Ep 2275542 A2

Total Page:16

File Type:pdf, Size:1020Kb

Ep 2275542 A2 (19) & (11) EP 2 275 542 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 19.01.2011 Bulletin 2011/03 C12N 15/10 (2006.01) C12Q 1/68 (2006.01) G01N 33/68 (2006.01) (21) Application number: 10179544.1 (22) Date of filing: 26.02.2007 (84) Designated Contracting States: • Kodama, Yukiko AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Shimamoto-cho, HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI Mishima-gun, SK TR Osaka 6188503 (JP) • Shimonaga, Tomoko (30) Priority: 28.02.2006 JP 2006117198 Shimamoto-cho, Mishima-gun, (62) Document number(s) of the earlier application(s) in Osaka 6188503 (JP) accordance with Art. 76 EPC: • Kanamori, Takeshi 07705679.4 / 1 994 150 Shimamoto-cho, Mishima-gun, (71) Applicant: Suntory Holdings Limited Osaka 6188503 (JP) Kita-ku, Osaka-shi Osaka 530-8203 (JP) (74) Representative: Vossius & Partner Siebertstrasse 4 (72) Inventors: 81675 München (DE) • Nakao, Yoshihiro Shimamoto-cho, Remarks: Mishima-gun, This application was filed on 24-09-2010 as a Osaka 6188503 (JP) divisional application to the application mentioned under INID code 62. (54) Method for identifying useful proteins of brewery yeast (57) The invention relates to a method for identifying of the target protein; (e) comparing the amino acid se- a useful protein of brewery yeast. More specifically, the quence determined in step (d) with the amino acid se- invention relates to (a) cultivating yeast under a prede- quence determined in advance based on all or a part of termined cultivation condition; (b) extracting a protein genome sequence information of bottom fermenting sample from the cultivation product of the yeast; (c) sep- yeast; (f) identifying the target protein and the gene en- arating the protein sample by a protein separation coding the target protein based on the results of compar- means, selecting a target peak or spot, and recovering ison; and (g) analyzing functions of the identified gene the target protein or a fragment thereof contained in the to identify characters given to the yeast by the gene. peak or spot; (d) determining the amino acid sequence EP 2 275 542 A2 Printed by Jouve, 75001 PARIS (FR) EP 2 275 542 A2 Description Technical Field 5 [0001] The invention relates to a method for identifying useful proteins of brewery yeast. More specifically, the invention relates to a method for identifying useful proteins of brewery yeast and genes encoding the proteins by proteome analysis using genome sequence information of brewery yeast. [0002] The invention further relates to a gene identified by the above-mentioned method and uses thereof, in particular to breeding of brewery yeast useful for improving productivity of alcoholic beverages (for example beer) and/or for 10 improving flavor such as stabilization or enhancement of flavor, the alcoholic beverages produced by using the yeast, a production method thereof and the like. Background Art 15 [0003] In recent years, it is possible to introduce a target gene into desired cells and permits the gene to be expressed in the cell using genetic engineering techniques. Cells having desirable characters are prepared by gene engineering techniques with genes whose function have been analyzed using genome information. [0004] In the production of fuel alcohol using industrial yeasts and alcoholic beverages using brewery yeasts, tech- nologies for improving productivity and for stabilization and/or improvement of flavor have been successfully developed 20 by using genetic engineering methods. [0005] Proteome analysis is known as comprehensive protein analysis, and a method for identifying proteins and genes encoding the proteins as targets for genetic engineering. For example, it is used to identify the genes encoding said proteins separated by biochemical property and elucidate the function of the proteins by database searching (against known protein sequences). 25 [0006] An example of the most frequently used method in the analysis today is a peptide mass fingerprinting (PMF) method. A protein and a gene encoding the protein are identified by the PMF method, which comprises separating the protein by two-dimensional electrophoresis, digesting the protein with a protease such as trypsin, obtaining a mass spectrum of the resulting peptide mixture (peptide mass fingerprint) using a mass spectrometer, and comparing the mass spectrum obtained above with theoretical mass spectra calculated from amino acid sequences corresponding to 30 nucleotide sequences from a genome data base. [0007] A bottom fermenting yeast as one of the brewery yeast has been analyzed using a proteome analysis method (Joubert et al., Electrophoresis, 22, 2969 (2001)). However, it was not comprehensive analysis because almost half of the genome of bottom fermenting yeast has been unknown. Namely, the bottom fermenting yeast is an alloploid composed of at least two types of genome (Y. Tamai et al., Yeast, 10, 923 (1998)). One of the genomes is considered to be derived 35 from S. cerevisiae (Saccharomyces cerevisiae type; may