<<

MAJOR AND TRACE ELEMENT CHARACTERISTICS OF AND CHLORITE AS PROXIES FOR GOLD ORE MINERALIZATION

Pro Gradu-tutkielma Jaro Kuikka GEOTIETEIDEN JA MAANTIETEEN LAITOS HELSINGIN YLIOPISTO

Tiedekunta/Osasto Fakultet/Sektion – Faculty Laitos/Institution– Department

Matemaattis-luonnontieteellinen Geotieteiden ja maantieteen laitos Tekijä/Författare – Author

Jaro Kuikka Työn nimi / Arbetets titel – Title

MAJOR AND TRACE ELEMENT CHARACTERISTICS OF BIOTITE AND CHLORITE AS PROXIES FOR GOLD ORE MINERALIZATION Oppiaine /Läroämne – Subject

Geologia Työn laji/Arbetets art – Level Aika/Datum – Month and year Sivumäärä/ Sidoantal – Number of pages

Pro gradu 4.1.2018 62 s. + 2 liitettä 27 s. Tiivistelmä/Referat – Abstract

Hatun arkeeisella liuskevyöhykkeellä Itä-Suomessa on useita kultaesiintymiä, joista yksi on Pampalon kultaesiintymä Ilomantsin Hatussa. Tutkimuksessa analysoitiin biotiitin ja kloriitin pää- ja hivenalkuainepitoisuuksia Pampalon eriasteisesti muuttuneista ja metamorfoituneista kivilajeista. Tutkimuksen tavoitteena oli tunnistaa mahdollinen korrelaatio kivilajien biotiitin ja kloriitin kemiallisen koostumuksen muutoksien ja Pampalon kultamineralisaatioiden välillä. Alkuaineiden pitoisuuksia verrattiin etäisyyteen lähimmästä mineralisaatiosta. Biotiitti ja kloriitti valittiin tutkimukseen niiden yleisyyden vuoksi Pampalon malmi- ja sivukivilajeissa. Tutkimuksen näytteet kerättiin kairasydännäytteistä, ja analysoitiin hyperspektrimenetelmällä, elektronimikroproobianalyysilla (EMPA) ja laserablaatio icp-massaspektrometrillä (LA-ICP- MS). Näytteiden valintaan ja mineraalien tunnistukseen käytettiin hyperspektrikuvausta ja polarisaatiomikroskooppia.

EMPA ja LA-ICP-MS –analyysien perusteella löydettiin korrelaatio biotiittien alkuaineiden Mg, Al, Ti, Fe, Zn, Sr ja Cs pitoisuuksien sekä mineralisaation välillä ja kloriittien Li, B, Mg, Al, Si, P, Sc, Ti, Mn, Fe, Ni, Zn, Ga, As ja Sr pitoisuuksien sekä mineralisaation välillä. Kohtalaisesti korreloivat biotiittien Pb- ja Tl- sekä kloriittien Co- pitoisuudet mineralisaation kanssa. Selvin korrelaatio mineralisaation kanssa oli biotiittien Mn, W ja Ba –pitoisuuksien muutoksella. Mangaanin pitoisuusmuutokset johtuvat todennäköisesti isäntäkivilajien kemiallisen koostumuksen vaihtelusta kivilajien välillä. Volframin pitoisuusvaihtelut liittynevät fluidivirtauksiin kivilajeissa, mutta vain epäsuorasti kultamineralisaatioihin. Barium oli alkuaineista lupaavin korkean mobiiliutensa vuoksi, ja sen pitoisuus laskee selvästi lähestyttäessä kultamineralisaatioita. Kloriittien arseenipitoisuuksien muutoksista tunnistettiin kahden eri tyypin kloriittikiteitä, joista toinen saattaa liittyä kultamineralisaatiotapahtumiin. Avainsanat – Nyckelord – Keywords

Geologia, orogeeninen, arkeeinen, mineralisaatio, kultaesiintymä, Pampalo, Hatun liuskevyöhyke, biotiitti, kloriitti Säilytyspaikka – Förvaringställe – Where deposited

Kumpulan kampuskirjasto Muita tietoja – Övriga uppgifter – Additional information

Tiedekunta/Osasto Fakultet/Sektion – Faculty Laitos/Institution– Department

Faculty of Science Department of Geosciences and geography Tekijä/Författare – Author

Jaro Kuikka Työn nimi / Arbetets titel – Title

MAJOR AND TRACE ELEMENT CHARACTERISTICS OF BIOTITE AND CHLORITE AS PROXIES FOR GOLD ORE MINERALIZATION Oppiaine /Läroämne – Subject

Geology Työn laji/Arbetets art – Level Aika/Datum – Month and year Sivumäärä/ Sidoantal – Number of pages

Master’s Thesis 4.1.2018 62 pp. + 2 Appendices 27 pp. Tiivistelmä/Referat – Abstract

The Archean Hattu schist belt in eastern Finland is host to several orogenic gold occurrences. One of these deposits is the Pampalo gold deposit located in Hattu, Ilomantsi. Major and trace element characteristics of biotite and chlorite were analyzed from a representative collection of rock types of different degrees of alteration from the Pampalo deposit. The main aim of this study was identifying possible correlation of changes in the elemental composition of biotite and chlorite with distance to gold ore mineralization and testing the two ’ use as proxies for mineralization in Pampalo. Biotite and chlorite were chosen for being represented in altered and unaltered ore and adjacent country rock units. Samples were prepared from half and quarter drill core rocks and analyzed with hyperspectral imaging, electron micro probe analysis (EMPA) and laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS). Hyperspectral imaging and thin section microscopy were used for identification and mineral grain sampling.

EMPA and LA-ICP-MS data found weak correlation with distance to mineralization for Mg, Al, Ti, Fe, Zn, Sr and Cs in and Li, B, Mg, Al, Si, P, Sc, Ti, Mn, Fe, Ni, Zn, Ga, As and Sr for chlorite. Moderate correlation was found for Pb and Tl in biotites and Co in chlorites. Strongest correlation was found for Mn, W and Ba in biotites. These three elements all deplete in biotites with decreasing distance to mineralization. Changes in concentrations of manganese are likely variation in host rock chemistry. Tungsten concentrations seem to be linked to fluid flows, but only indirectly related to gold ore mineralization. Barium was found to be the most promising element within biotites due to its high mobility, and its depletion could indicate approaching gold ore mineralization. Changes in As concentrations of chlorites also point to two different types of chlorite grains, one of which indicate an ore mineralization event having taken place.

Avainsanat – Nyckelord – Keywords

Geology, orogenic, Archean, mineralization, gold deposit, Pampalo, Hattu Schist belt, biotite, chlorite Säilytyspaikka – Förvaringställe – Where deposited

Kumpula Campus Library Muita tietoja – Övriga uppgifter – Additional information

TABLE OF CONTENTS

1. INTRODUCTION ...... 4 1.1 Goal of the thesis...... 4 1.2 Previous studies ...... 5 1.3 Geological setting ...... 5 1.3.1 The Hattu schist Belt ...... 5 1.3.2 Pampalo ...... 7 1.4 Orogenic gold deposits ...... 9 1.5 Mineral chemistry of biotite and chlorite ...... 10 1.5.1 Biotite ...... 10 1.5.2 Chlorite ...... 11 2. MATERIALS AND METHODS ...... 12 2.1 Drill cores ...... 12 2.1.1 Rock types ...... 12 2.1.2 T-1010 ...... 15 2.1.3 T-1017 ...... 15 2.1.4 T-1034 ...... 15 2.2 Samples ...... 18 2.3 Procedures ...... 27 2.3.1 Hyperspectral imaging ...... 27 2.2.2 EMPA ...... 27 2.2.3 LA-ICP-MS ...... 28 3. RESULTS AND DISCUSSION ...... 29 3.1 Hyperspectral imaging ...... 29 3.2 EMPA ...... 33 3.2.1 Biotite ...... 33 3.2.2 Chlorite ...... 34 3.3 LA-ICP-MS ...... 36 3.3.1 Biotite ...... 36 3.3.2 Chlorite ...... 38 3.4 Observations ...... 39 3.4.1 Biotite ...... 39

3.4.2 Chlorite ...... 48 3.4 Rock types ...... 54 3.5 Trace elemental trends in biotites and chlorites ...... 55 4. CONCLUSIONS ...... 58 5. ACKNOWLEDGEMENTS...... 59 6. REFERENCES ...... 60 7. APPENDICES ...... 62 7.1 Appendix 1 ...... 62 8.2 Appendix 2 ...... 76

4

1. INTRODUCTION

1.1 Goal of the thesis

The goal of this thesis was to research elemental geochemistry of biotite and chlorite grains within the ore zone of the Pampalo gold deposit. Main and trace element concentrations of biotite and chlorite were measured and compared to ore grade and distance to nearest ore mineralizations. Changes in elemental composition of these two minerals were observed to see whether chlorite and biotite can be used as proxies for gold ore mineralization, and thus identify imminent or nearby ore mineralizations.

Ten representative rock samples from drill cores of three different ore lenses within the Pampalo deposit were chosen for the study, representing both nearly unaltered and more strongly altered ore and country rocks. The samples were analyzed by three methods LA-ICP-MS, EMPA and hyperspectral imaging. EMPA was used to measure major elements and as an internal standard for laser analysis, LA-ICP-MS was used for analysis of trace elements. Hyperspectral imaging was used for an alternative identification method of minerals present within the rocks, as well as to test if different endmembers of chlorite and biotite could be identified by hyperspectral scanning and how hyperspectral data compares to LA-ICP-MS and EMPA data.

Biotite and chlorite were chosen for the study for their relative abundance in both the country rocks and within the ore zone. Both minerals are related to gold ore formation, and thus may show clear differences in composition.

5

1.2 Previous studies

There have been few similar studies in the past in general or from the Hattu schist Belt in particular. Within the Hattu schist Belt, elemental composition changes and suitability for gold ore proxies have previously been studied from tourmalines (Kalliomäki et al. 2017). Major and trace element contents of biotite, however, have been studied before for economic potential in other types of ore deposits. Fleet et al. (2003) mentions that the most common elements studied from biotite for economic potential are Pb, Zn, Cu, F and Cl. Studies have been conducted, for example, of porphyry copper deposits (Selby & Nesbitt 2000). Selby and Nesbitt found that MgO, Al2O3 SiO2, F and Cl2 contents were enriched and TiO2, BaO and MnO contents depleted within alteration zones compared to surrounding country rocks. A combination of all three methods hyperspectral imaging, LA-ICP-MS and EMPA has not been conducted before for biotites or chlorites in orogenic gold settings.

1.3 Geological setting

1.3.1 The Hattu schist Belt

The Hattu schist belt is located in Ilomantsi, Pohjois-Karjala in the province of Eastern Finland (Fig. 1). The Hattu schist belt is part of the Ilomantsi complex, which comprises an older, western part known as the Kovero belt and and an eastern part known as the Hattu schist belt (Sorjonen-Ward and Luukkonen, 2005). The Ilomantsi complex consists of a supracrustal greenstone belt sequence that is surrounded by granitoid bodies. No gold occurrences in The Kovero belt have been documented, whereas the Hattu schist belt is host to several different sized orogenic gold occurrences. The most significant of these occurrences is the Pampalo gold deposit in Hattuvaara, Ilomantsi (Sorjonen-Ward et al. 2015). The Hattu schist belt is dominated by felsic pyroclastic and epiclastic rocks and intermediate to felsic volcanic rocks with minor mafic to ultramafic volcanic rocks and banded iron formations (Nurmi et al. 1993). The supracrustal rocks have been intruded by intermediate to felsic granodiorites and tonalites. The ages of the intrusive rocks are only slightly younger than the volcanic 6 supracrustal sequence rocks, with the ages of supracrustal sequence rocks dated to 2.76-2.75 Ga and the intrusive granodiorites and tonalites dated between 2.75-2.72 Ga (Vaasjoki et al. 1993, Sorjonen- Ward and Luukkonen 2005; Huhma et al., 2012). Peak metamorphism in the Hattu Schist belt likewise occurred slightly after and perhaps during deposition at greenschist to lower amphibolite facies conditions with a peak temperature of 550 ± 50 °C and estimated pressures of 3–5 kbar (Kojonen et al. 1993, Sorjonen-Ward et al. 2015).

Figure 1. Location of the Pampalo gold deposit marked with a star.

