The Gene for an Exopolyphosphatase of Pseudomonas Aeruginosa

Total Page:16

File Type:pdf, Size:1020Kb

The Gene for an Exopolyphosphatase of Pseudomonas Aeruginosa DNA RESEARCH 6, 103-108 (1999) The Gene for an Exopolyphosphatase of Pseudomonas aeruginosa Tatsushi MIYAKE,1 Toshikazu SHIBA1'* Atsushi KAMEDA,1 Yoshiharu IHARA,1 Masanobu MUNEKATA,1 Kazuya ISHIGE,2 and Toshitada NOGUCHI2 Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo 060-8628, Japan1 and Biochemicals Division, YAMASA Corporation, Choshi, Chiba 288-0056, Japan2 (Received 1 February 1999; revised 18 March 1999) Abstract In Pseudomonas aeriginosa, a gene, ppx, that encodes exopolyphosphatase [exopoly(P)ase; EC 3.6.1.11] of 506 amino acids (56,419 Da) was found downstream of the gene for polyphosphate kinase, ppk. Since ppx is located in the opposite direction of the ppk gene, they do not constitute an operon. The predicted amino acid sequence of PPX is 41% identical with Escherichia coli PPX. The gene product of ppx (paPPX) was overproduced in E. coli, and its activity was evaluated. Orthophosphate (Pi) is released from polyphosphate [poly(P)], the average chain lengths of which are 79 and 750, respectively. The amount of P; released matched the amount of poly(P) lost. Thus ppx encodes an enzyme that has exopoly(P)ase activity. Key words: Exopolyphosphatase; inorganic polyphosphate; Pseudomonas aeruginosa PAO1 1. Introduction in living organisms,1 and the characteristics of this en- 14 17 zyme have been investigated in E. yeast, " Inorganic polyphosphate [poly(P)] includes linear sponge18 and mammals.19 polymers of orthophosphate with chain lengths of up to In the course of analyzing clones of the Pseudomonas 1000 or more.1'2 Poly(P) has been found in every living 11 2 aeruginosa ppk gene, an amino acid sequence of an ad- thing, from bacteria to mammals, so far examined. Sev- jacent gene was found to be highly homologous to that eral biological functions have been suggested for cellular of exopoly(P)ase identified in E. coli. Here, we report poly(P), including a reservoir for phosphate and energy, the identification of the P. aeruginosa ppx gene (ppx), a chelator of metal ions, a buffer against alkali, a channel 2 its DNA sequence, its overexpression in E. coli, and its for DNA entry and a regulator for gene expression. In activity. Escherichia coli, poly(P) has been shown to induce the expression of the rpoS for the stationary phase specific 3 2. Materials and Methods sigma factor of RNA polymerase. Several enzymes that contribute to the metabolism 4 2.1. Materials of poly(P), including polyphosphate kinase (PPK), E. coli strain XLl-Blue (Stratagene) served as a strain exopolyphosphatase [exopoly(P)ase],112 endopolyphos- for overproducing paPPX and was also the host strain phatase,5 polyphosphate glucokinase6 and poly(P): for preparation of plasmid DNA. pTrc99A20 was from AMP phosphotransferase,7 have been identified. PPK is Pharmacia Biotech. Poly(P) with an average length an enzyme responsible for the synthesis of poly(P) poly- merizing the terminal phosphate of ATP to a poly(P) of 79 residues [Poly(P)7g] was obtained from Sigma. in a freely reversible reaction.4 The genes for PPK have A polyethyleneimine-cellulose thin layer chromatogra- been cloned from several bacteria,8"11 and sequence anal- phy plate (PEI-TLC plate) was purchased from Merck. [32P]Poly(P) was obtained by synthesis from [7-32P]ATP yses have shown that, in E. coli, the ppk gene constitutes 4 an operon with the ppx gene, and that this operon en- using purified E. coli PPK, and this material had a chain codes exopoly(P)ase.12 Exopoly(P)ase, one of the main length of approximately 750. enzymes that degrades poly(P) and release orthophos- phate (Pi) from the ends of poly(P), is widely distributed 2.2. Sequencing of DNA fragment containing a ppx ho- mologue Communicated by Satoshi Tabata The nucleotide sequence was