be abbreviated as "Sc" hereinafter) whose genome has been sequenced (for example, see A. Goffeau et al., Nature, 387, 5 (1997)). However, remaining genome (Non- S. cerevisiae type; may be abbreviated as "Non-Sc" hereinafter) has not been sequenced Disclosure of Invention 40 [0008] Under the above-mentioned situations, it is desired to analyze whole genome of the bottom fermenting yeast for the comprehensive proteome analyses to identify proteins and the genes encoding the proteins useful for improving productivity and/or flavor of the alcoholic beverages. [0009] In view of the above-mentioned problems, the present inventors have sequenced genome of the bottom fer- 45 menting yeast. The bottom fermenting yeast was proved to have a genome structure having a Sc type nucleotide sequence group that shows over 94% identity and a Non-Sc type nucleotide sequence group that shows about 84% identity. The function of proteins encoded by the gene of the bottom fermenting yeast was inferred by comparing with the amino acid sequences that are registered in the genome database (DB) of S. cerevisiae whose genome sequences have been already elucidated. The results proved that the proteins of the bottom fermenting yeast are roughly divided 50 into two types: those with nearly 100% amino acid identity to S. cerevisiae (Sc type) and those with 70 to 97% (Non- Sc type). The present inventors have made intensive studies based on these discoveries, and have completed the invention. [0010] The invention provides a method for identifying desired proteins of yeast or genes encoding the proteins based on information of the analyzed genome sequence of the bottom fermenting yeast. [0011] In particular, the invention provides a method for identifying useful proteins of brewery yeast and genes encoding 55 the proteins. [0012] Specifically, the invention provides the following: [1] A method for identifying a target protein of yeast or a gene encoding the target protein comprising the steps of: 2 EP 2 275 542 A2 (a) cultivating yeast under a predetermined cultivation condition; (b) extracting a protein sample from the cultivation product of the yeast; (c) separating the protein sample by a protein separation means, selecting a target peak or spot, and recovering a target protein or a fragment thereof contained in the peak or spot; 5 (d) determining the amino acid sequence of the target protein; (e) comparing the amino acid sequence determined in step (d) with the amino acid sequence determined in advance based on all or a part of genome sequence information of the bottom fermenting yeast; (f) identifying the target protein and the gene encoding the target protein based on the results of comparison; and (g) analyzing functions of the identified gene to identify characters given to the yeast by the gene. 10 In addition, as used in the present specification, the term "cultivation product" broadly means those obtained by cultivation of yeast (or a yeast strain), and includes broth (or culture), culture precipitates, yeast cells contained therein, culture supernatant and the like. [2] A method for identifying a target protein of yeast or a gene encoding the target protein comprising the steps of: 15 (1) referring to a database comprising all or a part of genome sequence information of the bottom fermenting yeast based on the amino acid sequence of the target protein of the yeast; (2) identifying a gene encoding the target protein based on the result of reference; and (3) analyzing functions of the identified gene to identify characters given to the yeast by the gene. 20 [3] A method for identifying a target protein of yeast or a gene encoding the target protein comprising the steps of: (1) separating one or more proteins from a protein extract derived from yeast (including a protein directly extracted from yeast, a secreted protein in broth, and the like) and determining the amino acid sequences of 25 the one or more proteins; (2) referring to a database comprising all or a part of genome sequence information of the bottom fermenting yeast based on the amino acid sequence of the one or more proteins; (3) identifying the gene encoding the one or more proteins based on the results of reference; and (4) analyzing functions of the identified gene to identify characters given to the yeast by the gene. 30 [4] A method for identifying a target protein of yeast or a gene encoding the target protein comprising the steps of: (1) cultivating yeast under a predetermined cultivation condition; (2) extracting a protein sample from the cultured product of the yeast; 35 (3) determining the amino acid sequence of the one or more proteins contained in the protein sample; (4) comparing the amino acid sequence determined in step (3) with the amino acid sequence determined in advance based on all or a part of genome sequence information of the bottom fermenting yeast; (5) identifying the gene encoding the target protein based on the above- mentioned results of comparison; and (6) analyzing functions of the identified gene to identify characters given to the yeast by the gene.