The stratigraphy of the supracrustal sequence has been unusually well preserved, and lateral facies variations have been identified from the sequence. Gold occurrences within the Hattu schist belt are structurally controlled. The major folds within the belt are upwards-facing, and the general structural trend of the Schist belt is NW-SE oriented. Gold mineralization has been identified in most rock types of the schist belt. The process of gold mineralization coinciding with peak metamorphism has been difficult to prove, and peak metamorphism is thought to post-date gold mineralization. (Sorjonen- Ward 1993, Sorjonen-Ward et al. 2015) 7

1.3.2 Pampalo

The Pampalo gold deposit, previously known as the Ward deposit, is the most significant of the known gold occurrences in the Hattu Schist belt. It is the only deposit in the Hattu Schist belt that currently has an active underground gold mine. The Pampalo gold mine is located some 7 km north of the village of Hattuvaara in Ilomantsi. The deposit is located in the Pampalo Zone, which is distinctive by its relatively large abundance of mafic and ultramafic units. The Pampalo deposit has a differing structural orientation, trending NE-SW compared to the general NW-SE or northerly orientation of the Pampalo zone.

A well-defined stratigraphy characterizes the Pampalo deposit. The deposit is host to a wide variety of rock types, ranging from banded iron formations and mafic to intermediate volcanics to tonalitic porphyry dikes (Fig. 2). Western parts of the deposit are part of the Tiittalanvaara formation that hosts metapelites, conglomerates, graywackes and banded iron formations and has an eastward younging trend. Banded iron formations border the base of the Pampalo formation, and the next stratigraphic unit consists of metabasalts (MB) and dolerites, which are part of the Juttuhuuhta duplex. The rock unit termed AT for “andesitic tuff” overlays the metabasalts. AT is an intermediate metavolcaniclastic rock, and a significant host to gold concentrations in the Pampalo deposit. The AT unit is intruded by another gold-bearing unit, FP or feldspar porphyry, which follows the general shear trends. The uppermost parts of the deposit are dominated by ultramafic -chlorite-carbonate schists, which are also often intruded by mineralized FP dikes. (Nurmi et al. 1993, Sorjonen-Ward et al. 2015, Fusswinkel et al. 2017) 8

Figure 2. Geological map of the Pampalo zone in Hattu. Ilomantsi. The map was made from data provided by GTK and is copyrighted by Geological survey of Finland (2017).

9

Like in the Hattu Schist belt in general, the timing and conditions of gold mineralization has been difficult to establish for the Pampalo deposit. Gold mineralization is likewise mainly structurally controlled (Sorjonen-Ward et al. 2015). Gold concentrations are focused predominantly in the feldspar porphyry and “andesitic tuff” rock units as disseminated sulfide-bearing ore, and in carbonate-quartz veins found throughout the deposit. Gold is found as native gold in mylonitic seams, as inclusions in or alongside with pyrite grains and K-feldspar, and between silicate grains that are intergrown with Bi-, Pb-, Ag- and Au-tellurides (Kojonen et al. 1993).

The feldspar porphyry and “andesitic tuff” contain mostly the same minerals: feldspar, quartz, biotite, calcite and epidote with accessory titanite, scheelite and tourmaline. The sulfide minerals pyrite, chalcopyrite, pyrrhotite, galena and sphalerite may be present. Quartz-carbonate veins contain pyrite, chalcopyrite, magnetite, ilmenite and goethite. Extensive alteration is characteristic of both ore- bearing rock types (quartz + K-feldspar + biotite + sericite + carbonate) (Fusswinkel et al. 2017). Several generations of quartz veins have been identified from Pampalo in fluid inclusion studies, and only some generations are mineralized with gold concentrations (Fusswinkel et al. 2017). Ultramafic rocks within the Pampalo deposit commonly contain talc, chlorite, biotite, carbonate and amphiboles, most commonly tremolite. Accessory minerals include magnetite, chromite, ilmenite, pyrite and rutile. The ultramafic rock units are mostly barren of gold (Kojonen et al. 1993). Metabasalts consist mainly of hornblende, plagioclase and zoisite and are also barren of gold (Nurmi et al. 1993). Amphibole minerals have deformed and altered to sericite, and biotite has occasionally altered to chlorite (Kojonen et al. 1993).

1.4 Orogenic gold deposits

The Pampalo deposit is an orogenic-type gold deposit. Orogenic gold deposits are gold-bearing deposits of all ages and hosted in deformed metamorphic terranes. The deposits are regionally metamorphosed and formed in continental margins, either in compressional or transpressional regimes. The deposits are formed in temperatures between 200-700 °C. Orogenic gold deposits commonly contain 3-5 % of sulfides in quartz vein systems, typical minerals also include white , albite, fuchsite and chlorite. Tourmaline and scheelite may be present as gangue minerals. Common alteration types within orogenic gold deposits include carbonation, sericitization, sulfidation and 10 formation of skarn assemblages in higher temperature deposits. Zonation of alteration phases is typical of the deposits. Ore fluids within orogenic gold deposits are of low salinity, elevated CO2 concentrations and close to neutral pH H2O–CO2 ± CH4 fluids. (Groves et al. 1998).

1.5 Mineral chemistry of biotite and chlorite

1.5.1 Biotite

Biotite is a mafic phyllosilicate mineral or mineral series of the mica group, and the most abundant mica within rocks in general. It occurs in most plutonic and volcanic rocks, most metamorphic rocks that have gone through metamorphism beyond the biotite zone or as a product of hydrothermal alteration either as a main, accessory or secondary mineral. Biotite also bears a strong association with several different hydrothermal and magmatic sulfide ore deposits. The most common endmembers of the biotite series are [KMg3AlSi3O10(OH)2], annite 2+ [(KFe 3AlSI3O10(OH)2)], eastonite [KMg2AlAl2Si2O10(OH)2], siderophyllite 2+ 2+ 3+ [KFe AlAl2Si2O10(OH)2], tetra-ferri-annite [KFe 3Fe Si3O10(OH)2] and tetra-ferri-phlogopite 3+ [KMg3Fe Si3O10(OH)2]. The endmembers of the biotite series are divided based on their Fe/Mg ratios and Al concentration, with annite being the Fe-rich endmember, phlogopite being the Mg-rich endmember, eastonite the Mg- and Al-rich endmember and siderophyllite being the Fe- and Al-rich endmember. (Fleet et al. 2003)

The ideal biotite plane is defined by phlogopite-annite-eastonite-siderophyllite, however biotite compositions fall both outside and inside the ideal plane. Major elemental variations of Mg, Fe2+, Fe3+, Al, Ti, K, Na, Ca, OH, F and Cl occur in the biotite series. Substitution reactions of biotite are complex, and rarely happen alone. Some typical minor and trace elements found from biotite are Ba, Co, Cr, Cs, Ga, Li, Mn, Ni, Rb, Sc, Sn, Sr, V and Zn. (Fleet et al. 2003) 11

Hydrothermal alteration is known to cause alteration of eastonite and siderophyllite to serpentite and chlorite. Biotite can also alter to vermiculite, smectite, chlorite, gibbsite, and corrensite by weathering. (Fleet et al. 2003)

1.5.2 Chlorite

The is also a phyllosilicate mineral group, likewise being a very common mineral in a variety of rock types. It is most common in low-grade metamorphic rocks (up to 400 °C and a few kbar of pressure) and in plutonic rocks as a product of hydrothermal alteration from ferromagnesian minerals. The geochemistry of the chlorite group is complex, and classification of chorite minerals into endmembers has been conflicted. The IMA classification follows dividing the chlorite minerals into endmembers by key cations. Tab. 1 lists the different chlorite endmembers according to the IMA classification and as shown by Deer et al. (2009).

Table 1. IMA-accepted endmembers of chlorite as of 2009 (according to Deer et al. 2009). Clinochlore is the most common species of chlorite.

Endmember Chemical formula Key cation element

Clinochlore Mg6(Mg4,Al2)[Si6Al2O20](OH)16 Mg

2+ 2+ 2+ Chamosite Fe 6(Fe 4Al2)[Si6Al2O20](OH)16 Fe

2+ 2+ 2+ Pennantite Mn 6(Mn 4Al2)[Si6Al2O20](OH)16 Mn

Glacolevite Na2(Mg,Al)12[Si6Al2O20](OH,O)16 Na

2+ Baileychlore Zn6(Fe 4Al2)[Si6Al2O20](OH)16 Zn

Nimite (Mg,Ni)(Ni4Al2)[Si6Al2O20](OH)16 Ni

Cookeite Al4(Li2Al4)[Si6Al2O20](OH)16 Li

Borocookeite Li2+6xAl8-2x[B2Si6O20](OH,F)16 B, Li

Donbassite Al4(Al4,67)[Si6Al2O20](OH)16 Al

Sudoite Al4(Mg4Al2)[Si6Al2O20](OH)16 Mg, Al

12

The most common elemental variation in chlorites can occur for Si, which can be substituted by Al, and Mg, which can be substituted by Al, Fe and a wide variety of other cations such as Li, Mn, Zn and Ni. Many of the endmembers of chlorite occur via this substitution, and as such the elemental variation of chlorite is rather wide. Chlorite is weathered to variety of minerals, but chlorite is most commonly altered to vermiculite. (Deer et al. 2009).

2. MATERIALS AND METHODS

2.1 Drill cores

Three underground drill cores from the Pampalo deposit provided by Endomines Oy were used for picking samples for the study. These three drill cores are labeled T-1010, T-1017 and T-1034, and all of them represent different ore lenses within the Pampalo deposit. All drill cores were also drilled from different depths. Lithology of the three drill cores is visualized in Fig. 3. Rock type codes are explained in part 3.1.1 Rock types. Bulk rock gold concentrations of the drill cores are presented in Fig. 4.

2.1.1 Rock types

The Pampalo deposit is host to a variety of rock types, those that appear within the three drill cores are briefly described below. The rock type lithology codes used here are based on those used by mine logging reports in Pampalo. A summary of the rock types is presented in Tab. 2.

AT, short for “andesitic tuff”, is a term coined for the main ore rock type within Pampalo. AT is characterized by biotite-dominated foliation within a quartz-plagioclase or quartz-K-feldspar matrix. Quartz-carbonate veins are abundant within AT. Within mineralized AT pyrite and pyrrhotite are the 13 most common sulfide minerals. Accessory minerals include tourmaline, chalcopyrite, scheelite and more rarely apatite.

BIF are the banded iron formations present only in some parts of the Pampalo deposit. The rock type often shows a banded texture and foliation. The rock commonly contains carbonates, magnetite, porphyroblastic garnet and feldspar minerals. Sometimes massive pyrrhotite bands are present. BIF often appears with mica schist.

BTS or biotite schist is usually a barren, considerably more biotite-rich version of AT. Sulfide minerals are almost always absent.

CARBV refers to carbonate-rich veins, which may also contain some quartz. The carbonate crystals are most commonly large and calcite is the most common carbonate mineral.

CHLS is a green, chlorite-rich rock type usually found at the end of drill cores. It is slightly darker than TLCS, and considerably harder. Talc and chlorite are the main minerals. Euhedral pyrite crystals are the most common accessory mineral.

FP or feldspar porphyry means the porphyry dikes usually intruding AT, and is also an ore rock type. The texture is often porphyritic, and most commonly contains one or several feldspar minerals and quartz with small biotite grains. Unlike AT, the rock rarely shows clear foliation, and does not have a sheet-like structure. Carbonate minerals are common, especially within veins. Pyrite and pyrrhotite are the most common sulfide minerals, sometimes chalcopyrite may be present. Accessory minerals include scheelite, tourmaline, chlorite and rarely apatite and telluride minerals.

FV or felsic vulcanite is considered a minor ore rock type. It is gray and lighter in color than intermediary vulcanite, and appears most often together with FP. Pyrite grains may be present within its matrix. FV lacks foliation, and does not show a specific texture.

IV or intermediary vulcanite is a gray, commonly unfoliated rock type most often present between MV and MS or BIF. It may sometimes show a band texture with alternating lighter and darker bands.

MS or mica schist is a dark-colored, schistous rock type that is most often identified by garnet porphyrblasts. It appears most commonly with BIF units.

MV or mafic vulcanite is a distinct green rock type, that is most often unfoliated and massive in texture. As with IV however, sometimes darker colored biotite-rich bands may be present. Tourmaline and carbonate veins are common within this rock type. Main minerals include plagioclase 14 and amphibole. Pyrrhotite is the most common accessory mineral. Sometimes chalcopyrite and arsenopyrite may be present as well.

QV or quartz veins are quartz and sometimes quartz-carbonate veins cutting most rock types within Pampalo. Sometimes, especially within FP, they contain , chlorite and biotite as well.

SK or skarn is a mafic rock type, that is commonly between ore rock types and TLCS or CHLS, sometimes even within and between FP/AT ore rock types. It is characterized by large amphibole crystals, and often contains more than one amphibole mineral. Amphiboles, carbonate and biotite are the most common minerals. Chlorite may be present, pyrite grains are rare.

