 3 Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 15 530.27 1058.52 1058.60 -0.08 1 29 0.068 1 KADVLESVAK 18 601.32 1200.63 1200.71 -0.08 0 42 0.0028 1 TVLITGVSGGIGK 27 527.56 1579.66 1579.78 -0.12 0 21 0.26 1 IMENLHAEQPNIR 28 790.85 1579.68 1579.78 -0.10 0 (16) 0.79 1 IMENLHAEQPNIR 33 867.89 1733.77 1733.88 -0.11 0 62 2e-05 1 AADITDEASVAALFAAAK 35 900.42 1798.83 1798.94 -0.11 0 22 0.17 1 DVYPLLEPTQPELSAK 37 915.93 1829.84 1829.96 -0.12 0 81 1.8e-07 1 AIAESWATAGASGIVITGR 38 610.96 1829.85 1829.96 -0.11 0 (72) 1.7e-06 1 AIAESWATAGASGIVITGR 42 652.65 1954.93 1955.04 -0.11 1 25 0.075 1 RDVYPLLEPTQPELSAK 46 715.65 2143.93 2144.08 -0.15 0 20 0.18 1 IDVLINNAGSLGGGMVGSTEPK 47 1072.97 2143.93 2144.08 -0.14 0 (19) 0.26 1 IDVLINNAGSLGGGMVGSTEPK 54 825.42 2473.24 2473.40 -0.16 0 11 0.96 1 VFQLIPGIVLTGMTVDALKPFAK 55 843.36 2527.05 2527.20 -0.15 1 33 0.0061 1 GGIVSVNWDVEEMEAHKDEIVR 56 632.80 2527.17 2527.20 -0.03 1 (28) 0.025 1 GGIVSVNWDVEEMEAHKDEIVR C SNOG _10217.1 1 ATGGATTACTCCGACCCCAACGCATTCACCCTACCCTACCAGTTGACCAAGCAAATCCGC M D Y S D P N A F T L P Y Q L T K Q I R 61 CGTGATGTCTATCCACTGCTGGAGCCAACGCAGCCAGAGCTTTCAGCAAAAGGAAAGACA R D V Y P L L E P T Q P E L S A K G K T 121 GTACTCATCACAGGCGTTTCCGGAGGCATAGGCAAGGTAAGCACGATTTTCGAGACTCGA V L I T G V S G G I G K 181 TTGTCCTTTTCCGTGACTAACGCATG CAGGCCATCGCCGAATCATGGGCCACCGCGGGAG A I A E S W A T A G 241 CTTCTGGAATCGTGATTACTGGACGGAAAGCCGATGTGCTTGAGAGCGTCGCCAAGTCAC A S G I V I T G R K A D V L E S V A K S 301 TCAAGAGTCTTGCCCCATCCGACACCAAAGTCCTCGCCAAGGCAGCCGACATCACTGACG L K S L A P S D T K V L A K A A D I T D 361 AAGCATCGGTCGCGGCGCTCTTCGCCGCTGCCAAAGAGGCGGTCGGCAAGATCGATGTGC E A S V A A L F A A A K E A V G K I D V 421 TGATCAACAACGCAGGCAGTCTAGGAGGGGGCATGGTGGGTAGCACCGAACCTAAGGACT L I N N A G S L G G G M V G S T E P K D 481 TCTTCGCGGACTTCCAGGTAAACGTTCTGGGCACGTACATAGTGACGCACCAATTCCTCG F F A D F Q V N V L G T Y I V T H Q F L 541 CCCAGGCAGACGGATCTGGTACTGTCATCAGCTTCACAACAGGCGCCATCGCCAATGTTT A Q A D G S G T V I S F T T G A I A N V 601 TCCCAGGTATGGGAGCCTACACGGCGTCCAAGACGGCCCTTACCCGCATCATGGAAAATC F P G M G A Y T A S K T A L T R I M E N 661 TGCACGCCGAGCAGCCAAACATTCGTGTTTTCCAGCTCATTCCGGGAATTGTTCTAACGG L H A E Q P N I R V F Q L I P G I V L T 721 GAATGACGGTCGATGCGTTGAAGCCGTTTGCGAAGGACACTCCCGAGCTCAGTGCCAGCT G M T V D A L K P F A K D T P E L S A S 781 GGACACTCTTCCTGTCTACCCCTCGCGCCGAATGGTTGCGTGGCGGCATAGTCAGCGTCA W T L F L S T P R A E W L R G G I V S V 841 ACTGTGAGTCTGCCCCCAATTGCTTAAAACTTCCTACAATTCTGACATGAGGTTCTATCA N 901 ACA GGGGATGTCGAGGAGATGGAGGCCCACAAGGATGAAATTGTTCGTGACAACTTGCTC W D V E E M E A H K D E I V R D N L L 961 AGCCGCGCTTTCTTGAACGCCAAGCTCGGAAAGGATGGCCATCCCTGGTCTTGA S R A F L N A K L G K D G H P W S * Figure 5.2. A. LCMS/MSanalysisofspotC2.Mascotwasusedtomatchthemass spectrumgeneratedbytrypsinatedpeptidestotheBroadpredicted S. nodorum protein databaseforamatchinggene(redfont). B. ArepeatanalysiswasperformedonanSN15 oleategrown cDNA library taking in account of peptide modifications from common oxidation of methionine residues (Brot & Weissback, 1983) (blue font). C. Peptide coverageofSch1. 149 Chapter 5

(Oppermann et al. ,2003)

37Predicted motifs in Sch1 (Table 5.1)

Table 5 .1. Consensus shortchain dehydrogenase motifs in Sch1. Motifs were predictedfromsequencealignmentswithothershortchain dehydrogenases (data notshown).AdaptedfromOppermann et al. (2003). Consensus motif Function Predicted Sch1 motif (position*) (position) TGxxxGxG(1219) Coenzymebindingregion, TGVSGGIG(4451) maintenanceofcentral βsheet D(60) Stabilisationofadeninering D(96) pocket,weakbindingtocoenzyme NNAG(8689) Stabilisationofcentral βsheet NNAG(125128) NSYK(111,138,151,155) Activesite NxYK(150,x,189,193) N(179) Connectionofsubstratebinding Notdetermined loopandactivesite PG(183184) Reactiondirection PG(217218) T(188) Hbondingtocarboxamideof T(221) nicotinamidering

*Positions refer to the amino acid order from the N terminus of a characterised short chain dehydrogenase(PDBcode1hxh).

150 Chapter 5

(Jornvall et al. ,1995)

38Predicted secondary structure of Sch1 (Figure 5.3)

βββA αααB HH EEEEE HHHHHHHHHHHH 1 MDYSDPNAFTLPYQLTKQIRRDVYPLLEPTQPELSAKGKTVLITGVSGGIGKAIAESWAT β B αααC βββC αααD EEEEEEE HHHHHHHHHHHHHH EEEEE HHHHHHHHHHHHHH 61 AGASGIVITGRKADVLESVAKSLKSLAPSDTKVLAKAADITDEASVAALFAAAKEAVGKI

βββD αααE βββE EEEE HH HHHHHHHHHHHHHHHHHHHHHHHHHH EEEEE HHH 121 DVLINNAGSLGGGMVGSTEPKDFFADFQVNVLGTYIVTHQFLAQADGSGTVISFTTGAIA ααα F βββF HHHHHHHHHHHHHHHHHHHH EEEEEEE E HHHH HHHH 181 NVFPGMGAYTASKTALTRIMENLHAEQPNIRVFQLIPGIVLTGMTVDALKPFAKDTPELS

α G βββG HHHHHHHH HH EEEE HHHHHHHHHHHHHHHHHHHH 241 ASWTLFLSTPRAEWLRGGIVSVNWDVEEMEAHKDEIVRDNLLSRAFLNAKLGKDGHPWS

Figure 5.3. Secondary structure prediction of Sch1 (blue). ‘H’ denotes α helicesand‘E’denotes βsheets.Secondarystructuresweregroupedaccording to Jornvall et al. (1995).Thereisno αAhelix designation in the shortchain dehydrogenasesdescribedinJornvall et al. (1995).

151 Chapter 5

39BlastP analysis of Sch1 (Table 5.2)

Table 5.2. BlastPanalysisofSch1.Top matchestopredictedfungalproteinsandnon fungalproteinsaregiven.

BlastP match Organism Genbank % E-value Polypeptide Top conserved domain hit ( CDD - Function accession similarity length Blast NCBI) Fungal Hypotheticalprotein Chaetomium EAQ89426 37% 6e45 300 pfam00106,shortchaindehydrogenase Unknown CHGG_06045 globosum Hypotheticalprotein Gibberella XP_384775 40% 1e41 359 COG1028,FabG,Dehydrogenaseswith Unknown FG04599.1 zeae differentspecificities Hypotheticalprotein Coccidioides EAS35803 36% 2e36 324 pfam00106,shortchaindehydrogenase Unknown CIMG_01157 immitis Hypotheticalprotein Aspergillus XP_664678 35% 3e36 310 COG1028,FabG,Dehydrogenaseswith Unknown AN7074.2 nidulans differentspecificities Non-fungal Shortchaindehydrogenase Solibacter YP_827156 36% 1e28 260 pfam00106,shortchaindehydrogenase Unknown usitatus Shortchaindehydrogenase Polaromonas YP_551544 32% 4e22 254 pfam00106,shortchaindehydrogenase Unknown sp. JS666 3oxoacyl[acylcarrier Bacillus BAD66294 38% 6e22 238 pfam00106,shortchaindehydrogenase Fattyacid protein]reductase clausii biosynthesis 7alphahydroxysteroid Escherichia YP_669471 32% 7e22 255 pfam00106,shortchaindehydrogenase Sterol dehydrogenase coli metabolism

152 Chapter 5

Thisisindicatedby thepresence theconsensus5’TATAAA3’ nucleotide sequence

(Lifton et al. ,1978;Smale&Kadonaga,2003).

5.3.3 Sch1 expression

Sch1 expression was analysed using qRTPCR (Chapters 3 and 4). Sch1 transcriptabundancewasgreatlyreducedin gna1-35 and mak2-65 whencomparedto

SN15 in vitro . Therefore, it is highly probable that protein abundance of Sch1 is dictated by heterotrimeric G protein and MAPK signallingmediated transcriptional regulation.Tounderstandtheroleof Sch1 playduringplantinfection,geneexpression was further examined on S. nodorum infected wheat leaves. Sch1 transcripts accumulatedgreatlyduringthelatestageofinfectioncoincidingwiththedevelopment ofpycnidia.

5.3.4 Deletion of Sch1

A targeted gene deletion approach was used to investigate the role of Sch1 duringpathogenesisonwheat.Theidentificationof sch1 mutantswascarriedoutby

PCRscreening19phleomycinresistanttransformantsforgenedeletion(Figure5.4A).

Tentransformantsproduceda5.5kbPCRampliconindicativeofgeneknockout.Eight transformantscarriedanectopicinsertion.Thisrepresentsahomologousrecombination efficiencyof56%.Genedeletedstrains sch1-11 and sch1-42 wereselectedforfurther analysis. A strain carrying an ectopic integration of the gene knockout vector was selectedforfurtheranalysisasatransformantcontrol(Ect).Southernanalysiswasused toconfirmthegeneknockoutanddeterminetheinsertionnumberofthegeneknockout

153 Chapter 5

40PCR and Southern analysis for Sch1 deletion (Figure 5.4)

A 1 11 22 25 30 42 57 58 59 60 61 62 63 64

5.5 kb 4.2 kb

65 66 67 68 69 SN15

5.5 kb 4.2 kb

B i ii iii iv

5.5 kb

4.2 kb

Figure 5.4. A. PCRscreeningofphleomycinresistanttransformants

for potential Sch1-deleted strains. B. Southern analysis of the Sch1

locusof i. SN15, ii. Ect, iii. sch1-11 and iv. sch1-42 .GenomicDNA

was digestedwith Xho Itogeneratea4.2kbfragmentcontainingan

intact Sch1 inSN15andEct. Sch1 knockoutstrains sch1-11 and sch1-

42 produceda5.5kbfragmentindicativeofgenedisplacementbythe

phleomycinselectablemarkercassette.

154 Chapter 5

41Proteomic confirmation of Sch1 deletion (Figure 5.5)

i ii

iii iv

Figure 5.5. 2DelectrophoresisdetectionofSch1in i. SN15, ii.

Ect, iii. sch1-11 and iv. sch1-42 .Sch1wasobservedinSN15

and Ect (arrows) but not in the sch1 mutants. Significant

alterations in surrounding protein spots (blue arrows) were

observed.ThiswasdiscussedinSection5.3.6.

155 Chapter 5

constructintheselectedstrains(Figure5.4B).A562bpprobegeneratedfromthe5'

UTR of Sch1 was used to detect size polymorphism at the Sch1 locus of SN15 and mutantstrains.SN15andEctproduceda4.2kb Xho Ifragmentcarryinganintactgene whereas sch1-11 and sch1-42 produced a 5.5 kb Xho I fragment indicative of Sch1 displacementbytheknockoutconstruct.

5.3.5 Proteomic confirmation of Sch1 deletion

2Delectrophoresiswasusedtoverifythatthedeletedgenecorrespondedtothe proteinofinterest(Figure5.5).TheexperimentalMWandpIofSch1is28.5kDaand

5.94,respectively.TheSch1proteinspotwasobservedinSN15andEct butnot sch1-

11 and sch1-42 .Thisstronglyindicatesacorrectproteintogeneassignmentviamass spectrometryidentificationandprovidesstrongevidenceofgenedeletion.

5.3.6 Comparative proteomic analysis of SN15 and sch1-42

TheintracellularproteomesofSN15and sch1-42 werecomparedandanalysed forchangesinproteinabundanceby2Delectrophoresis.Atotalof350uniqueprotein spots were identified from SN15 and sch1-42 . A comparison of spots with the

ProGENESIS Workstation 2005 software has identified four protein spots that were significantly altered in abundance between the two strains (Figure 5.6; Table 5.3).

Theseproteinsspotswereexcised,trypsinatedand analysedwithLCMS/MS. Mass spectrometryderiveddatawerematchedtothe S. nodorum genomeforcorresponding genesviaMascot.Theexperimentwasperformedinbiologicaltriplicates.Normalised proteinabundancevaluesarelistedinAppendixF.

156 Chapter 5

A 5 pH 8 kDa

250 42Intracellular 2D proteome gels of SN15 and sch1-42 (Figure 5.6)

75

50

37

25 C1 C2

C11 C10 15

10

B 250

75

50

37

25 C2 C1

C11 C10 15

10

Figure 5.6. Representative 2D gels of A. SN15 and B.

sch1-42 intracellular proteomes. Differentially abundant

spots are indicated. The experiment was performed in

biologicaltriplicate.Gelcontrastswererelativelyadjusted

toallowvisualisationofhighlyabundantspotsinsch1-42 .

157 Chapter 5

43Differentially abundant intracellular protein spots of SN15 and sch1-42 (Table 5.3)

Table 5.3. Identification of differentially abundant intracellular proteins with LCMS/MS. Mascot was used to patternmatched the mass

spectrometrydatawiththe S. nodorum wholegenomeannotatedproteinsettogiveagenematch.Folddifferenceofmatchingproteinspotswas

calculated from normalised spot value of SN15 relative to sch1-42 . Fold difference designated by () indicates protein spots that were not

observedin sch1-42 proteomegelwhereas(++)designatespotsthatwerenotobservedintheSN15proteomegel.BlastPidentityandEvalueare

giveninAppendixD.Molecularweight(MW)isgiveninkDa. Spot Fold Observed Broad acc ID Theoretical CDD Blast BlastP match (Organism; Mascot score diff pI MW pI MW (Expected value) Genbank acc ID) (% coverage) C1 +2.2 5.95 25.6 SNOG_13042.1 5.41 28.9 COG1028:FabG, Shortchaindehydrogenase 988(61.0) dehydrogenaseswithdifferent (Aspergillus fumigatus ;XP_748339.1) specificities(2E12) C2 6.10 25.7 SNOG_10217.1 5.46 31.8 COG4221:Shortchainalcohol Shortchaindehydrogenase/reductase 514(38.5) dehydrogenaseofunknown SDR( Solibacter usitatus ; specificity(3E27) ZP_00520385.1) C10 +8.6 7.00 19.0 SNOG_09590.1 5.98* 23.3* CD02140:Nitroreductaselike Nitroreductasefamilyprotein( Bacillus 564(60.5) family4(3E70) cereus ;ZP_00240643) C11 ++ 6.79 19.6 SNOG_09590.1 5.98* 23.3* CD02140:Nitroreductaselike Nitroreductasefamilyprotein( Bacillus 393(52.7) family4(3E70) cereus ;ZP_00240643) *Predictionbasedonreannotatedvalues.RefertoChapter6.

158 Chapter 5

443D imaging of spot C1 (Figure 5.7) i ii

pH MW pH MW

iii iv

pH MW pH MW

v vi

pH MW pH MW

Figure 5. 7. Three dimensional densitometry analysisofspotC1(red

arrows)inSN15( i.iii .and v.)and sch1 -42 ( ii .iv.and vi .)triplicate 2D

intra cellular proteomegels. Blackarrows indicatethegelorientation by

increasingpHanddecreasingMW .

159 Chapter 5

Spot C1, previously identified as a putative shortchain dehydrogenase

(SNOG_13042.1), accumulated greatly in sch1-42 . The average normalised densitometryvalueofspotC1of sch1-42 is2.2foldgreaterthanthecorrespondingspot in SN15. Threedimensional densitometry indicated pixel saturation of all C1 designatedspotsin sch1-42 (Figure5.7).Thisindicatesthattheupperdetectionlimitof colloidalCoomassieG250hasbeenreached.Therefore,itishighlyprobablethatthe actual abundance of spot C1 in sch1-42 is greater than the current values calculated fromdensitometryanalysisbyProGENESIS.

PeptidesgeneratedfromspotC10andC11matchedtothepredictedpolypeptide ofSNOG_09590.1.Thepredictedpolypeptideshowedasignificantsequencesimilarity toanitroreductaseproteinof Bacillus cereus (48%similarityandanexpectedvalueof

6E51). Spot C10is 8.6foldmore abundantin sch1-42 , whereas spot C11 was not detectedinSN15.TheobservedpIdifferedfrompredictedvaluesforspotC10andC11 thus suggesting that posttranslational modifications may affect the location of the proteininthe2Dgel.

5.3.7 Colony morphology of the sch1 mutants

Thecolonymorphologyof sch1-11 and sch1-42 wascomparedtoSN15 andEct

(Figure5.8).WhengrownonsolidCzV8CSandMMagar,Ectshowedsimilarcolony morphologytoSN15.The sch1 strainsproducedagreenpigmentontheolderpartof thecolonysimilarto gna1-35 (Solomon et al. ,2004b).Allstrainsshowedsimilarradial growthrateonCzV8CSagar(Figure5.9A).WhengrownonMMagarsupplemented with25mMglucose,the sch1 mutantsweresignificantlyreducedinradialgrowthwhen

160 Chapter 5

CzV8CS Minimal medium agar 45Colony morphology of theagar sch1 mutants on agar media(25 (Figure mM 5.8)glucose) i

ii

iii

iv

Figure 5 .8. The colony morphology of i. SN15, ii. Ect, iii.

sch1-11 and iv. sch1-42 growingonagarmedia.

161 Chapter 5

46Colony diameter of the sch1 mutants on agar media (Figure 5.9)

A 70 a a a a 60 50 40 30 20 10 Colony diameter (mm) Colonydiameter 0 SN15 Ect sch1-11 sch1-42 Strain B 70 a a b b 60 50 40 30 20 10 Colony diameter (mm) Colonydiameter 0 SN15 Ect sch1-11 sch1-42 Strain

Figure 5.9. ThecolonydiameterofSN15,Ect, sch1-11 and

sch1-42 grown on A. CzV8CS and B. MM agar

supplemented with 25 mM glucose for 13 days were

measuredandstatisticallyanalysed(n=2).Standarderror

barsareshown.

162 Chapter 5

47Morphology of the sch1 mutants in liquid culture (Figure 5.10)

i ii

iii iv

Figure 5.10. Themorphologyof i. SN15, ii. Ect, iii. sch1-11 and iv. sch1-42 after24 hgrowthinMMbrothsupplementedwith25mMglucose.Allcultureswereshaken at140rpm.Bar=1cm.

163 Chapter 5

comparedtoSN15andEct(Figure5.9B).Itwasalsoobservedthatthe sch1 mutants producedmoreaerialhyphaethanthe Sch1 strainsonMMagar.

ThemorphologyofSN15,Ectand sch1 mutants was examinedas submerged

MMbrothcultures(Figure5.10).After24hofgrowthfromcrushedmycelialscrapings shaken at 140 rpm, mycelia of SN15 and Ect were dispersed throughout the broth.

However,myceliaofthe sch1 mutantswereclumped.Growthofthe sch1 mutantson differentcarbonsourceswasexaminedwithinamicrotitreplateformatasdescribedin

Chapter2.Growthofthe sch1 mutantsonglucose,fructose,mannitol,trehaloseand oleatewassimilartoSN15.

5.3.8 Osmotolerance assays

The sch1-42 mutantwastestedforosmotoleranceusingtwomethods.Thefirst methodtestedtheradialgrowthrateofsch1-42 onCzV8CSagarsupplementedwith0,

0.25,0.5,0.75and1MNaCl.Aftertwoweeksofgrowth,thediameterofthecolonyof sch1-42 was not significantly different to the Sch1 strains under all concentrations tested.Thesecondmethodexaminedthegrowthof sch1-42 ingrowninastationary

MMbrothsupplementedwith0,0.25,0.5,0.75and1MNaCl.Thiswasperformedas per the 96well microtitre plate carbon test format (Chapter 2). Net growth was measured after four days incubation. The growth of sch1-42 was not significantly different to Sch1 strains. Thissuggeststhat Sch1 doesnotplayasignificantrolein osmotolerance.

164 Chapter 5

48Trypan blue staining of infected wheat leaves (Figure 5.11)

i ii

iii iv

Figure 5.11 .Lightmicroscopeanalysisoftrypanblue stainedwheatleavesthree

dayspostinfectedwith i. SN15, ii. Ect, iii. sch1-11 and iv. sch1-42 .Redarrows

indicatefungalentryviathestomata.Blackarrowsindicateepidermalpenetration

attempts.Bar=30 m.

165 Chapter 5

49Infection assays (Figure 5.12)

A1 B1 i ii iii iv v i ii iii iv v

A2 B2 27 10 24 a a a a b 21 8 18 6 15 12 4 9 Lesion size (mm) size Lesion 6 Disease score 2 3 0 0 SN15 Ect sch1-11 sch1-42 Tween 3 4 5 6 7 8 9 10 11 12 13 14 Days post infection Strain Figure 5.12 .Pathogenicitywasmeasuredwiththe A. detachedleafassayand B. wholeplantspray. i. SN15, ii. Ect, iii. sch1-11 , iv. sch1-42 and v. 0.02% (v/v)

Tweennegativecontrol.Bar=5mm. A2.LesionsizescausedbySN15( ),Ect

(■), sch1-11 ( ▲)and sch1-42 ( x)onthedetachedwheatleaveswererecordedover a14dayinfectionperiod(n=10). B1. Diseasesymptomsfromwholeplantspray and B2. diseasescore measurements.Standarderrorbarsareshown.

166 Chapter 5

5.3.9 Pathogenicity assays

Trypanbluestainingofthreedayoldinfectedwheatleavesindicatethatthe sch1 mutants were capable of epidermal penetration attempts and stomatal entry (Figure

5.11).Pathogenicityofthe sch1 mutantswasassessedwithDLA.Nodifferencesin symptomsandlesionsizeswereobservedbetweenallstrains.Theresultindicatesthat

Sch1 isnotrequiredfortissueproliferationondetachedwheatleaves(Figure5.12).The sch1 mutantsweretestedontheirabilitytoinfectwholeplantsusingthewholeplant spray assay. Disease symptoms were scored seven days postinfection. Lesion symptomsanddiseasescoresofallstrainsweresimilar(Figure5.12).Thisindicates that Sch1 isnotrequiredforpenetrationandinvasivegrowthonwheat.

5.3.10 Spore phenotyping assays

Thesch1 mutantsshowedsporulationabnormalities(Figure5.13).Centrifuged sporepelletscollectedfromSN15andEctwerepinkwhereas sch1-11 and sch1-42 were whiteinappearance(Figure5.13A).Examinationunderlightmicroscopyhasrevealed thattheresuspendedsporepelletsofthe sch1 mutantswerecomposedofsporesand myceliadebrisincontrasttoSN15andEct(Figure5.13B).Thegerminationfrequency ofSN15,Ect, sch1-11 and sch1-42 sporeswasassessed(Figure5.13C).Sporeswere lefttogerminateon0.5%(w/v)agaroseforsixhpriortoscoring.Thegermination frequencyof sch1-11 and sch1-42 wasslightlyreducedincomparisontoSN15although nodifferencewasobservedwhencomparedtoEct.Asthesporegerminationefficiency ofthe sch1 mutantswasnotstatisticallydifferenttoEct,thissuggeststhat Sch1 isnot criticalforsporegermination.

167 Chapter 5

A i ii iii iv 50Spore pellet and germination rate of the sch1 mutants (Figure 5.13)

B i ii

iii iv

C 100

80

60 a a/b b b 40

20 Germinated spores Germinated 0 SN15 Ect sch1-11 sch1-42 Strain Figure 5.13. A. Centrifugedsporesharvestedfrom i. SN15, ii. Ect, iii. sch1 -

11 and iv. sch1-42 grownonCzV8CSagar. B. Lightmicroscopeimagesof

theresuspendedsporepellets; i. SN15, ii. Ect, iii. sch1-11 and vi. sch1-42. C.

Sporegerminationfrequencies(n=threecountsof100spores).Standarderror

barsareshown.

168 Chapter 5

51The length of sch1-42 pycnidiospores (Table 5.4)

52DIC images of pycnidiospores (Figure 5.14)

Table 5.4. TheaveragelengthSN15,Ectand sch1 -42 pycnidiospores(n=34).

Strain Length ( m) SE of the mean ANOVA grouping SN15 24.6 ±0.727 A Ect 23.8 ±0.526 A sch1-42 18.5 ±0.472 B

i ii

* * * * * * * * * * * *

* * *

iii

* *

Figure 5.14. DIC images of i. SN15, ii. Ect and iii. sch1-42 pycnidiospores. *

denotestheseptum.Bar=5 m.

169 Chapter 5

53Pycnidiosporecount(Figure5.15) A 1.E+08 a b c c

1.E+07 Logspores

1.E+06 SN15 Ect sch1-11 sch1-42 Strain B 1.E+07 a b c c 1.E+06

1.E+05

1.E+04

Log spores from 5 leaves 5 Logsporesfrom 1.E+03 SN15 Ect sch1-11 sch1-42 Strain

Figure 5.1 5. A. Sporesperplatefromstrainsgrownon

CzV8CS agar for two weeks. Mean values were

calculated from three technical spore counts from

biologicallyindependentpooledSN15(n=3),Ect(n=3),

sch1-11 (n = 11) and sch1-42 (n = 12) spores. B. In

planta sporulation assay. Mean values were calculated

fromthreetosixtechnicalsporecountsofpooledspores

derived from fungalinfected leaves. Replicate infected

leafnumbers;SN15(n=10),Ect(n=10), sch1-11 (n=5)

and sch1-42 (n=5).Standarderrorbarsareshown.

170 Chapter 5

Thelengthofsporesrangedfrom14.8to32.6 mforSN15and19.0to33.6 m forEct.Incontrast,thelengthofsporesrangedfrom12.6to25.4 mfor sch1-42 .On average,thelengthofpycnidiosporesfrom sch1-42 wassignificantlyshorterthanthose of SN15 and Ect (Table 5.4). Closer examination of pycnidiospores under light microscopyhasrevealedthoseof sch1-42 possessed0oroneseptumwhereasthoseof

SN15andEctpossesseduptothreesepta(Figure5.14).

5.3.11 Sporulation of the sch1 mutants

Majorreductionsinsporulationwereobservedinthe sch1 mutants.Sporeswere counted from two week old fungal cultures grown on CzV8CS agar. Sporulation efficienciesof sch1-11 and sch1-42 were5.6%and5.0%ofSN15,respectively(Figure

5.15A). In planta sporulationassayswereperformedtocomparesporulationefficiency of the sch1 mutants with SN15 and Ect. Sporulation of the sch1 mutants was also reducedduringgrowthonwheatleaves(Figure5.15B).Thisindicatesthat Sch1 hasa significantroleinasexualsporulation.

5.3.12 Pycnidial development of the sch1 mutants

Pycnidiaofthesch1 mutantswereexaminedandcomparedwith Sch1strainsfor phenotypicabnormalities.PycnidiaofSN15andEctexudedpinkcirrhi.Incontrast, the sch1 mutants rare white cirrhi (Figure 5.16A). The average diameter of SN15 pycnidia when grown on CzV8CS was 208.5 m. This is significantly greater than sch1-11 and sch1-42 where average pycnidia diameters were 142 and 146 m, respectively(Figure5.16B).The sch1 mutantswereabletoproducepycnidiaduring

171 Chapter 5

A i ii

54Pycnidia size measurements in vitro (Figure 5.16)

iii iv

v

B 240 a a b b 220 m) 200 180 160 140 120

Pycnidia diameter ( diameter Pycnidia 100 SN15 Ect sch1-11 sch1-42 Strain

Figure 5.16. A. Photographsof i. SN15, ii. Ect , iii. sch1 -

11 and iv. sch1-42 pycnidiaonCzV8CSagar.Bar=1

cm. v. A closeup image of two exuding sch1-42

pycnidia,each producingawhitecirrhus. B. Pycnidial

diameterwasmeasuredandstatisticallyanalysed(SN15,

n=191;Ect,n=146; sch1-11 ,n=144and sch1-42 ,n=

286).Standarderrorbarsareshown.

