Supplementary Materials (PDF)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Connections of Wnt Pathway Components with Cell Cycle and Centrosome: Side Effects Or a Hidden Logic?
Critical Reviews in Biochemistry and Molecular Biology ISSN: 1040-9238 (Print) 1549-7798 (Online) Journal homepage: http://www.tandfonline.com/loi/ibmg20 The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic? Vítězslav Bryja , Igor Červenka & Lukáš Čajánek To cite this article: Vítězslav Bryja , Igor Červenka & Lukáš Čajánek (2017): The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic?, Critical Reviews in Biochemistry and Molecular Biology, DOI: 10.1080/10409238.2017.1350135 To link to this article: http://dx.doi.org/10.1080/10409238.2017.1350135 Published online: 25 Jul 2017. Submit your article to this journal Article views: 72 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ibmg20 Download by: [Masarykova Univerzita v Brne], [Lukas Cajanek] Date: 08 August 2017, At: 01:58 CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2017 https://doi.org/10.1080/10409238.2017.1350135 REVIEW ARTICLE The connections of Wnt pathway components with cell cycle and centrosome: side effects or a hidden logic? Vıtezslav Bryjaa , Igor Cervenka b and Lukas Caj anekc aDepartment of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; bMolecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; cDepartment of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic ABSTRACT ARTICLE HISTORY Wnt signaling cascade has developed together with multicellularity to orchestrate the develop- Received 10 April 2017 ment and homeostasis of complex structures. -
The Diversity of Dolichol-Linked Precursors to Asn-Linked Glycans Likely Results from Secondary Loss of Sets of Glycosyltransferases
The diversity of dolichol-linked precursors to Asn-linked glycans likely results from secondary loss of sets of glycosyltransferases John Samuelson*†, Sulagna Banerjee*, Paula Magnelli*, Jike Cui*, Daniel J. Kelleher‡, Reid Gilmore‡, and Phillips W. Robbins* *Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, 715 Albany Street, Boston, MA 02118-2932; and ‡Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01665-0103 Contributed by Phillips W. Robbins, December 17, 2004 The vast majority of eukaryotes (fungi, plants, animals, slime mold, to N-glycans of improperly folded proteins, which are retained in and euglena) synthesize Asn-linked glycans (Alg) by means of a the ER by conserved glucose-binding lectins (calnexin͞calreticulin) lipid-linked precursor dolichol-PP-GlcNAc2Man9Glc3. Knowledge of (13). Although the Alg glycosyltransferases in the lumen of ER this pathway is important because defects in the glycosyltrans- appear to be eukaryote-specific, archaea and Campylobacter sp. ferases (Alg1–Alg12 and others not yet identified), which make glycosylate the sequon Asn and͞or contain glycosyltransferases dolichol-PP-glycans, lead to numerous congenital disorders of with domains like those of Alg1, Alg2, Alg7, and STT3 (1, 14–16). glycosylation. Here we used bioinformatic and experimental Protists, unicellular eukaryotes, suggest three notable exceptions methods to characterize Alg glycosyltransferases and dolichol- to the N-linked glycosylation path described in yeast and animals PP-glycans of diverse protists, including many human patho- (17). First, the kinetoplastid Trypanosoma cruzi (cause of Chagas gens, with the following major conclusions. First, it is demon- myocarditis), fails to glucosylate the dolichol-PP-linked precursor strated that common ancestry is a useful method of predicting and so makes dolichol-PP-GlcNAc2Man9 (18). -
Supplemental Information to Mammadova-Bach Et Al., “Laminin Α1 Orchestrates VEGFA Functions in the Ecosystem of Colorectal Carcinogenesis”