TLCS or talc schist is a light green, foliated rock type. Usually drill cores end with this rock type. TLCS may contain euhedral pyrite crystals. Main minerals are talc and chlorite.

TURV or tourmaline vein refers to tourmaline veins most commonly found within MV and AT. They are usually small and thin, a few millimeters to a few centimeters wide, and may contain quartz, pyrite, pyrrhotite or arsenopyrite in them.

Table 2. Summary of rock type characteristics in the Pampalo deposit.

Rock type Lithology Common minerals Alteration Structural features code Carbonation, sericitization, K- Altered tonalite AT Biotite, sulfides, albite, carbonate feldspar metasomatism Foliation, schistosity Banded iron formation BIF Magnetite, carbonate, garnet Foliation, banded texture Biotite schist BTS Biotite, albite Carbonation Schistosity Carbonate veins CARBV Carbonate, quartz Carbonation Chlorite schist CHLS Chlorite, talc, feldspar Chloritization, carbonation Schistosity Feldspar Carbonation, sericitization, K- porphyry FP Feldspar, quartz, biotite, sulfides,c arbonate feldspar metasomatism Porphyritic texture Biotite, feldspar, quartz, chlorite, Carbonation, sericitization, K- Felsic vulcanite FV amphibole, carbonate feldspar metasomatism Massive texture Intermediary Biotite, feldspar, quartz, chlorite, vulcanite IV amphibole, carbonate Carbonation Massive texture Schistosity, porphyroblastic Mica schist MS Biotite, feldspar, garnet texture Biotite, feldspar, chlorite, amphibole, Mafic vulcanite MV carbonate Carbonation Massive texture Quartz, carbonate, chlorite, white mica, Quartz vein QV sulfides, accessory minerals Carbonation Heterogenous , Skarn SK Amphiboles, chlorite, biotite porphyroblastic textures Talc schist TLCS Talc, chlorite, sulfides, biotite Chloritization, carbonation Schistosity Tourmaline vein TURV Tourmaline, sulfides

15

2.1.2 T-1010

T-1010 is the first drill core, and pierces the S2 (southern) ore lens in Pampalo. Four of the ten samples were chosen from this drill core. The drill core is characterized by one major gold ore intersection, and is also the only one to contain banded iron formation (BIF) units as well as mica schist (MS). The core begins with alternating BIF and MS layers, which then have a sharp contact with an IV unit. The unit quickly changes back to BIF. Afterwards, another transition to a smaller IV occurs, which then has a transitional contact with a larger MV unit. A typical feature of all three drill cores is a large MV unit occurring before the actual AT/FP ore zone. Several quartz, carbonate and tourmaline veins pierce the MV.

The ore lens begins with AT, and then transitions to FP with a mixture of both. An interesting, rarer unit towards the end of the ore lens is an SK/FP mixture rock type. One of the samples was taken from this part of the drill core. At the far end, the ore lens changes back to an AT, which has a contact with a barren TLCS unit that ends the drill core at a length of about 75 meters.

2.1.3 T-1017

T-1017 is the shortest of the three drill cores, and pierces the C or central ore lens. It begins straight from a relatively short MV unit. The ore lens in T-1017 is characterized by repeatedly alternating AT and FP units, with only a few mixture AT/FP units. Carbonate-quartz veins are common within the ore part of the drill core. Interestingly, after the main ore zone, the TLCS and CHLS in the end actually hosts a small FP porphyry dike, which has an elevated gold concentration. The core ends at a length of 60 meters.

2.1.4 T-1034

T-1034 is by far the longest drill core of the three, with a length more than two times that of the other two drill cores at about 145 meters. The MV unit is very lengthy, and the ore lens begins at about 75 meters. AT is more prominent at the near end of the drill core, while FP dominates the far end. Alternating layers are present within this drill core as well. The drill core seems to pierce another ore 16 lens however, as after the main ore lens there is an MV unit, which has a contact with a second AT and FP lens.

Figure 3. The three drill cores T-1010, T-1017 and T-1034 as a drill core plot. Note that the drill cores are not drilled from the same level, and the 0-level does not represent ground surface, thus their absolute depths differ.

17

Figure 4. Bulk rock gold concentration analysis plotted onto the three drill cores. Analysis was provided by Endomines Oy, and serves to pinpoint zones of mineralization. Unanalyzed parts contain typically barren rock types. This can be seen well when comparing the gold concentration plots to rock type plots.

18

2.2 Samples

A total of ten samples (Tab. 3) were chosen from the three drill cores to represent rock types of different degrees of alteration within the Pampalo deposit. These ten samples were picked from an original amount of 40 samples to be representative of a set typical rock types within the Pampalo deposit. The samples are divided into five different rock types, with focus on AT, which is closely associated with ore mineralization and one of the two main ore rock types in Pampalo.

The samples were prepared from full and half drill cores drilled and donated by Endomines Oy. After cutting the cores into halves and quarters, the samples were cut into two mirroring slabs with one half to be used for hyperspectral imaging and the other for preparing thin sections. The thin sections were cut and polished to a thickness of 0.3 mm.

Ten grains of biotite and ten grains of chlorite where present in each thin section were initially chosen for the study.

Table 3. The ten samples with their rock types and corresponding drill cores, as well as distance to nearest mineralization in meters.

Sample Rock type Drill core Distance to mineralization (m)

JAK-3 AT T-1010 1

JAK-5 FP/QV T-1010 0

JAK-6 FP/QV T-1010 1

JAK-10 BTS/SK T-1010 11

JAK-19 FP/QV T-1017 0

JAK-20 AT T-1017 3

JAK-23 AT T-1017 1

JAK-37 MV/AT T-1034 6

JAK-38 MV T-1034 9

JAK-39 MV/AT T-1034 3

JAK-3 (Fig. 5) is an AT from the first drill core T-1010. The typical sheet-like structure is clearly present in the thin section, which are cut by quartz-carbonate veins. A gradation of grain size is 19 present. The biotite grains in the sample are anhedral, inequigranular and mostly oriented parallel to the schistosity structure. They are pleochroic and mostly dark brown to lighter brown in color. The biotite grains are present mostly in networks or sheets. No chlorite is present in JAK-3. Other minerals present are calcite, quartz, plagioclase and tourmaline. Some accessory titanite and apatite is also present. Zircon grains are commonly present as inclusions within biotite.

JAK-5 (Fig. 6) is one of the three FP/QV rocks among the ten samples. It is a feldspar porphyry rock from the first drill core T-1010 with a quartz veins cutting it. The biotite grains present are of two seemingly different types; very dark brown smaller anhedral grains and larger, subhedral, pleochroic yellow to pale brown grains with clear . Some grains of biotite are clearly altered into chlorite. Chlorite is present apparently in both recrystallized chlorite within the quartz vein and and an altered product of biotite. The recrystallized chlorite grains are very large and two-colored pleochroic yellow- green, as well as sharp-edged and massive. The altered chlorite is darker green and anhedral with clearly smaller grains and it is sometimes harder to distinguish from biotite, as some mineral grains are both green and dark brown with some parts still remaining biotitic. The rock is very inequigranular and clearly porphyritic and unfoliated. Muscovite is present within and around the quartz vein. Other minerals within the rock are albite, titanite, pyrite,calcite and tourmaline. The rock is clearly alterated, which can be seen especially in the larger grains. Around the quartz vein K-feldspar alteration can be identified.

JAK-6 (Fig. 7) is similarly a FP/QV rock. The sample is also from drill core T-1010, a few metres downhole from the location of the sample JAK-5. Compared to JAK-5 the sample JAK-6 is slightly less porphyric with a slightly smaller grain size. The mineral grains seem to have a slight foliation as well. Both biotite and chlorite likewise have much smaller grain size. Some biotite grains are greenish in color and generally smaller in size, but the more yellow grains from the sample JAK-5 are absent. Alteration is similar to JAK-5 with K-feldspar alteration and broken down larger grains, however biotite is not as clearly altered to chlorite. Carbonate, K-feldspar, albite, muscovite, pyrite and fluorite are present within the rock.

JAK-10 (Fig. 8) is designated as BTS/SK. The rock slightly resembles AT and also FP in texture and biotite content in hand sample size, however it is surrounded by two small skarn units and clearly contains much fewer felsic minerals. The rock matrix has a clear schistous structure and is inequigranular with very large euhedral, often twinning amphibole grains. Most of the rock is biotite or amphibole. Biotite is present as networks of “flows” and is usually massive, but with small individual mineral grains. Biotite is mostly anhedral with a few subhedral grains. Biotite grains are 20 greenish brown and pleochroic. Chlorite is present as subhedral pale green grains, and they notably do not follow the general schistosity of the rock sample. Many of the larger grains, especially amphibole and tourmaline, display zonation. There are at least two different amphibole minerals present in the rock, along with some quartz, pyrrhotite, pyrite, albite and carbonate. Very little scheelite is also present.

JAK-19 (Fig. 9) is an FP and the first sample from the drill core T-1017. The rock is slightly foliated and several quartz-carbonate veins cut it. Biotite grains are very fine-grained to fine-grained, pleochroic brown to dark brown with a greenish tint and range from anhedral to euhedral. No chlorite is present. The sample is taken from a contact of AT and FP and carbonate-quartz veins are common. Pyrite is very abundant within this sample. Other common minerals include albite and calcite. Tourmaline, zircon and muscovite are present as accessory minerals.

JAK-20 is an AT rock within the drill core T-1017 (Fig. 10). It is very similar in texture to JAK-3, however it has a slightly greater content of felsic minerals. A clear foliation is present, and grain size is fine and rather even except for cutting carbonate-quartz veins. Biotite grains are brown to dark brown and have a greenish tint. The biotite grains are anhedral to subhedral. Alteration within the rock is less apparent in degree compared to JAK-3, and is often patchy within the rock. Pyrite and calcite are common. The main minerals alongside biotite are plagioclase feldspar, quartz and calcite. Accessory minerals include tourmaline and zircon.

JAK-23 (Fig. 11) is an unusual AT with much more abundant mafic minerals. The AT unit this sample represents is itself surrounded by an FP unit and is characterized by small skarn edges at both contacts to FP. A sheet-like texture is present in this sample as well. Most minerals within the sample show strong alteration and recrystallization. Biotite is very abundant, fine-grained, anhedral and mostly dark green in color. Biotite is also foliated, often deformed and follows a wave-like pattern within the foliation texture. Chlorite is present within this sample and is subhedral and pale green in color. Unlike biotite, chlorite does not follow general foliation and often overprints the biotite. An amphibole is present within the rock. Other minerals include carbonate as a main mineral, and muscovite as an accessory mineral. Few quartz and feldspar grains are present.

21

Figures 5 and 6. JaK-3 (to the left) and JaK-5 (to the right) in thin section view. JaK-3 is an AT type rock while JaK-5 is an FP/QV. Both thin sections are from the drill core T-1010. JaK-3 shows a clear AT foliation and altering sheets of biotite and quartz + feldspar. JaK-5 is characterized by very large, sharp-edged and two-colored chlorite grains + muscovite crystals within a quartz vein and a typical FP texture consisting mostly of quartz + K-feldspar with very fine-sized biotite grains.

22

Figures 7 and 8. Thin section scans of JaK-6 (left) and JaK-10 (right). JaK-6 shows a similar FP to the one in JaK-5 (Image 2), but with much less chlorite. JaK-5 and JaK-6 are only a few meters apart within their drillcore T-1010. JaK-10, also from the drill core T-1010, is a transitional contact between a skarn unit within a larger FP dike and the FP dike. Large euhedral amphibole crystals are typical of the skarn rocks within the Pampalo deposit. 23

Figures 9 and 10. JaK-19 and JaK-20 in thin section. Both samples are taken from the drill core T-1017. JaK-19 shows alternating layers of typical FP, AT and quartz-carbonate veins. Pyrite grains are easily identified. JaK-20 is very similar to JaK-3, but with a slightly less clear and strict foliation.

JAK-37 (Fig. 12) is the first sample from T-1034. The sample is taken from a transitional contact between an MV and an AT rock unit. The rock is foliated and mostly equigranular. Rock alteration is very visible. Mafic minerals are dominant, quartz and feldspar are present mainly in veins. Minerals include at least two amphiboles, hornblende and tremolite, quartz, biotite, albite and carbonate. Carbonate is present only in veins. Some accessory tourmaline and pyrrhotite are present. Biotite is 24 found both in veins and in the rock matrix. Vein biotite is subhedral to euhedral, while matrix biotite is almost exclusively anhedral. Biotite color ranges from brown to dark reddish brown. Chlorite is absent in the rock.