172 Chapter 5

55Pycnidia size measurements in planta (Figure 5.17) A i ii

iii iv

B 130 a b c c 120

m) 110 100 90 80 70 60 Pycnidia size ( size Pycnidia 50 40 SN15 Ect sch1-11 sch1-42 Strain

Fig ure 5.17. A. Photographs of i. SN15, ii. Ect, iii. sch1-11 and iv.

sch1-42 pycnidiatakenfromtrypanbluestainedninedayold infected

wheatleaves.Bars=200 m. B. Pycnidialdiameterwasmeasuredand

statisticallyanalysed(SN15,n=69;Ect,n=69;sch1-11 ,n=151and

sch1 -42 ,n=184).Standarderrorbarsareshown.

173 Chapter 5

56Pycnidiation pattern of the sch1 strains on wheat meal agar (Figure 5.18)

i ii

iii iv

Figure 5. 18 .Thepycnidiationpatternof i. SN15, ii. Ect, iii. sch1-11 and iv. sch1-

42 on wheat meal agar. Arrows indicate concentrated regions of pycnidial

development.Bars=2mm.

174 Chapter 5

growthonwheatleaves.However,thesepycnidiawereunabletoexudecirrhiunlike

SN15andEct.Furthermore,theaveragediameterofpycnidiaofthe sch1 mutantswas significantlysmallerthanSN15andEct(Figure5.17).

Thepycnidiationpatternof S. nodorum followsabiphasicrhythmlikelytobea responsetotheexposuretothenearUVlightgrowthregime.Thesch1 mutantswere observedforpossibledefectsinthepycnidiationpattern.Whengrownonwheatmeal agar,pycnidiaofSN15andEctshowedadistinctbiphasicdevelopmentalpattern.The biphasic developmental pattern was observed with the sch1 mutants but was less distinct(Figure5.18).

ThemorphologyofSN15and sch1-42 pycnidiawasexaminedwithtissuecross sectioningandlightmicroscopy.Thiswasperformedonpycnidiaderivedfromgrowth onCzV8CSagar.Cellsofthemelanisedpycnidialwall contained a brownpigment

(Figure5.19i and ii). These cellsinSN15 were predominantly thin and elongated whereas corresponding cells in sch1-42 were irregularly shaped. Toluidine blue stainingrevealedgreaterdetailsofthepycnidium.Themoststrikingfeaturethatdiffers between the pycnidia of SN15 and sch1-42 was the intensity of the stained cavity contents(Figure5.19iiiandiv).ThecavitycontentofSN15stainedintenselywith toluidine blue whereas the cavity content of sch1-42 stained poorly. In addition, a distinctsubparietallayer thatlined theinnerwall of thepycnidium was observed in

SN15.Thislayerwaslessdefinedin sch1-42 .ThechirrusofSN15waspredominantly composed of pycnidiospores. In contrast, the chirrus of sch1-42 was composed of

175 Chapter 5

W i ii W

57Cross-section light microscopy analysis of sch1-42 pycnidia (Figure 5.19)

Cv Cv

iii iv Ch Ch S

W

OC OC Cv Cv

SL

100 m 100 m

v 20 m vi

S

20 m

vii W viii C

S Cv

Cv

SL PC PC 20 m 20 m Figure 5.19.Continuedonthenextpage.

176 Chapter 5

Figure 5.19 .CrosssectionphotographsofSN15( i, iii and v)and sch1-42 ( ii , iv and vi ) pycnidia from growth on CzV8CS agar and wheat leaves ( vii and viii). The morphology of cells from the pycnidial wall was examined under DIC microscopy using unstained specimens ( i and ii ). iii and iv shows the general morphology of erupting pycnidia stained with toluidine blue. Closeup detailed images of chirri stainedwithtoluidineblue( vii and viii ). v and vi showsthemorphologyofpycnidia formedduringgrowthonwheatleavesstainedwithmethyleneblue/azurII.Key=W, pycnidial wall; Cv, pycnidial cavity; Ch, chirrus; S, spore; OC, ostiolar cone; SL, subparietallayer;C,conidiogenouscellandPC,plantcell.

177 Chapter 5

i ii 20 m Cv

58Cross-section TEM analysis of sch1-42 pycnidia (Figure 5.20) C vi

iii v iv C

Cv 20 m

iii iv

S

2 m 2 m

v vi

Vc

CW Vc Cp Vc

Vc

CW

Vc

1 m 1 m Figure 5.20.DetailanalysisofpycnidialtissuesofSN15( i, iii and v) and sch1-42 ( ii , iv and vi )fromgrowthonCzV8CSagar.Crosssections werestainedwithmethyleneblue/azurIIforlightmicroscopy( iand ii ) and lead citrate/uranyl acetate for TEM analysis ( iii , iv , v and vi ). Imagesofthepycnidialcavity( iii and iv).Photographsofcellsofthe pycnidial wall ( v and vi). Key = S, spore; Cv, pycnidial cavity; C, conidiogenouscell;CW,cellwall;Cp,cytoplasmandVc,vacuole. 178 Chapter 5

septatedhyphae.Nopycnidiosporeswereobservedinthechirrusof sch1-42 (Figure

5.19 v and vi). Pycnidia of SN15 and sch1-42 on wheat leaves showed similar morphologicaldefectstothosederivedfromgrowthonCzV8CSagar(Figure5.19vii andviii).Atagreatermagnification,conidiogenouscellsinSN15showedacompact arrangement. In contrast, the conidiogenous cell layer was less defined in sch1-42

(Figure5.20iandii).TEMwasusedtoanalysethepycnidialcrosssections.Electron densestructureswereobservedinthepycnidialcavityofSN15andwerepresumedto bepycnidiospores.Thesestructureswerenotobservedin sch1-42 (Figure5.20iiiand iv). SN15 cells from the pycnidial wall were rounder. Electron dense materials, presumedtobecytoplasmicconstituents,wereoftenlocatedadjacenttotheintracellular sideofthecellwall.Asignificantportionofthecellvolumewasoccupiedbyalarge vacuole. In contrast, corresponding cells in sch1-42 were irregularly shaped and contained numerous small vacuoles. Electron dense materials were often scattered throughoutthecell(Figure5.20vandvi).

PycnidiaofSN15and sch1-42 wereexaminedfornucleidistributionusingthe dsDNAspecificDAPIfluorescentstain(Figure5.21).TheSN15subparietallayerwas distinguishablefromthecellwallasthelattertissuelackednuclei.Nucleiwerealso observedinsporeslocatedinthepycnidialcavityamidstthebackgroundfluorescence.

Interestingly, the pycnidial cell wall and subparietal layer of sch1-42 were indistinguishableasDAPIstainingindicatesthatmostcellssurroundingthepycnidial cavitywerenucleated.

179 Chapter 5

i * ii * OC 59 Nuclei distribution (Figure 5.21) *

S & V * V iii iv

W/SL

W SL

iii iv

N

N

v OC vi W W/SL

S & V

SL V

50 m

Figure 5.21. CrosssectionphotographsofSN15( i, iii and v )and sch1-42 ( ii ,iv and vi )pycnidiaonCzV8CSagar.Thenucleicontentofpycnidiawasexaminedin crosssectionedtissues(10 mthick)stainedwithDAPI( i, ii, iii and iv ).Closeup imagesoftheDAPIstainedcrosssectionsof iii. SN15and iv. sch1-42 .Toluidine bluewasusedtocounterstainalltissues( vand vi ).Key=W,pycnidialwall;V, pycnidial cavity; S, spore; OC, ostiolar cone; SL, subparietal layer; C, conidiogenouscellandN,nucleus.

180 Chapter 5

60Proprotoplasting of sch1-42 (Figure 5.22)

i ii

iii iv

v vi

Figure 5.22 . Light microsc ope images of protoplasts generated from overnight

growthofspore( i, iii and v)andmycelial( ii , iv and vi )inoculaofSN15( iand ii ),

Ect( iii and iv )and sch1-42 ( vand vi ).

181 Chapter 5

5.3.13 Protoplasting of sch1-42

Geneticcomplementationofsch1-42 withafunctional sch1 geneconstructwas attempted.Toperformthisexperiment,thegenerationofviableprotoplastsisvitalfor genetic transformation. The sch1-42 mutant was subjected to protoplasting using

GlucanexasdescribedinChapter2.Itwasobservedthatsporeinoculumof sch1-42 wasunabletoproducedprotoplasts(Figure5.22).Furthermore,protoplastswererarely observedfrommycelialinoculumof sch1-42 incomparisontoSN15andEct(Figure

5.22).Asubstantialamountofcelldebriswaspelletedbelowtheprotoplastinterfacein theGlucanexsolutionduringprotoplastisolation.Theamountofprotoplastsproduced fromthe sch1-42 mycelialinoculumwasonlysufficientforlightmicroscopyanalysis

(Figure5.22).Subsequentexperimentalattemptsusingthesameprotoplastingprotocol onmycelialinoculumofthe sch1-42 mutantfailedtoproduceanyprotoplasts.Hence, genetic transformation of sch1-42 is currently improbable using the protoplasting technique.

5.3.14 In vitro metabolomic analysis

The polar metabolome of the sch1 mutants was analysed for changes in metabolite abundance via electron ionisation with a GCMS. AMDIS was able to consistentlydetectanaverageof223componentsperGCMStrace(Figure5.23).Of thesecomponents,anaverageof174componentswasdesignatedastargetbasedonm/z fragmentation match to the MaxPlanck Institute and inhouse metabolite standard libraries. Of these targets, 61 major metabolite derivatives (excluding the ribitol standard) were identified and retained for comparisons (Appendix G). A metabolite

182 Chapter 5

61GC-MS ion chromatograms of Sch1 and sch1 strains (Figure 5.23) i

ii

iii LOGabundance

iv

Metabolite retention time (min utes ) Figure 5.23. RepresentativeGCMSpolarintracellularmetaboliteprofilesof i.

SN15, ii. Ect, iii. sch1-11 and iv. sch1-42 . Green arrows indicate the ribitol

standard used for normalisation of metabolite abundance. Orange arrows

indicate a metabolite peak detected at the retention time of 45.57 minutes,

showedanoticeableincreaseinabundanceinthe sch1 mutants.

183 Chapter 5

derivativewasscoredasapositivehittocompoundsintheMaxPlanckandinhouse librariesunderthefollowingconditions;1. matchingchromatographicRTand 2. similar electron fragmentation pattern. As a result, 45 metabolite derivatives tentatively matchedtometabolitestandardsfromtheselibrarieswhereas16metabolitederivatives wereclassifiedasunknowncompounds(AppendixG).Aminoacidsandaminoacid derivatives composed of 35% and 8% of identified components, respectively.

Unidentified metabolites made up 26%. Metabolitesfrom the citric acid cycle, fatty acid,polyolandpolyaminemetabolismwerealsoidentified(Figure5.24).

PCAwasusedidentifyapossibleclusteringpattern between the Sch1 strains andthe sch1 mutantsbasedonthetotalmetabolitevariance. Sch1 and sch1 strainswere distinctly separated by variances of principal component two (PC2) (Figure 5.25A).

Furthermore,loadingcomponentanalysisindicatesthattheunidentifiedmetabolitewith aretentiontime(RT)of45.57minwasamajorcontributorofvariationsinPC2(data notshown).Viceversa,PCAwasusedtoidentifyapossibleclusteringpatterninall metabolite derivatives based on straindependent variances. Two clusters were observed.Themajorclusterconsistsof60metabolitederivatives,separatedbasedon theirgeneralabundanceinallstrains.Theminorcluster,separatedbyPC2consistedof theunidentifiedmetabolite(RT45.57)(Figure5.25B).Theunknownmetabolitefrom hereonwillcarrythenomenclatureofRT4557.

5.3.15 Quantification of RT4557

Quantification of RT4557 via normalisation of the integrated signal indicates that the metabolite was 86 and 202fold more abundant in sch1-11 and sch1-42 ,

184 Chapter 5

62Metabolite classification (Figure 5.24)

Amino acid Purine Others derivatives derivatives 7% 8% 3% Unknown Fatty 26% acids/alcohols 7% Citric acid Polyols cycle 5% 5% Amino acids Disaccharide 35% sugar Polyamine 2% 2%

Figure 5.24 . The classificationofmetabolitederivativesbasedonmetabolicgroupings.

IndividualmetabolitederivativesarelistedinAppendixGwithcolourcodingtomatch theclassificationscheme.

185 Chapter 5

A 7.5

63Principal component analysis (Figure 5.25) 5 Ect Ect

SN15 Ect 2.5 SN15 SN15

0

sch1 -11 sch1-42 -2.5 sch1 -11 sch1 -42 sch1 -11 -5 sch1-42

Principal component 2 (21.8% of variance) of component(21.8% 2 Principal -7.5 -10 -5 0 5 10 15 Principal component 1 (32.0% of variance) B

1

-1.5

RT 45.57 Principal component 2 (9.3% of variance) of component(9.3% 2 Principal -4 -4 -2 0 2 4 6 8 Principal component 1 (88.2% of variance)

Figure 5.25 .PCAanalysesofmetaboliteprofiles. A. Theclusteringpatternof

all strains analysed based on the total metabolite variance. PC1 and PC2

accounted for over 50% of the total variance. Two distinct clusters were

observed. B. The clustering pattern of all metabolites based on the total

varianceinallstrains.PC1andPC2accountedfor97%ofthetotalvariance.

Twodistinctclusterswereobserved.

186 Chapter 5

64Quantification of RT4557 (Figure 5.26)

1000 a a b c 100

10

scale) 1 10

(log 0.1

0.01

Normalised averageabundance Normalised 0.001 SN15 Ect sch1-11 sch1-42 Strain

Figure 5.26 .QuantificationofRT4557intheintracellular

metabolomeofSN15,Ect, sch1-11 and sch1-42 grownin

MMbroth.Standarderrorbarsareshown.

187 Chapter 5

respectively to SN15 (Figure 5.26). Targeted metabolomics were performed on the

MM broth supernatant to determine if RT4557 was secreted into the extracellular environment. RT4557 was detected in all strains. To determine if the presence of

RT4557 in the extracellular supernatant was the result of cell lysis or diffusion, the normalisedvalueofsecretedRT4557wasrenormalisedagainsttheintegratedsignalof secretedglutamate(3TMS;RT20.98min).Glutamatewaschosenfornormalisationas themetabolitederivativeshowednosignificantdifferenceinabundanceinallstrains

(datanotshown).Nodifferenceswereobservedin theabundanceofRT4557 in all strains relative to glutamate. Hence, RT4557 is predominantly accumulated and retainedinthe sch1 mutants.

5.3.16 Attempts to elucidate the molecular identify of RT4557

OneoftheaimsofAMDISistomatchtheelectronfragmentationpatternofa metaboliteofinteresttothefragmentationpatternsofknownmetabolitestandards.The electron fragmentation profile of RT4557 did not produce a match to compound standardsintheMaxPlanckandinhouseACNFPmetabolitelibraries.Excludingthe peakat73m/zwhichcorrespondtoaTMSconjugate,majorcomponentsoftheRT

4557peakwerelocatedat222,387,459and547m/z(Figure5.27).

GCMS PCI with methane derivatives as electron carriers to reduce fragmentationwasusedtodeterminetheparentalMWoftheRT4557TMSderivative

(Figure5.28).Inadditiontothe459m/zcomponent,severalcomponentsofhigherm/z value were identified. The probable parental MW of RT4557 including TMS conjugates is 474 Da. The PCI profile also suggests that RT4557 contains at

188 Chapter 5

65Fragmentation pattern of RT4557 via electron ionisation (Figure 5.27)

A

Abundance B

m/z

Figure 5.27 .GCMSelectronfragmentationpatternofRT4557in A. SN15and B. sch1-42 .Therelativepeakheightoffragments

at222,387,459and547m/zbetweenthetwospectradifferedslightlyduetodetectionsaturationinsch1-42 .

189 Chapter 5

66Positive chemical ionisation of RT4557 (Figure 5.28)

[MW+H +]

-2 TMS -1 TMS

+ [MW+C 2H5 ] + [MW+C 3H5 ]

Figure 5.28 .PositivechemicalionisationprofileofRT4557.‘M’denotestheprobableparentalmolecularweightofthederivatisedRT4557.

+ + Methanederivedadductsthatactaselectroncarriersareindicatedas[+H],[+C 2H5 ]and[C 3H5 ].Neutrallossoftheseadductsresultinthe parentalm/zandmolecularweightof474Da.TheprobablemolecularweightofRT4557resultingfromneutrallossofuptotwoTMSgroup

throughpartialfragmentationisindicated(arrows).

190 Chapter 5

leastahydroxygroupwithapossibilityofasecondfortheconjugationoftheTMS group.

InterrogationsofthecommerciallyavailableWileySpecInfo(http://www.wiley vch.de/stmdata/specinfo.php#mass ) and NIST98 (National Institute of Standards and

Technology, USA) metabolite databases have uncovered several metabolites with similarelectronfragmentationprofiles(Figure5.29).Themassspectrumoftheabietic acidcompound15hydroxy7oxodehydroabieticacidconsistedofadominant459m/z componentpeak(PubChemID635228)(Berg et al. ,2000).Inaddition,theMWofthe compoundmatchedtothededucedPCIMWofRT4557.A459m/zcomponentpeak was alsoobservedfromthefragmentation profile of methyl3α7βdihydroxy6oxo

5βcholan24oate (2 TMS) (CAS # 100009978). Although the MW of the latter metabolite is dissimilar to the deduced weight of RT4557, the striking structural similarity between both partially matching metabolites suggests the likelihood of a steroloratleastacycliccarbonbackboneinRT4557.TheretentionindexofRT4557 was2978.79.Amassspectralsearch(AppendixH)oftheGolmmetabolomedatabase limitedtotheretentionindexwithadefaulttoleranceof±25,wasunabletoprovidea conclusivemetabolitematch.

5.3.17 In planta metabolomic analysis

GCMSwasusedtoanalyseinfectedwheatleavesto determineif RT4557 is accumulatedduringninedayspostinfectioncoincidingwithpycnidiation.Thefungal biomarkermannitolwasdetectedinallsamplesinfectedwithSN15,Ectand sch1-42 .

However,RT4557wasnotobservedinallsamples.

191 Chapter 5

67 Structural matches to RT4557 based on fragmentation profiles (Figure 5.29)

A

B Abundance Abundance

m/z Figure 5.29 . Structural matches to RT4557 based on electron fragmentation

profiling. A. 15hydroxy7oxodehydroabieticacid(2TMS)and B. Methyl3α7β

dihydroxy6oxo5βcholan24oate(2TMS).

192 Chapter 5

5.3.18 Extracellular metabolome analysis of the sch1 mutants

The sch1 mutantssecreteabrownpigmentduringgrowthonsolidandinliquid media (Figure 5.30A). This indicates that the extracellular metabolome of the sch1 mutantsisaltered.SevendayoldextracellularMMbrothculturefiltratesofSN15,Ect, sch1-11 and sch1-42 wereanalysedspectrophotometrically(Figure5.30B).ODspectra ofthe sch1 mutantsdifferremarkablyfromSN15andEct.Forinstance,theabsorbance value for the the sch1 mutants was consistently higher than SN15 and Ect.

Furthermore, two distinct OD peaks at 340 and 370 nm were observed in the extracellularsupernatantofthe sch1 mutants.ThesepeakswerenotprevalentinSN15 andEct(Figure5.30B).

5.4 Discussion

5.4.1 Sch1 encodes for a putative short-chain dehydrogenase

Theshortchaindehydrogenasefamilyconsistsoffunctionallydiverseenzymes that are 250 to 350 residues in length (Oppermann et al. , 2003). The amino acid sequenceidentitybetweenshortchaindehydrogenasesistypicallyaround15to30% viapairwisecomparisons(Jornvall et al. ,1995).Thisisconsistentwithamajorityof

BlastPputativeshortchaindehydrogenasematchestoSch1.Thesecondarystructureof

Sch1consistsofaseriesofalternatingαhelicesand βsheetswhichischaracteristicof a coenzyme binding Rossmannfold (Rossmann et al. , 1975) (Figure 5.3). Motifs required for protein stabilisation and coenzyme binding (Filling et al. , 2002;

Oppermann et al. ,1997;Rossmann et al. ,1975;Wierenga et al. ,1985)arepresentin

Sch1(Table5.1).Theserineresidueofthe“NSYK”catalyticmotifisnotconserved inSch1.Thiscouldbeduetosubstratespecificity.

193 Chapter 5

68Alterations in the extracellular metabolome of the sch1 mutants (Figure 5.30)

i ii iii iv A

B

iii

i iv

ii

Wavelength (nm)

Figure 5.30 . i. SN15, ii. Ect, iii. sch1-11 and iv. sch1-42 wereinvestigated

for alterations in the extracellular metabolome. A. A brown pigment

secretedbythe sch1 mutants. B. ODreadingsofthecellfreesupernatant.

Arrows indicate two distinct OD peaks in the cellfree supernatant of the

sch1 mutants.

194 Chapter 5

5.4.2 sch1 mutants are affected in vegetative development in vitro

Mutantscarryingthedeleted Sch1 werecharacterisedfordefectsthatmaylead toadecreaseinpathogenfitness.Phenotypealterationswerefirstobservedwhenthe mutantsweregrownonagarandinliquidmedia.Theradialgrowthofthe sch1 mutants wassignificantlyreducedonMMagar.RadialgrowthwassimilartoSN15onCzV8CS agar.Thisstronglysuggeststhatthe sch1 mutants areauxotrophic forcomponent(s) presentintheCzV8CSmedium.Thedeletionof Sch1 didnotaltersensitivityofthe fungustoosmoticstress.Thisisincontrasttothegna1 mutantsreportedbySolomon et al. (2004b) and hence suggesting that other Gna1 effector elements are involved in regulatingosmotolerance.

Geneticcomplementationisperformedbyintroducingafunctionalcopyofthe deleted gene to restore the wildtype phenotype in the gene knockout mutant. The quantityofprotoplastsfrom sch1-42 wasinsufficientforgenetictransformation.Itis possible that the deletion of Sch1 may have increased the sensitivity of sch1-42 to protoplastingagentandhenceresultedinprotoplastlysis.Thecongregationofcrushed sch1-42 myceliaintoasinglemassduringgrowthinMMbrothunderconstantagitation suggestsanincreaseinadhesiveproperty.Thiscouldbeduetoincreaseinabundance oralterationsinthepropertyofhydrophobins,afamilyofsmallsecretedproteinsthatis requiredforadhesion(Wosten,2001).The S. nodorum genomecontainstwopredicted hydrophobin genes (Hane, manuscript in prep. ). Mycelial congregation may also increase sch1-42 resilience to protoplasting agents. This hypothesis requires further investigation. We are currently investigating transformation methods using

Agrobacterium tumefaciens (deGroot et al. ,1998).

195 Chapter 5

5.4.3 Sch1 is not required for vegetative proliferation within wheat

Histological examination and infection assays have demonstrated that Sch1 is notrequiredforproliferationandcolonisationofthehosttissue.Hence,anunknown plant component that is present in both CzV8CS and wheat may have chemically complementedthevegetativegrowthdefectofthe sch1 mutants.

5.4.4 Disruption in pycnidial ontogeny

Thetranscriptabundanceof Sch1 ismaximalduringthelatterstageofinfection thatcoincidedwithpycnidiation.Itwasobservedthattheaveragesizeofpycnidiaof the sch1 mutantswassmallerthaninSN15.Detailedexaminationofthepycnidiawas performedtofurthercharacterisefordefectsinthe sch1 mutants.Themorphologyof melanisedcellsbetweenSN15and sch1-42 showedconsiderabledifferences;thoseof themutantwereirregularinshape.Thesecellswereobservedintheyoungpycnidial primordium by Douaiher et al. (2004). The morphologies of the pycnidial wall, subparietal and conidiogenous cell tissues of sch1-42 were remarkably different to

SN15. Cellsfrom thecell wall of sch1-42 pycnidia also showed an abnormality in vacuolation and cytoplasm distribution. This indicates that Sch1 is required for pycnidialdevelopment.In U. maydis ,thedeletionofagenealteredmicrotubule organisationthatledtotheformationofsmallvacuoles(Steinberg et al. ,1998).

Using TEM, Philipson (1989) observed that pycnidiospores from a

Stagonospora sp . were electrondense. These structures were observed in the pycnidiumofSN15butnotin sch1-42.This stronglysuggeststhat Sch1 iscriticalfor

196 Chapter 5

conidiogenesis. Genetic regulation of conidia development is welldescribed in A. nidulans (Adams et al. , 1998). AbaA is a regulatory gene required for the differentiation of conidiogenous cells (Sewall et al. , 1990). AbaA expression is not prominentinmutantscarryingdoubledeletionchitinsynthases.Thesedoublemutants showed aberrantconidiophore morphology and were severely reduced in sporulation

(Ichinomiya et al. , 2005). MedA isanotherregulatorgenerequiredforconidiophore developmentin A. nidulans (Busby et al. ,1996;Clutterbuck,1969). MedA orthologs arealsofoundinfungalpathogens.Forexample, Ren1 and Acr1 are developmental components critical for asexual spore differentiation from conidiophores of F. oxysporum and M. grisea ,respectively(Lau&Hamer,1998;Ohara et al. ,2004).

5.4.5 Sch1 is required for asexual sporulation

Pycnidiaofthe sch1 mutantsrarelyexudechirriwhichcanbeattributedtothe lackofpycnidiosporesformedwithinthepycnidium.Inotherpycnidialfungisuchas

Septoria lycopersici and Guignardia bidwellii ,tensionexertedbypycnidiosporesonthe ostiolar cells causes an opening where spores may empty out to the external environment (Harris, 1935; JanexFavre et al. , 1993). The sch1 mutants may have lackedsuchtensionduetolowsporenumbers.

Cellulardebrisassociatedwiththepycnidiosporesofthe sch1 mutantscouldbe pcynidialcavitycellsthatfailedtodifferentiateintospores.Nucleiwithinthepycnidial cavity of sch1-42 were difficult to distinguish with DAPI staining due to high fluorescence.ThiscouldbeduetothepresenceoffragmentedDNA,asymptomofcell

197 Chapter 5

death(Eastman&Barry,1992).Totestthishypothesis,TUNELstainingshouldbe usedtodetectforDNAdegradation(Gavrieli et al. ,1992)inthe sch1 mutants.

Asexual sporulation in S. nodorum isanintricateprocessandhasbeenunder intensiveinvestigations(Solomon et al. ,2004b;Solomon et al. ,2005a;Solomon et al. ,

2005b;Solomon et al. ,2006c;Solomon et al. ,2006d).Properfunctioningofsignalling pathways are critical for sporulation (Solomon et al., 2004b; Solomon et al. , 2005b;

Solomon et al. ,2006c).Furthermore,thepolyolmannitolseemstoplayamajorrolein asexual sporulation of S. nodorum (Solomon et al. , 2005a; Solomon et al. , 2006d).

However,thedeletionof Sch1 didnothaveasignificantimpactonthemannitollevelin the sch1 mutants(AppendixG).

Takencollectively,thedeletionof Sch1 resultedintheperturbationofpycnidial ontogeny that may have compromised the ability of conidiogenous cells to properly differentiateintopycnidiospores.Thelocationofaputativecorepromotersitefor Sch1 wasidentified.TissuespecificexpressionanalysisusingaGFPconstructdrivenbythe

Sch1 promoteriscurrentlybeinginvestigated.Thepurposeofthisexperimentistogain afurtherunderstandingof Sch1 regulationduringinfectionandpycnidialdevelopment.

5.4.6 Deletion of Sch1 resulted in the accumulation of the novel intracellular metabolite RT4557

Sch1 encodeaputativeredoxenzymetherefore,itwashypothesisedthatgene deletionmayresultinametabolicblockage.Hence,wesetouttoinvestigateSN15,Ect andthe sch1 mutantsforbiochemicalalterationsviaGCMSanalysiswhichledtothe

198 Chapter 5

identificationofRT4557.TheelectronfragmentationprofileofRT4557consistedofa dominant459m/zionpeak.PCIanalysisindicatedthattheparentalMWofRT4557is

474 Da. However,a 547ionm/zpeakwas observedin the electron fragmentation profileofRT4557whichcouldbeacoelutingmetabolite.

The electron fragmentation pattern of two TMSderivatised compounds possessed the dominant 459 m/z ion peak. The methyl3α7βdihydroxy6oxo5

βcholan24oateTMS(cholanoate)derivativeisoneofthetwocandidatecompounds.

Cholanoateisanintermediateofbilemetabolism.7αhydroxysteroiddehydrogenaseof

E. coli (Yoshimoto et al. ,1991)isatopfunctionalBlastPmatchtoSch1.Theenzyme isinvolvedintheoxidationofthe7 αhydroxylgroupofbileacids.Somefungipossess theabilitytohydrolysebile(Chong et al. ,1980;Johns et al. ,1982).15Hydroxy7 oxodehydroabieticacid(2TMS)isthesecondcompoundthatpossessthedominant459 m/zionpeak.PCIindicatesthattheMWofRT4557andabieticacidissimilar.Abietic acidisaditerpernoidfoundinconifersandimplicatedindefenceagainstherbivoresand microorganisms.Somefungiareabletoproducediterpernoidtypecoumpoundssuch as the mycotoxin paxilline from Penicillium paxilli (Young et al. , 2001). Both cholanoate and abietic acid differ in biological properties but possess a central core structurecomposedofconjoiningcyclohexanerings.Thissuggeststhatdifferencesin moiety groups may account for the differences in the minor electron fragmentation peaks.Adiversenumberoffungalsecondarymetabolitespossessacycliccarbonring likebackbone(Keller et al. ,2005).

199 Chapter 5

The retention index and component profile of RT4557 were established

(Appendix H). These are unique properties of a mass spectral tag (MST) used for universalidentification(Desbrosses et al. ,2005).Thisdatamaybeusefuloncemore fungalMSTsbecomeavailableforcomparisons.HighresolutionGC/GCMSwillbe usedtofurtherfractionateRT4557toidentifythe presenceofcoelutingmetabolites.