Recommended publications
  • Yeast DNA Polymerase Zeta (␨)Is Essential for Error-Free Replication Past Thymine Glycol
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Yeast DNA polymerase zeta (␨)is essential for error-free replication past thymine glycol Robert E. Johnson, Sung-Lim Yu, Satya Prakash, and Louise Prakash1 Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1061, USA DNA polymerase zeta (Pol␨) promotes the mutagenic bypass of DNA lesions in eukaryotes. Genetic studies in Saccharomyces cerevisiae have indicated that relative to the contribution of other pathways, Pol␨ makes only a modest contribution to lesion bypass. Intriguingly, however, disruption of the REV3 gene, which encodes the catalytic subunit of Pol␨, causes early embryonic lethality in mice. Here, we present genetic and biochemical evidence for the requirement of yeast Pol␨ for predominantly error-free replication past thymine glycol (Tg), a DNA lesion formed frequently by free radical attack. These results raise the possibility that, as in yeast, in higher eukaryotes also, Pol␨ makes a major contribution to the replicative bypass of Tgs as well as other lesions that block synthesis by replicative DNA polymerases. Such a preeminent role of Pol␨ in lesion bypass would ensure that rapid cell divisions continue unabated during early embryonic development, thereby minimizing the generation of DNA strand breaks, chromosome aberrations, and the ensuing apoptotic response. [Keywords: DNApolymerase ␨; thymine glycol; translesion DNAsynthesis; Pol ␨ as an extender; error-free translesion DNAsynthesis by Pol ␨; yeast] Received October 4, 2002; revised version accepted October 31, 2002. Genetic studies in the yeast Saccharomyces cerevisiae et al. 2000b; Washington et al. 2000). Genetic studies in have indicated the requirement of Rad6–Rad18-depen- yeast have additionally indicated a role for Pol␩ in the dent processes in promoting replication of damaged error-free bypass of cyclobutane pyrimidine dimers DNA.
    [Show full text]
  • Structural Studies of Lumazine Synthases – Thermostability, Catalytic Mechanism and Molecular Assembly
    Center for Structural Biochemistry Department of Biosciences at Novum Karolinska Institutet, S-141 57 Huddinge, Sweden Structural Studies of Lumazine Synthases – Thermostability, Catalytic Mechanism and Molecular Assembly Xiaofeng Zhang Stockholm 2005 Cover Illustration: Electron density of the active site of lumazine synthase from the hyperthermophilic bacterium Aquifex aeolicus. All previously published papers were reproduced with permission from the publisher. Published and printed by Karolinska University Press Box 200, SE-171 77 Stockholm, Sweden © Xiaofeng Zhang, 2005 ISBN 91-7140-605-0 ABSTRACT Riboflavin, also known as vitamin B2, is biosynthesized in plants, bacteria, archaea and fungi. The primary biological function of riboflavin is related to its existence as a component of the two coenzymes, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which play an important role for electron transfer in energy metabolism. This project is mainly focused on structural studies of lumazine synthase (LS) from the hyperthermophilic bacterium Aquifex aeolicus (LSAQ). The enzyme is involved in the penultimate step of biosynthesis of riboflavin. The aim of this study is to gain insights into the structural basis of thermostability, catalytic mechanism as well as the molecular assembly of the enzyme. Methods used for these studies include X-ray crystallography, electron microscopy (EM), small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC). Lumazine synthase from the hyperthermophile A. aeolicus displays dramatic stability against high temperature. The calorimetric melting profile indicates an apparent melting temperature (Tm) of 120qC. The factors that determine the thermostability of A. aeolicus LS were revealed by structural comparisons (Paper I, 2001). In the second last step of riboflavin biosynthesis, lumazine synthase catalyzes the formation of 6-7-dimethyl-8-ribityllumazine, which is subsequently converted to riboflavin.