JAK-38 (Fig. 13) from the drill core T-1034 is a pure MV-type rock. The rock is very mafic and foliated. A needle-like texture is present everywhere in the thin section, where euhedral tremolite needles are often enclosed by large biotite masses. The rock is fine to medium-grained. Biotite is mainly subhedral in large masses and often contains zircon inclusions as well as partially enclosing tremolite crystals. Biotite is colored brownish pale yellow to dark brown. Clear alteration is present in the texture. Some later quartz veins cut the rock. Albite, hornblende and actinolite is also present, along with accessory pyrrhotite, titanite and talc. Some secondary glaucophane can also be found.

JAK-39 (Fig. 14) is another AT/MV transitional contact rock. The transition is slightly sharper than in JAK-38, and represents the transition from AT to MV rather than the other way around. The rock is foliated, finer-grained than JAK-37 and slightly less mafic, however the mafic minerals are much darker in color. Alteration textures are also less clear. Biotite appears in both the matrix and as larger biotite sheets, and is anhedral to euhedral. Biotite color is brownish yellow to dark orange brown. Main minerals of the rock are biotite, hornblende, tremolite, quartz, albite and carbonate. Some accessory pyrrhotite and tourmaline are present.

25

Figures 11 and 12. Thin sections of JaK-23 (left) and JaK-37 (right). JaK-23 is a very dark-colored AT from the drill core T-1017. It represents deeper parts of the drill core, and is clearly different from a typical AT closer to ore mineralization, rather resembling BTS. JaK-37 is an MV/AT rock from the third drill core T-1034, and nicely shows the change in mineralogy of an MV rock with a transition to an AT.

26

Figures 13 and 14. The last two samples JaK-38 (left) and JaK-39 (right). Both are MV rocks, with JaK-38 representing a pure MV rock and JaK-39 being the transition from MV to AT at the lower end of the drillcore T-1034. JaK-38 slightly resembles the skarn units within Pampalo with euhedral amphibole crystals. JaK-39 is unusually dark in color compared to a typical MV.

27

2.3 Procedures

The ten rock samples were analyzed for major and trace elements with EMPA and LA-ICP-MS. Hyperspectral scanning was used to help identify minerals and possible differences in mineral composition. Each analyzed mineral grain was shot twice with EMPA and once with LA-ICP-MS.

2.3.1 Hyperspectral imaging

Hyperspectral imaging is a relatively new method used in geological appliances. Hyperspectral imaging analyzes electromagnetic spectral signatures that are unique for most minerals in order differentiate them from each other and identify them. Hyperspectral imaging was used to identify and compare drill core sample mineralogy to that identified by conventional thin section microscopy. SWIR spectral range was used for mineral identification. The analysis was conducted by Terracore. Hyperspectral data was collected on a sisuCHEMA instrument at SpecIm in Oulu, using a SWIR camera with 384 spectral pixels for a spatial resolution of ~200µm. The camera used 288 spectral bands sampling at 5-6nm and with an effective resolution of ~10nm. Data was calibrated to reflectance using white reference and dark current measurements taken with each sample. Data processing involved endmember selection and generation of unsupervised classifications using self- organising maps (SOMs). These were run independently for each borehole. The SOMs were then interpreted to produce mineral maps. Interpretation was done in such a manner as to try to be consistent across all three holes. In addition, information about major spectral absorption features (depth and wavelength) were extracted.

2.2.2 EMPA

Major element analysis for biotite and chlorite (Figs. 11 and 12) was conducted with JEOL JXA-8600 Superprobe equipped with SAMx hardware and XMAs analytical software. A sanidine external standard was used for biotite measurements, and a biotite external standard was used for chlorite. 28

Both minerals were analyzed for the following elements: Si, Ti, Al, Cr, Fe, Mn, Mg, Ca, Na, K, Ba, F and Cl. The Analysis was carried out using a defocused 10 μm beam with a peak time of 40s and a beam current of 15 nA as well as an acceleration voltage of 15 kV. Data reduction was done by using the ‘PAP’ ϕ (ρZ) method (Pouchou & Pichoir 1985).

2.2.3 LA-ICP-MS

Analysis of trace element concentrations in biotite and chlorite was performed with a Coherent GeoLas MV 193 nm laser-ablation system coupled to an Agilent 7900s ICP mass spectrometer. The thin sections used in the trace element analysis of biotite and chlorite mineral grains by LA-ICP-MS were previously analyzed by EMPA. Mineral grains were generally analyzed with a spot size of 60 μm, however for some smaller biotite grains a spot size of 44 μm was used. A 10 Hz laser repetition rate was used for the analysis. A laser energy density of 4 J/cm2 was used for both biotite and chlorite. The flow rates of Ar plasma gas, He carrier gas and Ar auxiliary gas were set to 15 L/min, 1.0 L/min and 0.85 L/min, respectively. For both biotite and chlorite, the following elemental masses were included in the analysis: 7Li, 11B, 23Na, 24Mg, 27Al, 29Si, 31P, 34S, 35Cl, 39K, 43Ca, 44Ca, 45Sc, 49Ti, 55Mn, 57Fe, 59Co, 62Ni, 63Cu, 66Zn, 69Ga, 75As, 81Br, 85Rb, 88Sr, 90Zr, 95Mo, 107Ag, 111Cd, 118Sn, 121Sb, 125Te, 133Cs, 137Ba, 182W, 197Au, 205Tl, 208Pb, 209Bi and 238U. The reference material GSE1G was used to bracket sample analysis and as external standard. Sca17, a scapolite mineral, was used as an external standard to accurately measure chlorine and bromine concentrations. Accuracy was monitored on a daily basis using NIST-612 as an unknown sample, which showed that the long-term accuracy for most elements analyzed is better than 5%. Data reduction followed procedures outlined in Heinrich et al. (2003) and was carried out with the SILLS software package (Guillong et al., 2008). Al concentrations from EMPA data were used as an internal standard for biotite analysis. For chlorite, Si concentrations from EMPA data were used.

29

3. RESULTS AND DISCUSSION

Results of the study are divided in three parts by analysis methods used, and further divided in EMPA and LA-ICP-MS by mineral. A total of 88 biotite 32 chlorite minerals were analyzed after data reduction. All of the ten samples contained biotite and four samples contained chlorite. Data quality and comparison is discussed in the Discussion section of this thesis. Results are discussed briefly with visualizing graphs and later in section 3.3 by mineral.

3.1 Hyperspectral imaging

Hyperspectral data is presented as carried out by Terracore. Different mineral map colorations were used for each drill core for ease of visualization, therefore the same color does not necessarily correspond to the same mineral for images of a different drill core. Hyperspectral scan images are all made by Terracore, some small visualization editing was done later.

Samples from the drill core T-1010 (Fig. 15) contain at least three types of amphibole, two types of biotite, chlorite, muscovite and quartz. According to the hyperspectral results, JaK-3 contains chlorite, biotite, phlogopite and small amounts of actinolite and muscovite. The identification of chlorite is completely contrary to what is actually seen in thin section, where no chlorite whatsoever is present. JaK-3 displays a very clear foliation and texture. Chlorite and biotites seem to be the main minerals. JaK-5 and Jak-6 have a very similar mineralogy with each other. Both contain large amounts of quartz and calcite along with noticeable amounts of muscovite. Chlorite and biotite minerals are also present in abundance. Large grain size is visible in both samples along with a cutting quartz-calcite vein. JaK- 10 seems to consist mainly of biotite with some more mafic minerals chlorite and amphiboles. A sheet-like texture displays itself well in the scan image.

The three samples from drill core T-1017 (Fig. 16) contain fewer mineral species compared to samples of T-1010. Two types of biotite and amphibole minerals are the most abundant minerals in these samples. Some muscovite is presentin JaK-19. Rock texture is FP-like in JaK-19. The sample 30 is a bit patchy with its distribution of amphibole minerals. JaK-20 shows a rather weak sheet-like texture for an AT. Biotite is the main mineral identified by hyperspectral scanning. JaK-23 seems to consist almost entirely of amphibole minerals tremolite and actinolite. A weak sheet-like texture is still visible.

Figure 15. Hyperspectral scan of samples from drill core T-1010 as carried out by Terracore. From left to right: samples JaK-3, JaK-5, JaK-6 and JaK-10. 31

Figure 16. Samples from T-1017 in a hyperspectral scan image as carried out by Terracore. From left to right: Samples JaK-19, JaK-20 and JaK-23. Note the difference in color map compared to that of T-1010. All three samples of T-1034 have a very similar mineralogy (Fig. 17). Actinolite is the most common mineral along with an “Fe-amphibole” and biotite. Other minerals include calcite, tourmaline, tremolite, muscovite and phlogopite. JaK-37 and JaK-39 were classified as MV/AT rocks, whereas JaK-38 represents a “pure” MV. This is reflected really nicely in the hyperspectral images as well with a transitional change in mineralogy in JaK-37 and JaK-39 closer to that of JaK-38. 32

Figure 17. Hyperspectral scans of drill core T-1034 as carried out by Terracore. From left to right, samples JaK-37, JaK- 38 and JaK-39. The color map of this image is also different from that of the other two drill cores. The presence of MV is clear with an abundance of amphibole minerals.

33

3.2 EMPA

Results of the EMPA are divided by mineral into biotite and chlorite tables. Two measurements of each mineral grain was performed where possible, however few grains may have only a single measurement. Average elemental compositions of mineral grains of a given sample are presented in the results section of this study. Full tables of the EMPA data are included in the Appendix (Appendix 1).

3.2.1 Biotite

All ten samples contained biotite. FeO and MgO concentrations show the clearest differences between samples (Tab. 4). Most of the biotite grains measured were small in size and often contained mineral or fluid inclusions. FeO contents vary from ~10 wt % to ~22 wt %, while MgO contents are between ~10 and ~20 wt. Fig. 18 shows biotite grains in a BSE image.

Figure 18. Typical biotite mineral grains as seen in JEOL JXA-8600 in a BSE image. (A) shows a cluster of typical inclusion- rich biotites in sample JaK-19. (B) A biotite grain in sample JaK-20. Note the mineral inclusion within biotite and an adjacent sulfide mineral to the right of the biotite grain. 34

Table 4. Average chemical compositions of biotite in the ten samples. Oxide data is in wt.%. There are clear differences in FeO and MgO concentrations between the samples. Cations calculated as atomic proportions in the mineral formula (on the basis of 22 oxygens). Iron concentrations assumed no ferric iron was present.

Sample JaK-3 JaK-5 JaK-6 JaK-10 JaK-19 JaK-20 JaK-23 JaK-37 JaK-38 JaK-39 SiO2 35.77 36.37 35.78 36.42 35.59 35.01 40.47 34.97 35.59 35.72 TiO2 1.44 2.18 1.74 1.23 1.91 2.81 0.83 1.79 1.45 1.68 Al2O3 16.13 14.79 14.87 13.51 14.79 14.84 12.54 17.00 17.51 16.95 FeO 17.99 20.99 21.69 12.33 20.44 20.52 10.13 18.16 14.40 16.43 MnO 0.21 0.17 0.24 0.11 0.35 0.27 0.05 0.24 0.14 0.19 MgO 12.18 10.23 9.95 19.17 11.00 10.29 19.93 11.44 14.20 12.60 CaO 0.03 0.05 0.04 0.03 0.58 0.03 0.12 0.04 0.05 0.05 Na2O 0.07 0.07 0.06 0.16 0.06 0.18 0.11 0.12 0.11 0.16 K2O 9.77 9.72 9.31 10.49 10.44 10.32 9.56 9.52 9.78 9.47 F 0.28 1.55 1.41 0.65 1.34 0.95 0.62 0.21 0.16 0.20 Cl 0.02 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.02 H2O 3.73 3.11 3.14 3.63 3.21 3.36 3.76 3.75 3.85 3.80 O=F 0.12 0.66 0.59 0.27 0.56 0.40 0.26 0.09 0.07 0.08 O=Cl 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.01 Total 97.50 98.59 97.65 97.44 99.15 98.20 97.87 97.15 97.17 97.17 Si 5.54 5.66 5.63 5.54 5.54 5.50 5.98 5.44 5.44 5.50 Ti 0.17 0.26 0.21 0.14 0.22 0.33 0.09 0.21 0.17 0.19 Al (IV) 2.46 2.34 2.37 2.39 2.46 2.50 2.02 2.56 2.56 2.50 Al (VI) 0.49 0.37 0.39 0.03 0.25 0.25 0.16 0.56 0.59 0.58 Fe 2.33 2.73 2.86 1.57 2.66 2.70 1.25 2.36 1.84 2.12 Mn 0.03 0.02 0.03 0.01 0.05 0.04 0.01 0.03 0.02 0.03 Mg 2.82 2.37 2.34 4.36 2.55 2.42 4.39 2.65 3.23 2.89 Ca 0.00 0.01 0.01 0.00 0.10 0.01 0.02 0.01 0.01 0.01 Na 0.02 0.02 0.02 0.05 0.02 0.05 0.03 0.04 0.03 0.05 K 1.93 1.93 1.87 2.04 2.07 2.07 1.80 1.89 1.91 1.86 F 0.14 0.77 0.70 0.31 0.66 0.47 0.29 0.10 0.07 0.10 Cl 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 Sum cations 15.93 16.48 16.42 16.46 16.60 16.34 16.04 15.86 15.87 15.82

3.2.2 Chlorite

Only four of the ten samples, JaK-5, JaK-6, JaK-10 and JaK-23 contained chlorite. A total of 32 chlorite grains were included in the analysis after data reduction (Tab. 5). Overall, the quality of chlorite probe data is slightly lower than that of biotite data, with greater variation in total oxide wt %s, better seen in Appendix 1. Chlorite grains in general were slightly cleaner than biotite grains, however many of them showed a typical wavy or fan-like pattern and were often quite damaged (Fig. 19). 35

Figure 19. Two chlorite grains from sample JaK-5. (A) shows a rather damaged and rounded smaller chlorite grain. (B) shows a closeup of a much larger chlorite grain and displays the typical fan-like pattern which is visible in thin section as a two-colored pleochroic mosaic.