Determining the purity of the RT4557 peak and subsequent purification of the compoundarecriticalforstructuralanalysisvianuclearmagneticresonance.

5.4.7 Alterations in the extracellular metabolome of the sch1 mutants

The extracellular metabolomes of the sch1 mutants were analysed for alterations.Adistinctbrownpigmentationoftheextracellularsupernatantassociated with the sch1 mutantswasobserved.Spectrophotometricanalysisofthesupernatant produced an absorbance profile reminiscent of the gna1 mutants (Solomon et al. ,

2004b). Progress is currently underway to analyse the extracellular metabolome of

SN15 and the sch1 mutants via GCMS and liquid chromatographyultravioletmass spectrometry.Thelatterapproachwasproposedasitcaneffectivelyfractionatealarge numberoffungalsecondarymetabolites(Nielsen&Smedsgaard,2003).

5.4.8 Association between secondary metabolism and sporulation?

The relationship between secondary metabolism and fungal development has been long noted and appears to be regulated. The Gα protein FadA regulates sporulationandsterigmatocystinbiosynthesisin A. nidulans (Hicks et al. ,1997;Tag et al. , 2000). Similarly, a novel gene designated as VeA in Aspergillus parasiticus is required for sporulation, aflatoxin biosynthesis and the formation of the sclerotial

200 Chapter 5

resistant structure (Calvo et al. , 2004). An investigation should be performed to elucidate a possible link between the accumulation of RT4557 and phenotypic alterationsinthe sch1 mutants.

5.4.9 Proteomic analysis

Acomparativeanalysisoftheintracellularproteomeof sch1-42 withSN15was used to identify proteins that are altered in abundance. A notable change in the proteome profile is the large increase of another putative shortchain dehydrogenase

(SNOG_13042.1) in sch1-42 . The function of the gene encoding the protein is unknown.Theidentificationoftwoproteinsspotsthatmatchedtothesameputative nitroreductase gene indicates evidence of posttranslational modifications that potentiallyalteredtheisoelectricpropertyoftheprotein.Nitroreductasescatalysethe reductionofnitroaromaticcompoundsusingflavinmononucleotideasa(Hecht et al. ,1995).In E. coli ,nitroreductasesNfsA,BandCofE. coli reducesnitrofurazone, anantibacterialcompoundintoatoxicmutagen(Bryant et al. ,1981).Thebiological roleoffungalnitroreductasesisunknown.

5.4.10 On the accumulation and possible function of RT4557

Several hypotheses are formulated to explain the accumulation of RT4557.

Firstly, Sch1 mayparticipateinthesynthesisofametabolitetowhichRT4557isan intermediatesubstrate.Hence,thedeletionof Sch1 mayhaveresultedintheblockage ofabiochemicalpathwayresultingintheaccumulation of RT4557. The deletion of

Sch1 alsoresultedinsignificantaccumulationofproteinsthatarecodedbytheputative shortchain dehydrogenase (SNOG_13042.1) and nitroreductase (SNOG_09590.1)

201 Chapter 5

genes. Bothgenes should beinvestigatedforapossible role RT4557 accumulation.

Thishypothesisrequiresfurtherinvestigation.TheSNOG_13042.1putativeshortchain dehydrogenase isof particular interestas thegene islocatedwithinaprobable gene clustercontainingaPKS(Chapter3).SNOG_13042.1isalso Gna1 regulated(Chapter

3).

RT4557 was not observed from infected plant materials. The analysis was performed on a single infection time point correlating with pycnidiation. More samplingtimepointsrepresentingdifferentstagesofinfectionarerequiredtoestablish ifRT4557isaccumulatedduringthecourseoftheinfection. Alternatively,RT4557 maybedegradedormobilisedthroughanunknownmetabolicshuntduringinfection.

Thisrequiresfurtherinvestigation.

Secondary metabolites are known to influence fungal development (Beppu,

1992). For instance, the estrogenic mycotoxin zearalenone regulates sexual developmentin F. graminearum (Wolf&Mirocha,1977),sclerosporinisasporogenic compounds produced by the brown rot fungus Sclerotinia fruticola (Katayama &

Marumo, 1978) and cerebrosides isolated from Schizophyllum commune stimulate fruitingbodydevelopment(Kawai&Ikeda,1982).Recently,thedeletionofaputative

NRPS gene in A. brassicicola resulted in defects in sporulation (Kim et al. , 2007).

Fromthisstudy,itisspeculatedthatRT4557maybeanintermediateofapathwaythat playanimportantrolein S. nodorum development.Theisolationandidentificationof

RT4557 is critical to test these hypotheses and possibly identifying a novel fungal metabolicpathway.Furthermore,abnormalvacuolationobservedinsch1-42 pycnidial

202 Chapter 5

cellsmayberelatedtotheaccumulationofRT4557in vitro .Fungalvacuolesinvolving inthestorageofmetaboliteshavebeendocumentedelsewhere(Klionsky et al. ,1990).

5.5 Conclusion

This study has provided a unique insight into the regulation of pycnidial development and sporogenesis in S. nodorum by the G α and MAPK pathway target gene Sch1 .Furthermore,theRT4557compoundiscurrentlybeing investigated for a possible role in modulating asexual development. Exploiting Sch1 as an antifungal targetisafocalpointofresearchinourlaboratory.Inaddition,wehopethatthisstudy willstimulateresearchtofurtherunderstandthebiologyofpycnidialdevelopmentin other fungal pathogens and its requirement for the establishment of diseases. This

Chapterhasfulfilledthefourth,fifthandsixthobjectiveslistedinChapter1.

203

Chapter 6 - General discussion

204 Chapter 6

6.1 Confirmation of gene annotation via proteomics

Theestimatedhaploidassembledgenomesizeof S. nodorum is37.1Mbwhich contains over 16,000 predicted genes. Automatic gene annotation may result in erroneousgenepredictionsthatrequiremanualcurationandexperimentalevidenceto correct.Massspectrometryderiveddatacanaidin identifying novel genes, confirm predictedopenreadingframes(ORFs)andtocorrecterroneouspredictions(Mann&

Pandey, 2001). Twentyseven genes were identified in this study from LCMS/MS analysisofproteinspots.PeptideandESTdata(Hane, manuscript in prep. )wereused to refine the current gene prediction (Table 6.1). Eleven predicted ORFs were confirmed by peptide and EST coverage. Thirteen predicted ORFs were without supportingESTdatabutwerepartiallyconfirmedbypeptidecoverage.Threepredicted

ORFSwereerroneous.Intron/exonboundariesofSNOG_00848.1andSNOG_05974.1 wereinaccuratelypredictedandthestartoftheSNOG_09590.1ORFwasincorrect.In addition,LCMS/MSdataindicatedthattheFP1_B06cDNAshouldbeannotatedasa novelgenewhichwasnotinitiallypredictedbytheBroadInstitute.BlastNagainst S. nodorum excluded genomic reads indicate that G707P894FD11.T1 and

G707P830FA10.T0 matched the Grg1 cDNA sequence (Broad Inst.). LCMS/MS analysistheproteomeofthemosquito Anopheles gambiae wasusedtoassistingenome annotation(Kalume et al. ,2005).Asimilarapproachiscurrentlybeingusedtoanalyse thesolubleproteomeof S. nodorum torefinethecurrentgenomeannotation.

6.2 Relationship between protein and transcript abundance

Noncorrelationbetweenproteinandtranscriptabundanceofputativesignalling regulatedgeneswasobservedin vitro .NoncorrelationsbetweenproteinandmRNA

205 Chapter 6

69Confirmation of gene prediction via MS-derived data (Table 6.1)

Table 6.1 .ConfirmationofBroadORFpredictionusingLC MS/MSandESTcoverage.

Gene/cDNA ID Putative function Comment FP1_B06 Glucoserepressiblegene ORFencodingthiscDNAwasnotpredicted.PeptidecoverageoftheEST proteinlikeprotein indicatesthatageneshouldbeassigned. SNOG_00656.1 Vacuolartargetingprotein PeptidecoverageconfirmedORFpresence.Twopredictedintronsnot confirmed. SNOG_00848.1 Peptidylprolylisomerase PeptidecoverageandESTalignmentconfirmedORFpresence.Two predictedintronsnotconfirmedbypeptidecoverage.ESTsequencesindicate thatthefirst15basesofthepredictedintrononearetranscribed. SNOG_01569.1 Cellwallglucanase PeptidecoverageconfirmedORFpresence.Threepredictedintronsnot confirmed. SNOG_05918.1 Unknownprotein Singleintronconfirmedbypeptidecoverage. SNOG_05974.1 Malatedehydrogenase PeptidecoverageandESTalignmentsconfirmedORFpresence.First13 basesofexonthreeshouldbepartofintrontwo. SNOG_06180.1 Unknownprotein PeptidecoverageconfirmedORFpresence.Weakcoverage. SNOG_06491.1 Serineproteaseprecursor PeptidecoverageconfirmedORFpresence.Firstoffourpredictedintrons confirmed. SNOG_06492.1 Subtilisinlikeprotease PeptidecoverageandESTalignmentsconfirmedORFprediction. SNOG_07541.1 ProteasomecomponentPre8 PeptidecoverageconfirmedORFpresence.Firstthreeoffourpredicted intronsconfirmed. SNOG_07604.1 Glutathionetransferase2 PeptidecoverageandESTalignmentsconfirmedORFprediction. SNOG_08052.1 Unknownprotein PeptidecoverageconfirmedORFpresence.Singlepredictedintronnot confirmed. SNOG_08282.1 Shortchaindehydrogenase PeptidecoverageandESTalignmentsconfirmedORFprediction. SNOG_08775.1 HADsuperfamilyhydrolase PeptidecoverageandESTalignmentsconfirmedORFprediction. SNOG_09590.1 Nitroreductasefamilyprotein PeptideandESTcoverageindicatesthatthefirst105predictaminoacids shouldbeexcludedfromtheORF. SNOG_10217.1 Shortchaindehydrogenase PeptidecoverageandESTalignmentsconfirmedORFprediction. SNOG_10685.1 Unknownprotein PeptidecoverageconfirmedORFpresence.Twopredictedintronsnot confirmed. SNOG_11078.1 Unknownproteinwithan PeptidecoverageconfirmedORFpresence.Singlepredictedintron NmrAlikedomain confirmed. SNOG_11081.1 CipCprotein PeptidecoverageandESTalignmentsconfirmedORFprediction. SNOG_11441.1 3dehydroquinate PeptidecoverageandESTalignmentsconfirmedORFprediction. dehydratase SNOG_12730.1 Unknownprotein PeptidecoverageconfirmedORFpresence.Singlepredictedintron confirmed. SNOG_13042.1 Shortchaindehydrogenase PeptidecoverageandESTalignmentsconfirmedORFprediction. SNOG_13504.1 Unknownprotein PeptidecoverageandESTalignmentsconfirmedORFprediction. SNOG_14370.1 Tyrosinase/oxidase PeptidecoverageandESTalignmentsconfirmedORFprediction. SNOG_15451.1 Acetylxylanesterase PeptidecoverageconfirmedORFpresence. SNOG_15488.1 Mannitoldehydrogenase PeptidecoverageandESTalignmentsconfirmedORFprediction. SNOG_16063.1 RNaseT1 Singleintronconfirmedbypeptidecoverage.

206 Chapter 6

abundance have been previously observed from studies of gene expression in hepatocytes,neutrophilsand(Anderson&Seilhamer,1997;Fessler et al. ,2002;

Gygi et al. ,1999b).Thismaybeattributedtoposttranscriptionalregulation[reviewed byKozak(2005)andYaman et al. (2003)],posttranslationalmodifications[reviewed byMann&Jensen(2003)],subcellularlocalisationandmRNAstability[reviewedby

Newbury(2006)].

6.3 Putative gene clusters in S. nodorum

Chapters3and4haveidentifiedseveralsignallingeffectorgenesthatmaybe associated in probable secondary metabolism gene clusters. In A. nidulans , the expression of secondary metabolism gene clusters are regulated through epigenetic controlbytheLaeAprotein(Bok&Keller,2004). S. nodorum possessedanapparent orthologof LaeA (SNOG_11365.1).Regulationofsecondarymetabolitebiosynthesis infilamentousfungibysignaltransductionpathwayshasalsobeendescribed.Using

SSH, Gronover et al. (2004) has identified putative secondary metabolism genes

(polyketide synthase, two cytochrome P450 monooxygenases and averantin oxidoreductase) as effectors of Bcg1 signalling. One of the cytochrome P450 monooxygenases plays a role in pathogenicity and botrydial toxin production in B. cinerea (Siewers et al. ,2005).In A. nidulans , the influence of G α proteinmediated signallingontheproductionoftoxicsecondarymetaboliteincludes FadA , a negative regulatorofsterigmatocystinbiosynthesis(Hicks et al. ,1997).ForMAPKsignallingin

C. zeae-maydis , the inactivation of aMAPKKK gene Czk3 resulted in mutants with abolishedcercosporinproductionandreducedpathogenicity(Gafur et al. ,1998).

207 Chapter 6

Transcriptomics and metabolomics are currently being used to complement proteomicstofurtherprovideaphysiologicalinsightintoheterotrimericGproteinand

MAPKsignallinginthepathogenicityof S. nodorum .Gasandliquidchromatography separationbased mass spectrometry are being used to identify changes in the metabolomeofsignallingmutants(Solomon, personal communications ).Customgene arraysarebeingconstructedfrominformationgeneratedbypredictedgenesfromthe S. nodorum genomesequence(IpCho, personal communications ).Thiswillprovidean insightintotheregulationofgeneexpressionbyGna1 and Mak2 .

6.4 Targeted deletion of other signalling effector genes

Inadditionto Sch1 ,othergenesfromtheproteomicstudywereanalysedforther potential role in pathogenicity by reverse genetics. CipC , putative shortchain dehydrogenasegenesSch2 and Sch3 werechosenforgeneknockoutanalysisbasedon twocriterialistedbelow;

1. Correlationbetweenproteinandtranscriptabundances.

2. Singlegenetoproteinspotmatch.

The deletion of CipC did not alter pycnidiation and virulence of the fungus

(AppendixIandJ).PCRandSouthernanalysisarecurrentlybeingusedtoscreenfor potential sch2 mutants (Appendix K and L). A third Mak2 regulated shortchain dehydrogenasegene Sch3(AppendixMandN)hasalsobeenshowntobedispensible for asexual sporulation and virulence on wheat. The putative Sch1 regulated nitroreductasegene( Nrd1 )wassubjectedtoreversegeneticanalysisduetoanincrease

208 Chapter 6

in protein abundance in sch1-42 (Appendix O and P). No changes in asexual sporulationandvirulencewereobservedin nrd1 mutants. Sch2 and Nrd1 mayplaya roleintheaccumulationofRT4557.Doubledeletionof Sch1 /Sch2 and Sch1 /Nrd1 are required to test this hypothesis. This is the first record of a secondary metabolite producedby S. nodorum .

6.5 Potential antifungal targets

The economic importance of S. nodorum has instigated the need for the developmentofaneffectivepathogencontrolstrategy.Hence,asolidunderstandingof thefungal infection process is key for the development of crop protection strategies suchasfungicidediscovery,biologicalcontrolandtheidentificationofresistancegenes inwheattotargetweaknessesinfungalmetabolism(Dancer et al. ,1999;Murphy et al. ,

1999;VanGinkel&Rajaram,1999).

Among the known targets of existing fungicides are cell wall biosynthesis, membranefunction,nuclearprocesses,biosynthesis,oxidativephosphorylation andproteinsynthesis(Hewitt,1998).Recentevidencethatsuggeststhatfungalsignal transduction pathways are involved in fungicide tolerance and can be exploited for fungicide development (Izumitsu et al. , 2007; Kojima et al. , 2004; Mehrabi et al. ,

2006b;Ramesh et al. ,2001).Proteomicanalysishasledtotheidentificationofputative signalling effectors in S. nodorum . Snp3 and a serine protease precursor are major

Gna1 regulatedproteases,theformerisexpressedduringinfection.Numerousstudies haveindicatedthatproteaseinhibitorscaninhibitfungalgrowth.Forexample,aserine protease/trypsin inhibitor zeamatin (SchimolerO'Rourke et al. , 2001) and a cysteine

209 Chapter 6

proteaseinhibitorisolatedfrompearlmillet(Joshi et al. ,1998;Joshi et al. ,1999)are inhibitorytofungalgrowthandcanbeconsideredasanoptionforplanttransgenicsto conferfungaldiseaseresistance.

Promoting the accumulation of a toxic biochemical intermediate within the fungus can be considered as another form of antifungal control. The use of fungal secondarymetabolitesascontrolagentsthatlimitfungalgrowthhasbeenproposedby

Thines et al. (2004). For example, azolebased fungicides interfere with ergosterol biosynthesis. This causes the accumulation of ergosterol biosynthesis intermediates

(Vanden Bossche, 1985) which is toxic to the fungus (Debieu et al. , 1998). The unknown metabolite RT4557 may be investigated for antagonistic properties on S. nodorum .TheidentificationandisolationofRT4557isessentialtotestthishypothesis.

Sch1encodesaputativeshortchaindehydrogenase.Membersofthisfamilyare regardedaspotentialtargetsforbiotechnologicalapplications(Oppermann et al. ,2003).

Forexample,melaninbiosyntheticenzymestriandtetrahydroxynaphthalenereductases of M. grisea are known fungicide targets (Liao et al. , 2001; Thompson et al. , 1997;

Thompson et al. ,2000).TheidentificationoftheSch1naturalsubstrateiscriticalfor formulating analoguecompounds with antagonistic properties. This has fulfilled the finalprojectobjectivedescribedinChapter1.

6.6 Fungal signal transduction and proteomics

The Broadannotation of S. nodorum genome resulted in a prediction of over

16,000putativegenesandhashelpedtofacilitate identification ofsignallingeffector

210 Chapter 6

proteinsinthisstudyvia2Delectrophoresis.Thishasledtotheidentificationofthe

Sch1 gene that plays a major role in sporulation. This section will provide a brief discussiononexperimentsthatcouldbeusedtofurtherfacilitatetheidentificationof signallingeffectorsin S. nodorum .

6.6.1 Y2H and tandem affinity purification (TAP)

Interactomicsisconcernedwithallphysicalproteinproteininteractionsthatcan takeplacewithinacell(Cusick et al. ,2005).TheY2Hmethodwasfirstreportedby

Fields&Song(1989)asanovelmethodtostudyproteinprotein interactions. This approachwasusedbyKulkarni&Dean(2004)toidentifyproteinsthatinteractwith

Mac1of M. grisea suchastheMmk2MAPKK(Zhao et al. ,2005).Similarly,Park et al. (2006)usedY2Htoidentifycomponentsofthe Pmk1 MAPKpathwayinM. grisea

(Chapter 1). TAP is developed to identify protein complexes in vivo without prior knowledgeofthecomplexcomposition(Rigaut et al. ,1999).Thetechniqueinvolves the introduction of a tagged protein into the organism of interest to allow native interactions. The protein complex can then be isolated and subjected to downstream identification of the individual components. TAP has yet to be implemented for signalling studies in plant pathogenic fungus but it has been used in yeast to study signalling interactions (MartinYken et al. , 2003). Results from Chapters 3 and 4 suggestevidenceofcrosssignallingbetweenthe Gna1 and Mak2 pathways.Thepoint ofcrosssignallingofbothsignaltransductionpathwaysisnotknown.Y2H,TAPand reversegeneticscouldbeusedtoidentifythepointcrosssignallingbetweenthe Gna1 and Mak2 pathways as well identifying other interacting components that may be criticalforpathogenicity.

211 Chapter 6

6.6.2 Phosphoproteomics

Itisestimatedthatproteinphosphorylationaffectsupto30%oftheproteome

(Cohen,2000).SincetheheterotrimericGproteinandMAPKpathwaysrequireaseries of signal amplification via phosphorylation to relay messages within the cell, a disturbanceinthesesignallingcascadescanalterthephosphoproteomein S. nodorum .

Phosphoproteomicsisanemergingfieldofstudiesinvolvingthecomprehensivestudy of protein phosphorylation (Kersten et al. , 2006). Phosphorylated proteins can be enrichedthroughtheuseofimmobilisedmetalaffinitychromatography(Ficarro et al. ,

2002)andmanipulatedthereafter(Nuhse et al. ,2003).2Delectrophoresiscanbeused to separate phosphoproteins which can be visualised via ProQ Diamond staining

(Martin et al. ,2003).Alternatively,phosphoproteinscanbedetectedimmunologically or via 32 PATPradiolabelling. Theidentification of Gna1 and Mak2 phosphoprotein effectorscanenablepathogenicitystudiesviareversegenetics.

6.6.3 Sub-cellular proteomics

Methodstoanalysetheextracellularandintracellularproteomeof S. nodorum strains have been established in this study. A protocol describing the extraction of proteins anchored to the fungal cell wall have been established on the cellulolytic filamentousfungusTrichoderma reesei (Lim et al. ,2001).Inaddition,theisolationof proteinsfromcellularsuchasmitochondriaforproteomicanalysishasbeen demonstratedinthebiocontrolfungus Trichoderma harzianum and N. crassa (Grinyer et al. ,2004;Schmitt et al. ,2006).TheseprotocolscanbeadaptedtoelucidateGna1 and Mak2 regulationinothersubcellularcompartments.

212 Chapter 6

6.7 Overall summary

Proteomic analysis has led to the identification of Gna1 and Mak2 effector proteinswithputativerolesinnucleotidedegradation,cellwalldegradation,proteolysis, protein folding, and quinate metabolism. A number of putative Gna1 and Mak2 regulated genes may be associated in potential gene clusters. From this, Sch1 was identifiedasagenecoregulatedby Gna1 and Mak2 .Thedeletionof Sch1 resultedin the reduction vegetative growth in vitro . Pycnidial ontogeny was perturbed which resultedinthereductioninasexualsporulationofthe sch1 mutants.Alterationsinthe proteomeandmetabolomewereobservedinthe sch1 mutants.RT4557isanunknown compoundthataccumulatedinthe sch1 mutantsandstudiesareunderwaytoelucidate thestructureofthemetaboliteandtestforantifungalproperties.Furthermore,Sch1is currently being investigated as a potential target for the development of antifungal compounds.Finally,theavailabilityofthe S. nodorum genomesequenceandrecent advances in the development of molecular tools willenable a potentialstudy ofthe interactomeandphosphoproteomein S. nodorum foraroleinpathogenicity.ThisPhD candidaturehasfulfilledalltheprojectobjectivesdescribedinChapter1.

213

References

214 References

Adachi, K. and Hamer, J. E. (1998). Divergent cAMP signalingpathways regulate growthandpathogenesisinthericeblastfungus Magnaporthe grisea . Plant Cell 10 , 13611374. Adams, T. H., Wieser, J. K. and Yu, J. H. (1998). Asexualsporulationin Aspergillus nidulans . Microbiol Mol Biol Rev 62 ,3554. Addis, M. F., Rappelli, P., Cappuccinelli, P. and Fiori, P. L. (1997).Extracellular release by Trichomonas vaginalis of a NADP + dependent malic enzyme involved in pathogenicity. Microb Pathog 23 ,5561. Afshar, K., Willard, F. S., Colombo, K., Johnston, C. A., McCudden, C. R., Siderovski, D. P. and Gonczy, P. (2004). RIC8 isrequired for GPR1/2dependent Gαfunctionduringasymmetricdivisionof C. elegans embryos. Cell 119 ,219230. Aimi, T., Kano, S., Wang, Q. and Morinaga, T. (2001). Molecularcloningofthree genes encoding G protein alpha subunits in the white root rot fungus, Rosellinia necatrix . Biosci Biotechnol Biochem 65 ,678682. Aljanabi, S. M. and Martinez, I. (1997). Universalandrapidsaltextractionofhigh qualitygenomicDNAforPCRbasedtechniques. Nucleic Acids Res 25 ,46924693. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997). GappedBLASTandPSIBLAST:anewgenerationofprotein databasesearchprograms. Nucleic Acids Res 25 ,33893402. Anderson, L. and Seilhamer, J. (1997). AcomparisonofselectedmRNAandprotein abundancesinhumanliver. Electrophoresis 18 ,533537. Andrews, D. L., Egan, J. D., Mayorga, M. E. and Gold, S. E. (2000). The Ustilago maydis ubc4 and ubc5 genesencodemembersofaMAPkinasecascaderequired for filamentousgrowth. Mol Plant-Microbe Interact 13 ,781786. Andrews, D. L., Garcia-Pedrajas, M. D. and Gold, S. E. (2004). Fungaldimorphism regulated gene expression in Ustilago maydis : I. Filament upregulated genes. Mol Plant Pathol 5,281293. Apel-Birkhold, P. C. and Walton, J. D. (1996). Cloning,disruption,andexpressionof two endoβ1, 4xylanase genes, XYL2 and XYL3 , from Cochliobolus carbonum . Appl Environ Microbiol 62 ,41294135. Arseniuk, E., Goral, T. and Scharen, A. L. (1998). Seasonal patterns of spore dispersalof Phaeosphaeria spp.and Stagonospora spp. Plant Dis 82 ,187194. Ashwell, J. D. (2006). The many paths to p38 mitogenactivated protein kinase activationintheimmunesystem. Nat Rev Immunol 6,532540.

215 References

Baasiri, R. A., Lu, X., Rowley, P. S., Turner, G. E. and Borkovich, K. A. (1997). Overlapping functions for two G protein α subunits in Neurospora crassa . Genetics 147 ,137145. Bagga, S. and Straney, D. (2000). Modulation of cAMP and phosphodiesterase activitybyflavanoidswhichinducesporegerminationof Nectria haematococca MOIV (Fusarium solani ). Physiol Mol Plant Pathol 56 ,5161. Bahn, Y. S., Xue, C., Idnurm, A., Rutherford, J. C., Heitman, J. and Cardenas, M. E. (2007). Sensingtheenvironment:lessonsfromfungi. Nat Rev Microbiol 5,5769. Baidyaroy, D., Brosch, G., Ahn, J. H., Graessle, S., Wegener, S., Tonukari, N. J., Caballero, O., Loidl, P. and Walton, J. D. (2001). A gene related to yeast HOS2 histone deacetylase affects extracellular depolymerase expression and virulence in a plantpathogenicfungus. Plant Cell 13 ,16091624. Bailey, A., Mueller, E. and Bowyer, P. (2000). Ornithine decarboxylase of Stagonospora (Septoria ) nodorum isrequiredforvirulencetowardwheat. J Biol Chem 275 ,1424214247. Bailey, K. L., Gossen, B. D., Lafond, G. R., Watson, P. R. and Derksen, D. A. (2001). Effectoftillageandcroprotationonrootandfoliardiseasesofwheatandpeain Saskatchewanfrom1991to1998:Univariateandmultivariateanalyses. Can J Plant Sci 81 ,789803. Banuett, F. and Herskowitz, I. (1994). Identification of fuz7 , a Ustilago maydis MEK/MAPKKhomologrequiredfor alocusdependentand alocusindependentsteps inthefungallifecycle. Gene Dev 8,13671378. Bates, P. A. and Sternberg, M. J. (1999). ModelbuildingbycomparisonatCASP3: usingexpertknowledgeandcomputerautomation. Proteins Suppl 3 ,4754. Bates, P. A., Kelley, L. A., MacCallum, R. M. and Sternberg, M. J. (2001). Enhancement of protein modeling by human intervention in applying the automatic programs3DJIGSAWand3DPSSM. Proteins Suppl 5 ,3946. Bathgate, J. A. and Loughman, R. (2001). Ascosporesareasourceofinoculumof Phaeosphaeria nodorum , P. avenaria f.sp avenaria and Mycosphaerella graminicola in WesternAustralia. Aust Plant Pathol 30 ,317322. Beckerman, J. L. and Ebbole, D. J. (1996). MPG1 , a gene encoding a fungal hydrophobin of Magnaporthe grisea , is involved in surface recognition. Mol Plant- Microbe Interact 9,450456. Belien, T., Van Campenhout, S., Robben, J. and Volckaert, G. (2006). Microbial endoxylanases:effectiveweaponstobreachtheplantcellwallbarrieror,rather,triggers ofplantdefensesystems? Mol Plant-Microbe Interact 19 ,10721081.

216 References

Bencina, M., Panneman, H., Ruijter, G. J., Legisa, M. and Visser, J. (1997). Characterizationandoverexpressionofthe Aspergillus niger geneencodingthecAMP dependentproteinkinasecatalyticsubunit. Microbiol 143 ,12111220. Bendtsen, J. D., Nielsen, H., von Heijne, G. and Brunak, S. (2004). Improved predictionofsignalpeptides:SignalP3.0. J Mol Biol 340 ,783795. Benedikz, P. W., Mappledoram, C. J. and Scott, P. R. (1981). Alaboratorytechnique forscreeningcerealsforresistanceto Septoria nodorum usingdetachedseedlingleaves. Trans Br Mycol Soc 77 ,667668. Beppu, T. (1992). Secondary metabolites as chemical signals for cellular differentiation. Gene 115 ,159165. Berg, K. J., Boon, J. J., Pastorova, I. I. and Spetter, L. F. (2000). Massspectrometric methodology for the analysis of highly oxidized diterpenoid acids in Old Master paintings. J Mass Spectrom 35 ,512533. Berridge, M. J. (1993). Inositoltrisphosphateandcalciumsignalling. Nature 361 ,315 325. Bhathal, J. S., Loughman, R. and Speijers, J. (2003). Yieldreductioninwheatin relationtoleafdiseasefromyellow(tan)spotandseptorianodorumblotch. Eur J Plant Pathol 109 ,435443. Bindschedler, L. V., Sanchez, P., Dunn, S., Mikan, J., Thangavelu, M., Clarkson, J. M. and Cooper, R. M. (2003). Deletion of the SNP1 trypsin protease from Stagonospora nodorum reveals another major protease expressed during infection. Fungal Genet Biol 38 ,4353. Bindslev, L., Kershaw, M. J., Talbot, N. J. and Oliver, R. P. (2001). Complementationofthe Magnaporthe grisea cpkA mutationbythe Blumeria graminis PKAc gene: functional genetic analysis of an obligate plant pathogen. Mol Plant- Microbe Interact 14 ,13681375. Birnbaumer, L. (1992). ReceptortoeffectorsignalingthroughGproteins:Rolesfor βγ dimersaswellas αsubunits. Cell 71 ,10691072. Blakeman, J. P. (1975). Germinationof Botrytis cinerea conidia in vitro inrelationto nutrientconditionsonleafsurface. Trans Br Mycol Soc 65 ,239247. Blumer, K. J. and Thorner, J. (1991). ReceptorGprotein signaling in yeast. Annu Rev Physiol 53 ,3757. Bohmer, M., Colby, T., Bohmer, C., Brautigam, A., Schmidt, J. and Bolker, M. (2007). Proteomic analysis of dimorphic transition in the phytopathogenic fungus Ustilago maydis . Proteomics 7,675685.