determined by the * To whom correspondence should be addressed. Tel. & Fax. 21 +81-11-706-7816, E-mail: [email protected] dideoxy chain termination method with some specific 104 Exopolyphosphatase Gene of P. aeruginosa [Vol. 6, primers using an ABI PRISM Big-Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin Elmer) and an ppx B EB B Bg ABI PRISM 310 Genetic Analyzer (Perkin Elmer). I I I 2.3. Overproduction of paPPX ppk Using two specific oligonucleotides (5'-CATGCCATG- Figure 1. Structure of the 6.8-kb insert in pPPK02Fn carrying GACTTGCAAAGCATGCCG-3' and 5'-CGGGATCCT- the ppx and ppk genes. The region that was sequenced is indi- TACCGCACGTTGAGGCTGTAG-3'), a 1.5-kb DNA cated by a dotted line with arrows. The ppx and the ppk genes fragment containing the intact open reading frame of are indicated by bold arrows. B, BamHI; Bg, Bgl II; E, EcoKl. paPPX with a Nco I site at the 5' end and a BamHI site at the 3' end was amplified by PCR. The ampli- 3. Results and Discussion fied fragment was cloned into the pTrc99A20 expression vector to give pTrcpaPPX. The ppx gene was integrated 3.1. Identification of gene encoding paPPX downstream of the trc promoter that is inducible by iso- We previously cloned the P. aeruginosa ppk gene in propyl /3-D-thiogalactopyranoside (IPTG). E. coli XL1- a plasmid pPPK02F which carries a 6.8-kb fragment of Blue transformed by pTrcpaPPX was cultured in LB chromosomal DNA of P. aeruginosa PAOl.11 The nu- broth with 100 /ig/ml of ampicillin at 30° C until the cleotide sequencing analysis of the downstream region of mid-logarithmic growth phase. Then IPTG was added ppk showed that there is an open reading frame (ORF) to the final concentration of 1 mM and continuously cul- in the opposite direction of the ppk gene (Fig. 1). The tured for 6 hr. Cells were harvested by centrifugation, ORF is composed of 1518 bp encoding a protein of 506 and the cell pellet was suspended with 10 ml of 20 mM amino acids, and 14 bp overlapped with the 3'-terminus Tris-HCl (pH 7.5) and 2 mM MgCl2. To prepare the to- of the coding region of the ppk gene (Fig. 2A). Two tal cell extract for sodium dodecyl sulfate polyacrylamide possible initiation codons were observed at nucleotide gel electrophoresis (SDS-PAGE), a small portion of the positions 181-183 (ic-1) and 196-198 (ic-2) (Fig. 2A). cell suspension (50 fil) was removed and added to 50 fil 22 The Shine-Dalgarno sequence for ic-1 is 5 bp-matched SDS-PAGE sample buffer. The main portion of the cell with the 3'-terminus of 16S RNA of P. aeruginosa (3'- suspension was dispersed by sonication, and 20 /Ug/ml AUUCCUCUC),24 while the Shine-Dalgarno sequence DNasel and 20 //g/ml RNaseA were added. After 1 hr for ic-2 is 4 bp-matched. Therefore, ic-1 is more likely incubation at 4°C, the cell extract was centrifuged at than ic-2 to be an initiation codon, although there may be 30,000 x g for 1 hr. The resulting supernatant was used two species of paPPX that are initiated from ic-1 and ic- for exopoly(P)ase assay as the crude cell lysate. 2, respectively, in the cells. A computer-aided homology search using the FASTA program25 revealed that paPPX 2.4- Assay for exopoly(P)ase activity is 41% and 40% identical with E. coli PPX and E. colt Exopoly(P)ase activity was measured by the following GppA, respectively (Fig. 2B). E. coli gppA was first iden- tified as a mutant lacking the ability to hyrdolyze the 5'- two methods [The concentration of poly(P) is given in 26 terms of P, residues]: 1) The assay mixture (20 /xl) con- 7-phosphate of guanosine pentaphosphate (pppGpp). GppA not only has pppGpp phosphohydrolase activity taining 20 mM HEPES-KOH (pH 7.2), 4 mM MgSO4 13 (buffer A) and 0.36 mM [32P]poly(P) was incubated at but also exopoly(P)ase activity. Since E. coli PPX also 37°C for 1 hr with cell extracts (4.58 /ig protein). The P; has pppGpp phosphohydrolase avtivity, and since these three proteins are significantly homologous to each other, released from poly(P) was separated by ascending thin paPPX may also have pppGpp phosphohydrolase activ- layer chromatography on PEI-cellulose in 0.4 M LiCl ity. and 1 M formic acid and quantitated by a radio-image analyzer (BAS2000, Fujix). 