Table 5. Average chlorite EMPA data from the four samples containing chlorite. Oxide data is in wt.%, trace element data is in µg/g. Note the differences in wt %s of FeO and MgO. Cations calculated as atomic proportions in the mineral formula (on the basis of 28 oxygens).

Sample JaK-5 JaK-6 JaK-10 JaK-23 SiO2 26.02 25.90 26.52 30.38 TiO2 0.06 0.05 0.06 0.04 Al2O3 17.54 17.41 18.59 17.73 FeO 28.22 29.64 14.66 11.65 MnO 0.44 0.45 0.18 0.13 MgO 14.52 13.40 25.50 26.52 CaO 0.02 0.04 0.03 0.08 Na2O 0.02 0.01 0.01 0.01 K2O 0.01 0.02 0.05 0.11 H2O 11.03 10.95 11.69 12.14 Total 97.89 97.88 97.30 98.79 Si 5.65 5.67 5.44 6.00 Ti 0.01 0.01 0.01 0.01 Al (IV) 2.35 2.33 2.56 2.00 Al (VI) 2.15 2.16 1.93 2.13 Fe 5.13 5.43 2.52 1.93 Mn 0.08 0.08 0.03 0.02 Mg 4.70 4.37 7.80 7.81 Ca 0.01 0.01 0.01 0.02 Na 0.01 0.01 0.00 0.00 K 0.00 0.01 0.01 0.03 Sum cations 20.09 20.08 20.31 19.94

36

3.3 LA-ICP-MS

As with EMPA data, the analyses are divided by mineral into biotite and chlorite data. Mineral grains were each measured once with LA-ICP-MS. Average elemental compositions of minerals by sample are included in the results section, and a full analysis table is included in the Appendix (Appendix 2).

3.3.1 Biotite

Clear differences in elemental composition of biotite between samples can be seen in the biotite data (Tab. 6). As with EMPA data, Fe and Mg concentrations differ noticeably between different samples. Several measured elements had values below limits of detection, and have been marked as such in the data table.

37

Table 6. Sample average major and trace elemental composition data of biotite in µg/g. Values below limits of detection have been marked as LOD.

Sample JaK-3 JaK-5 JaK-6 JaK-10 JaK-19 JaK-20 JaK-23 JaK-37 JaK-38 JaK-39

Li 225.21 673.80 636.18 238.21 481.36 352.09 199.54 200.53 234.65 217.18

B 0.49 0.64 0.54 1.34 0.64 0.51 14.60 1.93 0.62 2.24

Na 597.01 466.18 348.97 1188.07 395.63 249.64 836.46 926.55 841.98 1312.49

Mg 72551.52 59328.81 56000.95 112773.29 63388.35 61146.84 123265.37 66928.19 83307.09 73697.95

Al 85387.86 78248.88 78494.31 71456.25 77925.39 78527.39 66342.40 89939.21 92662.38 89709.88

Si 171577.25 170304.18 169860.99 190282.66 169686.08 168152.59 193736.93 168857.87 175696.92 173194.75

P 16.59 LOD LOD 18.69 134.64 13.54 30.53 36.12 LOD 81.89

Cl 938.73 839.92 839.17 907.35 847.61 854.11 866.52 927.80 814.36 838.79

K 83121.52 81363.19 82655.63 84354.99 80053.06 79849.97 78644.40 79047.47 82010.91 79541.89

43-Ca 370.88 186.34 LOD 121.20 LOD 83.03 109.34 83.01 LOD 171.88

44-Ca LOD 120.04 35.02 64.45 93.00 52.25 92.29 58.78 76.81 67.46

Sc 35.99 3.98 3.08 3.51 14.94 41.75 46.20 5.11 4.33 4.61

Ti 9069.28 13859.98 12719.93 7528.25 10695.80 16077.54 6024.20 10873.04 8561.27 10250.35

Mn 1645.69 1259.09 1813.66 846.99 2412.91 2140.27 588.57 1811.65 1149.86 1398.98

Fe 149403.92 164570.40 170191.91 96770.16 147690.65 162272.23 79933.78 144724.62 114419.38 129912.41

Co 68.77 6.90 5.21 84.43 2.67 90.73 42.54 28.78 41.18 21.79

Ni 185.80 166.19 115.45 1041.37 156.08 121.55 1008.05 50.97 296.59 314.30

Cu 0.18 0.18 0.22 0.20 0.22 0.49 0.49 0.38 0.09 0.09

Zn 230.83 722.53 729.13 238.66 858.73 504.30 155.30 254.88 195.75 180.23

Ga 50.87 60.01 59.86 102.24 74.41 117.33 51.16 40.92 45.57 42.22

As 0.44 0.40 0.79 0.32 0.36 0.35 0.43 0.33 0.30 LOD

Br 13.44 13.83 15.46 16.76 14.18 13.51 15.37 14.49 13.63 14.16

Rb 407.41 672.15 616.84 419.51 515.01 394.61 351.33 498.58 404.05 347.93

Sr 1.23 2.98 2.96 1.61 2.88 7.72 0.66 0.82 0.49 0.62

Zr 7.42 1.03 0.57 0.11 54.17 76.70 1.24 10.18 7.26 23.07

Mo 0.04 0.05 0.08 0.03 0.09 0.10 LOD 0.06 0.07 0.06

Ag LOD LOD LOD LOD LOD 0.08 LOD LOD LOD LOD

Cd LOD 0.83 LOD LOD LOD LOD LOD LOD LOD LOD

Sn 0.45 2.50 1.36 0.86 3.15 2.19 0.57 0.10 0.12 0.17

Sb 0.84 3.40 2.55 0.40 3.61 3.53 0.40 0.15 0.14 0.18

Cs 41.13 53.21 25.64 133.00 27.37 36.50 97.37 36.97 39.32 43.53

Ba 1125.98 367.19 692.00 2221.95 323.30 1768.58 1041.39 695.87 530.62 598.59

W 0.73 0.68 1.23 0.23 1.13 0.94 0.16 0.60 0.41 0.51

Au LOD LOD LOD LOD LOD LOD LOD 0.01 LOD LOD

Tl 4.17 7.78 6.10 4.36 4.22 3.09 3.70 3.91 2.71 2.30

Pb 2.48 3.08 4.28 2.75 4.56 6.02 0.45 1.00 0.82 1.25

Bi LOD LOD LOD LOD LOD 0.07 LOD LOD 0.01 LOD

U LOD 0.02 0.10 0.03 0.50 1.59 0.04 0.03 0.02 0.01

38

3.3.2 Chlorite

Compared to biotite data, chlorite data only has Ag, Cd and Sb concentrations below limits of detection (Tab. 7). Several elements show clear differences in elemental composition.

Table 7. LA-ICP-MS chlorite elemental compositions by sample. Values are in µg/g, values below limits of detection are marked as LOD.

Sample JaK-5 JaK-6 JaK-10 JaK-23 Li 164.47 137.04 101.54 116.17 B 1.13 1.45 1.24 4.87 Na 27.27 27.28 18.33 19.83 Mg 80039.11 73668.12 132035.27 163256.26 Al 86672.30 84306.29 85469.63 97840.23 Si 121486.48 121073.56 123948.47 141852.40 P 22.18 15.01 19.72 40.34 Cl 604.29 572.95 640.98 699.36 K 41.43 225.52 353.34 710.75 43-Ca 295.58 205.10 128.03 328.20 44-Ca 108.73 75.51 66.91 277.79 Sc 4.19 3.50 2.45 35.30 Ti 124.08 126.02 308.26 289.87 Mn 3321.48 3612.49 1211.33 1014.97 Fe 209659.33 218867.75 100173.95 96241.91 Co 6.57 1.57 86.70 50.49 Ni 319.35 154.97 1162.19 1201.11 Cu 0.15 0.62 0.20 0.56 Zn 999.21 1059.50 270.52 199.77 Ga 134.39 147.40 39.93 27.82 As 9.61 24.13 0.30 0.31 Br 11.44 9.64 12.65 13.40 Rb 0.35 2.01 2.69 5.01 Sr 2.79 2.13 0.53 1.62 Zr 1.94 0.33 5.82 0.89 Mo 0.12 0.12 0.05 0.05 Ag LOD LOD LOD LOD Cd LOD LOD 0.58 4.02 Sn 0.03 0.04 0.06 0.06 Sb 0.28 0.76 0.15 LOD Cs 0.99 1.15 2.87 4.12 Ba 0.30 1.21 6.06 6.55 W 0.02 0.02 0.02 0.02 Au LOD LOD LOD LOD Tl 0.04 0.05 0.12 0.06 Pb 0.49 2.67 0.09 0.03 Bi LOD LOD LOD LOD U 0.06 0.75 0.20 0.02

39

3.4 Observations

3.4.1 Biotite

Hyperspectral, EMPA and LA-ICP-MS data all distinguish Fe- and Mg-rich biotite species among the ten samples. The highest Fe concentrations according to both EMPA and LA-ICP-MS data are found in samples JaK-5, JaK-6, JaK-19, Jak-20 and JaK-37, which are FP/QV, AT and MV/AT rock types. The highest Mg concentrations are found in samples JaK-10 and JaK-23, a BTS/SK and an AT rock type. Hyperspectral data seems to correlate rather poorly with Fe/Mg ratios of biotites. Hyperspectral data identifies JaK-6 as having especially much phlogopite, an Mg-mica, however no phlogopite was identified from the sample.

Biotite endmembers or biotite Fe/Mg ratio correlate somewhat poorly with distance to mineralization, and do not seem to be directly linked to a mineralization event (Fig. 20). Fe and Mg data correlation by EMPA apfu data are further shown separately in Fig. 21.

Biotite Mg# (Mg/(Mg+Fe) and Al contents were plotted in Fig. 22 to visualized where the biotite grains in samples are located in terms of biotite endmembers. None of the biotites are very Al-rich, with most of them being somewhere between annitic and phlogopitic in composition. 40

Figure 20. A slight negative correlation between biotite Fe/Mg ratio and distance to mineralization can be seen in LA-ICP- MS data. Distance is in meters. Fe/Mg ratio slightly decreases as distance to mineralization increases in AT and MV/AT. MV/AT ratios settle well between MV and AT ratios of Fe and Mg.

Figure 21. EMPA Fe vs Mg contents of biotite by rock type and sample in apfu. All of the samples have easily distinguishable ratios of Mg and Fe, and most samples contain biotites that are close to each other in elemental compositions of Fe and Mg.

41

Figure 22. Samples plotted by Mg# (Mg/(Mg+Fe) and Al contents using LA-ICP-MS data. Sample biotites are clearly between annites or , no Al-rich grains were analyzed. Biotite endmembers annite, siderophyllite, phlogopite and eastonite are situated in the four corners of the graph, however they do not represent absolute required values for an endmember to be labeled as such.

Clear elemental variance occurs for several elements both between all rock types and between ore rock types and barren rock types. However, as shown in Fig. 4, much of the ore rock types are often partially or even largely barren of gold ore mineralization. Surveying of elemental variation was therefore focused on correlation between distance to ore mineralization and elemental composition. All the measured elements were grouped by correlation with distance to mineralization. Acquired data was poor, nonexistent or missing for the elements S, Te, Cd, Ag and Bi. No correlation with distance to mineralization was found for the elements Li, B, Na, Si, P, Cl K, Ca, Sc, Co, Ni, Cu, Ga, As, Br, Rb, Zr, Mo, Sn and Sb. Weak correlation was found for the elements Mg, Al, Ti, Fe, Zn, Sr and Cs. Moderate correlation was found for Pb and Tl and a strong correlation for Mn, W and Ba. Where Zr in enriched in a biotite grain, it is likely that a zircon inclusion was measured when analyzing the mineral grain with LA-ICP-MS, and the grain is considered to be of low quality data.