    [Show full text]
  • Table SI. Genes Upregulated ≥ 2-Fold by MIH 2.4Bl Treatment Affymetrix ID
    Table SI. Genes upregulated 2-fold by MIH 2.4Bl treatment Fold UniGene ID Description Affymetrix ID Entrez Gene Change 1558048_x_at 28.84 Hs.551290 231597_x_at 17.02 Hs.720692 238825_at 10.19 93953 Hs.135167 acidic repeat containing (ACRC) 203821_at 9.82 1839 Hs.799 heparin binding EGF like growth factor (HBEGF) 1559509_at 9.41 Hs.656636 202957_at 9.06 3059 Hs.14601 hematopoietic cell-specific Lyn substrate 1 (HCLS1) 202388_at 8.11 5997 Hs.78944 regulator of G-protein signaling 2 (RGS2) 213649_at 7.9 6432 Hs.309090 serine and arginine rich splicing factor 7 (SRSF7) 228262_at 7.83 256714 Hs.127951 MAP7 domain containing 2 (MAP7D2) 38037_at 7.75 1839 Hs.799 heparin binding EGF like growth factor (HBEGF) 224549_x_at 7.6 202672_s_at 7.53 467 Hs.460 activating transcription factor 3 (ATF3) 243581_at 6.94 Hs.659284 239203_at 6.9 286006 Hs.396189 leucine rich single-pass membrane protein 1 (LSMEM1) 210800_at 6.7 1678 translocase of inner mitochondrial membrane 8 homolog A (yeast) (TIMM8A) 238956_at 6.48 1943 Hs.741510 ephrin A2 (EFNA2) 242918_at 6.22 4678 Hs.319334 nuclear autoantigenic sperm protein (NASP) 224254_x_at 6.06 243509_at 6 236832_at 5.89 221442 Hs.374076 adenylate cyclase 10, soluble pseudogene 1 (ADCY10P1) 234562_x_at 5.89 Hs.675414 214093_s_at 5.88 8880 Hs.567380; far upstream element binding protein 1 (FUBP1) Hs.707742 223774_at 5.59 677825 Hs.632377 small nucleolar RNA, H/ACA box 44 (SNORA44) 234723_x_at 5.48 Hs.677287 226419_s_at 5.41 6426 Hs.710026; serine and arginine rich splicing factor 1 (SRSF1) Hs.744140 228967_at 5.37
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Microbial Production of Methyl Anthranilate, a Grape Flavor Compound
    Microbial production of methyl anthranilate, a grape flavor compound Zi Wei Luoa,b,1, Jae Sung Choa,b,1, and Sang Yup Leea,b,c,d,2 aMetabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea; bSystems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea; cBioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea; and dBioInformatics Research Center, Korea Advanced Institute of Science and Technology, 34141 Daejeon, Republic of Korea Contributed by Sang Yup Lee, April 5, 2019 (sent for review March 6, 2019; reviewed by Jay D. Keasling and Blaine A. Pfeifer) Methyl anthranilate (MANT) is a widely used compound to give While these biotransformation procedures are considered more grape scent and flavor, but is currently produced by petroleum-based natural and ecofriendly compared with chemical synthesis, their processes. Here, we report the direct fermentative production of actual use is limited due to low yields, long reaction times, and MANT from glucose by metabolically engineered Escherichia coli and formation of byproducts (5). In addition, the chemical and bio- Corynebacterium glutamicum strains harboring a synthetic plant- transformation processes mentioned
    [Show full text]
  • Ubiquitin and Ubiquitin-Like Proteins Are Essential Regulators of DNA Damage Bypass
    cancers Review Ubiquitin and Ubiquitin-Like Proteins Are Essential Regulators of DNA Damage Bypass Nicole A. Wilkinson y, Katherine S. Mnuskin y, Nicholas W. Ashton * and Roger Woodgate * Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA; [email protected] (N.A.W.); [email protected] (K.S.M.) * Correspondence: [email protected] (N.W.A.); [email protected] (R.W.); Tel.: +1-301-435-1115 (N.W.A.); +1-301-435-0740 (R.W.) Co-first authors. y Received: 29 August 2020; Accepted: 29 September 2020; Published: 2 October 2020 Simple Summary: Ubiquitin and ubiquitin-like proteins are conjugated to many other proteins within the cell, to regulate their stability, localization, and activity. These modifications are essential for normal cellular function and the disruption of these processes contributes to numerous cancer types. In this review, we discuss how ubiquitin and ubiquitin-like proteins regulate the specialized replication pathways of DNA damage bypass, as