217 References

Bok, J. W. and Keller, N. P. (2004). LaeA,aregulatorofsecondarymetabolismin Aspergillus spp . Eukaryot Cell 3,527535. Bolker, M. (1998). Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet Biol 25 ,143156. Borkovich, K. A. (1996). SignaltransductionpathwaysandheterotrimericGproteins. In The Mycota ,pp.211233.EditedbyR.Brambl&G.A.Marzluf.Berlin:Springer Verlag. Bortfeld, M., Auffarth, K., Kahmann, R. and Basse, C. W. (2004). The Ustilago maydis a2 matingtype locus genes lga2 and rga2 compromise pathogenicity in the absenceofthemitochondrialp32familyproteinMrb1. Plant Cell 16 ,22332248. Bourret, R. B., Borkovich, K. A. and Simon, M. I. (1991). Signal transduction pathwaysinvolvingproteinphosphorylationinprokaryotes. Annu Rev Biochem 60 ,401 441. Brachmann, A., Weinzierl, G., Kamper, J. and Kahmann, R. (2001). Identification ofgenesinthebW/bEregulatorycascadein Ustilago maydis . Mol Microbiol 42 ,1047 1063. Brachmann, A., Schirawski, J., Muller, P. and Kahmann, R. (2003). An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis . EMBO J 22 ,21992210. Brennan, J. P. and Murray, J. P. (1998). Economic Importance of Wheat Diseases in Australia .WaggaWagga,Australia:NSWAgriculture. Brewster, J. L., de Valoir, T., Dwyer, N. D., Winter, E. and Gustin, M. C. (1993). Anosmosensingsignaltransductionpathwayinyeast. Science 259 ,17601763. Brot, N. and Weissbach, H. (1983). Biochemistryandphysiologicalroleofmethionine sulfoxideresiduesinproteins. Arch Biochem Biophys 223 ,271281. Brown, D. W., Yu, J. H., Kelkar, H. S., Fernandes, M., Nesbitt, T. C., Keller, N. P., Adams, T. H. and Leonard, T. J. (1996). Twentyfivecoregulatedtranscriptsdefinea sterigmatocystin gene cluster in Aspergillus nidulans . Proc Natl Acad Sci USA 93 , 14181422. Brown, D. W., Dyer, R. B., McCormick, S. P., Kendra, D. F. and Plattner, R. D. (2004). FunctionaldemarcationoftheFusariumcoretrichothecenegenecluster. Fungal Genet Biol 41 ,454462. Bruno, K. S., Tenjo, F., Li, L., Hamer, J. E. and Xu, J. R. (2004). Cellular localizationandroleofkinaseactivityof PMK1 in Magnaporthe grisea . Eukaryot Cell 3,15251532.

218 References

Bruzzese, E. and Hasan, S. (1983). Awholeleafclearingandstainingtechniquefor hostspecificitystudiesofrustfungi. Plant Pathol 32 ,335338. Bryant, D. W., McCalla, D. R., Leeksma, M. and Laneuville, P. (1981). Type I nitroreductasesof Escherichia coli . Can J Microbiol 27 ,8186. Busby, T. M., Miller, K. Y. and Miller, B. L. (1996). Suppressionandenhancementof the Aspergillus nidulans medusa mutationbyaltereddosageofthe bristle and stunted genes. Genetics 143 ,155163. Calvo, A. M., Bok, J., Brooks, W. and Keller, N. P. (2004). veA isrequiredfortoxin andsclerotialproductionin Aspergillus parasiticus . Appl Environ Microbiol 70 ,4733 4739. Carlson, M. (1999). Glucoserepressioninyeast. Curr Opin Microbiol 2,202207. Catlett, N. L., Yoder, O. C. and Turgeon, B. G. (2003). Wholegenomeanalysisof twocomponentsignaltransductiongenesinfungalpathogens. Eukaryot Cell 2,1151 1161. Celis, J. E. and Gromov, P. (1999). 2Dproteinelectrophoresis:canitbeperfected? Curr Opin Biotechnol 10 ,1621. Chaky, J., Anderson, K., Moss, M. and Vaillancourt, L. (2001). Surface hydrophobicity and surface rigidity induce spore germination in Colletotrichum graminicola . Phytopathol 91 ,558564. Chen, B., Gao, S., Choi, G. H. and Nuss, D. L. (1996). Extensivealterationoffungal gene transcriptaccumulation and elevation of Gproteinregulated cAMP levels by a virulenceattenuatinghypovirus. Proc Natl Acad Sci USA 93 ,79968000. Chen, C., Harel, A., Gorovoits, R., Yarden, O. and Dickman, M. B. (2004). MAPK regulationofsclerotialdevelopmentin Sclerotinia sclerotiorum islinkedwithpHand cAMPsensing. Mol Plant-Microbe Interact 17 ,404413. Choi, E. S., Chung, H. J., Kim, M. J., Park, S. M., Cha, B. J., Yang, M. S. and Kim, D. H. (2005). CharacterizationoftheERKhomologueCpMK2fromthechestnutblight fungus Cryphonectria parasitica . Microbiol 151 ,13491358. Choi, W. and Dean, R. A. (1997). Theadenylatecyclasegene MAC1 of Magnaporthe grisea controlsappressoriumformationandotheraspectsofgrowthanddevelopment. Plant Cell 9,19731983. Chong, R., Maddox, I. S., Johns, M. R. and Wagenaar, A. G. (1980). Hydrolysisof bileacidconjugatesbyselectedfungi. Appl Environ Microbiol 9,317323. Choquer, M., Dekkers, K. L., Chen, H. Q., Cao, L., Ueng, P. P., Daub, M. E. and Chung, K. R. (2005). The CTB1 geneencodingafungalpolyketidesynthaseisrequired

219 References

forcercosporinbiosynthesisandfungalvirulenceof Cercospora nicotianae . Mol Plant- Microbe Interact 18 ,468476. Choquer, M., Lee, M. H., Bau, H. J. and Chung, K. R. (2007). DeletionofaMFS transporterlikegenein Cercospora nicotianae reducescercosporintoxinaccumulation andfungalvirulence. FEBS Lett 581 ,489494. Chung, H. J., Kim, M. J., Lim, J. Y., Park, S. M., Cha, B. J., Kim, Y. H., Yang, M. S. and Kim, D. H. (2006). A gene encoding phosphatidyl inositolspecific phospholipaseCfrom Cryphonectria parasitica modulatesthe lac1 expression. Fungal Genet Biol 43 ,326336. Clutterbuck, A. J. (1969). A mutational analysis of conidial development in Aspergillus nidulans . Genetics 63 ,317327. Cohen, P. (2000). Theregulationofproteinfunctionbymultisitephosphorylationa 25yearupdate. Trends Biochem Sci 25 ,596601. Conesa, A., Punt, P. J., van Luijk, N. and van den Hondel, C. A. M. J. J. (2001). The secretionpathway infilamentousfungi: A biotechnological view. Fungal Genet Biol 33 ,155171. Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M. and Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functionalgenomicsresearch. Bioinformatics 21 ,36743676. Cooley, R. N., Shaw, R. K., Franklin, F. C. H. and Caten, C. E. (1988). Transformation of the phytopathogenic fungus Septoria nodorum to hygromycin C resistance. Curr Genet 13 ,383289. Cotton, P., Kasza, Z., Bruel, C., Rascle, C. and Fevre, M. (2003). Ambient pH controls the expression of endopolygalacturonase genes in the necrotrophic fungus Sclerotinia sclerotiorum . FEMS Microbiol Lett 227 ,163169. Cousin, A., Mehrabi, R., Guilleroux, M., Dufresne, M., Van der Lee, T., Waalwijk, C., Langin, T. and Kema, G. H. J. (2006). TheMAPkinaseencodinggene MgFus3 of the nonappressorium phytopathogen Mycosphaerella graminicola is required for penetrationand in vitro pycnidiaformation. Mol Plant Pathol 7,269278. Coux, O., Tanaka, K. and Goldberg, A. L. (1996). Structureandfunctionsofthe20S and26Sproteasomes. Annu Rev Biochem 65 ,801847. Craven, K. D., Velez, E. and Mitchell, T. K. (2006). Anastomosis and vegetative compatibilityinthefungalpathogen, Alternaria brassicicola . Phytopathol 96 ,S27. Cruzalegui, F. H. and Bading, H. (2000). Calciumregulatedproteinkinasecascades andtheirtranscriptionfactortargets. Cell Mol Life Sci 57 ,402410.

220 References

Cunfer, B. M. and Ueng, P. P. (1999). TaxonomyandidentificationofSeptoriaand Stagonosporaspeciesonsmallgraincereals. Annu Rev Phytopathol 37 ,267284. Cusick, M. E., Klitgord, N., Vidal, M. and Hill, D. E. (2005). Interactome:gateway intosystemsbiology. Hum Mol Genet 14 Spec No. 2 ,R171181. Dancer, J., Daniels, A., Cooley, N. and Forster, S. (1999). Septoria tritici and Stagonospora nodorum as model pathogens for fungicide discovery. In Septoria on Cereals: A Study of Pathosystems ,pp.316331.EditedbyJ.A.Lucas,P.Bowyer&A. M.Anderson.Oxon,UK:CABIPublishing. Dangi, S., Chen, F. M. and Shapiro, P. (2006). Activation of extracellular signal regulatedkinase(ERK)inG2phasedelaysmitoticentrythroughp21CIP1. Cell Prolif 39 ,261279. Dawe, A. L. and Nuss, D. L. (2001). Hypoviruses and chestnut blight: exploiting virusestounderstandandmodulatefungalpathogenesis. Annu Rev Genet 35 ,129. Dawe, A. L., Segers, G. C., Allen, T. D., McMains, V. C. and Nuss, D. L. (2004). Microarray analysis of Cryphonectria parasitica G α and G βγ signalling pathways revealsextensivemodulationbyhypovirusinfection. Microbiol 150 ,40334043. de Groot, M. J., Bundock, P., Hooykaas, P. J. and Beijersbergen, A. G. (1998). Agrobacterium tumefaciens mediated transformation of filamentous fungi. Nat Biotechnol 16 ,839842. de Vries, R. P. (2003). Regulation of Aspergillus genes encoding plant cell wall polysaccharidedegradingenzymes;relevanceforindustrialproduction. Appl Microbiol Biotechnol 61 ,1020. Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., Thon, M., Kulkarni, R., Xu, J. R., Pan, H., Read, N. D., Lee, Y. H., Carbone, I., Brown, D., Oh, Y. Y., Donofrio, N., Jeong, J. S., Soanes, D. M., Djonovic, S., Kolomiets, E., Rehmeyer, C., Li, W., Harding, M., Kim, S., Lebrun, M. H., Bohnert, H., Coughlan, S., Butler, J., Calvo, S., Ma, L. J., Nicol, R., Purcell, S., Nusbaum, C., Galagan, J. E. and Birren, B. W. (2005). Thegenomesequenceofthe riceblastfungus Magnaporthe grisea . Nature 434 ,980986. Debieu, D., Bach, J., Lasseron, A., Malosse, C. and Leroux, P. (1998). Effects of sterol biosynthesis inhibitor fungicides in the phytopathogenic fungus, Nectria haematococca :Ergosteroldepletionversusprecursororabnormalsterolaccumulation asthemechanismoffungitoxicity. Pestic Sci 54 ,157167. Dekkers, K. L., You, B. J., Gowda, V. S., Liao, H. L., Lee, M. H., Bau, H. J., Ueng, P. P. and Chung, K. R. (2006). The Cercospora nicotianae gene encoding dual o methyltransferaseandFADdependentmonooxygenasedomains mediates cercosporin toxinbiosynthesis. Fungal Genet Biol 44 ,444454.

221 References

Desbrosses, G. G., Kopka, J. and Udvardi, M. K. (2005). Lotus japonicus metabolic profiling. Development of gas chromatographymass spectrometry resources for the studyofplantmicrobeinteractions. Plant Physiol 137 ,13021318. DeZwaan, T. M., Carroll, A. M., Valent, B. and Sweigard, J. A. (1999). Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11 , 20132030. Di Pietro, A., Garcia-MacEira, F. I., Meglecz, E. and Roncero, M. I. (2001). AMAP kinaseofthevascularwiltfungus Fusarium oxysporum isessentialforrootpenetration andpathogenesis. Mol Microbiol 39 ,11401152. Dixon, K. P., Xu, J. R., Smirnoff, N. and Talbot, N. J. (1999). Independentsignaling pathways regulate cellular turgor during hyperosmotic stress and appressorium mediatedplantinfectionby Magnaporthe grisea . Plant Cell 11 ,20452058. Doehlemann, G., Berndt, P. and Hahn, M. (2006). Different signalling pathways involving a G α protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Mol Microbiol 59 ,821835. Dohlman, H. G. and Thorner, J. W. (2001). RegulationofGproteininitiatedsignal transductioninyeast:paradigmsandprinciples. Annu Rev Biochem 70 ,703754. Douaiher, M. N., Halama, R. and Janex-Favre, M. C. (2004). The ontogeny of Stagonospora nodorum pycnidiainculture. Sydowia 56 ,3950. Dufresne, M. and Osbourn, A. E. (2001). Definition of tissuespecific and general requirements for plant infection in a phytopathogenic fungus. Mol Plant-Microbe Interact 14 ,300307. Durrenberger, F., Wong, K. and Kronstad, J. W. (1998). IdentificationofacAMP dependentproteinkinasecatalyticsubunitrequiredforvirulenceandmorphogenesisin Ustilago maydis . Proc Natl Acad Sci USA 95 ,56845689. Durrenberger, F., Laidlaw, R. D. and Kronstad, J. W. (2001). The hgl1 gene is required for dimorphism and teliospore formation in the fungal pathogen Ustilago maydis . Mol Microbiol 41 ,337348. Eastman, A. and Barry, M. A. (1992). TheoriginsofDNAbreaks:aconsequenceof DNAdamage,DNArepair,orapoptosis? Cancer Invest 10 ,229240. Eichhorn, H., Lessing, F., Winterberg, B., Schirawski, J., Kamper, J., Muller, P. and Kahmann, R. (2006). Aferroxidation/permeationironuptakesystemIsrequired forvirulencein Ustilago maydis . Plant Cell 18 ,33323345. Eliahu, N., Igbaria, A., Rose, M. S., Horwitz, B. A. and Lev, S. (2007). Melanin biosynthesis in the maize pathogen Cochliobolus heterostrophus depends on two

222 References

mitogenactivatedproteinkinases,Chk1andMps1,andthetranscriptionFactorCmr1. Eukaryot Cell 6,421429. Elion, E. A., Grisafi, P. L. and Fink, G. R. (1990). FUS3 encodesacdc2+/CDC28 relatedkinaserequiredforthetransitionfrommitosisintoconjugation. Cell 60 , 649 664. Elion, E. A., Brill, J. A. and Fink, G. R. (1991). Functionalredundancyintheyeast cellcycle: FUS3 and KSS1 havebothoverlappinganduniquefunctions. Cold Spring Harb Symp Quant Biol 56 ,4149. Emmett, R. W. and Parberry, D. G. (1975). Appressoria. Annu Rev Phytopathol 13 , 147167. Espeso, E. A., Tilburn, J., Arst, H. N., Jr. and Penalva, M. A. (1993). pHregulation isamajordeterminantinexpressionofafungalpenicillinbiosyntheticgene. EMBO J 12 ,39473956. Eyal, Z. (1999). The septoria tritici and stagonospora nodorum blotch diseases of wheat. Eur J Plant Pathol 105 ,629641. Falquet, L., Pagni, M., Bucher, P., Hulo, N., Sigrist, C. J., Hofmann, K. and Bairoch, A. (2002). ThePROSITEdatabase,itsstatusin2002. Nucleic Acids Res 30 , 235238. Faulkner, M. J. and Colhoun, J. (1976). Aerial dispersal of pycnidiospores of Leptosphaeria nodorum . Phytopathol Z 86 ,357360. Feldbrugge, M., Kamper, J., Steinberg, G. and Kahmann, R. (2004). Regulationof matingandpathogenicdevelopmentin Ustilago maydis . Curr Opin Microbiol 7,666 672. Fernandez-Canon, J. M. and Penalva, M. A. (1998). Characterization of a fungal maleylacetoacetateisomerasegeneandidentificationofitshumanhomologue. J Biol Chem 273 ,329337. Fessler, M. B., Malcolm, K. C., Duncan, M. W. and Worthen, G. S. (2002). A genomic and proteomic analysis of activation of the human neutrophil by lipopolysaccharide anditsmediation by p38mitogenactivated protein kinase. J Biol Chem 277 ,3129131302. Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., Burke, D. J., Ross, M. M., Shabanowitz, J., Hunt, D. F. and White, F. M. (2002). Phosphoproteomeanalysisby massspectrometryanditsapplicationto Saccharomyces cerevisiae . Nat Biotechnol 20 , 301305. Fields, S. and Song, O. (1989). A novel genetic system to detect proteinprotein interactions. Nature 340 ,245246.

223 References

Filling, C., Berndt, K. D., Benach, J., Knapp, S., Prozorovski, T., Nordling, E., Ladenstein, R., Jornvall, H. and Oppermann, U. (2002). Critical residues for structure and catalysis in shortchain dehydrogenases/reductases. J Biol Chem 277 , 2567725684. Fraser, C. M. and Fleischmann, R. D. (1997). Strategiesforwholemicrobialgenome sequencingandanalysis. Electrophoresis 18 ,12071216. Fuse, N., Hisata, K., Katzen, A. L. and Matsuzaki, F. (2003). Heterotrimeric G proteinsregulatedaughtercellsizeasymmetryin Drosophila neuroblastdivisions. Curr Biol 13 ,947954. Gafur, A., Tanaka, C., Shimizu, K., Ouchi, S. and Tsuda, M. (1998). Molecular analysisandcharacterizationofthe Cochliobolus heterostrophus βtubulingeneandits possibleroleinconferringresistancetobenomyl.J Gen Appl Microbiol 44 ,217223. Ganem, S., Lu, S. W., Lee, B. N., Chou, D. Y., Hadar, R., Turgeon, B. G. and Horwitz, B. A. (2004). Gprotein βsubunitof Cochliobolus heterostrophus involvedin virulence,asexualandsexualreproductiveability,andmorphogenesis. Eukaryot Cell 3, 16531663. Gao, S. and Nuss, D. L. (1996). DistinctrolesfortwoGprotein αsubunitsinfungal virulence, morphology, and reproduction revealed by targeted gene disruption. Proc Natl Acad Sci USA 93 ,1412214127. Garcia-Muniz, N., Martinez-Izquierdo, J. A. and Puigdomenech, P. (1998). Induction of mRNA accumulation corresponding to a gene encoding a cell wall hydroxyprolinerichglycoproteinbyfungalelicitors. Plant Mol Biol 38 ,623632. Garcia-Pedrajas, M. D. and Gold, S. E. (2004). Fungaldimorphismregulatedgene expressionin Ustilago maydis :II.Filamentdownregulatedgenes. Mol Plant Pathol 5, 295307. Garrido, E., Voss, U., Muller, P., Castillo-Lluva, S., Kahmann, R. and Perez- Martin, J. (2004). The induction of sexual development and virulence in the smut fungus Ustilago maydis dependsonCrk1,anovelMAPKprotein. Genes Dev 18 ,3117 3130. Gasman, S., Chasserot-Golaz, S., Hubert, P., Aunis, D. and Bader, M. F. (1998). IdentificationofapotentialeffectorpathwayforthetrimericG oproteinassociatedwith secretory granules. G o stimulates a granulebound phosphatidylinositol 4kinase by activatingRhoAinchromaffincells. J Biol Chem 273 ,1691316920. Gavrieli, Y., Sherman, Y. and Ben-Sasson, S. A. (1992). Identification of programmedcell death in situ viaspecificlabelingofnuclearDNAfragmentation. J Cell Biol 119 ,493501.

224 References

Giles, N. H., Geever, R. F., Asch, D. K., Avalos, J. and Case, M. E. (1991). The Wilhelmine E. Key 1989 invitational lecture. Organization and regulation of the qa (quinicacid)genesin Neurospora crassa andotherfungi. J Hered 82 ,17. Girard, V., Fevre, M. and Bruel, C. (2004). Involvement of cyclic AMP in the productionoftheacidproteaseAcp1by Sclerotinia sclerotiorum . FEMS Microbiol Lett 237 ,227233. Gold, S., Duncan, G., Barrett, K. and Kronstad, J. (1994). cAMP regulates morphogenesisinthefungalpathogen Ustilago maydis . Genes Dev 8,28052816. Gothel, S. F. and Marahiel, M. A. (1999). Peptidylprolyl cistrans , a superfamilyofubiquitousfoldingcatalysts. Cell Mol Life Sci 55 ,423436. Grambow, H. J. (1977). The influence of leaf volatile constituents on the in vitro differentiationandgrowthof Puccinia graminis f.sp. tritici . Z Pflanzenphysiol 85 ,361 372. Graves, P. R. and Haystead, T. A. (2003). Afunctionalproteomicsapproachtosignal transduction. Recent Prog Horm Res 58 ,124. Grinyer, J., McKay, M., Herbert, B. and Nevalainen, H. (2004). Fungalproteomics: mapping the mitochondrial proteins of a Trichoderma harzianum strain applied for biologicalcontrol. Curr Genet 45 ,170175. Gronover, C. S., Kasulke, D., Tudzynski, P. and Tudzynski, B. (2001). TheroleofG protein αsubunitsintheinfectionprocessofthegraymold fungus Botrytis cinerea . Mol Plant-Microbe Interact 14 ,12931302. Gronover, C. S., Schorn, C. and Tudzynski, B. (2004). Identification of Botrytis cinerea genes upregulatedduringinfectionandcontrolled by the G α subunit BCG1 usingsuppressionsubtractivehybridization(SSH).Mol Plant-Microbe Interact 17 ,537 546. Gronover, C. S., Schumacher, J., Hantsch, P. and Tudzynski, P. (2005). A novel sevenhelixtransmembraneproteinBTP1of Botrytis cinerea controlstheexpressionof GSTencodinggenes,butisnotessentialforpathogenicity.Mol Plant Pathol 6,243 256. Guldener, U., Seong, K. Y., Boddu, J., Cho, S., Trail, F., Xu, J. R., Adam, G., Mewes, H. W., Muehlbauer, G. J. and Kistler, H. C. (2006). Development of a Fusarium graminearum AffymetrixGeneChipforprofilingfungalgeneexpressionin vitroandinplanta. Fungal Genet Biol 43 ,316325. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H. and Aebersold, R. (1999a). Quantitativeanalysisofcomplexproteinmixturesusingisotopecodedaffinity tags. Nat Biotechnol 17,994999.

225 References

Gygi, S. P., Rochon, Y., Franza, B. R. and Aebersold, R. (1999b). Correlation betweenproteinandmRNAabundanceinyeast. Mol Cell Biol 19 ,17201730. Hall, A. A., Bindslev, L., Rouster, J., Rasmussen, S. W., Oliver, R. P. and Gurr, S. J. (1999). InvolvementofcAMP and proteinkinaseA inconidial differentiation by Erysiphe graminis f.sp. hordei . Mol Plant-Microbe Interact 12 ,960968. Harlan, J. R. and Zohary, D. (1966). Distributionofwildwheatsandbarley. Science 153 ,10741080. Harris, H. A. (1935). Morphologicalstudiesof Septoria lycopersici . Phytopathol 25 , 790799. Harwood, C. S. and Parales, R. E. (1996). The βketoadipatepathwayandthebiology ofselfidentity. Annu Rev Microbiol 50 ,553590. Hayes, J. D., Flanagan, J. U. and Jowsey, I. R. (2005). Glutathione. Annu Rev Pharmacol Toxicol 45 ,5188. Hecht, H. J., Erdmann, H., Park, H. J., Sprinzl, M. and Schmid, R. D. (1995). Crystal structure of NADH oxidase from Thermus thermophilus . Nat Struct Biol 2, 11091114. Helper, J. R. and Gilman, A. G. (1992). Gproteins. Trends Biochem Sci 17 ,383387. Herbert, B. (1999). Advances in protein solubilisation for twodimensional electrophoresis. Electrophoresis 20 ,660663. Herbert, B. R., Molloy, M. P., Gooley, A. A., Walsh, B. J., Bryson, W. G. and Williams, K. L. (1998). Improvedproteinsolubilityintwodimensionalelectrophoresis usingtributylphosphineasreducingagent. Electrophoresis 19 ,845851. Herbert, B. R., Harry, J. L., Packer, N. H., Gooley, A. A., Pedersen, S. K. and Williams, K. L. (2001). What place for polyacrylamide in proteomics? Trends Biotechnol 19 ,S39. Heun, M., Schafer-Pregl, R., Klawan, D., Castagna, R., Accerbi, M., Borghi, B. and Salamini, F. (1997). Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278 ,13121314. Hewitt, H. G. (1998). Fungicides in Crop Protection .Wallingford:CABInternational. Hicks, J. K., Yu, J. H., Keller, N. P. and Adams, T. H. (1997). Aspergillus sporulationandmycotoxinproductionbothrequireinactivationoftheFadAG αprotein dependentsignalingpathway. EMBO J 16 ,49164923. Hillman, G. (1975). TheplantremainsfromTellAbuHureyra:Apreliminaryreport. Proc Prehist Soc 41 ,7073.

226 References

Homann, V., Mende, K., Arntz, C., Ilardi, V., Macino, G., Morelli, G., Bose, G. and Tudzynski, B. (1996). Theisoprenoidpathway:cloningandcharacterizationoffungal FPPSgenes. Curr Genet 30 ,232239. Horton, P. and Nakai, K. (1997). Betterpredictionofproteincellularlocalizationsites withtheknearestneighborsclassifier. Proc Int Conf Intell Syst Mol Biol 5,147152. Horwitz, B. A., Sharon, A., Lu, S. W., Ritter, V., Sandrock, T. M., Yoder, O. C. and Turgeon, B. G. (1999). AGprotein αsubunitfrom Cochliobolus heterostrophus involvedinmatingandappressoriumformation. Fungal Genet Biol 26 ,1932. Hou, Z., Xue, C., Peng, Y., Katan, T., Kistler, H. C. and Xu, J. R. (2002). A mitogenactivated proteinkinase gene ( MGV1 ) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol Plant-Microbe Interact 15 ,11191127. Howard, K., Foster, S. G., Cooley, R. N. and Caten, C. E. (1999). Disruption, replacement,andcosuppressionofnitrateassimilationgenesin Stagonospora nodorum . Fungal Genet Biol 26 ,152162. Howard, R. J. and Valent, B. (1996). Breakingandentering:hostpenetrationbythe fungalriceblastpathogen Magnaporthe grisea . Annu Rev Microbiol 50 ,491512. Hube, B., Monod, M., Schofield, D. A., Brown, A. J. and Gow, N. A. (1994). Expression of seven members of the gene family encoding secretory aspartyl proteinasesin Candida albicans . Mol Microbiol 14 ,8799. Hurst, R., Bao, Y., Jemth, P., Mannervik, B. and Williamson, G. (1998). Phospholipid hydroperoxide glutathione peroxidase activity of human glutathione transferases. Biochem J 332 ,97100. Ichinomiya, M., Ohta, A. and Horiuchi, H. (2005). Expression of asexual developmentalregulatorgene abaA isaffectedinthedoublemutantsofclassesIandII chitinsynthasegenes, chsC and chsA ,of Aspergillus nidulans . Curr Genet 48 ,171183. Inoue, H., Nojima, H. and Okayama, H. (1990). High efficiencytransformation of Escherichia coli withplasmids. Gene 96 ,2328. Irvine, R. F. (1990). 'Quantal' Ca 2+ releaseandthecontrolofCa 2+ entryby inositol phosphatesapossiblemechanism. FEBS Lett 263 ,59. Ivey, F. D., Hodge, P. N., Turner, G. E. and Borkovich, K. A. (1996). The G αi homologue gna-1controlsmultipledifferentiationpathwaysin Neurospora crassa . Mol Biol Cell 7,12831297.