Au contents were only measured from one biotite grain as expected. This one grain is likely a sulfide inclusion that contains Au.

Fluorine, measured by EMPA (Fig. 23), does not show a clear correlation with mineralization. Contents of F are the highest in FP/QV and lowest in MV, with AT and MV/AT somewhere in 42 between. F concentrations in BTS/SK are close to those of AT rocks, which is a typical phenomenon in most of the elements analyzed in both EMPA and LA-ICP-MS.

Figure 23. Fluorine contents in wt % as measured by EMPA. Only a very weak correlation can be seen in AT, MV/AT and MV with a slight decrease of F concentration with distance.

Fusswinkel et al. (2017) found out that fluid inclusions within Pampalo rocks contain an abnormal Cl/Br molar ratio. In biotites of the Pampalo deposit however, this trend does not seem to be visible (Fig. 24), in that biotites closer to mineralization (and thus probable fluid activity) are not particularly different from those of unmineralized and further lying rocks. 43

Figure 24. Cl/Br molar ratios in the Pampalo rock samples. No clear correlation with distance to mineralization can be seen in biotites. LA-ICP-MS data.

Of the weakly correlating elements Mg, Al, Ti, Fe, Zn, Sr, and Cs, Mg, Al, Ti and Fe have been previously listed as immobile elements in the hydrothermal events in Pampalo by Bornhorst and Rasilainen (1993). Their graphs in relation to distance to mineralization is shown in Fig. 25. Weak correlation with immobile elements does not point towards a genuine connection with a mineralization event. Data for Mg, Al, Ti and Fe are likely rather explained by inherently different elemental composition differences between rock types. Sr and Cs all show a very weak correlation, with Sr showing a positive and Cs showing a negative correlation with distance to mineralization. 44

Figure 25. Graphs of the weakly correlating elements according to LA-ICP-MS data. From left to right and top to bottom: Mg, Al, Fe, Zn, Sr and Cs. Concentrations are in µg/g.

Pb and Tl concentrations (Fig. 26) are moderately connected to mineralization distance. They show opposing trends with increasing distance to mineralization in that Pb content decreases in AT closer to mineralization, and increases in MV/AT, when the opposite is true for Tl. Pb trends could perhaps be explained by incorporation of Pb into sulfide minerals in AT rocks as sulfides are common in both ore rock types AT and FP/QV. However, FP/QV samples contain rather high concentrations of Pb in biotites. Unfortunately FP/QV samples are all very close to each other and do not show much of a 45 trend in either direction. Tl concentrations, showing a contrary behavior to those of Pb, increase in AT and decrease in MV/AT closer to mineralization. Tl concentrations are likewise somewhat strange, with one MV/AT sample having lower concentrations of Tl than MV. Overall, changes in concentration of Pb and Tl in biotites of Pampalo deposit rocks do not seem to show any conclusive results.

Figure 26. Trace element concentrations of Pb (top graph) and Tl (bottom graph) in biotites as analyzed by LA-ICP-MS. Concentrations are in µg/g.

46

Quite interestingly, W contents of biotite increase with increasing distance to mineralization (Fig. 27). Scheelite is an important mineral of tungsten, and scheelite has been previously observed in orogenic gold deposits along with elevated gold concentrations in Pampalo and other orogenic gold deposits (MacKenzie et al. 2016). However, MacKenzie et al. (2016) interpreted that although W originates from the same fluids as Au in the Macraes Mine, New Zealand, it only weakly correlates with elevated gold concentrations, precipititating into scheelite in different structural settings. Bornhorst and Rasilainen (1993) also state that scheelite is an early formed ore related mineral within Pampalo that precipitated before precipitation of Au. Thus it could be interpreted that the changes in concentration of W within biotites in Pampalo is likely is related to fluid flow events, but not necessarily directly to mineralization with elevated gold concentrations.

Figure 27. W contents decrease with decreasing distance to mineralization. Note how MV/AT concentrations of W lie between main AT and MV concentrations, and display the same behavior as AT does with increasing distance. This behavior is common for all moderately and strongly correlating elements in biotite. Concentrations are in µg/g.

47

Along with W, Mn and Ba show the strongest correlation with distance to mineralization. Mn has been interpreted as an immobile element within Pampalo (Bornhorst and Rasilainen, 1993), and changes in Mn concentrations thus could be simply an inherent characteristic of individual rock types rather than Mn being transported with fluids or related to mineralization. FP/QV has notably relatively high Mn contents (Fig. 28). Interestingly, Mn and W correlate rather well with each other as well in AT, MV/AT and MV rocks.

Figure 28. Mn Concentrations of biotite grains analyzed by LA-ICP-MS. Concentrations are in µg/g.

Barium seems to be the most promising element for correlation with mineralization (Fig. 29). It is reported to be a common trace element in biotite (Fleet et al. 2003), and has been interpreted as a mobile element in other orogenic gold deposits (Aliyari et al. 2014). Ba concentrations are depleted closer to mineralization, which could indicate a mineralization event that has affected Ba concentrations of biotite. 48

Figure 29. Ba concentrations vs distance to mineralization in biotite. Ba contents are depleted closer to mineralized zones. Note that AT sample JaK-23 has very similar concentrations of Ba to other AT samples at around 1000 µg/g, contrary to what can be seen with most other elements. Concentrations are in µg/g.

3.4.2 Chlorite

Due to the low amount of chlorite found within the samples, little can be interpreted from the data in terms of correlation with mineralization. However, a few elements portray certain trends that could indicate changes in concentration towards mineralization.

The chlorite data was poor or missing for the elements S, Te, Cd, Ag and Bi, the same elements as biotite. The elements Na, Cl, K, Ca, Cu, Br, Rb, Zr, Sn, Sb, Cs, Ba, W, Tl, Pb and U showed no correlation with distance to mineralization. Weakly correlating compositions were found for the elements Li, B, Mg, Al, Si, P, Sc, Ti, Mn, Fe, Ni, Zn, Ga, As and Sr. Co correlated moderately with distance to mineralization. 49

The Cl/Br molar ratio does not seem to correlate well in chlorites. In all the chlorite samples, Cl/Br ratio seems to be rather constant, with FP/QV showing larger variance (Fig. 30).

Figure 30. Cl/Br molar ratios in chlorites analyzed by LA-ICP-MS. No clear changes in ratio are observed with changes of distance or rock type. Arsenic concentrations (Fig. 31) are much more clearly elevated in chlorites compared to biotites, as would be expected towards mineralization, where it often appears with gold in sulfides (Bornhorst and Rasilainen, 1993). BTS/SK and AT seem to have next to no As however, which might indicate that As is enriched in smaller veins, or generally where occurrences of smaller scale vein metasomatism are more common. Arsenic concentrations in FP/QV are rather widespread. JaK-5 and JaK-6, the FP/QV rocks that contained chlorite, show the most clear cases of metasomatism, where chlorites in particular are very large, angular and seemingly recrystallized. Chlorite appears together with K-feldspar, quartz and muscovite. 50

Figure 31. Arsenic concentrations of chlorite grains as analyzed by EMPA. Only in FP/QV are As concentrations elevated. Concentrations are in µg/g. Interestingly, chlorites in the same sample have rather differing As concentrations in FP/QVs (samples JaK-5 and JaK-6). Zn concentrations are likewise the highest in FP/QV, however AT oddly contains the lowest concentrations. Mo and Ga display a similar behavior, however Mo has much greater variance of concentration in FP/QV (Fig. 32). 51

Figure 32. Concentrations of Zn, Ga and Mo plotted by rock type and distance to mineralization. Zn and Ga on the top, Mo on the bottom. Concentrations are in µg/g.

52

Co concentrations in chlorite are lower closer to mineralization (Fig. 33), however only JaK-23 represents chlorite data for AT type rocks. As observed in the biotite data and thin section microscopy, JaK-23 does not represent a typical AT rock in elemental composition, and thus it should not be considered as such.

Figure 33. Co concentrations in chlorites of the four chlorite-bearing samples. Co shows the best correlation with distance to mineralization of all elements analyzed from chlorites. Concentrations are in µg/g.

The common replacement of Mg with Li, Al, Mn, Fe, Zn or Ni shows very similar elemental ratios in relation to rock types for Mg/Mn, Mg/Fe and Mg/Zn (Fig. 34). Mg/Li, Mg/Al and Mg/Ni ratios are very different from the rest and each other. 53

Figure 34. Ratios of Mg/Mn, Mg/Fe and Mg/Zn show very similar trends compared to rock type. 54

Unlike with biotites, chlorites do not show good results with Mn, W or Ba concentrations. Mn correlates weakly, but W and Ba data is very poor in chlorites and they show no correlation with distance to mineralization.

3.4 Rock types

All rock types analyzed show distinguishing elemental compositions for most elements in both biotites and chlorites. BTS/SK and FP/QV rocks typically represent two different ends for a given element, being enriched in one and depleted in the other. MV is often closer to BTS/SK in elemental compositions and AT closer to FP/QVs. FP/QV has a rather broad elemental range in its three different samples, however there are typically no large gaps in elemental composition between FP/QVs. For biotites, focus was on ATs, MV and MV/AT, where a clear difference in distance to mineralization, a contrast between elemental compositions of MV and AT and especially a representation of mixtures of both rock types in two samples can be seen. Unfortunately, chlorite was found only in FP/QV, BTS/SK and one AT, sample JaK-23.

As can be seen for many other elements, one sample of AT yields rather different elemental concentrations compared to the two other AT samples. This sample JaK-23 is very different from the other AT units with its mineralogy and color as can be seen in the samples thin section (Fig. 11). Thus the sample’s differing elemental composition can be explained by a mistake in its rock type classification, and it likely represents a differently altered rock, possibly even of a different origin. The dark greenish color and the sample’s mineralogy points somewhat towards a skarn or perhaps a chlorite schist unit, or a mixture of AT and either of the aforementioned rock types. Color changes of biotite somewhat well correlate with distance to mineralization, as is most likely a result of changes in biotite composition due to leaching of certain elements. As a final note, a bulk rock analysis of each rock type would have helped distinguish typical elemental variation between different rock types in biotites and chlorites as well.

55

3.5 Trace elemental trends in biotites and chlorites

Correlation with distance to mineralization regarding concentrations of elements such as Li, Mn, Fe, Co and Zn may rather be related to felsic host rock elemental inventory than being signs of ore mineralization events. FP/QV type rock samples represent these felsic rocks. They are thus not necessarily very reliable indicators of ore-related changes in elemental concentrations within biotites and chlorites.

Barium contents deplete in biotites closer to zones of mineralization. Changes in barium concentration within biotite are also reflected rather well in different fluid types from Pampalo researched by Fusswinkel et al. (2017). Fluid type A from the publication of Fusswinkel et al. is the lowest in regards of Ba concentration, and represents an ore fluid. Fluid type B, which is higher in Ba concentration, represents an ore fluid that has reacted with wall rock. Fluid type A could have thus leached Ba from biotites within the wall rock, later resulting in fluid type B. Sr concentrations also behave similar to Ba, and fit with leaching Sr by fluid type A and being enriched in fluid type B, only not being as clear in correlation with distance to mineralization as Ba concentrations.

W is likewise depleted closer to zones of mineralization, and could display a similar behavior when W in biotite grains came in contact with fluids A and B. Tungsten could have been leached from biotites of the country rock by fluid type A. Fluid type B however does not have elevated W concentrations, which could be a result of scheelite precipitation, a mineral which is very common in ore mineralized rocks in Pampalo.

Changes in arsenic concentrations within chlorite grains seem rather interesting in that Fig. 32 shows a rather broad range of As concentrations even within a single sample. Both JaK-5 and JaK-6 contain two clearly different looking types of chlorite, one of which is likely a product of biotite alteration (Fig. 6). Arsenic concentrations in sample JaK-5, for example, are highest in those chlorite grains that seem to be alteration products of biotite. Fusswinkel et al. (2017) states that all ore fluid types in the Pampalo deposit have elevated As concentrations. This could perhaps indicate that chlorites formed within veins, which are likely products of fluid flow, are clearly more depleted in As than those chlorites that are products of biotite alteration. Arsenic would likely have been incorporated into sulfides where ore-bearing fluids have precipitated into Pampalo rocks and thus this depletion of As in chlorite could reflect fluid events within Pampalo rocks. 56

Molar Cl/Br ratios do not seem to correlate with distance to mineralization in biotites or chlorites. Fusswinkel et al. (2017) reported anomalous molar ratios of Cl/Br in fluid types from Pampalo. Fig. 35 plots Br concentrations with K concentrations, since it is possible K concentrations could interfere with measured Br in LA-ICP-MS measurements. No clear interference was observed, however. From figures 24 and 30 it can be seen that chlorite molar Cl/Br ratios are lower than those of biotites. It is possible that changes in molar Cl/Br ratios are seen in Pampalo rocks and fluids in larger scales only, and it is not visible in biotite or chlorite crystals on a scale of some few meters. This is probably due to the high mobility of Br in fluids. Fig. 36 plots molar average Cl/Br ratios of biotite and chlorite, as well as that of seawater according to Alcala and Custodio (2008) and fluid types measured by Fusswinkel et al. (2017). Even though Cl/Br ratios do not correlate well within biotites or chlorites of Pampalo rocks with distance to mineralization, they still display low ratios relatively close to those of the Pampalo ore fluids.