2) Exopoly(P)ase activity was also assayed by directly measuring the amount of P; 3.2. Overproduction of paPPX released from poly(P). The reaction were performed at For overexpression of paPPX in E. coli, the gene was 37°C in buffer A containing 0.15 mg of cell lysate with amplified by PCR, and an expression plasmid pTrc- or without 0.3 /jmol poly(P)79 in 0.3 ml of reaction mix- paPPX was constructed, as described in Section 2.3. The ture. Pj was quantitated according to the method of plasmid pTrcpaPPX allowed IPTG-inducible production 23 Chen et al. The P; released from poly(P) was calcu- of the paPPX protein, and the translation of ppx starts lated by subtracting the Pj value of the reaction mixture from ic-1 (Fig. 2A). The total cell extract was analyzed without poly(P) from that with poly(P). by SDS-PAGE, and a protein with a molecular mass of about 60 kDa, corresponding to the calculated mass of paPPX, was overproduced (Fig. 3, lane 2). No. 2] T. Miyake et al. 105 A 91 AGTCTCTATCGTTGGTCGGCTGATTCCCGATTGATCGGCTGCCGCATTGGCGACCCTCGCCCTATCGTGGCAGGATGGCGCAGTTTTCCA 181 ^TggACTTGCAAAGCATGCCGCAAAAACCTGCCGAGGC ATTCCCGCTGATTGCCGCCCTGGACCTGGGCTCCAACAGTTTCCACCTCTCT 1MDLQSMPQKPAEAFPLIAALDLGSNSFHLC (ic-1) (ic-2) 31RILBRLGEKVQLAAGLDEERLAKANIHGEV 61NLSEEATQRGLDCLRRFAQF ISGMPQGSVR 91VVATNALREARNRSDFIRRAEEVLG 121ISGREEARLIYLGVANSMPDSGGRRLVSDI 631 151 GGGSTEFIIGQGFESELRE LQMGCVSYTQ 181RYFRDGKITPARYAQAYTAARLELMGIENS 211 LRRLGWQQAVGASGTIRAVALAIKAGGBG 901 241 GEISPDGLAWLKRKVLKLGDVEKLDLEGIK 271 PDRRTIFPAGLAILEAIFDALELEQMVBSE 301 GALREGVLYDLVGRHQHEDVRERTISSLMQ 1171 331 RYHVDPEQASRVEAKALKVLAEVGDAWEL 361 GELHRDLLSWGARVHEIGLDIAHYHYHKHG 391 AYLIEHSDLAGFSRQDQQMLSLLVRGHRR 1441 421 IPADKLAEFAEEGDKLVRLCIVLRFAILF 451 HIRGTQEMPSVRLKAEPKSLSVTFPEGWLE 16 21 481 ANPLTQADFAQEAEWLKRVGYSLNVR 1711 CGGCCAGCTTCTCCAGCAGGGTCGCCTGGG Figure 2.
Recommended publications
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Guanosine Pentaphosphate Phosphohydrolase of Escherichia Coli Is a Long-Chain Exopolyphosphatase J
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 7029-7033, August 1993 Biochemistry Guanosine pentaphosphate phosphohydrolase of Escherichia coli is a long-chain exopolyphosphatase J. D. KEASLING*, LEROY BERTSCHt, AND ARTHUR KORNBERGtI *Department of Chemical Engineering, University of California, Berkeley, CA 94720-9989; and tDepartment of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307 Contributed by Arthur Kornberg, April 14, 1993 ABSTRACT An exopolyphosphatase [exopoly(P)ase; EC MATERIALS AND METHODS 3.6.1.11] activity has recently been purified to homogeneity from a mutant strain of Escherichia coi which lacks the Reagents and Proteins. Sources were as follows: ATP, principal exopoly(P)ase. The second exopoly(P)ase has now ADP, nonradiolabeled nucleotides, poly(P)s, bovine serum been identified as guanosine pentaphosphate phosphohydro- albumin, and ovalbumin from Sigma; [y-32P]ATP at 6000 lase (GPP; EC 3.6.1.40) by three lines of evidence: (i) the Ci/mmol (1 Ci = 37 GBq) and [y-32P]GTP at 6000 Ci/mmol sequences of five btptic digestion fragments of the purified from ICN; Q-Sepharose fast flow, catalase, aldolase, Super- protein are found in the translated gppA gene, (u) the size ofthe ose-12 fast protein liquid chromatography (FPLC) column, protein (100 kDa) agrees with published values for GPP, and and Chromatofocusing column and reagents from Pharmacia (iu) the ratio of exopoly(P)ase activity to GPP activity remains LKB; DEAE-Fractogel, Pll phosphocellulose, and DE52 constant throughout a 300-fold purification in the last steps of DEAE-cellulose from Whatman; protein standards for SDS/ the procedure.