Supplemental information to Mammadova-Bach et al., “Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinogenesis” Supplemental material and methods Cloning of the villin-LMα1 vector The plasmid pBS-villin-promoter containing the 3.5 Kb of the murine villin promoter, the first non coding exon, 5.5 kb of the first intron and 15 nucleotides of the second villin exon, was generated by S. Robine (Institut Curie, Paris, France). The EcoRI site in the multi cloning site was destroyed by fill in ligation with T4 polymerase according to the manufacturer`s instructions (New England Biolabs, Ozyme, Saint Quentin en Yvelines, France). Site directed mutagenesis (GeneEditor in vitro Site-Directed Mutagenesis system, Promega, Charbonnières-les-Bains, France) was then used to introduce a BsiWI site before the start codon of the villin coding sequence using the 5’ phosphorylated primer: 5’CCTTCTCCTCTAGGCTCGCGTACGATGACGTCGGACTTGCGG3’. A double strand annealed oligonucleotide, 5’GGCCGGACGCGTGAATTCGTCGACGC3’ and 5’GGCCGCGTCGACGAATTCACGC GTCC3’ containing restriction site for MluI, EcoRI and SalI were inserted in the NotI site (present in the multi cloning site), generating the plasmid pBS-villin-promoter-MES. The SV40 polyA region of the pEGFP plasmid (Clontech, Ozyme, Saint Quentin Yvelines, France) was amplified by PCR using primers 5’GGCGCCTCTAGATCATAATCAGCCATA3’ and 5’GGCGCCCTTAAGATACATTGATGAGTT3’ before subcloning into the pGEMTeasy vector (Promega, Charbonnières-les-Bains, France). After EcoRI digestion, the SV40 polyA fragment was purified with the NucleoSpin Extract II kit (Machery-Nagel, Hoerdt, France) and then subcloned into the EcoRI site of the plasmid pBS-villin-promoter-MES. Site directed mutagenesis was used to introduce a BsiWI site (5’ phosphorylated AGCGCAGGGAGCGGCGGCCGTACGATGCGCGGCAGCGGCACG3’) before the initiation codon and a MluI site (5’ phosphorylated 1 CCCGGGCCTGAGCCCTAAACGCGTGCCAGCCTCTGCCCTTGG3’) after the stop codon in the full length cDNA coding for the mouse LMα1 in the pCIS vector (kindly provided by P. -
Next Generation Sequencing Panels for Disorders of Sex Development
Next Generation Sequencing Panels for Disorders of Sex Development Disorders of Sex Development – Overview Disorders of sex development (DSDs) occur when sex development does not follow the course of typical male or female patterning. Types of DSDs include congenital development of ambiguous genitalia, disjunction between the internal and external sex anatomy, incomplete development of the sex anatomy, and abnormalities of the development of gonads (such as ovotestes or streak ovaries) (1). Sex chromosome anomalies including Turner syndrome and Klinefelter syndrome as well as sex chromosome mosaicism are also considered to be DSDs. DSDs can be caused by a wide range of genetic abnormalities (2). Determining the etiology of a patient’s DSD can assist in deciding gender assignment, provide recurrence risk information for future pregnancies, and can identify potential health problems such as adrenal crisis or gonadoblastoma (1, 3). Sex chromosome aneuploidy and copy number variation are common genetic causes of DSDs. For this reason, chromosome analysis and/or microarray analysis typically should be the first genetic analysis in the case of a patient with ambiguous genitalia or other suspected disorder of sex development. Identifying whether a patient has a 46,XY or 46,XX karyotype can also be helpful in determining appropriate additional genetic testing. Abnormal/Ambiguous Genitalia Panel Our Abnormal/Ambiguous Genitalia Panel includes mutation analysis of 72 genes associated with both syndromic and non-syndromic DSDs. This comprehensive panel evaluates a broad range of genetic causes of ambiguous or abnormal genitalia, including conditions in which abnormal genitalia are the primary physical finding as well as syndromic conditions that involve abnormal genitalia in addition to other congenital anomalies. -
Physical Interactions Between the Alg1, Alg2, and Alg11 Mannosyltransferases of the Endoplasmic Reticulum