Figure 35. Correlation of K and Br within biotite grains. No clear correlation can be seen, therefore it seems K does not interfere strongly with Br data. 57

Average Cl/Br ratio 700

600

500

400

300

200

100

0 Biotite Chlorite Fluid A Fluid B Seawater

Figure 36. Average Cl/Br ratios of biotites and chlorites from Pampalo, and fluid types A and B as measured by Fusswinkel et al. (2017). Average seawater Cl/Br ratio as according to Alcala and Custodio (2008). Measure molar ratios of Cl/Br are much closer to those measured by Fusswinkel et al. (2017) from fluid types A and B rather than that of seawater, for example.

All in all, biotites and chlorites show clear trends for changes in concentrations of several elements, even with a such a small amount of samples for chlorite minerals.

58

4. CONCLUSIONS

Overall, hyperspectral data seems to be rather inaccurate in many samples. JaK-3 clearly shows a completely incorrect identification of chlorite, and common minerals such as quartz and calcite are absent in many samples according to hyperspectral imaging. Thus data from hyperspectral imaging should be carefully estimated, and rather used only as a directional tool to give a general idea of which minerals could be present in the rock. Tailoring of hyperspectral analysis for a specific project and specific minerals seems very important, as it does not seem to work well for an initial identification of mineral species within a rock.

EMPA and LA-ICP-MS data worked well together, and supported trends in each method’s data. LA- ICP-MS trace element data turned out to be the most relevant and useful for correlation with mineralization and identification of biotite and chlorite compositions, with EMPA data supporting it. Biotite, with an abundance of available samples, ended up being the focus of this study. For possible future studies, chlorite should be carefully looked for in the samples, however it seems that especially typical AT rocks seem very barren of chlorite.

Several elements showed a weak correlation with distance to mineralization in both biotite and chlorite. A moderate correlation was found for Pb and Tl in biotites, and Co in chlorites, and a strong correlation was found for Mn, W and Ba in biotites. Of all of these elements, Ba seems to be the most promising in regards to use of biotite as a proxy for gold ore mineralization in Pampalo. Mn could simply reflect changes in host rock elemental composition, while W could be a relatively useful elemental indicator of ore mineralization, considering that scheelite is present in some of the ore rocks in Pampalo. Arsenic concentrations in chlorite correlated weakly, however As concentrations in FP/QV type rocks were rather widespread. Differences in arsenic concentration of chlorites within a single sample points to a sign of the presence of an ore mineralization event and two types of chlorite.

Overall, the results of this study appear promising in considering further in-depth studying of biotites of Pampalo rocks. A more thorough study with a much larger collection and much more careful choosing of samples regarding chlorite could provide further insight on the relationship between chemical composition of chlorite and mineralization of gold ores in Pampalo, and a possible use for pinpointing sites of Au-mineralized rocks. 59

5. ACKNOWLEDGEMENTS

I would like to give special thanks Dr. Tobias Fusswinkel for helping with much of the direction, practical and technical help, using LA-ICP-MS and ideas for the thesis, and MSc Tiina Vaittinen for proofreading and support on thesis. I would also like to thank Endomines Oy and especially chief geologist Jani Rautio of Endomines for providing the material for the thesis, Dr. Peter Sorjonen-Ward of GTK and prof. Thomas Wagner for ideas and supervision, and Dr. Michallik Radoslaw for teaching how to use the EMPA. Finally, I would like to thank Juha Vaittinen and Annikki Heikkilä with proofreading and comments on the thesis.

60

6. REFERENCES

Alcala, F. J. and Custodio, E. (2008). Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in spain and portugal. Journal of Hydrology, 359(1-2), 189-207. Aliyari, F., Rastad, E., Goldfarb, R.J. and Sharif, J.A. 2014. Geochemistry of hydrothermal alteration at the Qolgoleh gold deposit, northern Sanandaj-Sirjan metamorphic belt, northwestern Iran: Vectors to high- grade ore bodies. Journal of geochemical exploration, 140, 111–125. Bornhost, T. J. and Rasilainen, K. 1993. Mass transfer during hydrothermal alteration associated with Au mineralization within the late Archean Hattu schist belt, Ilomantsi, eastern Finland. Special Paper, Geological Survey of Finland, 273–290. Deer, W. A., Howie R. A. and Zussman, J. 2009. Rock Forming Minerals: Layered Silicates Excluding and Clay Minerals. Chlorite, Second edition. The Geological Society, London, 81–142. Fleet, M.E., Deer, W. A., Howie R. A. and Zussman, J. 2003. Rock-forming minerals: Micas. Chapter 5: Biotite, Second edition. The Geological Society, London, 325–585. Fusswinkel T., Wagner, T. and Sakellaris, G. 2017. Fluid evolution of the Neoarchean Pampalo orogenic gold deposit (E Finland): Constraints from LA-ICPMS fluid inclusion microanalysis. Chemical Geology, 450, 96–121. Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M., Hagemann, S. G., Robert, F. and Arne, D. C. (1998). Orogenic gold deposits; a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13 (1-5), 7-27. Guillong, M., Meier, D. L., Allan, M.M., Heinrich, A. and Yardley, B.W.D. 2008. SILLS: A MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Miner. Assoc. Can. Short Course. 40. Heinrich, C.A., Pettke, T., Halter, W.E., Aigner-Torres, M., Audetat, A., Günther, D., Hattendorf, B., Bleiner, D., Guillong, M. and Horn, I. 2003. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim. Cosmochim. Acta 67, 3473–3497. Huhma, H., Mänttäri, I., Peltonen, P., Kontinen, A., Halkoaho, T., Hanski, E., et al., 2012. The age of the Archaean greenstone belts in Finland. Geological Survey of Finland, Special Paper 54, 74–175. Kalliomäki, H., Wagner, T., Fusswinkel, T. and Sakellaris, G. 2017. Major and trace element geochemistry of tourmalines from Archean orogenic gold deposits: Proxies for the origin of gold mineralizing fluids?. Ore geology reviews. Kojonen, K. Johanson, B., O’Brien, H. E. and Pakkanen, L. 1993. Mineralogy of gold occurrences in the late Archean Hattu schist belt, Ilomantsi, eastern Finland. Special Paper, Geological Survey of Finland 17, 233– 271. MacKenzie, D., Farmer, L., Moore, J. and Craw, D. 2016. Contrasting coeval paragenesis of gold and scheelite in an orogenic hydrothermal system, Macraes mine, New Zealand. Ore Geology, 450, 96– 121. Nurmi, P. A. 1993. Genetic aspects of mesothermal gold mineralization and implications for exploration in the late archean hattu schist belt, Ilomantsi, eastern Finland. Special Paper - Geological Survey of Finland, 17, 373–386. Selby, D. and Nesbitt, B.E. 2000. Chemical composition of biotite from the Casino porphyry Cu-Au-Mo mineralization, Yukon, Canada: evaluation of magmatic and hydrothermal fluid chemistry. Chemical Geology, 171, 77–93. Sorjonen-ward, P. 1993. An overview of structural evolution and lithic units within and intruding the late Archean Hattu schist belt, Ilomantsi, eastern Finland. Special paper, Geological Survey of Finland, 17, 9– 102. 61

Sorjonen-Ward, P. & Luukkonen, E. 2005. Archean rocks. In: Lehtinen, M., Nurmi, P.A. & Rämö, O.T. (eds.) The Pre-cambrian Geology of Finland − Key to the Evolution of the Fennoscandian Shield. Amsterdam: Elsevier, 19−99. Sorjonen-Ward, P.B. & Hartikainen, A, Nurmi, P., Rasilainen, K., Schaubs, P., Zhang, Y. and Liikanen, J. (2015). Exploration Targeting and Geological Context of Gold Mineralization in the Neoarchean Ilomantsi Greenstone Belt in Eastern Finland. Mineral Deposits of Finland. 435–466. Vaasjoki, M., Sorjonen-Ward, P. and Lavikainen, S. 1993. U-Pb age determinations and sulfide Pb-Pb characteristics from the late Archean Hattu schist belt, Ilomantsi, Eastern Finland. Special paper, Geological survey of Finland, 17, 103-132.

62

7. APPENDICES

The Appendices section contains full tables of EMPA (Appendix 1) and LA-ICP-MS data (Appendix 2). Data is sorted by sample and mineral. Biotite data is presented first and chlorite second.

7.1 Appendix 1

Appendix 1a. Biotite EMPA data for sample JaK-3. Oxides are in wt.%. Cations calculated as atomic proportions in the mineral formula (on the basis of 22 oxygens)

Sampl JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- e 3_bt 1 3_bt 1 3_bt 2 3_bt 2 3_bt 3 3_bt 3 3_bt 4 3_bt 4 3_bt 5 3_bt 5 3_bt 6 3_bt 6 3_bt 7 3_bt 7 3_bt 8 3_bt 8 3_bt 9 3_bt 9 A B A B A B A B A B A B A B A B A B SiO2 39.31 35.63 39.42 35.95 35.70 35.87 35.30 34.53 35.47 35.55 35.25 35.15 35.03 35.60 35.16 34.96 34.18 35.71

TiO2 1.39 1.69 1.05 1.23 1.50 1.28 1.34 1.45 1.98 1.41 1.43 1.29 1.57 1.26 1.54 1.54 1.50 1.41

Al2O3 15.98 16.24 15.80 16.25 16.11 16.23 16.20 16.28 16.06 15.93 16.31 16.14 16.24 15.84 16.16 16.21 16.24 16.20

FeO 16.71 18.56 16.55 18.25 18.61 18.34 17.60 18.63 18.83 18.05 17.97 18.17 18.17 17.78 17.89 18.03 18.04 17.71

MnO 0.16 0.12 0.14 0.18 0.28 0.26 0.22 0.21 0.19 0.25 0.22 0.23 0.26 0.22 0.23 0.19 0.17 0.18

MgO 12.00 12.28 11.71 12.03 12.16 12.04 12.17 12.54 12.21 12.35 12.43 12.23 12.22 12.00 12.14 11.96 12.35 12.45

CaO 0.00 0.04 0.00 0.00 0.09 0.06 0.02 0.00 0.00 0.01 0.04 0.04 0.00 0.00 0.07 0.04 0.02 0.02

Na2O 0.09 0.07 0.16 0.03 0.10 0.06 0.05 0.08 0.06 0.06 0.10 0.04 0.05 0.04 0.11 0.10 0.06 0.03

K2O 9.01 9.64 9.24 9.81 9.59 9.89 9.77 10.17 9.93 9.90 9.92 9.97 9.77 9.82 9.92 9.89 9.92 9.77

F 0.40 0.00 0.00 0.09 0.62 0.18 0.58 0.29 0.07 0.43 0.50 0.00 0.71 0.32 0.91 0.00 0.00 0.00

Cl 0.06 0.00 0.06 0.03 0.01 0.02 0.04 0.00 0.00 0.00 0.01 0.00 0.02 0.01 0.00 0.02 0.02 0.02

H2O 3.79 3.89 3.96 3.82 3.59 3.79 3.55 3.71 3.86 3.65 3.62 3.84 3.50 3.67 3.41 3.82 3.79 3.86

O=F 0.17 0.00 0.00 0.04 0.26 0.07 0.24 0.12 0.03 0.18 0.21 0.00 0.30 0.13 0.38 0.00 0.00 0.00

O=Cl 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Total 98.70 98.17 98.07 97.63 98.08 97.93 96.58 97.79 98.63 97.42 97.57 97.09 97.24 96.43 97.16 96.75 96.30 97.38

Si 5.89 5.49 5.95 5.57 5.52 5.55 5.52 5.39 5.46 5.53 5.47 5.49 5.46 5.58 5.49 5.48 5.40 5.53

Ti 0.16 0.20 0.12 0.14 0.17 0.15 0.16 0.17 0.23 0.17 0.17 0.15 0.18 0.15 0.18 0.18 0.18 0.17

Al (IV) 2.11 2.51 2.05 2.44 2.48 2.45 2.48 2.61 2.54 2.47 2.53 2.51 2.54 2.42 2.51 2.52 2.61 2.47

Al (VI) 0.72 0.44 0.76 0.53 0.45 0.50 0.51 0.38 0.38 0.45 0.46 0.46 0.45 0.51 0.46 0.47 0.42 0.49

Fe 2.10 2.39 2.09 2.36 2.41 2.37 2.30 2.43 2.43 2.35 2.33 2.37 2.37 2.33 2.34 2.36 2.38 2.30

Mn 0.02 0.02 0.02 0.02 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.02 0.02

Mg 2.68 2.82 2.63 2.78 2.80 2.78 2.84 2.92 2.80 2.86 2.88 2.85 2.84 2.80 2.82 2.79 2.91 2.88

Ca 0.00 0.01 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00

Na 0.03 0.02 0.05 0.01 0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.01 0.02 0.01 0.03 0.03 0.02 0.01

K 1.72 1.90 1.78 1.94 1.89 1.95 1.95 2.02 1.95 1.96 1.96 1.99 1.94 1.96 1.98 1.98 2.00 1.93

F 0.19 0.00 0.00 0.04 0.30 0.09 0.29 0.14 0.03 0.21 0.25 0.00 0.35 0.16 0.45 0.00 0.00 0.00

Cl 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01

Sum 15.62 15.80 15.46 15.84 16.11 15.90 16.11 16.12 15.87 16.05 16.11 15.87 16.20 15.96 16.30 15.85 15.93 15.80 cations 63

Appendix 1b. Biotite EMPA data for sample JaK-5. Oxides are in wt.%.