    [Show full text]
  • 2019 International Dictyostelium Conference Ann Arbor, MI 48109, USA
    2019 International Dictyostelium Conference Ann Arbor, MI 48109, USA Organizers Cynthia Damer, Central Michigan University Richard Gomer, Texas A&M Carole Parent, University of Michigan Matt Scaglione, Duke University 1 SPONSORS 2 Walking maps from lodging to the Michigan League From Graduate Ann Arbor: 3 From North Quad Residential Hall: 4 From the Residence Inn: 5 Map of the 2nd floor of the Michigan League MICHIGAN LEAGUE Registraton: Concourse Meetng Locaton: Hussey DICTY CONFERENCE 2019 Meals & Posters: Ballroom Michigan League Contact Information: MI League Address: 911 North University Ann Arbor, MI 48109 Information Desk Phone Number: 734-647-5343 6 2019 International Dictyostelium Meeting, Ann Arbor, MI Sunday, August 4th 2:00 – 6:00 Registration – Michigan League Concourse 6:00 – 7:00 Keynote Lecture- Hussey Room Cell migration from a heterotrimeric G protein biologist’s perspective: it all starts here! Alan Smrcka, Ph.D. Benedict R. Lucchesi Collegiate Professor of Cardiovascular Pharmacology Department of Pharmacology, University of Michigan Medical School 7:00 – 10:00 Reception/Mixer- Ballroom 7 Monday, August 5th 7:30 – 9:00 Breakfast- Ballroom Session 1: Cell Biology 1 (9:00 – 10:40)- Hussey Room Chair: Rob Huber, Trent University 9:00 – 9:25 1. Cell-Autonomous and non-autonomous functions for growth and density-dependent development of Dictyostelium regulated by ectodomain shedding Fu-Sheng Chang, Pundrik Jaiswal, Netra Pal Meena, Joseph Brzostowski, and Alan R. Kimmel 9:25 – 9:50 2. Profiling of cytokinin levels during the Dictyostelium life cycle and their effects on cell proliferation and spore germination Megan M. Aoki, Craig Brunetti, Robert J.
    [Show full text]
  • Retracted Article
    Page 1 of 31 Diabetes Activation of aldose reductase by interaction with tubulin and involvement of this mechanism in diabetic cataract formation Juan F. Rivellia, Verónica S. Santandera, Sofía O. Perettia, Noelia E. Monesteroloa, Ayelen D. Nigraa, Gabriela Previtalia, Marina R. Amaidena, Carlos A. Arceb, Emiliano Primoa, Angela T. Lisaa, Juan Piec and César H. Casalea a- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800-Córdoba, Argentina. b- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC- CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000-Córdoba, Argentina. c- Departments of Pharmacology Physiology and Pediatrics, Medical School, University of Zaragoza, Zaragoza, Spain. Corresponding author: César H. Casale. Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales,ARTICLE Universidad Nacional de Río Cuarto, Río Cuarto, 5800-Córdoba, Argentina. Tel.: +54 358 4676422; fax: +54 358 4676232; E-mail: [email protected] ABSTRACT Our previous studies have shown that high levels of glucose induce inhibition of RETRACTEDNa+,K+-ATPase (NKA) via stimulation of aldose reductase (AR), polymerisation of microtubules, and formation of an acetylated tubulin/NKA complex. Inhibition of AR eliminated the effect of high glucose on NKA activity. In this study, we investigated the mechanism of regulation of
    [Show full text]
  • Vanadium Interim Final
    Ecological Soil Screening Levels for Vanadium Interim Final OSWER Directive 9285.7-75 U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 April 2005 This page intentionally left blank TABLE OF CONTENTS 1.0 INTRODUCTION .......................................................1 2.0 SUMMARY OF ECO-SSLs FOR VANADIUM ...............................2 3.0 ECO-SSL FOR TERRESTRIAL PLANTS....................................3 4.0 ECO-SSL FOR SOIL INVERTEBRATES....................................5 5.0 ECO-SSL FOR AVIAN WILDLIFE.........................................5 5.1 Avian TRV ........................................................5 5.2 Estimation of Dose and Calculation of the Avian Eco-SSL ..................5 