227 References

Izumitsu, K., Yoshimi, A. and Tanaka, C. (2007). Twocomponent response regulators Ssk1p and Skn7p additively regulate highosmolarity adaptation and fungicidesensitivityin Cochliobolus heterostrophus . Eukaryot Cell 6,171181. Jain, S., Akiyama, K., Mae, K., Ohguchi, T. and Takata, R. (2002). Targeted disruptionofaGprotein αsubunitgeneresultsinreducedpathogenicityin Fusarium oxysporum . Curr Genet 41 ,407413. Jain, S., Akiyama, K., Kan, T., Ohguchi, T. and Takata, R. (2003). TheGprotein β subunitFGB1regulatesdevelopmentandpathogenicityin Fusarium oxysporum . Curr Genet 43 ,7986. Jain, S., Akiyama, K., Takata, R. and Ohguchi, T. (2005). Signaling via the G protein αsubunitFGA2isnecessaryforpathogenesisin Fusarium oxysporum . FEMS Microbiol Lett 243 ,165172. Jain, S. C., Shinde, U., Li, Y., Inouye, M. and Berman, H. M. (1998). Thecrystal structure of an autoprocessed Ser221Cyssubtilisin Epropeptide complex at 2.0 A resolution. J Mol Biol 284 ,137144. Janex-Favre, M. C., Parguey-Leduc, A. and Jailloux, F. (1993). The ontogeny of pycnidiaof Guignardia bidwellii inculture. Mycol Res 97 ,13331339. Jenczmionka, N. J., Maier, F. J., Losch, A. P. and Schafer, W. (2003). Mating, conidiationandpathogenicityof Fusarium graminearum ,themaincausalagentofthe headblightdiseaseofwheat,areregulatedbytheMAPkinasegpmk1. Curr Genet 43 , 8795. Jenczmionka, N. J. and Schafer, W. (2005). The Gpmk1 MAP kinaseof Fusarium graminearum regulatestheinductionofspecificsecretedenzymes. Curr Genet 47 ,29 36. Johansson, A. S. and Mannervik, B. (2001). HumanglutathionetransferaseA33,a highly efficientcatalystof doublebond isomerization in the biosynthetic pathway of steroidhormones. J Biol Chem 276 ,3306133065. Johjima, T., Taprab, Y., Noparatnaraporn, N., Kudo, T. and Ohkuma, M. (2006). Largescaleidentificationoftranscriptsexpressedinasymbioticfungus( Termitomyces ) duringplantbiomassdegradation. Appl Microbiol Biotechnol 73 ,195203. Johns, M. R., Chong, R. and Maddox, I. S. (1982). Hydrolysisofsomenaturaland syntheticbileacidconjugatesby Cercospora melonis . Can J Microbiol 28 ,457461. Jonak, C., Kiegerl, S., Ligterink, W., Barker, P. J., Huskisson, N. S. and Hirt, H. (1996). Stress signaling in plants: a mitogenactivated protein kinase pathway is activatedbycoldanddrought. Proc Natl Acad Sci USA 93 ,1127411279.

228 References

Jornvall, H., Persson, B., Krook, M., Atrian, S., Gonzalez-Duarte, R., Jeffery, J. and Ghosh, D. (1995). Shortchaindehydrogenases/reductases(SDR). Biochemistry 34 , 60036013. Joshi, B. N., Sainani, M. N., Bastawade, K. B., Gupta, V. S. and Ranjekar, P. K. (1998). Cysteineproteaseinhibitorfrompearlmillet:anewclassofantifungalprotein. Biochem Biophys Res Commun 246 ,382387. Joshi, B. N., Sainani, M. N., Bastawade, K. B., Deshpande, V. V., Gupta, V. S. and Ranjekar, P. K. (1999). Pearl millet cysteine protease inhibitor. Evidence for the presenceoftwodistinctsitesresponsibleforantifungalandantifeedentactivities. Eur J Biochem 265 ,556563. Jurick, W. M., Dickman, M. B. and Rollins, J. A. (2004). Characterization and functionalanalysisofacAMPdependentproteinkinaseAcatalyticsubunitgene( pka1 ) in Sclerotinia sclerotiorum . Physiol Mol Plant Pathol 64 ,155163. Kaffarnik, F., Muller, P., Leibundgut, M., Kahmann, R. and Feldbrugge, M. (2003). PKA and MAPK phosphorylation of Prf1 allows promoter discrimination in Ustilago maydis . EMBO J 22 ,58175826. Kalume, D. E., Peri, S., Reddy, R., Zhong, J., Okulate, M., Kumar, N. and Pandey, A. (2005). Genomeannotationof Anopheles gambiae usingmassspectrometryderived data. BMC Genomics 6,128. Kamper, J., Kahmann, R., Bolker, M., Ma, L. J., Brefort, T., Saville, B. J., Banuett, F., Kronstad, J. W., Gold, S. E., Muller, O., Perlin, M. H., Wosten, H. A., de Vries, R., Ruiz-Herrera, J., Reynaga-Pena, C. G., Snetselaar, K., McCann, M., Perez-Martin, J., Feldbrugge, M., Basse, C. W., Steinberg, G., Ibeas, J. I., Holloman, W., Guzman, P., Farman, M., Stajich, J. E., Sentandreu, R., Gonzalez- Prieto, J. M., Kennell, J. C., Molina, L., Schirawski, J., Mendoza-Mendoza, A., Greilinger, D., Munch, K., Rossel, N., Scherer, M., Vranes, M., Ladendorf, O., Vincon, V., Fuchs, U., Sandrock, B., Meng, S., Ho, E. C., Cahill, M. J., Boyce, K. J., Klose, J., Klosterman, S. J., Deelstra, H. J., Ortiz-Castellanos, L., Li, W., Sanchez- Alonso, P., Schreier, P. H., Hauser-Hahn, I., Vaupel, M., Koopmann, E., Friedrich, G., Voss, H., Schluter, T., Margolis, J., Platt, D., Swimmer, C., Gnirke, A., Chen, F., Vysotskaia, V., Mannhaupt, G., Guldener, U., Munsterkotter, M., Haase, D., Oesterheld, M., Mewes, H. W., Mauceli, E. W., DeCaprio, D., Wade, C. M., Butler, J., Young, S., Jaffe, D. B., Calvo, S., Nusbaum, C., Galagan, J. and Birren, B. W. (2006). Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis . Nature 444 ,97101. Karjalainen, R. and Lounatmaa, K. (1986). Ultrastructure of penetration and colonisationofwheatleavesby Septoria nodorum .Physiol Mol Plant Pathol 29 ,263 270.

229 References

Kasahara, S. and Nuss, D. L. (1997). Targeted disruption of a fungal Gprotein β subunitgeneresultsinincreasedvegetativegrowthbutreducedvirulence. Mol Plant- Microbe Interact 10 ,984993. Kasahara, S., Wang, P. and Nuss, D. L. (2000). Identification of bdm-1, a gene involvedinGprotein βsubunitfunctionand αsubunitaccumulation. Proc Natl Acad Sci USA 97 ,412417. Katayama, M. and Marumo, S. (1978). Isolation of sclerosporin, a sporogenic substancefromSclerotinia fructicola . Agric Biol Chem 42 ,505506. Kawai, G. and Ikeda, Y. (1982). Fruitinginducingactivityofcerebrosidesobserved with Schizophyllum commune . Biochim Biophys Acta 719 ,612618. Kays, A. M., Rowley, P. S., Baasiri, R. A. and Borkovich, K. A. (2000). Regulation of conidiationandadenylylcyclase levelsby theGα protein GNA3 in Neurospora crassa . Mol Cell Biol 20 ,76937705. Keller, N. P., Turner, G. and Bennett, J. W. (2005). Fungalsecondarymetabolism frombiochemistrytogenomics. Nat Rev Microbiol 3,937947. Keller, S. M., McDermott, J. M., Pettway, R. E., Wolfe, M. S. and McDonald, B. A. (1997). Gene flow and sexual reproduction in the wheat glume blotch pathogen Phaeosphaeria nodorum (anamorph Stagonospora nodorum ). Phytopathol 87 ,353358. Kelly, V. P., Ellis, E. M., Manson, M. M., Chanas, S. A., Moffat, G. J., McLeod, R., Judah, D. J., Neal, G. E. and Hayes, J. D. (2000). ChemopreventionofaflatoxinB1 hepatocarcinogenesis by coumarin,a natural benzopyrone thatis a potentinducer of aflatoxinB1aldehydereductase,theglutathioneStransferaseA5andP1subunits,and NAD(P)H:quinoneoxidoreductaseinratliver. Cancer Res 60 ,957969. Kennedy, N. J. and Davis, R. J. (2003). Role of JNK in tumor development. Cell Cycle 2,199201. Keon, J., Rudd, J. J., Antoniw, J., Skinner, W., Hargreaves, J. and Hammond- Kossack, K. (2005). Metabolicandstressadaptationby Mycosphaerella graminicola duringsporulationinitshostrevealedthroughmicroarraytranscriptionprofiling. Mol Plant Pathol 6,527540. Kersten, B., Agrawal, G. K., Iwahashi, H. and Rakwal, R. (2006). Plant phosphoproteomics:alongroadahead. Proteomics 6,55175528. Kihara, J., Moriwaki, A., Tanaka, N., Ueno, M. and Arase, S. (2007). Characterization of the BLR1 gene encoding a putative bluelight regulator in the phytopathogenicfungus Bipolaris oryzae . FEMS Microbiol Lett 266 ,110118.

230 References

Kim, H., Ahn, J. H., Gorlach, J. M., Caprari, C., Scott-Craig, J. S. and Walton, J. D. (2001). Mutationalanalysisofβglucanasegenesfromtheplantpathogenicfungus Cochliobolus carbonum . Mol Plant-Microbe Interact 14 ,14361443. Kim, K.-H., Cho, Y., Rota, M. L., Cramer Jr., R. A. and Lawrence, C. B. (2007). Functional analysis of the Alternaria brassicicola nonribosomal peptide synthetase gene AbNPS2 revealsaroleinconidialcellwallconstruction. Mol Plant Pathol 8,23 39. Kim, S. T., Yu, S., Kim, S. G., Kim, H. J., Kang, S. Y., Hwang, D. H., Jang, Y. S. and Kang, K. Y. (2004). Proteomeanalysisofriceblastfungus( Magnaporthe grisea ) proteomeduringappressoriumformation. Proteomics 4,35793587. Kim, Y. K., Li, D. and Kolattukudy, P. E. (1998). Induction of Ca 2+ calmodulin signaling by hardsurface contact primes Colletotrichum gloeosporioides conidia to germinateandformappressoria. J Bacteriol 180 ,51445150. Kim, Y. K., Kawano, T., Li, D. and Kolattukudy, P. E. (2000). Amitogenactivated proteinkinasekinaserequiredforinductionofcytokinesisandappressoriumformation byhostsignalsintheconidiaof Colletotrichum gloeosporioides . Plant Cell 12 ,1331 1343. Kimmel, A. R. and Parent, C. A. (2003). The signal to move: D. discoideum go orienteering. Science 300 ,15251527. Kimpel, E. and Osiewacz, H. D. (1999). PaGrg1 , a glucoserepressible gene of Podospora anserina thatisdifferentiallyexpressedduringlifespan.Curr Genet 35 ,557 563. Kinane, J., Dalvin, S., Bindslev, L., Hall, A., Gurr, S. and Oliver, R. (2000). EvidencethatthecAMPpathwaycontrolsemergenceofbothprimaryandappressorial germtubesofbarleypowderymildew. Mol Plant-Microbe Interact 13 ,494502. Klimpel, A., Gronover, C. S., Williamson, B., Stewart, J. A. and Tudzynski, B. (2002). The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity. Mol Plant Pathol 3,439450. Klionsky, D. J., Herman, P. K. and Emr, S. D. (1990). The fungal vacuole: composition,function,andbiogenesis. Microbiol Rev 54 ,266292. Klose, J., de Sa, M. M. and Kronstad, J. W. (2004). Lipidinduced filamentous growthinUstilago maydis . Mol Microbiol 52 ,823835. Kohn, L. M. (1995). The clonal dynamic in wild and agricultural plant pathogen populations. Can J Bot 73 ,S1231S1240. Kojima, K., Kikuchi, T., Takano, Y., Oshiro, E. and Okuno, T. (2002). The mitogenactivated protein kinase gene MAF1 is essential for the early differentiation

231 References

phase of appressorium formation in Colletotrichum lagenarium . Mol Plant-Microbe Interact 15 ,12681276. Kojima, K., Takano, Y., Yoshimi, A., Tanaka, C., Kikuchi, T. and Okuno, T. (2004). Fungicide activity through activation of a fungal signalling pathway. Mol Microbiol 53 ,17851796. Komatsu, S., Abbasi, F., Kobori, E., Fujisawa, Y., Kato, H. and Iwasaki, Y. (2005). Proteomicanalysisofriceembryo:anapproachforinvestigatingG αproteinregulated proteins. Proteomics 5,39323941. Kozak, M. (2005). RegulationoftranslationviamRNAstructureinprokaryotes and eukaryotes. Gene 361 ,1337. Kronstad, J. W. (2000). TriggersandtargetsofcAMPsignalling. Trends Microbiol 8, 302303. Kruger, J., Loubradou, G., Regenfelder, E., Hartmann, A. and Kahmann, R. (1998). Crosstalk between cAMP and pheromone signalling pathways in Ustilago maydis . Mol Gen Genet 260 ,193198. Kubista, M., Aakerman, B. and Norden, B. (1987). Characterization of interaction betweenDNAand4',6diamidino2phenylindolebyopticalspectroscopy. Biochemistry 26 ,45454553. Kubo, Y., Takano, Y., Tsuji, G., Horino, O. and Furusawa, I. (1999). Regulationof melanin biosynthesis genes during appressorium formation in Colletotrichum lagenarium . In Host Specificity, Pathogenicity and Host Pathogen Interactions of Colletotrichum .EditedbyS.Freeman,D.Prusky&M.Dickman.St.Paul,MN.:APS Press. Kulkarni, R. D. and Dean, R. A. (2004). Identificationofproteinsthatinteractwith tworegulatorsofappressoriumdevelopment,adenylatecyclaseandcAMPdependent protein kinaseA, in therice blastfungus Magnaporthe grisea . Mol Genet Genomics 270 ,497508. Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of head of bacteriophageT4. Nature 227 ,680685. Langeron, M. and Vanbreuseghem, R. (1952). Precise de Mycologie .Paris:Masson. Larraya, L. M., Boyce, K. J., So, A., Steen, B. R., Jones, S., Marra, M. and Kronstad, J. W. (2005). Serial analysis of gene expression reveals conserved links betweenproteinkinaseA,ribosomebiogenesis,andphosphatemetabolismin Ustilago maydis . Eukaryot Cell 4,20292043.

232 References

Lau, G. W. and Hamer, J. E. (1998). Acropetal: a genetic locus required for conidiophorearchitectureandpathogenicityinthericeblastfungus. Fungal Genet Biol 24 ,228239. Le Quere, A., Schutzendubel, A., Rajashekar, B., Canback, B., Hedh, J., Erland, S., Johansson, T. and Tunlid, A. (2004). Divergence in gene expression related to variationinhostspecificityofanectomycorrhizalfungus. Mol Ecol 13 ,38093819. Lease, K. A., Wen, J., Li, J., Doke, J. T., Liscum, E. and Walker, J. C. (2001). A mutant Arabidopsis heterotrimeric Gprotein β subunit affects leaf, flower, and fruit development. Plant Cell 13 ,26312641. Lee, K., Singh, P., Chung, W. C., Ash, J., Kim, T. S., Hang, L. and Park, S. (2006). Lightregulationofasexualdevelopmentinthericeblastfungus, Magnaporthe oryzae . Fungal Genet Biol 43 ,694706. Lee, N. and Kronstad, J. W. (2002). ras2 controls morphogenesis, pheromone response,andpathogenicityinthefungalpathogenUstilago maydis . Eukaryot Cell 1, 954966. Lee, N., D'Souza, C. A. and Kronstad, J. W. (2003).Ofsmuts,blasts,mildews,and blights:cAMPsignalinginphytopathogenicfungi. Annu Rev Phytopathol 41 ,399427. Lehtinen, U. (1993). Plantcellwalldegradingenzymesof Septoria nodorum . Physiol Mol Plant Pathol 42 ,121134. Leschine, S. B. (1995). Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49 ,399426. Lev, S., Sharon, A., Hadar, R., Ma, H. and Horwitz, B. A. (1999). A mitogen activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation,and pathogenicity: diverse roles for mitogenactivatedproteinkinasehomologsinfoliarpathogens. Proc Natl Acad Sci USA 96 ,1354213547. Lev, S. and Horwitz, B. A. (2003). A mitogenactivated protein kinase pathway modulatestheexpressionoftwocellulasegenesinCochliobolus heterostrophus during plantinfection. Plant Cell 15 ,835844. Li, D., Rogers, L. and Kolattukudy, P. E. (1997). CloningandexpressionofcDNA encoding a mitogenactivated protein kinase from a phytopathogenic filamentous fungus. Gene 195 ,161166. Li, D., Bobrowicz, P., Wilkinson, H. H. and Ebbole, D. J. (2005). A mitogen activated protein kinase pathway essential for mating and contributing to vegetative growthin Neurospora crassa . Genetics 170 ,10911104.

233 References

Liao, D., Basarab, G. S., Gatenby, A. A., Valent, B. and Jordan, D. B. (2001). Structures of trihydroxynaphthalene reductasefungicide complexes: implications for structurebaseddesignandcatalysis. Structure 9,1927. Lichter, A. and Mills, D. (1997). Fil1 , a Gprotein αsubunit that acts upstream of cAMPandisessentialfordimorphicswitchinginhaploidcellsof Ustilago hordei . Mol Gen Genet 256 ,426435. Lichter, A. and Mills, D. (1998). Control of pigmentation of Ustilago hordei : The effectofpH,thiamine,andinvolvementofthecAMPcascade. Fungal Genet Biol 25 , 6374. Lifton, R. P., Goldberg, M. L., Karp, R. W. and Hogness, D. S. (1978). The organization of the histone genes in Drosophila melanogaster : functional and evolutionaryimplications. Cold Spring Harb Symp Quant Biol 42 ,10471051. Lim, D., Hains, P., Walsh, B., Bergquist, P. and Nevalainen, H. (2001). Proteins associated with the cell envelope of Trichoderma reesei : a proteomic approach. Proteomics 1,899909. Lindberg, R. A. and Drucker, H. (1984). Regulation of a Neurospora crassa extracellularRNasebyphosphorus,nitrogen,andcarbonderepressions. J Bacteriol 157 , 380384. Linnaeus, C. (1753). Species Plantarum. Holmiae 2 vols .Stockholm:L.Salvius. Liu, H., Suresh, A., Willard, F. S., Siderovski, D. P., Shen, L. and Naqvi, N. I. (2007). Rgs1 regulates multiple G α subunits in Magnaporthe pathogenesis, asexual growthandthigmotropism. EMBO J 26 ,690700. Liu, S. and Dean, R. A. (1997). G protein α subunit genes control growth, development, and pathogenicity of Magnaporthe grisea . Mol Plant-Microbe Interact 10 ,10751086. Loubradou, G., Brachmann, A., Feldbrugge, M. and Kahmann, R. (2001). A homologue of the transcriptional repressor Ssn6p antagonizes cAMP signalling in Ustilago maydis . Mol Microbiol 40 ,719730. Madan, T., Arora, N. and Sarma, P. U. (1997a). Ribonuclease activity dependent cytotoxicityofAspfl,amajorallergenof A. fumigatus . Mol Cell Biochem 175 ,2127. Madan, T., Arora, N. and Sarma, P. U. (1997b). Identificationandevaluationofa majorcytotoxinof A. fumigatus . Mol Cell Biochem 167 ,8997. Madhani, H. D., Styles, C. A. and Fink, G. R. (1997). MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91 , 673684.

234 References

Magro, P. (1984). Production of polysaccharidedegrading enzymes by Septoria nodorum incultureandduringpathogenesis. Plant Sci Lett 37 ,6368. Mann, M. and Pandey, A. (2001). Useofmassspectrometryderiveddatatoannotate nucleotideandproteinsequencedatabases. Trends Biochem Sci 26 ,5461. Mann, M. and Jensen, O. N. (2003). Proteomic analysis of posttranslational modifications. Nat Biotechnol 21 ,255261. Marchler-Bauer, A., Anderson, J. B., Derbyshire, M. K., DeWeese-Scott, C., Gonzales, N. R., Gwadz, M., Hao, L., He, S., Hurwitz, D. I., Jackson, J. D., Ke, Z., Krylov, D., Lanczycki, C. J., Liebert, C. A., Liu, C., Lu, F., Lu, S., Marchler, G. H., Mullokandov, M., Song, J. S., Thanki, N., Yamashita, R. A., Yin, J. J., Zhang, D. and Bryant, S. H. (2007). CDD:aconserveddomaindatabaseforinteractivedomain familyanalysis. Nucleic Acids Res 35 ,D237240. Martin-Yken, H., Dagkessamanskaia, A., Basmaji, F., Lagorce, A. and Francois, J. (2003). The interaction of Slt2 MAP kinase with Knr4 is necessary for signalling throughthecellwallintegritypathwayin Saccharomyces cerevisiae . Mol Microbiol 49 , 2335. Martin, K., Steinberg, T. H., Cooley, L. A., Gee, K. R., Beechem, J. M. and Patton, W. F. (2003). Quantitativeanalysisofproteinphosphorylationstatusandproteinkinase activity on microarrays using a novel fluorescent phosphorylation sensor dye. Proteomics 3,12441255. Mascher, T., Helmann, J. D. and Unden, G. (2006). Stimulusperceptioninbacterial signaltransducinghistidinekinases. Microbiol Mol Biol Rev 70 ,910938. Mayorga, M. E. and Gold, S. E. (1999). AMAPkinaseencodedbythe ubc3 geneof Ustilago maydis isrequiredforfilamentousgrowthandfullvirulence. Mol Microbiol 34 ,485497. Mayorga, M. E. and Gold, S. E. (2001). The ubc2 geneof Ustilago maydis encodesa putative novel adaptor protein required for filamentous growth, pheromone response andvirulence. Mol Microbiol 41 ,13651379. Mazzoni, C., Zarov, P., Rambourg, A. and Mann, C. (1993). The SLT2 (MPK1 ) MAPkinasehomologisinvolvedinpolarizedcellgrowthin Saccharomyces cerevisiae . J Cell Biol 123 ,18211833. McNally, M. T. and Free, S. J. (1988). Isolationandcharacterizationofa Neurospora glucoserepressiblegene. Curr Genet 14 ,545551. Medina, M. L., Haynes, P. A., Breci, L. and Francisco, W. A. (2005). Analysisof secretedproteinsfrom Aspergillus flavus . Proteomics 5,31533161.

235 References

Mehrabi, R. and Kema, G. H. J. (2006). ProteinkinaseAsubunitsoftheascomycete pathogen Mycosphaerella graminicola regulate asexual fructification, filamentation, melanizationandosmosensing. Mol Plant Pathol 7,565577. Mehrabi, R., Van der Lee, T., Waalwijk, C. and Gert, H. J. (2006a). MgSlt2 , a cellular integrity MAP kinase gene of the fungal wheat pathogen Mycosphaerella graminicola ,isdispensableforpenetrationbutessentialforinvasivegrowth. Mol Plant- Microbe Interact 19 ,389398. Mehrabi, R., Zwiers, L. H., de Waard, M. A. and Kema, G. H. (2006b). MgHog1 regulatesdimorphismandpathogenicityinthefungalwheatpathogen Mycosphaerella graminicola . Mol Plant-Microbe Interact 19 ,12621269. Mei, B., Budde, A. D. and Leong, S. A. (1993). sid1 , a gene initiating siderophore biosynthesisin Ustilago maydis :molecularcharacterization,regulationbyiron,androle inphytopathogenicity. Proc Natl Acad Sci USA 90 ,903907. Melin, P., Schnurer, J. and Wagner, E. G. (2002). Proteomeanalysisof Aspergillus nidulans revealsproteinsassociatedwiththeresponsetotheantibioticconcanamycinA, producedby Streptomyces species. Mol Genet Genomics 267 ,695702. Mey, G., Held, K., Scheffer, J., Tenberge, K. B. and Tudzynski, P. (2002a). CPMK2,anSLT2homologousmitogenactivatedprotein(MAP)kinase,isessentialfor pathogenesis of Claviceps purpurea on rye: evidence for a second conserved pathogenesisrelatedMAPkinasecascadeinphytopathogenicfungi. Mol Microbiol 46 , 305318. Mey, G., Oeser, B., Lebrun, M. H. and Tudzynski, P. (2002b). Thebiotrophic,non appressoriumforming grass pathogen Claviceps purpurea needs a Fus3/Pmk1 homologousmitogenactivatedproteinkinaseforcolonizationofryeovariantissue. Mol Plant-Microbe Interact 15 ,303312. Mitchell, T. K. and Dean, R. A. (1995). ThecAMPdependentproteinkinasecatalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea . Plant Cell 7,18691878. Mizutani, O., Nojima, A., Yamamoto, M., Furukawa, K., Fujioka, T., Yamagata, Y., Abe, K. and Nakajima, T. (2004). Disorderedcellintegritysignalingcausedby disruptionofthe kexB genein Aspergillus oryzae . Eukaryot Cell 3,10361048. Moore, A. M. T. (1982). AgriculturaloriginsintheNearEast:Amodelforthe1980s. World Archeology 14 ,224236. Morel, M., Jacob, C., Kohler, A., Johansson, T., Martin, F., Chalot, M. and Brun, A. (2005). Identificationofgenesdifferentiallyexpressedinextradicalmyceliumand ectomycorrhizal roots during Paxillus involutus Betula pendula ectomycorrhizal symbiosis. Appl Environ Microbiol 71 ,383391.

236 References

Moriwaki, A., Kubo, E., Arase, S. and Kihara, J. (2006). Disruption of SRM1 , a mitogenactivated protein kinase gene, affects sensitivity to osmotic and ultraviolet stressors in the phytopathogenic fungus Bipolaris oryzae . FEMS Microbiol Lett 257 , 253261. Moriwaki, A., Kihara, J., Mori, C. and Arase, S. (2007). AMAPkinasegene, BMK1 , isrequiredforconidiationandpathogenicityinthe riceleaf spotpathogen Bipolaris oryzae . Microbiol Res 162 ,108114. Motoyama, T., Kadokura, K., Ohira, T., Ichiishi, A., Fujimura, M., Yamaguchi, I. and Kudo, T. (2005). A twocomponent histidine kinase of the rice blast fungus is involvedinosmoticstressresponseandfungicideaction. Fungal Genet Biol 42 ,200 212. Muller, P., Aichinger, C., Feldbrugge, M. and Kahmann, R. (1999). The MAP kinase Kpp2 regulates mating and pathogenic development in Ustilago maydis . Mol Microbiol 34 ,10071017. Muller, P., Katzenberger, J. D., Loubradou, G. and Kahmann, R. (2003a). Guanyl nucleotide exchange factor Sql2 and Ras2 regulate filamentous growth in Ustilago maydis . Eukaryot Cell 2,609617. Muller, P., Weinzierl, G., Brachmann, A., Feldbrugge, M. and Kahmann, R. (2003b). MatingandpathogenicdevelopmentoftheSmutfungus Ustilago maydis are regulatedbyonemitogenactivatedproteinkinasecascade. Eukaryot Cell 2,11871199. Muller, P., Leibbrandt, A., Teunissen, H., Cubasch, S., Aichinger, C. and Kahmann, R. (2004). The G βsubunitencoding gene bpp1 controls cyclicAMP signalingin Ustilago maydis . Eukaryot Cell 3,806814. Murphy, N. E. A., Loughman, R., Wilson, R. and Lagudah, E. S. (1999). Identificationofa molecularmarkerlinked toSeptoria nodorum blotch resistance in Tritichum tauschii usingbulkedsegragant.In Septoria and Stagonospora Diseases of Cereals: A Compilation of Global Research ,pp.7173.EditedbyM.vanGinkel,A. McNab&J.Krupinsky.Mexico:CIMMYT. Neuhoff, V., Arold, N., Taube, D. and Ehrhardt, W. (1988). Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear backgroundatnanogramsensitivityusingCoomassieBrilliantBlueG250andR250. Electrophoresis 9,255262. Neves, S. R., Ram, P. T. and Iyengar, R. (2002). Gproteinpathways. Science 296 , 16361639. Newbury, S. F. (2006). ControlofmRNAstabilityineukaryotes. Biochem Soc Trans 34 ,3034.

237 References

Nickel, W. (2003). Themysteryofnonclassicalproteinsecretion.Acurrent view on cargoproteinsandpotentialexportroutes. Eur J Biochem 270 ,21092119. Nielsen, H., Engelbrecht, J., Brunak, B. and von Heijne, G. (1997). Identificationof prokaryoticandeukaryoticsignalpeptidesandpredictionoftheircleavagesites. Protein Eng 10 ,16. Nielsen, H. and Krogh, A. (1998). Predictionofsignalpeptidesandsignalanchorsby ahiddenMarkovmodel. Proc Int Conf Intell Syst Mol Biol 6,122130. Nielsen, K. F. and Smedsgaard, J. (2003). Fungalmetabolitescreening:databaseof 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatographyUVmassspectrometrymethodology. J Chromatogr A 1002,111136. Nierman, W. C., Pain, A., Anderson, M. J., Wortman, J. R., Kim, H. S., Arroyo, J., Berriman, M., Abe, K., Archer, D. B., Bermejo, C., Bennett, J., Bowyer, P., Chen, D., Collins, M., Coulsen, R., Davies, R., Dyer, P. S., Farman, M., Fedorova, N., Fedorova, N., Feldblyum, T. V., Fischer, R., Fosker, N., Fraser, A., Garcia, J. L., Garcia, M. J., Goble, A., Goldman, G. H., Gomi, K., Griffith-Jones, S., Gwilliam, R., Haas, B., Haas, H., Harris, D., Horiuchi, H., Huang, J., Humphray, S., Jimenez, J., Keller, N., Khouri, H., Kitamoto, K., Kobayashi, T., Konzack, S., Kulkarni, R., Kumagai, T., Lafon, A., Latge, J. P., Li, W., Lord, A., Lu, C., Majoros, W. H., May, G. S., Miller, B. L., Mohamoud, Y., Molina, M., Monod, M., Mouyna, I., Mulligan, S., Murphy, L., O'Neil, S., Paulsen, I., Penalva, M. A., Pertea, M., Price, C., Pritchard, B. L., Quail, M. A., Rabbinowitsch, E., Rawlins, N., Rajandream, M. A., Reichard, U., Renauld, H., Robson, G. D., Rodriguez de Cordoba, S., Rodriguez-Pena, J. M., Ronning, C. M., Rutter, S., Salzberg, S. L., Sanchez, M., Sanchez-Ferrero, J. C., Saunders, D., Seeger, K., Squares, R., Squares, S., Takeuchi, M., Tekaia, F., Turner, G., Vazquez de Aldana, C. R., Weidman, J., White, O., Woodward, J., Yu, J. H., Fraser, C., Galagan, J. E., Asai, K., Machida, M., Hall, N., Barrell, B. and Denning, D. W. (2005). Genomic sequence of the pathogenicandallergenicfilamentousfungus Aspergillus fumigatus . Nature 438 ,1151 1156. Nishimura, M., Park, G. and Xu, J. R. (2003). TheG βsubunitMGB1 isinvolvedin regulating multiple steps of infectionrelated morphogenesis in Magnaporthe grisea . Mol Microbiol 50 ,231243. Nishizuka, Y. (1988). The molecular heterogeneity of protein kinase C and its implicationsforcellularregulation. Nature 334 ,661665. Noeldner, P. K. M., Coleman, M. J., Faulks, R. and Oliver, R. P. (1994). Purification and characterization of mannitol dehydrogenase from the fungal tomato pathogen Cladosporium fulvum (syn Fulvia fulva ). Physiol Mol Plant Pathol 45 ,281 289.