well as how the disruption of these processes can contribute to cancer development. We also discuss how cancer cell survival relies on DNA damage bypass, and how targeting the regulation of these pathways by ubiquitin and ubiquitin-like proteins might be an effective strategy in anti-cancer therapies. Abstract: Many endogenous and exogenous factors can induce genomic instability in human cells, in the form of DNA damage and mutations, that predispose them to cancer development. Normal cells rely on DNA damage bypass pathways such as translesion synthesis (TLS) and template switching (TS) to replicate past lesions that might otherwise result in prolonged replication stress and lethal double-strand breaks (DSBs).
    [Show full text]
  • Davidge JBC Supplementary.Pdf
    promoting access to White Rose research papers Universities of Leeds, Sheffield and York http://eprints.whiterose.ac.uk/ White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/7923/ (includes links to Main Article, Supplementary Material and Figures) Published paper Davidge, K.S., Sanguinetti, G., Yee, C.H., Cox, A.G., McLeod, C.W., Monk, C.E., Mann, B.E., Motterlini, R. and Poole, R.K. (2009) Carbon monoxide-releasing antibacterial molecules target respiration and global transcriptional regulators. Journal of Biological Chemistry, 284 (7). pp. 4516-4524. http://dx.doi.org/10.1074/jbc.M808210200 Supplementary Material White Rose Research Online [email protected] Supplementary Material Carbon monoxide-releasing antibacterial molecules target respiration and global transcriptional regulators Kelly S Davidge, Guido Sanguinetti, Chu Hoi Yee, Alan G Cox, Cameron W McLeod, Claire E Monk, Brian E Mann, Roberto Motterlini and Robert K Poole Contents Page Number Supplementary Figure S1 3 Inhibition by CORM-3 of E. coli cultures grown in defined medium anaerobically and aerobically Supplementary Figure S2 4 Viability assays showing survival of anaerobically and aerobically E. coli in defined growth medium Supplementary Figure S3 5 Reaction of terminal oxidases in vivo on addition of RuCl2(DMSO)4 to intact cells in a dual-wavelength spectrophotometer Supplementary Figure S4 6 CORM-3 generates carbonmonoxycytochrome bd in vivo and depresses synthesis of cytochrome bo' Supplementary Figure S5 7 Expression of spy-lacZ activity
    [Show full text]
  • Insensitive 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthaset LISA M
    JOURNAL OF BACTERIOLOGY, Nov. 1990, p. 6581-6584 Vol. 172, No. 11 0021-9193/90/116581-04$02.00/0 Copyright X 1990, American Society for Microbiology Cloning of an aroF Allele Encoding a Tyrosine- Insensitive 3-Deoxy-D-arabino-Heptulosonate 7-Phosphate Synthaset LISA M. WEAVER AND KLAUS M. HERRMANN* Department ofBiochemistry, Purdue University, West Lafayette, Indiana 47907 Received 9 May 1990/Accepted 10 August 1990 In Escherichia coli, genes aroF+, aroG+, and aroH+ encode isoenzymes of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthases that are feedback inhibited by tyrosine, phenylalanine, and tryptophan, respectively. A single base pair change in aroF causes a Pro-148-to-Leu-148 substitution and results in a tyrosine-insensitive enzyme. In bacteria and plants, the aromatic amino acids phenyl- plasmid, designated pLW22, contained an 8-kb insert that alanine, tyrosine, and tryptophan are synthesized via the hybridized to the 714-bp DdeI (Fig. 1) aroF probe (6, 11). shikimate pathway (7, 13). The first enzyme of this pathway Digestion of pLW22 with HindIII-BglII gave a 950-bp frag- is 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) ment that hybridized to the probe. This result was unex- synthase (EC 4.1.2.15). In Escherichia coli, the three un- pected, since the corresponding wild-type fragment is 1.8 kb linked genes aroF+, aroG+, and aroH+ (1) encode three in size. Subsequent detailed restriction analysis and hybrid- isoenzymes of DAHP synthase that are sensitive to tyrosine, ization of pLW22 with the 796-bp DdeI (Fig. 1) aroF probe phenylalanine, and tryptophan, respectively (2).