Glycobiology vol. 14 no. 6 pp. 559±570, 2004 DOI: 10.1093/glycob/cwh072 Advance Access publication on March 24, 2004 Physical interactions between the Alg1, Alg2, and Alg11 mannosyltransferases of the endoplasmic reticulum Xiao-Dong Gao2, Akiko Nishikawa1, and Neta Dean1 begins on the cytosolic face of the ER, where seven sugars (two N-acetylglucoseamines and five mannoses) are added 1Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, sequentially to dolichyl phosphate on the outer leaflet of NY 11794-5215, and 2Research Center for Glycoscience, National the ER, using nucleotide sugar donors (Abeijon and Institute of Advanced Industrial Science and Technology, Tsukuba Hirschberg, 1992; Perez and Hirschberg, 1986; Snider and Downloaded from https://academic.oup.com/glycob/article/14/6/559/638968 by guest on 30 September 2021 Central 6, 1-1 Higashi, Tsukuba 305-8566, Japan Rogers, 1984). After a ``flipping'' or translocation step, the Received on January 26, 2004; revised on March 2, 2004; accepted on last seven sugars (four mannoses and three glucoses) are March 2, 2004 added within the lumen of the ER, using dolichol-linked sugar donors (Burda and Aebi, 1999). Once assembled, the The early steps of N-linked glycosylation involve the synthesis oligosaccharide is transferred from the lipid to nascent of a lipid-linked oligosaccharide, Glc3Man9GlcNAc2-PP- protein in a reaction catalyzed by oligosaccharyltransferase. dolichol, on the endoplasmic reticulum (ER) membrane. After removal of terminal glucoses and a single mannose, Prior to its lumenal translocation and transfer to nascent nascent glycoproteins bearing the N-linked Man8GlcNAc2 glycoproteins, mannosylation of Man5GlcNAc2-PP-dolichol core can exit the ER to the Golgi, where this core may is catalyzed by the Alg1, Alg2, and Alg11 mannosyltrans- undergo further carbohydrate modifications. -
The Functional Profiles of Chicken Eggs Incubated Under
THE FUNCTIONAL PROFILES OF CHICKEN EGGS INCUBATED UNDER MONOCHROMATIC LIGHTING A Dissertation by MOHAMED MAGDY ABDELFATTAH IBRAHIM Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Giridhar Athrey Committee Members, John B. Carey Luc R. Berghman Gregory S. Archer Head of Department, Audrey McElroy May 2021 Major Subject: Poultry Science Copyright 2021 Mohamed Magdy Abdelfattah Ibrahim ABSTRACT Poultry production remains susceptible to significant infectious disease threats such as Avian Flu, and Newcastle Disease Virus (NDV), which threaten the supply of poultry production. My dissertation research addresses this challenge by leveraging avian circadian biology to improve responses to vaccines to enhance poultry performance. The central hypothesis is that specific visible light wavelengths would enhance circadian rhythm development in ovo, leading to improved immune responses. I addressed an essential question regarding the effect of providing photoperiods with different wavelengths (Blue, Green, and White) on circadian rhythm development and its interplay with the immune response following the NDV challenge in chick embryos using the RNAseq technology. Our results showed that incubating chicken embryos under blue light 450nm was most efficient in entraining the circadian rhythm in lung tissue, compared to white light or dark treatment. Blue light showed a specific impact on skeletal muscle, regulation of striated muscle contraction, Glycerolipid metabolism, and development of neurons. The white light incubation led to a photo-acceleration stimulant effect on epidermal growth factor receptor signaling pathway, ErbB signaling pathway, MAPK signaling pathway, and Insulin signaling pathway were upregulated in white light non-challenged treatment. -
Enzymatic Encoding Methods for Efficient Synthesis Of