6.0 ECO-SSL FOR MAMMALIAN WILDLIFE .................................10 6.1 Mammalian TRV ..................................................10 6.2 Estimation of Dose and Calculation of the Mammalian Eco-SSL ............14 7.0 REFERENCES .........................................................15 7.1 General Vanadium References .......................................15 7.2 References Used for Derivation of Plant and Soil Invertebrate Eco-SSLs ......16 7.3 References Rejected for Use in Derivation of Plant and Soil Invertebrate Eco-SSLs ...............................................................16 7.4 References Used for Derivation of Wildlife TRVs ........................18 7.5 References Rejected for Use in Derivation of Wildlife TRVs ...............23
    [Show full text]
  • The Archaeal Triphosphate Tunnel Metalloenzyme Sattm Defines Structural Determinants for the Diverse Activities in the CYTH Protein Family
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.435988; this version posted March 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The archaeal triphosphate tunnel metalloenzyme SaTTM defines structural determinants for the diverse activities in the CYTH protein family Marian S. Vogt1, Roi R. Ngouoko Nguepbeu1, Michael K. F. Mohr2, Sonja-Verena Albers3, Lars-Oliver Essen1,4*, and Ankan Banerjee1,5* 1Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, D-35032 Marburg, Germany. 2Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, D- 79104 Freiburg, Germany 3Institute of Biology II, Molecular Biology of Archaea, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany. 4Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str. 4 D- 35032 Marburg 5Department of Genetics, Philipps-Universität Marburg, Karl-Von-Frisch-Str 10, D-35043 Marburg, Germany. *Corresponding author: Ankan Banerjee ([email protected]) and Lars-Oliver Essen ([email protected]) Running title: Archaeal CYTH proteins are triphosphatase Keywords: CYTH enzymes, triphosphatase tunnel metalloenzyme, two-metal ion mechanism, sequence similarity network, protein structure evolution Abbreviations: Pi orthophosphate, PPi pyrophosphate, PPPi triphosphate, CYTH CyaB- Thiamine triphosphatase 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.18.435988; this version posted March 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Major highlights - CyaB-like class IV adenylyl cyclase homologs in archaea are triphosphatases.
    [Show full text]
  • Supplementary Materials (PDF)
    Proteomics of the mediodorsal thalamic nucleus in gastric ulcer induced by restraint-water-immersion-stress Sheng-Nan Gong, Jian-Ping Zhu, Ying-Jie Ma, Dong-Qin Zhao Table S1. The entire list of 2,853 proteins identified between the control and stressed groups Protein NO Protein name Gene name Accession No LogRatio 1 Tubulin alpha-1A chain Tuba1a TBA1A_RAT 0.2320 2 Spectrin alpha chain, non-erythrocytic 1 Sptan1 A0A0G2JZ69_RAT -0.0291 3 ATP synthase subunit alpha, mitochondrial Atp5f1a ATPA_RAT -0.1155 4 Tubulin beta-2B chain Tubb2b TBB2B_RAT 0.0072 5 Actin, cytoplasmic 2 Actg1 ACTG_RAT 0.0001 Sodium/potassium-transporting ATPase Atp1a2 6 subunit alpha-2 AT1A2_RAT -0.0716 7 Spectrin beta chain Sptbn1 A0A0G2K8W9_RAT -0.1158 8 Clathrin heavy chain 1 Cltc CLH1_RAT 0.0788 9 Dihydropyrimidinase-related protein 2 Dpysl2 DPYL2_RAT -0.0696 10 Glyceraldehyde-3-phosphate dehydrogenase Gapdh G3P_RAT -0.0687 Sodium/potassium-transporting ATPase Atp1a3 11 subunit alpha-3 AT1A3_RAT 0.0391 12 ATP synthase subunit beta, mitochondrial Atp5f1b ATPB_RAT 0.1772 13 Cytoplasmic dynein 1 heavy chain 1 Dync1h1 M0R9X8_RAT 0.0527 14 Myelin basic protein transcript variant N Mbp I7EFB0_RAT 0.0696 15 Microtubule-associated protein Map2 F1LNK0_RAT -0.1053 16 Pyruvate kinase PKM Pkm KPYM_RAT -0.2608 17 D3ZQQ5_RAT 0.0087 18 Plectin Plec F7F9U6_RAT -0.0076 19 14-3-3 protein zeta/delta Ywhaz A0A0G2JV65_RAT -0.2431 20 2',3'-cyclic-nucleotide 3'-phosphodiesterase Cnp CN37_RAT -0.0495 21 Creatine kinase B-type Ckb KCRB_RAT -0.0514 Voltage-dependent anion-selective channel