238 References

Nuhse, T. S., Stensballe, A., Jensen, O. N. and Peck, S. C. (2003). Largescale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinitychromatographyandmassspectrometry. Mol Cell Proteomics 2,12341243. O'Farrell, P. H. (1975). Highresolutiontwodimensionalelectrophoresisofproteins. J Biol Chem 250 ,40074021. Ohara, T., Inoue, I., Namiki, F., Kunoh, H. and Tsuge, T. (2004). REN1 isrequired fordevelopmentofmicroconidiaandmacroconidia,butnotofchlamydospores,inthe plantpathogenicfungus Fusarium oxysporum . Genetics 166 ,113124. Oppermann, U., Filling, C., Hult, M., Shafqat, N., Wu, X., Lindh, M., Shafqat, J., Nordling, E., Kallberg, Y., Persson, B. and Jornvall, H. (2003). Shortchain dehydrogenases/reductases(SDR):the2002update. Chem Biol Interact 143-144 ,247 253. Oppermann, U. C., Filling, C., Berndt, K. D., Persson, B., Benach, J., Ladenstein, R. and Jornvall, H. (1997). Activesitedirectedmutagenesisof3 β/17 βhydroxysteroid dehydrogenase establishes differential effects on shortchain dehydrogenase/reductase reactions. Biochemistry 36 ,3440. Osada, S., Hosaka, T., Nakajima, M. and Akutsu, K. (2005). Molecularcloningofa novel G α subunit gene and a G β subunit gene from the gray mold fungus Botrytis cinerea . J Gen Plant Pathol 71 ,13452630. Otte, O. and Barz, W. (1996). The elicitorinduced oxidative burst in cultured chickpea cells drives the rapid insolubilization of two cell wall structural proteins. Planta 200 ,238246. Otte, O. and Barz, W. (2000). Characterizationandoxidative in vitro crosslinkingof an extensinlike protein and a prolinerich protein purified from chickpea cell walls. Phytochem 53 ,15. Page, R. D. M. (1996). TREEVIEW:Anapplicationtodisplayphylogenetictreeson personalcomputers. Comput Appl Biosci 12 ,357358. Park, D., Jhon, D. Y., Lee, C. W., Lee, K. H. and Rhee, S. G. (1993). Activationof phospholipaseCisozymesbyGprotein βγ subunits. J Biol Chem 268 ,45734576. Park, G., Xue, G. Y., Zheng, L., Lam, S. and Xu, J. R. (2002). MST12 regulates infectiousgrowthbutnotappressoriumformationinthericeblastfungus Magnaporthe grisea . Mol Plant-Microbe Interact 15 ,183192. Park, G., Bruno, K. S., Staiger, C. J., Talbot, N. J. and Xu, J. R. (2004a). Independent genetic mechanisms mediate turgor generation and penetration peg formationduringplantinfectioninthericeblastfungus. Mol Microbiol 53 ,16951707.

239 References

Park, G., Xue, C., Zhao, X., Kim, Y., Orbach, M. and Xu, J. R. (2006). Multiple upstreamsignalsconvergeontheadaptorproteinMst50in Magnaporthe grisea . Plant Cell 18 ,28222835. Park, S. M., Choi, E. S., Kim, M. J., Cha, B. J., Yang, M. S. and Kim, D. H. (2004b). Characterization of HOG1 homologue, CpMK1, from Cryphonectria parasiticaandevidenceforhypovirusmediatedperturbationofitsphosphorylationin responsetohypertonicstress. Mol Microbiol 51 ,12671277. Parsley, T. B., Segers, G. C., Nuss, D. L. and Dawe, A. L. (2003). Analysisofaltered Gprotein subunit accumulation in Cryphonectria parasitica reveals a third G α homologue. Curr Genet 43 ,2433. Patterson, S. D. and Aebersold, R. (1995). Mass spectrometric approaches for the identificationofgelseparatedproteins. Electrophoresis 16 ,17911814. Pennington, S. R. (1994). GTPbindingproteins.1:heterotrimericGproteins. Protein Profile 1,169342. Peter, M., Courty, P.-E., Kohler, A., Delaruelle, C., Martin, D., Tagu, D., Frey- Klett, P., Dupleissis, M., Podila, G. and Martin, F. (2003). Analysis of expressed sequencetagsfromtheectomycorhizalbasidiomycetes Lacarria bicolor and Pisolithus microcarpus . New Phytol 159 ,117129. Philipson, M. N. (1989). Ultrastructural features of a Stagonospora species (Ascomycotina) in senescent tissues of perennial ryegrass ( Lolium perenne L.). New Phytol 113 ,127134. Postgate, J. N. (1992). Early Mesopotamia .NewYork:Routledge. Poussereau, N., Creton, S., Billon-Grand, G., Rascle, C. and Fevre, M. (2001). Regulation of acp1 , encoding a nonaspartyl acid protease expressed during pathogenesisof Sclerotinia sclerotiorum . Microbiol 147 ,717726. Prados-Rosales, R. C., Serena, C., Delgado-Jarana, J., Guarro, J. and Di Pietro, A. (2006). Distinctsignallingpathwayscoordinatelycontributetovirulenceof Fusarium oxysporum onmammalianhosts. Microbes Infect 8,28252831. Puri, P. L., Wu, Z., Zhang, P., Wood, L. D., Bhakta, K. S., Han, J., Feramisco, J. R., Karin, M. and Wang, J. Y. (2000). Induction of terminal differentiation by constitutiveactivationofp38MAPkinaseinhuman rhabdomyosarcomacells. Genes Dev 14 ,574584. Rabilloud, T. (1998). Useofthioureatoincreasethesolubilityofmembraneproteinsin twodimensionalelectrophoresis. Electrophoresis 19 ,758760. Ramesh, M. A., Laidlaw, R. D., Durrenberger, F., Orth, A. B. and Kronstad, J. W. (2001). ThecAMP signal transductionpathwaymediatesresistance to dicarboximide

240 References

andaromatichydrocarbonfungicidesin Ustilago maydis . Fungal Genet Biol 32 ,183 193. Rauyaree, P., Ospina-Giraldo, M. D., Kang, S., Bhat, R. G., Subbarao, K. V., Grant, S. J. and Dobinson, K. F. (2005). Mutations in VMK1 , a mitogenactivated proteinkinasegene,affectmicrosclerotiaformationandpathogenicityin Verticillium dahliae . Curr Genet 48 ,109116. Regenfelder, E., Spellig, T., Hartmann, A., Lauenstein, S., Bolker, M. and Kahmann, R. (1997). Gproteinsin Ustilago maydis :transmissionofmultiplesignals? EMBO J 16 ,19341942. Rep, M. (2005). Small proteins of plantpathogenic fungi secreted during host colonization. FEMS Microbiol Lett 253 ,1927. Reyes, G., Romans, A., Nguyen, C. K. and May, G. S. (2006). Novel mitogen activated protein kinase MpkC of Aspergillus fumigatus is required forutilization of polyalcoholsugars. Eukaryot Cell 5,19341940. Rhee, S. G., Suh, P. G., Ryu, S. H. and Lee, S. Y. (1989). Studies of inositol phospholipidspecificphospholipaseC. Science 244 ,546550. Richardson, K. C., Jarret, L. and Finke, E. H. (1960). Embeddinginepoxyresinsfor ultrathinsectioninginelectronmicroscopy. Stain Tech 35 ,313323. Richardson, M. J. and Noble, M. (1970). Septoria speciesoncerealsAnotetoaid theiridentification. Plant Pathol 19 ,159163. Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M. and Seraphin, B. (1999). A generic protein purification method for protein complex characterization and proteomeexploration. Nat Biotechnol 17 ,10301032. Rollins, J. A. (2003). The Sclerotinia sclerotiorum pac1 geneisrequiredforsclerotial developmentandvirulence. Mol Plant-Microbe Interact 16 ,785795. Romeis, T., Brachmann, A., Kahmann, R. and Kamper, J. (2000). Identificationofa target gene for the bEbW homeodomain protein complex in Ustilago maydis . Mol Microbiol 37 ,5466. Ross, E. M. and Wilkie, T. M. (2000). GTPaseactivatingproteinsforheterotrimericG proteins: Regulators of G protein signaling (RGS) and RGSlike proteins. Annu Rev Biochem 69 ,795827. Rossmann, M. G., Liljas, A., Branden, C.-I. and Banaszak, L. J. (1975). Evolutionaryandstructuralrelationshipsamongdehydrogenases.In The Enzymes ,pp. 61102.EditedbyP.D.Boyer.NewYork:AcademicPress.

241 References

Ruepp, A., Zollner, A., Maier, D., Albermann, K., Hani, J., Mokrejs, M., Tetko, I., Guldener, U., Mannhaupt, G., Munsterkotter, M. and Mewes, H. W. (2004). The FunCat,afunctionalannotationschemeforsystematicclassificationofproteinsfrom wholegenomes. Nucleic Acids Res 32 ,55395545. Rui, O. and Hahn, M. (2007). TheSlt2typeMAPkinaseBmp3of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissuecolonization. Mol Plant Pathol 8,173184. Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual ,Secondedn.NewYork:ColdSpringHarbour. Sass, J. E. (1958). Botanical Microtechnique .Ames:IowaStateUniversityPress. Schimoler-O'Rourke, R., Richardson, M. and Selitrennikoff, C. P. (2001). Zeamatin inhibitstrypsinand αamylaseactivities. Appl Environ Microbiol 67 ,23652366. Schmitt, S., Prokisch, H., Schlunck, T., Camp, D. G., 2nd, Ahting, U., Waizenegger, T., Scharfe, C., Meitinger, T., Imhof, A., Neupert, W., Oefner, P. J. and Rapaport, D. (2006). Proteomeanalysisofmitochondrialoutermembrane from Neurospora crassa . Proteomics 6,7280. Schreiber, S. L. (1992). Immunophilinsensitive protein action in cell signalingpathways. Cell 70 ,365368. Schwiebert, E. M., Gesek, F., Ercolani, L., Wjasow, C., Gruenert, D. C., Karlson, K. and Stanton, B. A. (1994). HeterotrimericGproteins,vesicletrafficking,andCFTR Clchannels. Am J Physiol 267 ,C272281. Schwindinger, W. F. and Robishaw, J. D. (2001). HeterotrimericGprotein βγ dimers ingrowthanddifferentiation. Oncogene 20 ,16531660. Scott-Craig, J. S., Panaccione, D. G., Cervone, F. and Walton, J. D. (1990). Endopolygalacturonaseisnotrequiredforpathogenicityof Cochliobolus carbonum on maize. Plant Cell 2,11911200. Scott-Craig, J. S., Cheng, Y. Q., Cervone, F., De Lorenzo, G., Pitkin, J. W. and Walton, J. D. (1998). Targeted mutants of Cochliobolus carbonum lacking the two majorextracellularpolygalacturonases. Appl Environ Microbiol 64 ,14971503. Segers, G. C. and Nuss, D. L. (2003). ConstitutivelyactivatedG αnegativelyregulates virulence,reproductionandhydrophobingeneexpressioninthechestnutblightfungus Cryphonectria parasitica . Fungal Genet Biol 38 ,198208. Segers, G. C., Regier, J. C. and Nuss, D. L. (2004). Evidence for a role of the regulator of Gprotein signaling protein CPRGS1 in G α subunit CPG1mediated regulationoffungalvirulence,conidiation,andhydrophobinsynthesisinthechestnut blightfungus Cryphonectria parasitica . Eukaryot Cell 3,14541463.

242 References

Segmuller, N., Ellendorf, U., Tudzynski, B. and Tudzynski, P. (2007). BcSAK1 ,a stressactivated mitogenactivated protein kinase, is involved in vegetative differentiationandpathogenicityin Botrytis cinerea . Eukaryot Cell 6,211221. Sellam, A., Poupard, P. and Simoneau, P. (2006). Molecular cloning of AbGst1 encoding a glutathione transferase differentially expressed during exposure of Alternaria brassicicola toisothiocyanates. FEMS Microbiol Lett 258 ,241249. Sewall, T. C., Mims, C. W. and Timberlake, W. E. (1990). abaA controlsphialide differentiationin Aspergillus nidulans . Plant Cell 2,731739. Sheehan, D., Meade, G., Foley, V. M. and Dowd, C. A. (2001). Structure,function and evolution of glutathione transferases: implications for classification of non mammalianmembersofanancientenzymesuperfamily. Biochem J 360 ,116. Shim, W. B. and Dunkle, L. D. (2003). CZK3 ,aMAPkinasekinasekinasehomologin Cercospora zeae-maydis ,regulatescercosporinbiosynthesis,fungaldevelopment,and pathogenesis. Mol Plant-Microbe Interact 16 ,760768. Shipton, W. A. and Brown, J. F. (1962). Awholeleafclearingandstainingtechnique todemonstratehostpathogenrelationshipsofwheatstemrust. Phytopathol 52 . Showalter, A. M. (1993). Structureandfunctionofplantcellwallproteins. Plant Cell 5,923. Siewers, V., Viaud, M., Jimenez-Teja, D., Collado, I. G., Gronover, C. S., Pradier, J. M., Tudzynski, B. and Tudzynski, P. (2005). Functionalanalysisofthecytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strainspecificvirulencefactor. Mol Plant-Microbe Interact 18 ,602612. Simon, M. I., Strathmann, M. P. and Gautam, N. (1991). DiversityofGproteinsin signaltransduction. Science 252 ,802808. Smale, S. T. and Kadonaga, J. T. (2003). The RNA polymerase II core promoter. Annu Rev Biochem 72 ,449479. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. and Klenk, D. C. (1985). Measurementofproteinusingbicinchoninicacid. Anal Biochem 150 ,7685. Solomon, P. S., Tan, K.-C. and Oliver, R. P. (2003). The nutrient supply of pathogenicfungi;afertilefieldforstudy. Mol Plant Pathol 4,203210. Solomon, P. S., Lee, R. C., Wilson, T. J. and Oliver, R. P. (2004a). Pathogenicityof Stagonospora nodorum requiresmalatesynthase. Mol Microbiol 53 ,10651073.

243 References

Solomon, P. S. and Oliver, R. P. (2004). FunctionalcharacterisationofglyoxalaseI fromthefungalwheatpathogen Stagonospora nodorum . Curr Genet 46 ,115121. Solomon, P. S., Tan, K.-C., Sanchez, P., Cooper, R. M. and Oliver, R. P. (2004b). ThedisruptionofaG αsubunitshedsnewlightonthepathogenicityof Stagonospora nodorum onwheat. Mol Plant-Microbe Interact 17 ,456466. Solomon, P. S., Tan, K.-C. and Oliver, R. P. (2005a). Mannitol 1phosphate metabolismisrequiredforsporulationinplantaofthewheatpathogen Stagonospora nodorum . Mol Plant-Microbe Interact 18 ,110115. Solomon, P. S., Waters, O. D., Simmonds, J., Cooper, R. M. and Oliver, R. P. (2005b). The Mak2 MAP kinase signal transduction pathway is required for pathogenicityin Stagonospora nodorum . Curr Genet 48 ,6068. Solomon, P. S., Lowe, R. G., Trengove, R. D., Rechberger, J. and Oliver, R. P. (2006a). Normalizationofmetabolitesinheterogenoussystems using genomics. Anal Biochem 350 ,156158. Solomon, P. S., Lowe, R. G. T., Tan, K.-C., Waters, O. D. C. and Oliver, R. P. (2006b). Stagonospora nodorum :causeofstagonosporanodorumblotchofwheat. Mol Plant Pathol 7,147156. Solomon, P. S., Rybak, K., Trengove, R. D. and Oliver, R. P. (2006c). Investigating the role of calcium/calmodulindependent protein kinases in Stagonospora nodorum . Mol Microbiol 62 ,367381. Solomon, P. S., Waters, O. D., Jorgens, C. I., Lowe, R. G., Rechberger, J., Trengove, R. D. and Oliver, R. P. (2006d). Mannitol is required for asexual sporulationin thewheat pathogen Stagonospora nodorum (glume blotch). Biochem J 399 ,231239. Solomon, P. S., Wilson, T. J. G., Rybak, K., Parker, K., Lowe, R. G. T. and Oliver, R. P. (2006e). Structuralcharacterisationoftheinteractionbetween Triticum aestivum andthedothideomycetepathogen Stagonospora nodorum . Eur J Plant Pathol 114 ,275 282. Solomon, P. S., Waters, O. D. and Oliver, R. P. (2007). Decoding the mannitol enigmainfilamentousfungi. Trends Microbiol ,Inpress. Solscheid, B. and Tropschug, M. (2000). A novel type of FKBP in the secretory pathwayof Neurospora crassa . FEBS Lett 480 ,118122. Sommerhalder, R. J., McDonald, B. A. and Zhan, J. S. (2006). Thefrequenciesand spatial distribution of mating types in Stagonospora nodorum are consistent with recurringsexualreproduction. Phytopathol 96 ,234239.

244 References

Spurr, A. R. (1969). A lowviscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26 ,3143. Steinberg, G., Schliwa, M., Lehmler, C., Bolker, M., Kahmann, R. and McIntosh, J. R. (1998). Kinesinfromtheplantpathogenicfungus Ustilago maydis isinvolvedin vacuoleformationandcytoplasmicmigration. J Cell Sci 111 ,22352246. Stennicke, H. R. and Salvesen, G. S. (2000). Caspases controlling intracellular signalsbyproteasezymogenactivation. Biochim Biophys Acta 1477 ,299306. Subramaniyan, S. and Prema, P. (2002). Biotechnology of microbial xylanases: enzymology,molecularbiology,andapplication. Crit Rev Biotechnol 22 ,3364. Sunny, H. W. L. and Zeyen, R. J. (1977). Conidialontogenyin Septoria nodorum . Proc Am Phytopathol Soc 4,129. Sutton, B. C. and Waterston, J. M. (1966). Description of pathogenic fungi and bacteria .Surrey:CommonwealthMycologicalInstitute. Tag, A., Hicks, J., Garifullina, G., Ake, C., Jr., Phillips, T. D., Beremand, M. and Keller, N. (2000). Gprotein signalling mediates differential production of toxic secondarymetabolites. Mol Microbiol 38 ,658665. Takano, Y., Kikuchi, T., Kubo, Y., Hamer, J. E., Mise, K. and Furusawa, I. (2000). The Colletotrichum lagenarium MAPkinasegene CMK1 regulatesdiverseaspectsof fungalpathogenesis. Mol Plant-Microbe Interact 13 ,374383. Takano, Y., Komeda, K., Kojima, K. and Okuno, T. (2001). Proper regulation of cyclic AMPdependent protein kinase is required for growth, conidiation, and appressorium function in the anthracnose fungus Colletotrichum lagenarium . Mol Plant-Microbe Interact 14 ,11491157. Talbot, N. J. (2003). On the trail of a cereal killer: Exploring the biology of Magnaporthe grisea . Annu Rev Microbiol 57 ,177202. Taylor, N. L., Heazlewood, J. L., Day, D. A. and Millar, A. H. (2005). Differential impact of environmental stresses on the pea mitochondrial proteome. Mol Cell Proteomics 4,11221133. Teichert, S., Schonig, B., Richter, S. and Tudzynski, B. (2004). Deletion of the Gibberella fujikuroi glutaminesynthetasegenehassignificantimpactontranscriptional controlofprimaryandsecondarymetabolism. Mol Microbiol 53 ,16611675. Thines, E., Weber, R. W. S. and Talbot, N. J. (2000). MAPkinaseandproteinkinase Adependentmobilizationoftriacylglycerolandglycogenduringappressoriumturgor generationby Magnaporthe grisea . Plant Cell 12 ,17031718.

245 References

Thines, E., Anke, H. and Weber, R. W. (2004). Fungal secondary metabolites as inhibitorsofinfectionrelatedmorphogenesisinphytopathogenicfungi. Mycol Res 108 , 1425. Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994). CLUSTALW:improving thesensitivityofprogressivemultiplesequencealignmentthroughsequenceweighting, positionspecificgappenaltiesandweightmatrixchoice. Nucleic Acids Res 22 ,4673 4680. Thompson, J. E., Basarab, G. S., Andersson, A., Lindqvist, Y. and Jordan, D. B. (1997). Trihydroxynaphthalene reductase from Magnaporthe grisea : realization of an activecenterinhibitorandelucidationofthekineticmechanism. Biochemistry 36 ,1852 1860. Thompson, J. E., Fahnestock, S., Farrall, L., Liao, D. I., Valent, B. and Jordan, D. B. (2000). The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea : tetrahydroxynaphthalene reductase. J Biol Chem 275 , 34867 34872. Tonukari, N. J., Scott-Craig, J. S. and Walton, J. D. (2000). The Cochliobolus carbonum SNF1 gene is required for cell walldegrading enzyme expression and virulenceonmaize. Plant Cell 12 ,237248. Torii, S., Yamamoto, T., Tsuchiya, Y. and Nishida, E. (2006). ERKMAPkinaseinG cellcycleprogressionandcancer. Cancer Sci 97 ,697702. Truesdell, G. M., Jones, C., Holt, T., Henderson, G. and Dickman, M. B. (1999). A Rasproteinfromaphytopathogenicfunguscausesdefectsinhyphalgrowthpolarity, andinducestumorsinmice. Mol Gen Genet 262 ,4654. Trusov, Y., Rookes, J. E., Chakravorty, D., Armour, D., Schenk, P. M. and Botella, J. R. (2006). HeterotrimericGproteinsfacilitate Arabidopsis resistancetonecrotrophic pathogensandareinvolvedinjasmonatesignaling.Plant Physiol 140 ,210220. Tsuji, G., Kenmochi, Y., Takano, Y., Sweigard, J., Farrall, L., Furusawa, I., Horino, O. and Kubo, Y. (2000). Novel fungaltranscriptional activators, Cmr1p of Colletotrichum lagenarium andpig1p of Magnaporthe grisea ,containCys2His2 zinc fingerandZn(II)2Cys6binuclearclusterDNAbindingmotifsandregulatetranscription ofmelaninbiosynthesisgenesinadevelopmentallyspecificmanner. Mol Microbiol 38 , 940954. Tsuji, G., Fujii, S., Tsuge, S., Shiraishi, T. and Kubo, Y. (2003). The Colletotrichum lagenarium Ste12likegene CST1 isessentialforappressoriumpenetration. Mol Plant- Microbe Interact 16 ,315325. Tudzynski, B. (1999). Biosynthesis of gibberellins in Gibberella fujikuroi : biomolecularaspects. Appl Microbiol Biotechnol 52 ,298310.

246 References

Tudzynski, B., Mihlan, M., Rojas, M. C., Linnemannstons, P., Gaskin, P. and Hedden, P. (2003). Characterization of the final two genes of the gibberellin biosynthesis gene cluster of Gibberella fujikuroi : des and P450-3 encode GA 4 desaturaseandthe13hydroxylase,respectively. J Biol Chem 278 ,2863528643. Turina, M., Zhang, L. and Van Alfen, N. K. (2006). Effect of Cryphonectria hypovirus 1 (CHV1)infectiononCpkk1,amitogenactivatedproteinkinasekinaseof thefilamentousfungus Cryphonectria parasitica . Fungal Genet Biol 43 ,764774. Turner, G. E. and Borkovich, K. A. (1993). IdentificationofaGprotein αsubunit from Neurospora crassa thatisamemberoftheG ifamily. J Biol Chem 268 ,14805 14811. Upchurch, R. G., Rose, M. S. and Eweida, M. (2001). Overexpression of the cercosporinfacilitatorprotein, CFP ,in Cercospora kikuchii upregulatesproductionand secretionofcercosporin. FEMS Microbiol Lett 204 ,8993. Urban, M., Kahmann, R. and Bolker, M. (1996). Thebiallelic a matingtypelocusof Ustilago maydis :remnantsofanadditionalpheromonegeneindicateevolutionfroma multiallelicancestor. Mol Gen Genet 250 ,414420. van den Dool, H. and Kratz, P. D. (1963). A generalization of the retention index systemincludinglineartemperatureprogrammedgassliquidpartitionchromatography. J Chromatogr 11 ,463471. Van Ginkel, M. and Rajaram, S. (1999). Breeding for resistance to Septoria/Stagonospora blights of wheat. In Septoria and Stagonospora Diseases of Cereals: A Compilation of Global Research ,pp.117126.EditedbyM.vanGinkel,A. McNab&J.Krupinsky.Mexico:CIMMYT. Vanden Bossche, H. (1985). Biochemical targets for antifungal azole derivatives: hypothesisonthemodeofaction. Curr Top Med Mycol 1,313351. Venable, J. H. and Coggshall, R. (1965). Asimplifiedleadcitratestainforelectron microscopy. J Cell Biol 25 ,407408. Viaud, M., Brunet-Simon, A., Brygoo, Y., Pradier, J. M. and Levis, C. (2003). CyclophilinAandcalcineurinfunctionsinvestigatedbygeneinactivation,cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea . Mol Microbiol 50 ,14511465. Viaud, M., Fillinger, S., Liu, W., Polepalli, J. S., Pecheur, P. L., Kunduru, A. R., Leroux, P. and Legendre, L. (2006). A class III histidine kinase acts as a novel virulencefactorin Botrytis cinerea . Mol Plant-Microbe Interact 19 ,10421050. Viaud, M. C., Balhadere, P. V. and Talbot, N. J. (2002). A Magnaporthe grisea cyclophilinactsasavirulencedeterminantduringplantinfection. Plant Cell 14 ,917 930.

247 References

Vitale, N., Gensse, M., Chasserot-Golaz, S., Aunis, D. and Bader, M. F. (1996). TrimericGproteinscontrolregulatedexocytosisinbovinechromaffincells:sequential involvement of Go associated with secretory granules and Gi 3 bound to the plasma membrane. Eur J Neurosci 8,12751285. von Wechmar, M. B. (1966). Investigationonthesurvivalof Septoria nodorum Berk. oncropresidues. South African J Agric Sci 9,93100. Walton, J. D. (1994). DeconstructingtheCellWall. Plant Physiol 104 ,11131118. Walton, J. D. (2006). HCtoxin. Phytochem 67 ,14061413. Wasinger, V. C., Cordwell, S. J., Cerpa-Poljak, A., Yan, J. X., Gooley, A. A., Wilkins, M. R., Duncan, M. W., Harris, R., Williams, K. L. and Humphery-Smith, I. (1995). Progress with geneproduct mapping of the Mollicutes: Mycoplasma genitalium . Electrophoresis 16 ,10901094. Weber, G. F. (1922). II. Septoria diseasesofwheat. Phytopathol 12 ,537585. Wegener, S., Ransom, R. F. and Walton, J. D. (1999). A unique eukaryotic β xylosidase gene from thephytopathogenic fungus Cochliobolus carbonum . Microbiol 145 ,10891095. Weistermeir, R. and Naven, T. (2002). Proteomics in Practice ,1stedn.Weinheim: WileyVCH. West, A. H. and Stock, A. M. (2001). Histidinekinasesandresponseregulatorproteins intwocomponentsignalingsystems. Trends Biochem Sci 26 ,369376. Wierenga, R. K., De Maeyer, M. C. H. and Hol, W. G. J. (1985). Interaction of pyrophosphate moieties with αhelixes in dinucleotidebinding proteins. Biochemistry 24 ,13461357. Wolanin, P. M., Thomason, P. A. and Stock, J. B. (2002). Histidineproteinkinases: keysignaltransducersoutsidetheanimalkingdom.Genome Biol 3,reviews3013.3011 3013.3018. Wolf, J. C. and Mirocha, C. J. (1977). Controlofsexualreproductionin Gibberella zeae ( Fusarium roseum "Graminearum"). Appl Environ Microbiol 33 ,546550. Wool, I. G., Gluck, A. and Endo, Y. (1992). RibotoxinrecognitionofribosomalRNA andaproposalforthemechanismoftranslocation.Trends Biochem Sci 17 ,266269. Wosten, H. A. B. (2001). Hydrophobins:Multipurposeproteins. Annu Rev Microbiol 55 ,625646.