(19) TZZ__T (11) EP 1 957 644 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/10 (2006.01) C12Q 1/68 (2006.01) 01.12.2010 Bulletin 2010/48 C40B 40/06 (2006.01) C40B 50/06 (2006.01) (21) Application number: 06818144.5 (86) International application number: PCT/DK2006/000685 (22) Date of filing: 01.12.2006 (87) International publication number: WO 2007/062664 (07.06.2007 Gazette 2007/23) (54) ENZYMATIC ENCODING METHODS FOR EFFICIENT SYNTHESIS OF LARGE LIBRARIES ENZYMVERMITTELNDE KODIERUNGSMETHODEN FÜR EINE EFFIZIENTE SYNTHESE VON GROSSEN BIBLIOTHEKEN PROCEDES DE CODAGE ENZYMATIQUE DESTINES A LA SYNTHESE EFFICACE DE BIBLIOTHEQUES IMPORTANTES (84) Designated Contracting States: • GOLDBECH, Anne AT BE BG CH CY CZ DE DK EE ES FI FR GB GR DK-2200 Copenhagen N (DK) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • DE LEON, Daen SK TR DK-2300 Copenhagen S (DK) Designated Extension States: • KALDOR, Ditte Kievsmose AL BA HR MK RS DK-2880 Bagsvaerd (DK) • SLØK, Frank Abilgaard (30) Priority: 01.12.2005 DK 200501704 DK-3450 Allerød (DK) 02.12.2005 US 741490 P • HUSEMOEN, Birgitte Nystrup DK-2500 Valby (DK) (43) Date of publication of application: • DOLBERG, Johannes 20.08.2008 Bulletin 2008/34 DK-1674 Copenhagen V (DK) • JENSEN, Kim Birkebæk (73) Proprietor: Nuevolution A/S DK-2610 Rødovre (DK) 2100 Copenhagen 0 (DK) • PETERSEN, Lene DK-2100 Copenhagen Ø (DK) (72) Inventors: • NØRREGAARD-MADSEN, Mads • FRANCH, Thomas DK-3460 Birkerød (DK) DK-3070 Snekkersten (DK) • GODSKESEN, -
Supplemental Material
Supplemental Table B ARGs in alphabetical order Symbol Title 3 months 6 months 9 months 12 months 23 months ANOVA Direction Category 38597 septin 2 1557 ± 44 1555 ± 44 1579 ± 56 1655 ± 26 1691 ± 31 0.05219 up Intermediate 0610031j06rik kidney predominant protein NCU-G1 491 ± 6 504 ± 14 503 ± 11 527 ± 13 534 ± 12 0.04747 up Early Adult 1G5 vesicle-associated calmodulin-binding protein 662 ± 23 675 ± 17 629 ± 16 617 ± 20 583 ± 26 0.03129 down Intermediate A2m alpha-2-macroglobulin 262 ± 7 272 ± 8 244 ± 6 290 ± 7 353 ± 16 0.00000 up Midlife Aadat aminoadipate aminotransferase (synonym Kat2) 180 ± 5 201 ± 12 223 ± 7 244 ± 14 275 ± 7 0.00000 up Early Adult Abca2 ATP-binding cassette, sub-family A (ABC1), member 2 958 ± 28 1052 ± 58 1086 ± 36 1071 ± 44 1141 ± 41 0.05371 up Early Adult Abcb1a ATP-binding cassette, sub-family B (MDR/TAP), member 1A 136 ± 8 147 ± 6 147 ± 13 155 ± 9 185 ± 13 0.01272 up Midlife Acadl acetyl-Coenzyme A dehydrogenase, long-chain 423 ± 7 456 ± 11 478 ± 14 486 ± 13 512 ± 11 0.00003 up Early Adult Acadvl acyl-Coenzyme A dehydrogenase, very long chain 426 ± 14 414 ± 10 404 ± 13 411 ± 15 461 ± 10 0.01017 up Late Accn1 amiloride-sensitive cation channel 1, neuronal (degenerin) 242 ± 10 250 ± 9 237 ± 11 247 ± 14 212 ± 8 0.04972 down Late Actb actin, beta 12965 ± 310 13382 ± 170 13145 ± 273 13739 ± 303 14187 ± 269 0.01195 up Midlife Acvrinp1 activin receptor interacting protein 1 304 ± 18 285 ± 21 274 ± 13 297 ± 21 341 ± 14 0.03610 up Late Adk adenosine kinase 1828 ± 43 1920 ± 38 1922 ± 22 2048 ± 30 1949 ± 44 0.00797 up Early -
Glycoproteomics-Based Signatures for Tumor Subtyping and Clinical Outcome Prediction of High-Grade Serous Ovarian Cancer
ARTICLE https://doi.org/10.1038/s41467-020-19976-3 OPEN Glycoproteomics-based signatures for tumor subtyping and clinical outcome prediction of high-grade serous ovarian cancer Jianbo Pan 1,2,3, Yingwei Hu1,3, Shisheng Sun 1,3, Lijun Chen1, Michael Schnaubelt1, David Clark1, ✉ Minghui Ao1, Zhen Zhang1, Daniel Chan1, Jiang Qian2 & Hui Zhang 1 1234567890():,; Inter-tumor heterogeneity is a result of genomic, transcriptional, translational, and post- translational molecular features. To investigate the roles of protein glycosylation in the heterogeneity of high-grade serous ovarian carcinoma (HGSC), we perform mass spectrometry-based glycoproteomic characterization of 119 TCGA HGSC tissues. Cluster analysis of intact glycoproteomic profiles delineates 3 major tumor clusters and 5 groups of intact glycopeptides. It also shows a strong relationship between N-glycan structures and tumor molecular subtypes, one example of which being the association of fucosylation with mesenchymal subtype. Further survival analysis reveals that intact glycopeptide signatures of mesenchymal subtype are associated with a poor clinical outcome of HGSC. In addition, we study the expression of mRNAs, proteins, glycosites, and intact glycopeptides, as well as the