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Adenosine Thiamine Triphosphate Accumulates In
    Gigliobianco et al. BMC Microbiology 2010, 10:148 http://www.biomedcentral.com/1471-2180/10/148 RESEARCH ARTICLE Open Access AdenosineResearch article thiamine triphosphate accumulates in Escherichia coli cells in response to specific conditions of metabolic stress Tiziana Gigliobianco1, Bernard Lakaye1, Pierre Wins1, Benaïssa El Moualij2, Willy Zorzi2 and Lucien Bettendorff*1 Abstract Background: E. coli cells are rich in thiamine, most of it in the form of the cofactor thiamine diphosphate (ThDP). Free ThDP is the precursor for two triphosphorylated derivatives, thiamine triphosphate (ThTP) and the newly discovered adenosine thiamine triphosphate (AThTP). While, ThTP accumulation requires oxidation of a carbon source, AThTP slowly accumulates in response to carbon starvation, reaching ~15% of total thiamine. Here, we address the question whether AThTP accumulation in E. coli is triggered by the absence of a carbon source in the medium, the resulting drop in energy charge or other forms of metabolic stress. Results: In minimal M9 medium, E. coli cells produce AThTP not only when energy substrates are lacking but also when their metabolization is inhibited. Thus AThTP accumulates in the presence of glucose, when glycolysis is blocked by iodoacetate, or in the presence lactate, when respiration is blocked by cyanide or anoxia. In both cases, ATP synthesis is impaired, but AThTP accumulation does not appear to be a direct consequence of reduced ATP levels. Indeed, in the CV2 E. coli strain (containing a thermolabile adenylate kinase), the ATP content is very low at 37°C, even in the presence of metabolizable substrates (glucose or lactate) and under these conditions, the cells produce ThTP but not AThTP.
    [Show full text]
  • Page 1 of 11 Enzymes of Yeast Polyphosphate Metabolism
    Enzymes of yeast polyphosphate metabolism: structure, enzymology and biological roles Rūta Gerasimaitė and Andreas Mayer Department of Biochemistry, University of Lausanne, Ch. des Boveresses 155, 1066 Epalinges, Switzerland Corresponding author: Andreas Mayer Keywords: inorganic polyphosphate, exopolyphosphatase, endopolyphosphatase, polyP polymerase, VTC complex, yeast vacuole Page 1 of 11 Abstract Inorganic polyphosphate (polyP) is found in all living organisms. The known polyP functions in eukaryotes range from osmoregulation and virulence in parasitic protozoa to modulating blood coagulation, inflammation, bone mineralization and cellular signaling in mammals. However mechanisms of regulation and even the identity of involved proteins in many cases remain obscure. Most of the insights obtained so far stem from studies in the yeast Saccharomyces cerevisiae. Here, we provide a short overview of the properties and functions of known yeast polyP metabolism enzymes and discuss future directions for polyP research. Page 2 of 11 Introduction Inorganic polyphosphate (polyP) is found in all kingdoms of life. Due to its simple chemical structure, the possibility to be synthesized abiotically, and its ubiquitous presence, polyP has been declared a “molecular” fossil, a relic of the ancient prebiotic world, which is mostly exploited by freely-living microorganisms for phosphate storage and metal chelation [1]. However, during the past several years, many exciting functions of cellular polyP in the mammals have been described. PolyP regulates bone calcification and is involved in activating the blood clotting cascade, inflammatory responses and various events of cellular signalling [2-5]. Understanding the molecular mechanisms of eukaryotic polyP synthesis and degradation appears crucial for further characterization of these intriguing activities of polyP.