248 References

Xu, J. R. and Hamer, J. E. (1996). MAPkinaseandcAMPsignalingregulateinfection structureformationandpathogenicgrowthinthericeblastfungus Magnaporthe grisea . Gene Dev 10 ,26962706. Xu, J. R., Urban, M., Sweigard, J. and Hamer, J. E. (1997). The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Mol Plant-Microbe Interact 10 ,187194. Xu, J. R., Staiger, C. J. and Hamer, J. E. (1998). Inactivation of the mitogen activatedprotein kinase Mps1 fromthericeblastfunguspreventspenetrationof host cells but allows activation of plant defense responses. Proc Natl Acad Sci USA 95 , 1271312718. Xu, J. R. (2000). MAPkinasesinfungalpathogens. Fungal Genet Biol 31 ,137152. Yamagishi, D., Otani, H. and Kodama, M. (2006). G protein signaling mediates developmentalprocessesandpathogenesisof Alternaria alternata . Mol Plant-Microbe Interact 19 ,12801288. Yaman, I., Fernandez, J., Liu, H., Caprara, M., Komar, A. A., Koromilas, A. E., Zhou, L., Snider, M. D., Scheuner, D., Kaufman, R. J. and Hatzoglou, M. (2003). The zipper model of translational control: a small upstream ORF is the switch that controlsstructuralremodelingofanmRNAleader. Cell 113 ,519531. Yamauchi, J., Takayanagi, N., Komeda, K., Takano, Y. and Okuno, T. (2004). cAMPpKA signaling regulates multiple steps of fungal infection cooperatively with Cmk1 MAP kinase in Colletotrichum lagenarium . Mol Plant-Microbe Interact 17 , 13551365. Yang, Y., Sharma, R., Zimniak, P. and Awasthi, Y. C. (2002). Role of α class glutathione Stransferases as antioxidant enzymes in rodent tissues. Toxicol Appl Pharmacol 182 ,105115. Yang, Z. and Dickman, M. B. (1999a). Colletotrichum trifolii mutantsdisruptedinthe catalytic subunit of cAMPdependent protein kinase are nonpathogenic. Mol Plant- Microbe Interact 12 ,430439. Yang, Z. and Dickman, M. B. (1999b). Molecularcloningandcharacterizationof Ct- PKAR ,ageneencodingtheregulatorysubunitofcAMPdependent protein kinasein Colletotrichum trifolii . Arch Microbiol 171 ,249256. Yoshimi, A., Kojima, K., Takano, Y. and Tanaka, C. (2005). Group III histidine kinase is a positive regulator of Hog1type mitogenactivated protein kinase in filamentousfungi. Eukaryotic Cell 4,18201828. Yoshimoto, T., Higashi, H., Kanatani, A., Lin, X. S., Nagai, H., Oyama, H., Kurazono, K. and Tsuru, D. (1991). Cloningandsequencingofthe7 αhydroxysteroid

249 References

dehydrogenasegenefrom Escherichia coli HB101andcharacterizationoftheexpressed enzyme. J Bacteriol 173 ,21732179. Young, C., McMillan, L., Telfer, E. and Scott, B. (2001). Molecular cloning and genetic analysis of an indolediterpene gene cluster from Penicillium paxilli . Mol Microbiol 39 ,754764. Yuan, W. M., Gentil, G. D., Budde, A. D. and Leong, S. A. (2001). Characterization of the Ustilago maydis sid2 gene, encodinga multidomain peptide synthetasein the ferrichromebiosyntheticgenecluster. J Bacteriol 183 ,40404051. Zhang, Z. and Gurr, S. J. (2001). Expressionandsequenceanalysisofthe Blumeria graminis mitogenactivatedproteinkinasegenes, mpk1 and mpk2 . Gene 266 ,5765. Zhao, X., Kim, Y., Park, G. and Xu, J. R. (2005). Amitogenactivatedproteinkinase cascaderegulatinginfectionrelatedmorphogenesisin Magnaporthe grisea . Plant Cell 17 ,13171329. Zhao, X. and Xu, J. R. (2007). A highly conservedMAPKdockingsiteinMst7 is essentialforPmk1activationin Magnaporthe grisea . Mol Microbiol ,Inpress. Zheng, L., Campbell, M., Murphy, J., Lam, S. and Xu, J. R. (2000). The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea . Mol Plant- Microbe Interact 13 ,724732. Zhu, H., Bilgin, M. and Snyder, M. (2003). Proteomics. Annu Rev Biochem 72 ,783 812. Zohary, D. and Hopf, M. (2000). Domestication of Plants in the Old World: The Origin and Spread of Cultivated Plants in West Asia, Europe, and the Nile Valley ,3rd edn.Oxford:OxfordUniversityPress.

250

Appendices

251 Appendices

70The plasmid vector pBSK-phleo (Appendix A)

KpnI(658) XhoI(669) HindIII(690) EcoRV(698)

pBSK-phleo 5233 bp

Phleomycin resistance NotI(3011) BamHI(2992) PstI(2984)

Appendix A . Schematic plasmid map of pBSKphleo showing all restriction sites criticalforcloningofgeneflankingregions.pBSKphleowasdevelopedbyamplifying a 2,272 bp section of the pAN81 plasmid containing the phleomcycin resistance cassetteusingprimerspBSKphleoF(5’TTCGTTGACCTAGCTGATTCTGG3’)and pBSKphleoR (5’CTCTTCGCTATTACGCCAGCTG3’). The amplicon was TA cloned into pGEMTEasy (Promega) and liberated via Eco RI digestion to facilitate cloningintopBluescriptSK(Stratagene)digestedwith Eco RItocreatepBSKphleo.

252 Appendices

71qRT-PCR primer sequences (Appendix B)

Appendix B .PrimersusedforqRT PCR.

Broad acc ID Primer code Sequence (5' - 3') Broad acc ID Primer code Sequence (5' - 3') SNOG_01139.1 ActinF CTGCTTTGAGATCCACAT SNOG_15451.1 SNU15451RTF ACATGATGGAGGCGGTGATTCA ActinR GTCACCACTTTCAACTCC SNU15451RTR AGCAGCAAACAGGTCCGGGTAG SNOG_01139.1 ActinqPCRf AGTCGAAGCGTGGTATCCT SNOG_14370.1 SNU14370RTF GCGTCCGACAGGAATGGGAT ActinqPCRr ACTTGGGGTTGATGGAG SNU14370RTR TTGGGTGTCAATGTCTGGTGGA SNOG_11663.1 EF1alphaF TGTTGTCGCCGTTGAATC SNOG_06492.1 SNU06492RTF CTACCTTCCTTGCCAACTTTGCTG EF1alphaR CTCATCGTCGCCATCAAC SNU06492RTR AGAACCTGAGGCGTCGAGCA SNOG_09590.1 R638RTF TACGAAGACCCGGAACCCGT SNOG_05974.1 SNU05974RTF TACAACCCCAAGCGCCTCTTC R638RTR GGGGTTGTAGTGCTGGAGGTTG SNU05974RTR TGTAGCCAGACTGCGACAGGAGA SNOG_13042.1 R1048RTF AGTGACGACGCCAATGTGGC SNOG_12730.1 SNU12730RTF AATGGCGCGAGCAGTTCAAC R1048RTR AACTGAGTTCGCGATGCGGG SNU12730RTR AATCCTGTCCGTTCTTCTGGATGA SNOG_10217.1 FP1F01Fwd CACTCAAGAGTCTTGCCCCATCC SNOG_01569.1 SNU01569RTF GAGTACGAATTCAATGCCGCG FP1F01Rev ATCAGCACATCGATCTTGCCG SNU01569RTR GGCAGAAGCCCATAATCCAAGTAGT SNOG_07541.1 R563RTF CAGCCTCATAACACCTAACATTGGC SNOG_06180.1 SNU06180RTF GGAAACATCCCCTCCTCTGCA R563RTR GCTTGTAGCCGGTATGTGAGACCT SNU06180RTR ACCAGCATATTTGGGCGGGT SNOG_07604.1 R646RTF GTCTGGTTCACGGGCTTCCA SNOG_05918.1 SNU05918RTF CTCGGTTACCGCTTTGGAATTG R646RTR GAGTACTTGCCGCCGACCAA SNU05918RTR AGTACATCAGACCTGCGTCGTACG SNOG_11441.1 R806RTF GATCACCTTTTCGCACATTCAGTCC SNOG_08052.1 SNU08052RTF TAGCCAACCCTGAAGCACAGAGA R806RTR TTAATGCTCCAGGGTTGATCACAA SNU08052RTR CAAGGGCGTTGGTGCTGTCT SNOG_11081.1 F6B03rtF1 GGTTTCTGGGATAAGAAC SNOG_13504.1 SNU13504RTF CGATCGACAGCAAGAACTATACGCT F6B03rtR1 TTTAGCCTCAGTCTGAGC SNU13504RTR CATTTTCACGCCTTCGCTGTAAT SNOG_08775.1 FP7G05Fwd GAAAAGCACAACTTCACCATGGC SNOG_16063.1 SNU16063RTF GCCATTGCCGAAGCAGTAGC FP7G05Rev TGTTAAGCTCCGCGGTGACAC SNU16063RTR CGAGGAACGCCACCTTGATCT SNOG_08282.1 FP7B06Fwd CGGAAAGCATCCAGAAGGCC SNOG_00848.1 SNU00848RTF GGCGACCAGATCAGCGTTCA FP7B06Rev TCTCTGAGCTGTTCGGGAGGGA SNU00848RTR GCCAGGGCACATGTCGAGAA FP1_B06 FP1B06Fwd AAGAACGCCGCCAACTACGTC SNOG_10685.1 SNU10685RTF TTCGCTTACCCAGTGGGACAAC FP1B06Rev TCTGGTCGATCTTGTCGCCG SNU10685RTR ACAGCTTGCCGCTCAACCAG SNOG_00656.1 SNU00656RTF GCGGCTCGCATGCAAACTAC SNOG_06491.1 SNU06491RTF CAGAGCAGACGCTACTACTTCCGC SNU00656RTR GCATTCCTCCCCGCATCGTA SNU06491RTR AGAGTTCTTCAGACGCGTTGCC SNOG_11078.1 SNU11078RTF GGATGTCAGTCGAGGAATACGCA SNU11078RTR TGCTTGTACTTGCCACCGCTG

253 Appendices

72Densitometry data of extracellular protein spots in Chapter 3 (Appendix C)

Appendix C. Normalised densitometry value of triplicate of protein spots excised from SN15 and gna1-35 extracellular proteome analysis with 2D gel electrophoresis. Unpaired ttest was used to

analyseproteinspotsforsignificantdifferencesinthenormalisedvolumes(p<0.05).Forthepurpose

ofgraphingwithtranscriptdata,normalisedvalueswererestandardisedto“1”inSN15(Chapter3).

Continuedonthenextpage.

Spot Strain Normalised protein Mean SD SE p-value abundance value 2.034 1.395 0.983 1.471 0.530 0.306 E1 SN15 0.024 gna1-35 0.388 0.480 0.129 0.332 0.182 0.105 E2 SN15 0.730 0.607 0.567 0.635 0.085 0.049 NA gna1-35 0.000 0.000 0.000 0.000 0.000 0.000 E3 SN15 0.620 0.412 0.370 0.467 0.134 0.077 NA gna1-35 0.000 0.000 0.000 0.000 0.000 0.000 E4 SN15 0.290 0.186 0.309 0.262 0.066 0.038 NA gna1-35 0.000 0.000 0.000 0.000 0.000 0.000 E5 SN15 1.321 1.019 1.269 1.203 0.161 0.093 0.047 gna1-35 0.167 0.945 0.224 0.445 0.434 0.250

254 Appendices

Appendix C. Continuedfromthepreviouspage. Spot Strain Normalised protein Mean SD SE p-value abundance value E6 SN15 0.374 0.411 0.114 0.300 0.162 0.093 0.013 gna1-35 1.084 0.732 1.172 0.996 0.233 0.134 E7 SN15 0.381 0.540 0.450 0.457 0.080 0.046 0.036 gna1-35 0.331 0.151 0.096 0.193 0.123 0.071 E8 SN15 0.760 0.784 0.641 0.728 0.077 0.044 0.000 gna1-35 0.119 0.131 0.074 0.108 0.030 0.017 E9 SN15 0.467 0.411 0.355 0.411 0.056 0.032 NA gna1-35 0.000 0.000 0.000 0.000 0.000 0.000 E10 SN15 2.939 2.407 1.560 2.302 0.695 0.402 0.008 gna1-35 0.168 0.391 0.253 0.271 0.113 0.065 E11 SN15 2.050 1.800 2.529 2.126 0.370 0.214 0.011 gna1-35 0.135 0.144 0.097 0.125 0.025 0.014 E12 SN15 1.767 4.876 4.392 3.678 1.673 0.966 NA gna1-35 0.000 0.000 0.000 0.000 0.000 0.000 E13 SN15 1.983 2.446 2.090 2.173 0.242 0.140 NA gna1-35 0.000 0.000 0.000 0.000 0.000 0.000 E14 SN15 4.195 3.726 3.631 3.851 0.302 0.174 NA gna1-35 0.000 0.000 0.000 0.000 0.000 0.000 E15 SN15 2.640 3.204 4.824 3.556 1.134 0.655 NA gna1-35 0.000 0.000 0.000 0.000 0.000 0.000

255 Appendices

Appendix C. Continuedfromthepreviouspage.

Spot Strain Normalised protein Mean SD SE p-value abundance value E16 SN15 0.000 0.000 0.000 0.000 0.000 0.000 NA gna1-35 0.132 1.101 1.048 0.760 0.545 0.314 E17 SN15 0.000 0.000 0.000 0.000 0.000 0.000 NA gna1-35 0.076 0.943 1.542 0.854 0.737 0.426 0.000 0.000 0.000 0.000 0.000 0.000 E18 SN15 NA gna1-35 0.102 0.887 1.255 0.748 0.589 0.340 0.287 0.231 0.062 0.193 0.117 0.068 E19 SN15 0.002 gna1-35 1.264 0.989 0.968 1.074 0.165 0.095 0.000 0.000 0.000 0.000 0.000 0.000 E20 SN15 NA gna1-35 0.222 0.066 0.052 0.113 0.094 0.054 0.423 0.361 0.582 0.455 0.114 0.066 E21 SN15 0.014 gna1-35 1.853 1.064 1.418 1.445 0.395 0.228 E22 SN15 0.000 0.000 0.000 0.000 0.000 0.000 NA gna1-35 0.800 0.510 1.155 0.822 0.323 0.187 E23 SN15 0.642 1.190 1.863 1.232 0.612 0.353 NA gna1-35 0.000 0.000 0.000 0.000 0.000 0.000 E24 SN15 0.518 0.382 1.170 0.690 0.421 0.243 NA gna1-35 0.000 0.000 0.000 0.000 0.000 0.000 E25 SN15 0.521 0.421 1.303 0.748 0.483 0.279 NA gna1-35 0.000 0.000 0.000 0.000 0.000 0.000

256 Appendices

73Supplementary BlastP data (Appendix D) Appendix D.BlastPvaluesofputative Gna1 , Mak2 and Sch1 regulatedgenes.Continuedonthenext page.

Broad acc ID % amino E-value BlastP functional ma tch (organism; Genbank acc ID) acid identity SNOG_00656.1 36% 1E44 Vacuolartargetingprotein(Candida albicans ;XP_711465.1) SNOG_11078.1 37% 2E53 Hypotheticalprotein(NmrAlikedomain)(Gibberella zeae ; XP_384929) SNOG_15451.1 47% 1E73 Acetylxylanesterase( Aspergillus oryzae ;BAD12626.1) SNOG_14370.1 31% 5E35 Tyrosinase,putative( Aspergillus fumigatus ;EAL86390.1) SNOG_06492.1 100% 0.0E Subtilisinlikeprotease( Phaeosphaeria nodorum ;AAP30889.1) SNOG_05974.1 79% 2E148 Malatedehydrogenase( Paracoccidioides brasiliensis ;AAP37966.2) SNOG_12730.1 29% 1E19 Putativeprotein( Neurospora crassa ;CAC28723.1) SNOG_01569.1 51% 1E90 Cellwallglucanase( Aspergillus fumigatus ;XP_748349.1) SNOG_06180.1 43% 2E35 Hypotheticalprotein( Chaetomium globosum ; EAQ89481.1) SNOG_05918.1 29% 2E12 Hypotheticalprotein( Aspergillus niger ;CAJ18289.1) SNOG_08052.1 PoorBlastPmatch SNOG_13504.1 40% 2E26 Predictedprotein( Chaetomium globosum ;EAQ87808.1) SNOG_16063.1 33% 1E08 RNaseT1( Aspergillus oryzae ;CAA30560.1) SNOG_00848.1 63% 2E38 Peptidylprolylisomerase( Neurospora crassa ;CAA06962.1) SNOG_10685.1 PoorBlastPmatch SNOG_06491.1 50% 6E69 Serineproteaseprecursor( Fusarium oxysporum ;AAC27316.2)

257 Appendices

Appendix D. Continuedfromthepreviouspage. Broad acc ID % amino E-value BlastP functional match (organism; Genbank acc ID) acid identity SNOG_13042.1 32% 5E26 Shortchaindehydrogenase( Aspergillus fumigatus ;XP_748339.1) SNOG_10217.1 36% 9E29 Shortchaindehydrogenase/reductaseSDR( Solibacter usitatus ; ZP_00520385.1) SNOG_07541.1 84% 5E129 ProteasomecomponentPre8( Aspergillus funigatus ;XP_748923.1) SNOG_07604.1 55% 7E64 Glutathionetransferase2( Aspergillus fumigatus ;AAX07319.1) SNOG_11441.1 70% 2E53 3dehydroquinatedehydratase( Aspergillus fumigatus ;XP_754140.1) SNOG_11081.1 44% 3E17 CipCprotein( Emericella nidulans ;CAC87272.1) SNOG_08775.1 50% 5E60 HADsuperfamilyhydrolase( Aspergillus fumigatus ;XP_753809.1) SNOG_15488.1 100% 0.0E Mannitoldehydrogenase( Phaeosphaeria nodorum ;AAX14688.1) SNOG_08282.1 54% 2E40 Shortchaindehydrogenase,putative( Aspergillus fumigatus ;EAL86301) SNOG_09590.1 48% 2E48 Nitroreductasefamilyprotein(Bacillus cereus ;ZP_00240643) FP1_B06 50% 4E10 Glucoserepressiblegeneproteinlikeprotein( Magnaporthe grisea ; cDNA AAX07712.1)

258 Appendices

Appendix E. NormaliseddensitometryvalueoftriplicateofproteinspotsexcisedfromSN15, gna1-

74Densitometry analysis35 ,mak2-65 of intracellular and sch1-42 protein spintracellularproteomeanalysiswith2Dgelelectrots in Chapters 3 and 4 (Appendix E) ophoresis.Unpairedttest wasusedtoanalyseproteinspotsforsignificantdifferencesinthenormalisedvolumesofSN15and mutants (p < 0.05). For the purpose of graphing with transcript data, normalised values were re standardisedto“1”inSN15(Chapters3and4).Continuedonthenextpage. Spot Strain Normalised protein Mean SD SE p-va lue abundance value C1 SN15 6.014 2.709 5.199 4.641 1.722 0.994 gna1-35 1.567 1.421 2.082 1.690 0.347 0.200 0.044 mak2-65 2.281 1.420 2.683 2.128 0.645 0.373 0.077 C2 SN15 2.189 2.354 3.415 2.653 0.665 0.384 gna1-35 0.077 0.140 0.238 0.152 0.081 0.047 0.023 mak2-65 0.197 0.135 0.189 0.174 0.034 0.019 0.023 C3 SN15 2.389 3.650 2.943 2.994 0.632 0.365 gna1-35 0.966 1.243 2.363 1.524 0.740 0.427 0.059 mak2-65 0.567 0.371 1.955 0.964 0.864 0.499 0.030 C4 SN15 0.272 0.716 0.84 0.609 0.299 0.172 gna1-35 0.254 0.000 0.000 0.085 0.147 0.085 NA mak2-65 0.000 0.000 0.000 0.000 0.000 0.000 NA C5 SN15 1.184 1.477 1.78 1.480 0.298 0.172 gna1-35 1.126 0.949 2.312 1.462 0.741 0.428 0.971 mak2-65 0.05 0.203 0 0.084 0.106 0.061 0.010 C6 SN15 0.486 0.410 0.224 0.373 0.135 0.078 gna1-35 0.131 0.105 0.083 0.106 0.024 0.014 0.028 mak2-65 0.055 0.038 0.000 0.031 0.028 0.016 0.048

259 Appendices

Appendix E. Continuedfromthepreviouspage. Spot Strain Normalised protein Mean SD SE p-value abundance value C7 SN15 0.238 0.000 0.000 0.079 0.137 0.079 gna1-35 0.297 0.322 0.445 0.355 0.079 0.046 NA mak2-65 0.068 0.138 0.099 0.102 0.035 0.020 NA C8 SN15 3.140 4.096 4.074 3.770 0.546 0.315 gna1-35 0.588 0.000 0.000 0.196 0.339 0.196 NA mak2-65 3.178 3.263 2.303 2.915 0.531 0.307 0.124 C9 SN15 0.825 0.184 0.511 0.507 0.321 0.185 gna1-35 0.219 1.459 0.235 0.638 0.711 0.411 0.787 mak2-65 2.988 2.997 3.440 3.142 0.258 0.149 0.000

260 Appendices

75Densitometry analysis of intracellular protein spots in Chapter 5 (Appendix F)

Appendix F. Normalised densitometry value of triplicate of protein spots excised from SN15 and

sch1-42 intracellular proteome analysis with 2D gel electrophoresis. Unpaired ttest was used to

analyseproteinspotsforsignificantdifferencesinthenormalisedvolumes(p<0.05). Spot Strain Normalised protein Mean SD SE p-value abundance value C1 SN15 4.844 2.945 4.091 3.960 0.956 0.552 0.015 sch1-42 7.314 10.617 8.058 8.663 1.733 1.000 C2 SN15 0.921 0.831 0.907 0.048 0.048 0.028 NA sch1-42 0.000 0.000 0.000 0.000 0.000 0.000 C10 SN15 0.152 0.241 0.196 0.045 0.045 0.026 0.036 sch1-42 1.278 1.537 2.245 0.501 0.501 0.289 C11 SN15 0.000 0.000 0.000 0.000 0.000 0.000 NA sch1-42 0.564 0.539 1.174 0.360 0.360 0.208

261 Appendices

Appendix76 In vitro metabolomics G.Acomparativeanalysisformetaboliteabundancei data (Appendix G) nSN15,Ect, sch1-11 and sch1-42 growninMMbrothwithglutamate andfoam.Theaverageandstandarderroroftheno rmalisedintegratedsignalvalueofeachmetaboliteisgiven.ThenumberofTMS groupattachedtoeachmetabolitederivativeisindicatedinbracketswherepossible.Colourcodinginthefirstcolumnarekeyreferences tocompoundclassificationinFigure5.24.Continuedonthenextpage.

RT SN15 Ect sch1-11 sch1-42 Metabolite match (minute) Average SE Average SE Average SE Average SE Identified  LAlanine(2TMS) 5.86 2.410 0.187 0.958 0.445 1.219 0.297 4.078 1.187  LValine(2TMS) 9.15 0.286 0.021 0.242 0.099 0.563 0.041 2.672 0.066  LLeucine(2TMS) 10.86 0.104 0.006 0.095 0.048 0.058 0.020 0.117 0.051  LIsoleucine(2TMS) 11.51 0.107 0.028 0.119 0.063 0.038 0.021 0.074 0.037  Glycine(3TMS) 11.72 0.773 0.054 0.575 0.117 0.621 0.227 1.007 0.310  LSerine(2TMS) 12.16 0.388 0.052 0.794 0.087 0.378 0.069 0.434 0.123  1,3ditertbutylbenzene 12.33 0.091 0.036 0.105 0.008 0.073 0.018 0.164 0.049  LProline(2TMS) 12.54 0.442 0.027 0.434 0.217 0.000 0.000 0.000 0.000  Phosphoricacid(3TMS) 12.81 12.008 1.099 15.088 1.555 14.347 4.445 12.978 2.926  LAlanine(3TMS) 12.99 0.844 0.107 0.376 0.143 1.233 0.661 0.964 0.228  LSerine(3TMS) 13.65 1.013 0.128 0.943 0.261 0.682 0.231 1.016 0.339  Fumaricacid(2TMS) 13.79 0.189 0.025 0.257 0.025 0.077 0.024 0.111 0.082  LThreonine(3TMS) 14.10 0.954 0.102 1.107 0.234 0.421 0.126 0.729 0.235  Succinicacid(2TMS) 14.18 0.349 0.027 0.372 0.128 0.903 0.180 1.330 0.172  βAlanine(3TMS) 15.00 0.130 0.015 0.084 0.043 0.065 0.010 0.017 0.017  LAsparticacid(3TMS) 17.55 0.133 0.031 0.141 0.057 0.166 0.026 0.803 0.380  4Aminobutyricacid(3TMS) 17.73 0.796 0.064 1.101 0.508 4.916 1.124 12.463 2.187  Malicacid(3TMS) 17.81 2.595 0.218 3.492 0.038 1.786 0.328 3.137 0.747  4Hydroxyproline(3TMS) 17.85 0.116 0.028 0.355 0.118 0.229 0.062 0.223 0.035  LAsparticacid(3TMS) 18.48 1.471 0.020 1.176 0.078 1.390 0.414 1.195 0.372

262 Appendices

Appendix G .Continuedfromthep reviouspage.

RT SN15 Ect sch1-11 sch1-42 Metabolite match (minute) Average SE Average SE Average SE Average SE Identified  Glutamine(4TMS) 20.04 8.231 1.584 3.618 1.962 9.729 5.036 6.224 2.982  NAcetylglutamicacid(2TMS) 20.28 0.935 0.073 1.645 0.692 1.405 0.322 0.664 0.077  Xylitol(5TMS) 20.73 3.827 1.449 1.149 0.247 5.264 0.576 13.440 3.537  LGlutamicacid(3TMS) 20.85 25.217 2.089 18.851 3.385 12.246 4.005 30.932 7.637  Pyroglutamicacid(2TMS) 20.98 22.651 7.009 17.616 5.101 13.645 2.226 29.796 8.732  LPhenylalanine(2TMS) 21.85 0.107 0.012 0.153 0.012 0.063 0.018 0.059 0.041  LProline(2TMS) 22.42 0.301 0.057 0.254 0.061 0.126 0.023 0.385 0.265  1HIndole2,3dione 22.56 1.069 0.143 0.800 0.028 0.796 0.166 0.933 0.240  LAsparagine(3TMS) 22.86 1.193 0.062 1.760 0.256 0.604 0.082 0.842 0.336  Ornithine(4TMS) 23.35 4.605 0.586 1.307 0.352 2.232 0.932 2.997 1.328  Mannitol(6TMS) 24.43 142.389 48.297 131.752 19.619 113.422 11.988 204.479 31.027  LGlutamine(3TMS) 25.14 35.560 4.761 25.948 4.826 26.499 2.367 43.326 10.082  LLysine(4TMS) 25.39 3.660 0.347 6.771 1.860 1.821 0.337 2.543 0.714  Allantoin(5TMS) 26.29 1.884 0.078 1.719 0.185 1.523 0.318 1.517 0.347  myoInositol(6TMS) 26.86 0.103 0.006 0.129 0.018 0.138 0.028 0.086 0.051  Methylcitricacid(4TMS) 27.16 0.000 0.000 0.000 0.000 0.081 0.031 0.065 0.034  Allantoin(4TMS) 27.54 4.638 0.383 4.097 1.618 2.536 0.250 3.508 0.720  LTyrosine(3TMS) 27.75 0.165 0.004 0.368 0.072 0.067 0.016 0.049 0.036  Hexadecanoicacid(1TMS) 28.88 0.825 0.138 0.979 0.105 1.007 0.136 1.781 0.506  Glutamine(4TMS) 29.07 0.574 0.121 0.232 0.065 0.872 0.556 0.236 0.052  Octadecanol(1TMS) 29.93 0.090 0.018 0.261 0.015 0.224 0.054 0.120 0.064  Octadecanoicacid(1TMS) 32.31 1.266 0.205 2.068 0.301 2.083 0.247 2.708 0.582  L(+)Cystathonine(4TMS) 32.39 0.384 0.017 0.412 0.128 0.441 0.105 0.195 0.109

263 Appendices

Appendix G .Continuedfromthepreviouspage. RT SN15 Ect sch1-11 sch1-42 Metabolite match (minute) Average SE Average SE Average SE Average SE Identified  9,12(Z,Z)Octadecadienoicacid 32.61 0.597 0.126 0.641 0.044 0.968 0.168 1.230 0.287 (1TMS)  Trehalose(8TMS) 38.46 0.407 0.041 1.664 0.440 0.604 0.195 0.422 0.207 Unidentified  [Glycine(3TMS)] 9.46 2.235 0.401 1.696 0.340 1.364 0.296 3.210 1.041  [Indole3acetaldehyde{BP} 10.16 0.054 0.013 0.096 0.015 0.045 0.005 0.093 0.071 (TMS)]  [βAlanine(3TMS)] 13.19 0.219 0.021 0.117 0.042 0.778 0.154 2.501 1.372  [CalystegineB2B4(4TMS)] 15.35 0.161 0.028 0.202 0.009 0.159 0.019 0.407 0.203  [LProline(2TMS)] 19.70 0.187 0.011 0.343 0.145 0.216 0.021 0.058 0.032  [LAlanine(3TMS)] 20.37 0.369 0.024 0.283 0.039 0.140 0.057 0.038 0.024  [Phosphoricacid(3TMS)] 24.68 0.115 0.012 0.054 0.032 0.171 0.043 0.171 0.114  [Trehalose(8TMS)] 28.75 1.621 0.069 1.344 0.719 1.894 0.277 1.864 0.386  [Triethanolamine(3TMS)] 31.02 0.049 0.026 0.115 0.010 0.084 0.012 0.100 0.018  [1Aminocyclopropanecarboxylic 31.12 1.220 0.154 1.397 0.197 0.901 0.115 0.752 0.154 acid(3TMS)]  [Galactinol(9TMS)] 33.46 0.122 0.007 0.114 0.018 0.175 0.003 0.279 0.045  [Urea(2TMS)] 33.68 0.177 0.045 0.256 0.131 0.033 0.018 0.031 0.031  [transFerulicacid(2TMS)] 38.81 0.102 0.078 0.225 0.139 0.203 0.050 0.152 0.088  [Glucopyranose(5TMS)] 42.86 0.204 0.012 0.204 0.015 0.252 0.029 0.554 0.198  [CalystegineB2methoxyamine(4 45.57 0.357 0.014 0.073 0.014 30.710 3.556 72.194 12.545 TMS)]  [Galactonicacid(6TMS)] 50.92 0.490 0.034 0.713 0.243 0.305 0.028 0.212 0.122

264 Appendices

77The AMDIS mass spectrum format of RT4557 (Appendix H)

( 45 41) ( 73 350) ( 74 32) ( 75 34) (133 14) (165 7) (207 6) (222 78) (251 3) (269 9) (272 1) (283 4) (285 8) (297 8) (315 20) (317 4) (325 2) (328 6) (329 4) (339 3) (340 3) (341 7) (342 5) (343 8) (345 2) (353 1) (355 5) (357 27) (358 13) (359 5) (367 2) (368 2) (369 11) (371 12) (372 5) (374 2) (384 6) (385 8) (386 16) (387 56) (388 16) (389 7) (415 2) (429 15) (430 5) (432 1) (441 1) (443 11) (444 4) (446 2) (457 21) (459 1000) (460 394) (461 181) (462 46) (464 3) (471 2) (473 7) (474 12) (475 7) (476 4) (517 6) (518 3) (531 3) (547 196) (548 97) (549 44) (550 13) (551 5) (562 11) (563 7) (564 4)

Appendix H. TheAMDISmassspectrumformatofRT4557fromSN15.Seventytwo peaksweredetected(leftofbrackets)andtheirrelativeintensities(rightofbrackets).