expression levels of glycosylation enzymes involved in glycoprotein biosynthesis pathways in each tumor. The results show that glycoprotein levels are mainly controlled by the expression of their individual proteins, and, furthermore, that the glycoprotein-modifying glycans cor- respond to the protein levels of glycosylation enzymes. The variation in glycan types further shows coordination to the tumor heterogeneity. Deeper understanding of the glycosylation process and glycosylation production in different subtypes of HGSC may provide important clues for precision medicine and tumor-targeted therapy. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Sequences, Annotation and Single Nucleotide Polymorphism of The
Nova Southeastern University NSUWorks Biology Faculty Articles Department of Biological Sciences 6-2008 Sequences, Annotation and Single Nucleotide Polymorphism of the Major Histocompatibility Complex in the Domestic Cat Naoya Yuhki National Cancer Institute at Frederick James C. Mullikin National Human Genome Research Institute Thomas W. Beck National Cancer Institute at Frederick Robert M. Stephens National Cancer Institute at Frederick Stephen J. O'Brien National Cancer Institute at Frederick, [email protected] Follow this and additional works at: https://nsuworks.nova.edu/cnso_bio_facarticles Part of the Genetics and Genomics Commons, and the Zoology Commons NSUWorks Citation Yuhki, Naoya; James C. Mullikin; Thomas W. Beck; Robert M. Stephens; and Stephen J. O'Brien. 2008. "Sequences, Annotation and Single Nucleotide Polymorphism of the Major Histocompatibility Complex in the Domestic Cat." PLoS ONE 7, (3 e2674): 1-17. https://nsuworks.nova.edu/cnso_bio_facarticles/773 This Article is brought to you for free and open access by the Department of Biological Sciences at NSUWorks. It has been accepted for inclusion in Biology Faculty Articles by an authorized administrator of NSUWorks. For more information, please contact [email protected]. Sequences, Annotation and Single Nucleotide Polymorphism of the Major Histocompatibility Complex in the Domestic Cat Naoya Yuhki1*, James C. Mullikin2, Thomas Beck3, Robert Stephens4, Stephen J. O’Brien1 1 Laboratory of Genomic Diversity, National Cancer Institute at Frederick, Frederick, Maryland, -
CYB5R3 Gene Cytochrome B5 Reductase 3
CYB5R3 gene cytochrome b5 reductase 3 Normal Function The CYB5R3 gene provides instruction for making an enzyme called cytochrome b5 reductase 3. This enzyme is involved in transferring negatively charged particles called electrons from one molecule to another. Two versions (isoforms) of this enzyme are produced from the CYB5R3 gene. The soluble isoform is present only in red blood cells, and the membrane-bound isoform is found in all other cell types. Normal red blood cells contain molecules of iron-containing hemoglobin, which deliver oxygen to the body's tissues. The iron in hemoglobin is ferrous (Fe2+), but it can spontaneously become ferric (Fe3+). Hemoglobin that contains ferric iron is called methemoglobin, and it cannot deliver oxygen. The soluble isoform of cytochrome b5 reductase 3 changes ferric iron back to ferrous iron so hemoglobin can function. Normally, red blood cells contain less than 2 percent methemoglobin. The membrane-bound isoform is embedded in the membranes of various cellular compartments and is widely used in the body. This isoform is necessary for many chemical reactions, including the breakdown and formation of fatty acids, the formation of cholesterol, and the breakdown of various molecules and drugs. Health Conditions Related to Genetic Changes Autosomal recessive congenital methemoglobinemia More than 65 mutations in the CYB5R3 gene have been found to cause autosomal recessive congenital methemoglobinemia types I and II. Most of these CYB5R3 gene mutations cause autosomal recessive congenital methemoglobinemia type I, which is characterized by a lack of oxygen in the body's tissues and bluish appearance of the skin, lips, and nails (cyanosis).