    [Show full text]
  • Letters to Nature
    letters to nature Received 7 July; accepted 21 September 1998. 26. Tronrud, D. E. Conjugate-direction minimization: an improved method for the re®nement of macromolecules. Acta Crystallogr. A 48, 912±916 (1992). 1. Dalbey, R. E., Lively, M. O., Bron, S. & van Dijl, J. M. The chemistry and enzymology of the type 1 27. Wolfe, P. B., Wickner, W. & Goodman, J. M. Sequence of the leader peptidase gene of Escherichia coli signal peptidases. Protein Sci. 6, 1129±1138 (1997). and the orientation of leader peptidase in the bacterial envelope. J. Biol. Chem. 258, 12073±12080 2. Kuo, D. W. et al. Escherichia coli leader peptidase: production of an active form lacking a requirement (1983). for detergent and development of peptide substrates. Arch. Biochem. Biophys. 303, 274±280 (1993). 28. Kraulis, P.G. Molscript: a program to produce both detailed and schematic plots of protein structures. 3. Tschantz, W. R. et al. Characterization of a soluble, catalytically active form of Escherichia coli leader J. Appl. Crystallogr. 24, 946±950 (1991). peptidase: requirement of detergent or phospholipid for optimal activity. Biochemistry 34, 3935±3941 29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and (1995). the thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281±296 (1991). 4. Allsop, A. E. et al.inAnti-Infectives, Recent Advances in Chemistry and Structure-Activity Relationships 30. Meritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505± (eds Bently, P. H. & O'Hanlon, P. J.) 61±72 (R. Soc. Chem., Cambridge, 1997).
    [Show full text]
  • Guanosine Pentaphosphate Phosphohydrolase of Escherichia Coli Is a Long-Chain Exopolyphosphatase J
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 7029-7033, August 1993 Biochemistry Guanosine pentaphosphate phosphohydrolase of Escherichia coli is a long-chain exopolyphosphatase J. D. KEASLING*, LEROY BERTSCHt, AND ARTHUR KORNBERGtI *Department of Chemical Engineering, University of California, Berkeley, CA 94720-9989; and tDepartment of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307 Contributed by Arthur Kornberg, April 14, 1993 ABSTRACT An exopolyphosphatase [exopoly(P)ase; EC MATERIALS AND METHODS 3.6.1.11] activity has recently been purified to homogeneity from a mutant strain of Escherichia coi which lacks the Reagents and Proteins. Sources were as follows: ATP, principal exopoly(P)ase. The second exopoly(P)ase has now ADP, nonradiolabeled nucleotides, poly(P)s, bovine serum been identified as guanosine pentaphosphate phosphohydro- albumin, and ovalbumin from Sigma; [y-32P]ATP at 6000 lase (GPP; EC 3.6.1.40) by three lines of evidence: (i) the Ci/mmol (1 Ci = 37 GBq) and [y-32P]GTP at 6000 Ci/mmol sequences of five btptic digestion fragments of the purified from ICN; Q-Sepharose fast flow, catalase, aldolase, Super- protein are found in the translated gppA gene, (u) the size ofthe ose-12 fast protein liquid chromatography (FPLC) column, protein (100 kDa) agrees with published values for GPP, and and Chromatofocusing column and reagents from Pharmacia (iu) the ratio of exopoly(P)ase activity to GPP activity remains LKB; DEAE-Fractogel, Pll phosphocellulose, and DE52 constant throughout a 300-fold purification in the last steps of DEAE-cellulose from Whatman; protein standards for SDS/ the procedure.