265 Appendices

78Peptide coverage of CipC (Appendix I)

A Spot C8 1. 00290217925 Score: 414 Queries matched: 12 Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 26 451.70 901.38 901.40 -0.03 0 30 0.14 1 AFEDHQR 31 462.67 923.33 923.38 -0.05 0 32 0.057 1 GEDWFDR 37 515.74 1029.46 1029.50 -0.04 1 14 4.6 2 AFEDHQRK 44 591.24 1180.46 1180.51 -0.05 1 43 0.0044 1 GEDWFDREK 48 614.31 1226.61 1226.64 -0.03 0 (19) 1.2 2 EGKPVSHQFAK 49 409.88 1226.61 1226.64 -0.03 0 20 0.86 3 EGKPVSHQFAK 50 660.32 1318.62 1318.68 -0.06 0 65 3e-05 1 ELLAGFAGAEVDK 57 589.61 1765.79 1765.88 -0.08 0 (36) 0.015 1 SSFGHELIAGGAAFAGFK 58 883.91 1765.82 1765.88 -0.06 0 75 2.2e-06 1 SSFGHELIAGGAAFAGFK 60 910.37 1818.73 1818.77 -0.04 0 63 3.3e-05 1 YQQVYENDNFEENK 63 621.30 1860.89 1860.98 -0.09 1 73 3e -06 1 ELLAGFAGAEVDKLAETK

B SNOG _11081 .1 1 ATGGGTTTCTGGGGTAGGTGACGCTCCGAACCAGCATCTCTCGAGTCGTGCTCAACAGTC M G F W 61 CGCAG ATAAGAACGAAGACAAGTACCAGCAGGTGTACGAGAACGACAACTTTGAGGAGAA D K N E D K Y Q Q V Y E N D N F E E N 121 CAAGTCGAGCTTCGGACATGAATTGATTGCCGGAGGAGCTGCCTTTGCTGGTTTCAAAGC K S S F G H E L I A G G A A F A G F K A 181 GTTCGAGGACCATCAGCGCAAGGAGGGTTCGTGCATCCCCCGCCCAACCTGGCACACTCT F E D H Q R K E 241 ATACTGACAATCATGACTAG GCAAGCCCGTTTCCCACCAGTTCGCCAAAGAGCTCCTTGC G K P V S H Q F A K E L L A 301 CGGCTTCGCAGGTGCCGAAGTCGACAAGCTCGTGAGTCCGATCGCACCCTCAGACACACA G F A G A E V D K L 361 GCACACTGACACCAAGGCAG GCCGAGACAAAGGGCGAGGACTGGTTCGACCGCGAGAAGG A E T K G E D W F D R E K 421 CTCAGCATGAGGCTAAAAAGCAAGCCGAGCACATGTACGACGAGCACTACGTGAACGGCC A Q H E A K K Q A E H M Y D E H Y V N G 481 AGGGTGCGAACCAGTATGATCCCAACCAGTACGGGCGCCCTGAGCACTTTGACAGGCGCG Q G A N Q Y D P N Q Y G R P E H F D R R 541 GCTGGTAA G W * Appendix I . A. LC MS/MSanalysisofspotC8.Mascotwasusedtomatchthemass spectrumgeneratedbytrypsinatedpeptidestotheBroadpredicted S. nodorum protein databaseforamatchinggene. B. PeptidecoverageofCipCconfirmedtwoofthethree

Broadpredictedintrons.

266 Appendices

79Construction of the CipC knockout vector (Appendix J)

XK XK B 1 3 i CipC 2 4

K X B XK N 5 ii Phleomycin R 6

XK X B B

iii Phleomycin R XK 1 kb

Appendix J. i. The CipC knockoutvectorwasconstructedbyligatingPCRamplified5' and3'UTRregionof CipC tothe Kpn I/ Xho Iand Bam HI/ Not IrestrictionsitesofpBSK phleo,respectively. ii. TheknockoutvectorwasPCRamplifiedandtransformedinto

SN15tofacilitate iii. homologousgenereplacement.Restrictionsitesareasfollows, X.

Xho I; B. BamHI; K. Kpn Iand N. Not I.Primersareasfollows:

Kpn I 1. F6B035’fwd(5’GGTACC CCCGCAGCTAAGCTTTCT3’) Xho I 2. F6B035’rev(5’CTCGAG GCGGATCACTCCATTAAG3’) Bam HI 3. F6B033’fwd(5’GGATCC GCCCTGAGCACTTTGACA3’) Not I 4. F6B033’rev(5’GCGGCCGC TTGATGTACGTGTACTTG3’) 5. 5’FP6B03KOcon(5’CCCGCAGCTAAGCTTTCTCTAAA3’) 6. 3’FP6B03KOcon(5’TCTTCTTGCCTGTCTGCAGCG3’) Boldtextreferstointroducedrestrictionsitesusedforcloning.

267 Appendices

80PeptideSpot coverage C1 of Sch2 (Appendix K) A 1. 00290256263 Score: 683 Queries matched: 21 Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 10 424.19 846.36 846.41 -0.05 0 27 0.32 1 NTADLEGK 13 436.67 871.32 871.51 -0.20 0 53 0.00066 1 AGGNIVITK 17 495.75 989.49 989.55 -0.06 0 16 3.3 1 STTVVIGASR 22 521.74 1041.46 1041.53 -0.07 0 16 2.3 1 GPVTPEESVK 25 568.77 1135.52 1135.59 -0.07 0 46 0.0024 1 IANSVPYSASK 30 400.19 1197.56 1197.64 -0.08 1 (36) 0.023 1 GPVTPEESVKR 31 599.79 1197.56 1197.64 -0.07 1 43 0.0048 1 GPVTPEESVKR 43 903.92 1805.83 1805.92 -0.09 0 82 3.7e-07 1 VTYISSAVADGPETVAAR 44 603.29 1806.86 1805.92 0.94 0 (57) 0.00011 1 VTYISSAVADGPETVAAR 45 622.64 1864.89 1864.99 -0.10 0 (58) 7.8e-05 1 VANVHVVEADLVSADSLK 46 933.46 1864.90 1864.99 -0.09 0 103 2.5e-09 1 VANVHVVEADLVSADSLK 49 654.98 1961.93 1962.02 -0.09 1 66 1.4e-05 1 RVTYISSAVADGPETVAAR 51 727.35 2179.03 2179.15 -0.12 1 71 3.7e-06 1 ADKVANVHVVEADLVSADSLK 52 545.77 2179.07 2179.15 -0.08 1 (38) 0.0069 1 ADKVANVHVVEADLVSADSLK 53 1114.56 2227.11 2227.20 -0.09 0 51 0.00041 1 SDEANVAGPLFAINAFLPLLR 54 743.38 2227.12 2227.20 -0.08 0 (48) 0.00078 1 SDEANVAGPLFAINAFLPLLR 56 756.03 2265.08 2265.18 -0.10 0 (58) 7.9e-05 1 GIGYQFIQTLAAEGNTVVGTAR 57 1133.55 2265.08 2265.18 -0.09 0 74 1.8e-06 1 GIGYQFIQTLAAEGNTVVGTAR 58 756.36 2266.07 2265.18 0.90 0 (31) 0.034 1 GIGYQFIQTLAAEGNTVVGTAR 62 786.06 2355.16 2355.29 -0.14 1 39 0.0048 1 KSDEANVAGPLFAINAFLPLLR 63 786.73 2357.18 2355.29 1.88 1 (35) 0.015 1 KSDEANVAGPLFAINAFLPLLR

B SNOG _13042 .1 1 ATGTCTACCACCGTTGTCATCGGCGCCTCGCGCGGAATCGGGGTATGTATGCCGCATCTT M S T T V V I G A S R G I G 61 TTACATCACAATTTTTCTGGTTCAGCCTTAGAAGATAGGAAAGGGCTGAATATCTTAG TA Y 121 TCAATTCATTCAAACCCTCGCCGCTGAGGGAAATACCGTCGTTGGGACTGCACGCAATAC Q F I Q T L A A E G N T V V G T A R N T 181 CGCCGACCTCGAGGGCAAGCTGAAAGCCGACAAGGTTGCAAATGTGCATGTCGTCGAGGC A D L E G K L K A D K V A N V H V V E A 241 TGACTTGGTTTCTGCGGACTCCTTGAAAGCTGCAGCAAAGGCCACATCCTCCCTTGTCAA D L V S A D S L K A A A K A T S S L V N 301 CGGCCAGATCGATCACCTGATCATCAACGGCGCCTTTCTCTCTTCCACCACAGGTGGCAT G Q I D H L I I N G A F L S S T T G G M 361 GAACCCCACTGATTTCGCCGAAAAGCCCGAGCTCTTCCTTGAGGAGCTTAAGAAGAGTGA N P T D F A E K P E L F L E E L K K S D 421 CGAGGCCAATGTGGCTGGACCGCTGTTCGCGATCAACGCCTTCCTGCCGCTCCTCCGCAA E A N V A G P L F A I N A F L P L L R K 481 AGGCACGGAGAAGCGCGTTACGTACATATCCAGTGCCGTTGCTGATGGGCCTGAGACTGT G T E K R V T Y I S S A V A D G P E T V 541 GGCGGCCCGCATCGCGAACTCAGTTCCGTACAGCGCAAGCAAGGCGGGAGGTAACATTGT A A R I A N S V P Y S A S K A G G N I V 601 CATCACCAAGTTTGCGGCCGAGCTCCAGGACGAAGGCTTCACCTTCCTGAGCATTGCGCC I T K F A A E L Q D E G F T F L S I A P 661 TGGCGCAGTTGCGACGGACACGCTGATGAACGCGTCCGCCAATTGTAGGTTTTCCCTCCC G A V A T D T L M N A S A N 721 TTTGATTGCAATTTCTCTGACCAGACGTCTACAG TCAGCGAAGCGGATAAGGAGAAGATG F S E A D K E K M 781 CAGGGCATGTTCGCCAGGCTGATGCAAAAGTACCCCGAATGGAAGGGTCCGGTCACTCCT Q G M F A R L M Q K Y P E W K G P V T P 841 GAGGAGAGCGTGAAGAGGATCTTGGAAGTCGTAAAGAAGTCTAAGCCTGAGCAGAGTGGC E E S V K R I L E V V K K S K P E Q S G 901 CAGTTCTTGAGCTACTGGGGCAACACTACCGAGTGGTTGTAG Q F L S Y W G N T T E W L *

Appendix K . A. LCMS/MSanalysisofspotC1.Mascotwasusedtomatchthemass spectrumgeneratedbytrypsinatedpeptidestotheBroadpredicted S. nodorum protein databaseforamatchinggene(redfont). B. PeptidecoverageofSch2confirmedoneof thetwoBroadpredictedintrons.

268 Appendices

81Construction of the Sch2 knockout vector (Appendix L)

P P P P 1 3 i Sch2 2 4

K P PH P B 5 ii Phleomycin R 6

P P P H P iii Phleomycin R

1 kb

Appendix L. i. The Sch2 knockoutvectorwasconstructedbyligatingPCRamplified5' and 3' UTR region of Sch2 to the Kpn I/ Hin dIII and Pst I/ Bam HI restriction sites of pBSKphleo,respectively. ii. TheknockoutvectorwasPCRamplifiedandtransformed into SN15 to facilitate iii. homologous gene replacement. Restriction sites are as follows, P. Pst I; B. Bam HI; K. Kpn Iand H. Hin dIII.Primersareasfollows:

Kpn I 1. R1048_5’Fwd (5’GGTACC CGCAAGCCACTCGAATCTAG3’) Hin dIII 2. R1048_5’Rev(5’AAGCTT CGATGACAACGGTGGTAGAC3’) Pst I 3. R1048_3’Fwd (5’CTGCAG AGAGTGGCCAGTTCTTGAGC3’) Bam HI 4. R1048_3’Rev(5’GGATCC GAGCAATACATAGCTACTGCA3’) 5. R1048FwdKO(5’GCCACTCGAATCTAGACTTCCCG3’) 6. R1048RevKO(5’GATGCCTAAGTGTTGAAGCTGAGCA3’) Boldtextreferstointroducedrestrictionsitesusedforcloning.

269 Appendices

A Spot C5 1. 00290250611 Score: 507 Queries matched: 17 Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 5 401.74 801.46 801.46 -0.00 0 32 0.097 1 AVVEVTGK 7 414.76 827.51 827.51 -0.01 0 29 0.16 1 GIGLELVK 82Peptide 14 coverage 452.76 of Sch3 903.50 (Appendix 903.48 M) 0.01 0 56 0.00037 1 LLGAYPDR 30 636.35 1270.69 1269.69 1.00 0 14 3.8 3 IILESTPAQNGK 41 476.60 1426.78 1425.79 0.98 1 10 7.1 2 RIILESTPAQNGK 42 714.40 1426.79 1425.79 0.99 1 (9) 9.1 3 RIILESTPAQNGK 44 829.42 1656.83 1656.83 -0.00 0 66 1.9e-05 1 TSHVVASVGDTESIQK 45 553.29 1656.85 1656.83 0.02 0 (32) 0.04 1 TSHVVASVGDTESIQK 51 641.71 1922.11 1922.12 -0.01 0 (27) 0.11 1 QLLELPVSQVGTVVALTR 52 962.07 1922.13 1922.12 0.01 0 46 0.0014 1 QLLELPVSQVGTVVALTR 53 642.05 1923.13 1922.12 1.01 0 (19) 0.66 1 QLLELPVSQVGTVVALTR 54 978.52 1955.02 1955.02 0.00 0 89 7.4e-08 1 GLDVLVNNAGVQAFAPGGTR 55 652.68 1955.03 1955.02 0.01 0 (45) 0.0016 1 GLDVLVNNAGVQAFAPGGTR 57 1056.03 2110.05 2110.06 -0.01 0 (62) 3e-05 1 TELGGEHAEFPVEVGVAELK 58 704.36 2110.06 2110.06 -0.00 0 73 2.1e-06 1 TELGGEHAEFPVEVGVAELK 61 756.40 2266.17 2266.16 0.01 1 52 0.00027 1 TELGGEHAEFPVEVGVAELKR 63 848.45 2542.34 2542.30 0.04 1 42 0.002 1 LLGAYPDRTSHVVASVGDTESIQK

B 1.FP-7_B06.SEQ Score: 504 Queries matched: 20 Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 23 846.93 1691.85 1691.86 -0.00 0 50 0.00037 1 VINVSSSMGSLTWAPK 25 607.66 1819.96 1819.95 0.01 1 29 0.041 1 KVINVSSSMGSLTWAPK

C SNOG _08282 .1 1 ATGGCCTCATTCCTAATCACCGGTGCTTCTCGCGGTATTGGCCTTGAGCTGGTCAAGCAG M A S F L I T G A S R G I G L E L V K Q 61 TTGCTGGAGCTTCCCGTCTCGCAGGTTGGCACAGTTGTGGCCCTCACACGCAGCAGCGAA L L E L P V S Q V G T V V A L T R S S E 121 TGTCCCTCCTTAGCGAAGCTGCTCGGCGCCTACCCAGATCGCACTAGCCATGTTGTTGCT C P S L A K L L G A Y P D R T S H V V A 181 TCTGTGGGCGACACGGAAAGCATCCAGAAGGCCGTCGTGGAGGTCACCGGAAAGCTTGGC S V G D T E S I Q K A V V E V T G K L G 241 GGCCGTGGTCTGGACGTTCTTGTGAACAACGCCGGCGTCCAAGCGTTCGCTCCCGGCGGT G R G L D V L V N N A G V Q A F A P G G 301 ACTAGGACGGTCCCTCCCGAACAGCTCAGAGATATCTTCGATACCAATGTGGTAAGTCAC T R T V P P E Q L R D I F D T N V 361 AATCGAGGCCGTAGTATTCTTGAAGGCGCACACTTAACACTTCGCAGTATGTAAACTCCT

421 TTGAGCATTTCCCACATTGTCCACTCGCTATGTCTAGTCATGCAGAGCTGCAGTGCTGCC

481 TCTGGTTCTTACATAACGCCAAAACGCCACATGGCGCTCCTTCACACACGATGGTCGAGC

541 ATATACACTGACATTCTACCTTCCCTTTTAG TGTCGGAGTGCACCGAGTCACTTCCGCTT V G V H R V T S A 601 TCCTACCCTTGTTGGAGGCTGGCAAGTCGAAGAAAGTGATCAATGTGTATGTTACCCCAA F L P L L E A G K S K K V I N V 661 AAACGTAGACAGCCGCATCTAATCGTAGGGCAG CTCGTCCTCGATGGGCTCCCTTACATG S S S M G S L T W 721 GGCGCCAAAGTACAAGATGGCCCCCACGCAGGCCTACAAAGTTTCAAAGGCCGCACTCCA A P K Y K M A P T Q A Y K V S K A A L H 781 CATGCTCAATGCACAGTACGCCCTAGACCACGCAGACGCGGGGTTCACGTTCCTCTGCGT M L N A Q Y A L D H A D A G F T F L C V 841 ATCCCCTGGCGTAAGTATTTGCCCTCAGCAGATTTCACCAAAACAGAGAGGCTGACGCTG S P G 901 TACAG TGGCTGAAGACTGAATTGGGAGGCGAGCACGCCGAATTTCCTGTCGAGGTTGGTG W L K T E L G G E H A E F P V E V G 961 TTGCTGAGCTGAAGAGGATCATTCTCGAATCAACGCCAGCTCAAAACGGGAAATTGGTCA V A E L K R I I L E S T P A Q N G K L V 1021 ACATCCATGTTCCTGGCCAAGAGGACAGTTGGGGCCATTACGACGGTGGAGAGATCCCTT N I H V P G Q E D S W G H Y D G G E I P 1081 GGTAG W *

Appendix M . A. LCMS/MSanalysisofspotC5.Mascotwasusedtomatchthemass spectrumgeneratedbytrypsinatedpeptidestotheBroadpredicted S. nodorum protein databaseforamatchinggene(redfont). B. ArepeatanalysiswasperformedonanSN15 oleategrown cDNA library taking in account of peptide modifications from common oxidationofmethionineresidues(bluefont).Only modified peptidesare shown. C. PeptidecoverageofSch3confirmedtwoofthethreeBroadpredictedintrons. 270 Appendices

83Construction of the Sch3 knockout vector (Appendix N)

K KX 1 3 i Sch3 2 4

K X B N 5 ii Phleomycin R 6

K X B KX iii Phleomycin R

1 kb

Appendix N. i. The Sch3 knockoutvectorwasconstructedbyligatingPCRamplified5' and3'UTRregionof Sch3 tothe Kpn I/ Xho Iand Bam HI/ Not IrestrictionsitesofpBSK phleo,respectively. ii. TheknockoutvectorwasPCRamplifiedandtransformedinto

SN15tofacilitate iii. homologousgenereplacement.Restrictionsitesareasfollows, X.

Xho I; B. Bam HI; K. Kpn Iand N. Not I.Primersareasfollows:

Kpn I 1. 5'FwdKpnIR637(5’GGTACC GAGCTATGGAACATGTACAGG3’) Xho I 2. 5'RevXhoIR637(5’CTCGAG TGTTTGCGCTTCACTTGCTT3’) Bam HI 3. 3'FwdBamHIR637(5’GGATCC GTACAGTGGCTGAAGACTGA3’) Not I 4. 3'RevNotIR637(5’GCGGCCGC ATGTAGTAATCATTTAGGTC3’) 5. R637FwdKO(5’ATGGAACATGTACAGGGTGTCGC3’) 6. R637RevKO(5’GCCACAACACTGAACGTGCTCAA3’) Boldtextreferstointroducedrestrictionsitesusedforcloning.

271 Appendices

84Peptide coverage of Nrd1 (Appendix O)

A Spot C10 1. 00290215281 Score: 428 Queries matched: 20 Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 21 390.24 778.47 778.42 0.04 0 40 0.021 1 SFLDAVK 24 417.26 832.51 832.46 0.05 0 31 0.17 1 GQLVFGGR 7 300.83 899.47 899.49 -0.02 1 (22) 1.1 1 LFVHGAKE 31 450.77 899.53 899.49 0.04 1 47 0.0038 1 LFVHGAKE 42 514.81 1027.61 1027.55 0.06 1 (13) 8 2 RTYYALNK 43 514.83 1027.65 1027.55 0.10 1 14 6.6 1 RTYYALNK 48 532.81 1063.61 1063.57 0.04 1 (38) 0.026 1 SFLDAVKER 49 532.82 1063.63 1063.57 0.06 1 44 0.0071 1 SFLDAVKER 125 729.01 1456.01 1455.75 0.25 0 20 1.5 1 AAQQWSIPLEWK 47 525.33 1572.97 1572.75 0.22 1 41 0.015 1 AGGVGEKEFQETHGK 217 806.93 1611.85 1611.81 0.03 1 2 90 3 TYYALNKEAPISDK 88 643.14 1926.40 1926.93 -0.53 0 (49) 0.0016 1 GAYGTILFYEDPEPVEK 294 964.48 1926.95 1926.93 0.02 0 56 0.00039 1 GAYGTILFYEDPEPVEK 132 733.15 2196.43 2196.11 0.32 1 49 0.0016 1 GAYGTILFYEDPEPVEKLR 208 805.30 2412.88 2413.22 -0.35 0 (15) 4.5 1 ITEIAEQAVLHVPSSFNSQSTR 210 805.65 2413.93 2413.22 0.70 0 (3) 63 1 ITEIAEQAVLHVPSSFNSQSTR 211 805.71 2414.11 2413.22 0.88 0 54 0.00056 1 ITEIAEQAVLHVPSSFNSQSTR 212 805.79 2414.35 2413.22 1.12 0 (5) 39 1 ITEIAEQAVLHVPSSFNSQSTR 214 805.81 2414.41 2413.22 1.18 0 (16) 3.5 1 ITEIAEQAVLHVPSSFNSQSTR 235 829.80 2486.38 2486.24 0.14 1 29 0.17 1 INGFKGAYGTILFYEDPEPVEK

Spot C11 1. 00290215281 Score: 393 Queries matched: 14 Query Observed Mr(expt) Mr(calc) Delta Miss Score Expect Rank Peptide 25 417.28 832.55 832.46 0.09 0 31 0.17 1 GQLVFGGR 26 436.74 871.47 871.44 0.02 0 23 0.9 1 TYYALNK 30 450.77 899.53 899.49 0.04 1 42 0.013 1 LFVHGAKE 4 300.91 899.71 899.49 0.22 1 (24) 0.66 1 LFVHGAKE 34 514.74 1027.47 1027.55 -0.08 1 15 5.5 1 RTYYALNK 37 532.85 1063.69 1063.57 0.12 1 37 0.038 1 SFLDAVKER 103 728.60 1455.19 1455.75 -0.57 0 35 0.036 1 AAQQWSIPLEWK 35 525.30 1572.88 1572.75 0.13 1 27 0.4 1 AGGVGEKEFQETHGK 39 538.29 1611.85 1611.81 0.03 1 11 18 1 TYYALNKEAPISDK 269 964.37 1926.73 1926.93 -0.20 0 65 3.4e-05 1 GAYGTILFYEDPEPVEK 68 643.45 1927.33 1926.93 0.40 0 (55) 0.00044 1 GAYGTILFYEDPEPVEK 106 733.09 2196.25 2196.11 0.14 1 47 0.0029 1 GAYGTILFYEDPEPVEKLR 174 805.48 2413.42 2413.22 0.19 0 (11) 13 1 ITEIAEQAVLHVPSSFNSQSTR 176 805.78 2414.32 2413.22 1.09 0 59 0.00016 1 ITEIAEQAVLHVPSSFNSQSTR

Appendix O . Continuedonthenextpage.

272 Appendices

B SNOG_09590.1 1 ATGGCGGTTGCTCCCAAATCACTCCTAGTTGGCTTGCTGGTCGGCGTTTTTCTGGCTTTT M A V A P K S L L V G L L V G V F L A F 61 CTGGCACCACAACTCGTTTCTCATTCGCAGTTGCCGATACAAGAAGAAGCTGGAGAGCTG L A P Q L V S H S Q L P I Q E E A G E L 121 GGATCTAGCTCACCGCTTTCCATTCAAGCAATGGCGCAAGTACTGAAGAATATTGCCAAA G S S S P L S I Q A M A Q V L K N I A K 181 CGGGGAGTCGCCGGTGGATACAAAAGCCTCTGGGTCCCACCCTCTACCTCAACTTCCTCA R G V A G G Y K S L W V P P S T S T S S 241 TTATTACGCTCTTCATCTACACCCACTGCTTCTTCCACACCTAAACAATCTTCCTTCTCC L L R S S S T P T A S S T P K Q S S F S 301 ACAACCACATCAACCATGTCTGCCCAGAAGTCCTTCTTGGATGCGGTCAAGGAGCGCCGC T T T S T M S A Q K S F L D A V K E R R 361 ACCTACTACGCGCTCAACAAGGAGGCTCCCATCTCCGACAAGCGAATCACCGAGATCGCT T Y Y A L N K E A P I S D K R I T E I A 421 GAGCAAGCTGTTCTCCACGTTCCCTCTTCATTCAACTCTCAGTCCACTCGCCTCGTTGTC E Q A V L H V P S S F N S Q S T R L V V 481 CTTCTGAACAAGGATCACGATACCTTCTGGGGGCATGTGCTCGACGTCTTGAAGCCTCTC L L N K D H D T F W G H V L D V L K P L 541 GTACCTGAGGATCAGTTTCCCTCAACCGCAGAGAGAATCAACGGCTTCAAGGGCGCTTAT V P E D Q F P S T A E R I N G F K G A Y 601 GGAACTGTGAGTACCTCGATTCATTTCTCTATATGGCCGTCGTGCCAGCGTGGGCAAGTC G T 661 TTCTGGTGGTGTCGTGGAGCTCGAAGCTTCGAGCTCGACGCAGCCCCACCAGGTGGACCG

721 CGAGCCCCGCCATTTACTCGCCTGCTCCCACTCCATCGCCCACAAAAGTGCCACGCACTA

781 ACACAGTTGGGTAG ATCCTCTTCTACGAAGACCCGGAACCCGTCGAGAAGCTCCGCAAGG I L F Y E D P E P V E K L R K 841 CATTCCCTGAATACGCCCACCACTTCGGCGACTGGTCTGAGCAGACCGACGCCATGCACC A F P E Y A H H F G D W S E Q T D A M H 901 AGTATGCCCTGTGGGTCGCGCTTGAGGCTGAGGGCTTCGGCGCCAACCTCCAGCACTACA Q Y A L W V A L E A E G F G A N L Q H Y 961 ACCCCATTATCGACCAGAAGGCTGCTCAGCAATGGAGCATTCCGCTCGAGTGGAAGCTCC N P I I D Q K A A Q Q W S I P L E W K L 1021 GTGGACAGCTGGTCTTCGGTGGCCGCGCTGGCGGTGTTGGCGAGAAAGAGTTTCAGGAAA R G Q L V F G G R A G G V G E K E F Q E 1081 CACACGGCAAGAGACTGTTTGTCCACGGTGCTAAGGAGTAA T H G K R L F V H G A K E * Appendix O . A. LCMS/MSanalysisofspotC10andC11.Mascotwasusedtomatch themassspectrumgeneratedbytrypsinatedpeptidestoaBroadpredicted S. nodorum proteindatabaseforamatchinggene(redfont). B. PeptidecoverageofNrd1confirmed thesingleBroadpredictedintron.TheghostedBroadpredictedcodingregionshould beexcludedaspartofthe Nrd1 openreadingframebasedonexperimentalevidence

(Table6.1).

273 Appendices

85Construction of the Nrd1 knockout construct (Appendix P)

X 1 3 i Nrd1 2 4 K X P B 5 ii Phleomycin R 6

X P iii Phleomycin R

1 kb

Appendix P. i. The Nrd1 knockoutvectorwasconstructedbyligatingPCRamplified5' and3'UTRregionof Nrd1 tothe Kpn I/ Xho Iand Pst I/ Bam HIrestrictionsitesofpBSK phleo,respectively. ii. TheknockoutvectorwasPCRamplifiedandtransformedinto

SN15tofacilitate iii. homologousgenereplacement.Restrictionsitesareasfollows, P.

Pst I; B. Bam HI; K. Kpn Iand X. Xho I.Primersareasfollows:

Kpn I 1. R638_5’Fwd (5’GGTACC GCTTACACCAACGATTGTCA3’) Xho I 2. R638_5’Rev(5’CTCGAG TGGTTGATGTGGTTGTGGAG3’) Pst I 3. R638_3’Fwd (5’CTGCAG TTGTCCACGGTGCTAAGGAG3’) Bam HI 4. R638_3’Rev(5’GGATCC TAACGACTGAGCGCATCATC3’) 5. R638FwdKO(5’CAACAACGATTGTCAGCAAGGCG3’) 6. R638RevKO(5’CGCAATATGGCCAGGGACCA3’) Boldtextreferstointroducedrestrictionsitesusedforcloning.

274