    [Show full text]
  • POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii
    POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii http://rcin.org.pl WSKAZÓWKI DLA AUTORÓW Kwartalnik „Postępy Biochemii” publikuje artykuły monograficzne omawiające wąskie tematy, oraz artykuły przeglądowe referujące szersze zagadnienia z biochemii i nauk pokrewnych. Artykuły pierwszego typu winny w sposób syntetyczny omawiać wybrany temat na podstawie możliwie pełnego piśmiennictwa z kilku ostatnich lat, a artykuły drugiego typu na podstawie piśmiennictwa z ostatnich dwu lat. Objętość takich artykułów nie powinna przekraczać 25 stron maszynopisu (nie licząc ilustracji i piśmiennictwa). Kwartalnik publikuje także artykuły typu minireviews, do 10 stron maszynopisu, z dziedziny zainteresowań autora, opracowane na podstawie najnow­ szego piśmiennictwa, wystarczającego dla zilustrowania problemu. Ponadto kwartalnik publikuje krótkie noty, do 5 stron maszynopisu, informujące o nowych, interesujących osiągnięciach biochemii i nauk pokrewnych, oraz noty przybliżające historię badań w zakresie różnych dziedzin biochemii. Przekazanie artykułu do Redakcji jest równoznaczne z oświadczeniem, że nadesłana praca nie była i nie będzie publikowana w innym czasopiśmie, jeżeli zostanie ogłoszona w „Postępach Biochemii”. Autorzy artykułu odpowiadają za prawidłowość i ścisłość podanych informacji. Autorów obowiązuje korekta autorska. Koszty zmian tekstu w korekcie (poza poprawieniem błędów drukarskich) ponoszą autorzy. Artykuły honoruje się według obowiązujących stawek. Autorzy otrzymują bezpłatnie 25 odbitek swego artykułu; zamówienia na dodatkowe odbitki (płatne) należy zgłosić pisemnie odsyłając pracę po korekcie autorskiej. Redakcja prosi autorów o przestrzeganie następujących wskazówek: Forma maszynopisu: maszynopis pracy i wszelkie załączniki należy nadsyłać w dwu egzem­ plarzach. Maszynopis powinien być napisany jednostronnie, z podwójną interlinią, z marginesem ok. 4 cm po lewej i ok. 1 cm po prawej stronie; nie może zawierać więcej niż 60 znaków w jednym wierszu nie więcej niż 30 wierszy na stronie zgodnie z Normą Polską.
    [Show full text]
  • The Endosome Is a Master Regulator of Plasma Membrane Collagen Fibril Assembly
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.25.436925; this version posted March 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The endosome is a master regulator of plasma membrane collagen fibril assembly 1Joan Chang*, 1Adam Pickard, 1Richa Garva, 1Yinhui Lu, 2Donald Gullberg and 1Karl E. Kadler* 1Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medical and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT UK, 2Department of Biomedicine and Center for Cancer Biomarkers, Norwegian Center of Excellence, University of Bergen, Norway. * Co-corresponding authors: JC email: [email protected] (orcid.org/0000-0002-7283- 9759); KEK email: [email protected] (orcid.org/0000-0003-4977-4683) Keywords: collagen-I, endocytosis, extracellular matrix, fibril, fibrillogenesis, integrin-a11, trafficking, VPS33b, [abstract] [149 word max] Collagen fibrils are the principal supporting elements in vertebrate tissues. They account for 25% of total protein mass, exhibit a broad range of size and organisation depending on tissue and stage of development, and can be under circadian clock control. Here we show that the remarkable dynamic pleomorphism of collagen fibrils is underpinned by a mechanism that distinguishes between collagen secretion and initiation of fibril assembly, at the plasma membrane. Collagen fibrillogenesis occurring at the plasma membrane requires vacuolar protein sorting (VPS) 33b (which is under circadian clock control), collagen-binding integrin-a11 subunit, and is reduced when endocytosis is inhibited. Fibroblasts lacking VPS33b secrete soluble collagen without assembling fibrils, whereas constitutive over-expression of VPS33b increases fibril number with loss of fibril rhythmicity.
    [Show full text]