    [Show full text]
  • Endogenous Overexpression of an Active Phosphorylated Form of DNA Polymerase Β Under Oxidative Stress in Trypanosoma Cruzi
    RESEARCH ARTICLE Endogenous overexpression of an active phosphorylated form of DNA polymerase β under oxidative stress in Trypanosoma cruzi Diego A. Rojas1☯, Fabiola Urbina2☯, Sandra Moreira-Ramos2, Christian Castillo3, Ulrike Kemmerling3, Michel Lapier4, Juan Diego Maya4, Aldo Solari2, Edio Maldonado2¤* 1 Microbiology and Micology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile, 2 Cellular and Molecular Biology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, Chile, 3 Anatomy and Developmental Biology Program, ICBM, Faculty of Medicine, University of Chile, Santiago, a1111111111 Chile, 4 Molecular and Clinical Pharmacology Program, ICBM, Faculty of Medicine, University of Chile, a1111111111 Santiago, Chile a1111111111 a1111111111 ☯ These authors contributed equally to this work. a1111111111 ¤ Current address: Independencia, Santiago, Chile * [email protected] Abstract OPEN ACCESS Trypanosoma cruzi is exposed during its life to exogenous and endogenous oxidative Citation: Rojas DA, Urbina F, Moreira-Ramos S, Castillo C, Kemmerling U, Lapier M, et al. (2018) stress, leading to damage of several macromolecules such as DNA. There are many DNA Endogenous overexpression of an active repair pathways in the nucleus and mitochondria (kinetoplast), where specific protein com- phosphorylated form of DNA polymerase β under plexes detect and eliminate damage to DNA. One group of these proteins is the DNA poly- oxidative stress in Trypanosoma cruzi. PLoS Negl Trop Dis 12(2): e0006220. https://doi.org/10.1371/ merases. In particular, Tc DNA polymerase β participates in kinetoplast DNA replication and journal.pntd.0006220 repair. However, the mechanisms which control its expression under oxidative stress are Editor: Joachim Clos, Bernhard Nocht Institute for still unknown.
    [Show full text]
  • Inorganic Polyphosphate in Mammals: Where’S
    Biochemical Society Transactions (2020) https://doi.org/10.1042/BST20190328 Review Article Inorganic polyphosphate in mammals: where’s Wally? Downloaded from https://portlandpress.com/biochemsoctrans/article-pdf/doi/10.1042/BST20190328/867675/bst-2019-0328c.pdf by University College London (UCL) user on 19 February 2020 Yann Desfougères, Adolfo Saiardi and Cristina Azevedo Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, U.K. Correspondence: Adolfo Saiardi ([email protected]) Inorganic polyphosphate (polyP) is a ubiquitous polymer of tens to hundreds of ortho- phosphate residues linked by high-energy phosphoanhydride bonds. In prokaryotes and lower eukaryotes, both the presence of polyP and of the biosynthetic pathway that leads to its synthesis are well-documented. However, in mammals, polyP is more elusive. Firstly, the mammalian enzyme responsible for the synthesis of this linear biopolymer is unknown. Secondly, the low sensitivity and specificity of available polyP detection methods make it difficult to confidently ascertain polyP presence in mammalian cells, since in higher eukaryotes, polyP exists in lower amounts than in yeast or bacteria. Despite this, polyP has been given a remarkably large number of functions in mammals. In this review, we discuss some of the proposed functions of polyP in mammals, the lim- itations of the current detection methods and the urgent need to understand how this polymer is synthesized. Introduction Arthur Kornberg and Igor Kulaev spent a large part of their careers working on inorganic polyphos- phate (polyP). Convinced of the fundamental importance of this ‘forgotten polymer’, they and their teams developed tools to study polyP in a wide range of organisms from bacteria to mammals [1,2].
    [Show full text]