Sample JaK-5_bt JaK-5_bt JaK-5_bt JaK-5_bt JaK-5_bt JaK-5_bt JaK-5_bt JaK-5_bt JaK-5_bt JaK-5_bt JaK-5_bt JaK-5_bt JaK-5_bt JaK-5_bt JaK-5_bt JaK-5_bt JaK-5_bt JaK-5_bt JaK-5_bt JaK-5_bt 1 A 1 B 2 A 2 B 3 A 3 B 4 A 4 B 5 A 5 B 6 A 6 B 7 A 7 B 8 A 8 B 9 A 9 B 10 A 10 B

SiO2 38.84 34.84 41.01 36.28 38.53 34.86 36.08 36.38 36.52 36.04 34.75 36.51 35.95 37.04 36.29 36.54 34.40 34.77 35.84 35.88

TiO2 1.67 2.58 1.59 2.22 1.86 2.51 1.76 1.91 1.89 2.44 2.48 3.02 2.02 2.06 2.32 1.86 2.40 2.77 2.02 2.27

Al2O3 15.27 15.67 14.05 14.81 14.96 15.11 14.21 14.21 14.79 14.96 15.19 15.33 14.24 14.46 14.50 13.93 15.23 15.35 14.85 14.59

FeO 20.70 21.82 19.69 20.61 19.96 21.79 18.99 20.19 20.30 21.22 22.01 22.19 21.33 20.45 21.13 21.18 22.91 22.70 20.38 20.20

MnO 0.11 0.16 0.16 0.12 0.13 0.17 0.22 0.19 0.20 0.15 0.13 0.16 0.19 0.18 0.19 0.17 0.15 0.16 0.17 0.22

MgO 9.20 9.55 10.83 10.25 9.23 9.82 11.51 11.71 9.82 10.15 9.43 9.84 10.95 10.47 10.88 11.02 9.32 9.42 10.37 10.91

CaO 0.07 0.01 0.03 0.00 0.01 0.12 0.08 0.05 0.09 0.09 0.02 0.08 0.05 0.04 0.00 0.04 0.07 0.03 0.02 0.02

Na2O 0.21 0.07 0.09 0.05 0.12 0.10 0.05 0.03 0.06 0.07 0.03 0.08 0.06 0.02 0.06 0.02 0.12 0.03 0.03 0.09

K2O 8.90 9.94 9.41 9.89 9.32 9.76 9.40 10.02 9.68 9.84 9.85 9.87 9.42 9.66 10.11 9.23 10.14 10.13 9.85 10.03

F 1.37 1.39 1.66 1.62 1.51 0.75 1.76 1.78 1.68 2.05 1.46 1.98 1.40 1.18 1.45 1.80 1.12 1.71 1.67 1.75

Cl 0.00 0.02 0.01 0.01 0.00 0.01 0.02 0.03 0.01 0.03 0.01 0.05 0.05 0.02 0.00 0.03 0.03 0.04 0.01 0.01

H2O 3.28 3.16 3.24 3.08 3.18 3.45 2.96 3.01 3.02 2.88 3.10 2.99 3.16 3.30 3.19 2.97 3.26 3.01 3.02 3.01

O=F 0.58 0.59 0.70 0.68 0.64 0.32 0.74 0.75 0.71 0.86 0.61 0.83 0.59 0.50 0.61 0.76 0.47 0.72 0.70 0.74

O=Cl 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00

Total 99.04 98.64 101.07 98.27 98.19 98.13 96.30 98.76 97.35 99.05 97.85 101.25 98.22 98.37 99.51 98.02 98.65 99.39 97.53 98.23

Si 5.92 5.46 6.09 5.66 5.93 5.49 5.70 5.65 5.73 5.60 5.50 5.56 5.63 5.75 5.61 5.71 5.44 5.44 5.63 5.61

Ti 0.19 0.30 0.18 0.26 0.22 0.30 0.21 0.22 0.22 0.29 0.30 0.35 0.24 0.24 0.27 0.22 0.29 0.33 0.24 0.27

Al (IV) 2.08 2.54 1.91 2.34 2.07 2.51 2.30 2.35 2.27 2.40 2.50 2.44 2.37 2.25 2.39 2.29 2.56 2.56 2.37 2.39

Al (VI) 0.67 0.36 0.55 0.38 0.64 0.30 0.34 0.25 0.47 0.34 0.33 0.31 0.25 0.39 0.25 0.28 0.28 0.28 0.39 0.29

Fe 2.64 2.86 2.45 2.69 2.57 2.87 2.51 2.62 2.67 2.76 2.91 2.83 2.79 2.65 2.73 2.77 3.03 2.97 2.68 2.64

Mn 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.02 0.02 0.02 0.03

Mg 2.09 2.23 2.40 2.38 2.12 2.31 2.71 2.71 2.30 2.35 2.23 2.23 2.56 2.42 2.51 2.57 2.20 2.20 2.43 2.54

Ca 0.01 0.00 0.01 0.00 0.00 0.02 0.01 0.01 0.02 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.00

Na 0.06 0.02 0.03 0.02 0.04 0.03 0.02 0.01 0.02 0.02 0.01 0.02 0.02 0.01 0.02 0.01 0.04 0.01 0.01 0.03

K 1.73 1.99 1.78 1.97 1.83 1.96 1.89 1.99 1.94 1.95 1.99 1.92 1.88 1.91 2.00 1.84 2.04 2.02 1.98 2.00

F 0.66 0.69 0.78 0.80 0.74 0.38 0.88 0.87 0.84 1.01 0.73 0.95 0.69 0.58 0.71 0.89 0.56 0.85 0.83 0.87

Cl 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.00

Sum 16.07 16.49 16.19 16.51 16.16 16.18 16.61 16.71 16.49 16.75 16.52 16.66 16.48 16.23 16.51 16.61 16.47 16.69 16.58 16.66 cations

64

Appendix 1c. Biotite EMPA data for sample JaK-6. Oxides are in wt.%.

Sample JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- 6_bt 1 6_bt 2 6_bt 2 6_bt 3 6_bt 3 6_bt 4 6_bt 4 6_bt 5 6_bt 5 6_bt 6 6_bt 6 6_bt 7 6_bt 7 6_bt 8 6_bt 8 A B A B A B A B A B A B A B SiO2 38.62 38.12 37.31 36.03 36.02 36.62 36.55 35.76 36.13 30.18 34.78 35.31 35.93 34.23 35.10

TiO2 1.97 1.86 1.63 1.72 2.19 1.64 1.86 1.88 1.73 0.57 0.93 1.72 2.08 2.34 2.03

Al2O3 14.23 14.46 14.72 14.72 15.04 14.91 14.61 14.91 14.85 15.85 14.97 14.93 14.70 15.20 14.98

FeO 20.43 20.29 21.48 21.38 21.87 21.22 20.80 22.32 20.30 24.90 21.02 21.97 22.16 23.03 22.11

MnO 0.24 0.23 0.23 0.26 0.28 0.22 0.19 0.23 0.15 0.34 0.28 0.24 0.20 0.22 0.23

MgO 9.98 9.00 10.27 9.85 9.91 9.77 9.71 9.30 9.70 12.57 10.44 9.73 9.73 9.78 9.58

CaO 0.01 0.00 0.01 0.03 0.00 0.01 0.00 0.07 0.06 0.08 0.02 0.07 0.00 0.13 0.10

Na2O 0.14 0.17 0.00 0.10 0.11 0.05 0.05 0.05 0.08 0.00 0.05 0.07 0.04 0.03 0.01

K2O 9.68 9.38 9.98 10.03 10.22 9.88 9.68 9.88 9.76 3.28 7.52 10.05 9.86 10.22 10.26

F 1.13 1.48 1.58 1.46 1.95 1.12 1.75 1.55 1.49 0.80 1.03 1.66 1.10 1.84 1.20

Cl 0.06 0.00 0.00 0.00 0.00 0.05 0.00 0.02 0.03 0.02 0.02 0.02 0.02 0.00 0.00

H2O 3.37 3.15 3.15 3.12 2.94 3.30 2.99 3.07 3.08 3.20 3.21 3.00 3.30 2.93 3.23

O=F 0.48 0.62 0.67 0.61 0.82 0.47 0.74 0.65 0.63 0.34 0.43 0.70 0.46 0.77 0.50

O=Cl 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00

Total 99.37 97.51 99.70 98.08 99.71 98.32 97.44 98.38 96.71 91.44 93.84 98.07 98.66 99.18 98.32

Si 5.91 5.93 5.74 5.66 5.59 5.72 5.74 5.63 5.72 5.06 5.64 5.58 5.63 5.40 5.54

Ti 0.23 0.22 0.19 0.20 0.26 0.19 0.22 0.22 0.21 0.07 0.11 0.21 0.25 0.28 0.24

Al (IV) 2.09 2.07 2.26 2.34 2.41 2.28 2.26 2.38 2.28 2.94 2.36 2.42 2.38 2.61 2.46

Al (VI) 0.47 0.59 0.41 0.39 0.34 0.46 0.45 0.39 0.49 0.19 0.50 0.36 0.34 0.22 0.33

Fe 2.61 2.64 2.77 2.81 2.84 2.77 2.74 2.94 2.69 3.49 2.85 2.90 2.90 3.04 2.92

Mn 0.03 0.03 0.03 0.04 0.04 0.03 0.03 0.03 0.02 0.05 0.04 0.03 0.03 0.03 0.03

Mg 2.27 2.09 2.36 2.31 2.29 2.27 2.27 2.18 2.29 3.14 2.52 2.29 2.27 2.30 2.26

Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.02 0.02

Na 0.04 0.05 0.00 0.03 0.03 0.02 0.02 0.01 0.03 0.00 0.02 0.02 0.01 0.01 0.00

K 1.89 1.86 1.96 2.01 2.02 1.97 1.94 1.98 1.97 0.70 1.55 2.03 1.97 2.06 2.07

F 0.55 0.73 0.77 0.73 0.95 0.56 0.87 0.77 0.75 0.42 0.53 0.83 0.55 0.92 0.60

Cl 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.00

Sum 16.11 16.21 16.48 16.52 16.77 16.28 16.53 16.54 16.44 16.08 16.13 16.68 16.31 16.86 16.46 cations

65

Appendix 1d. Biotite EMPA data for sample JaK-10. Oxides are in wt.%.

Sampl JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- e 10_bt 10_bt 10_bt 10_bt 10_bt 10_bt 10_bt 10_bt 10_bt 10_bt 10_bt 10_bt 10_bt 10_bt 10_bt 10_bt 10_bt 10_bt 1 2 A 2 B 3 4 A 4 B 5 A 5 B 6 A 6 B 7 A 7 B 8 A 8 B 9 A 9 B 10 A 10 B SiO2 37.38 38.04 38.50 38.49 31.50 36.74 35.22 36.19 38.11 38.24 38.38 38.83 35.09 35.13 34.35 35.11 34.90 35.30

TiO2 1.52 1.32 1.36 1.39 0.68 1.61 0.90 0.96 1.45 1.27 1.30 0.99 1.14 1.03 1.05 0.87 2.05 1.22

Al2O3 13.38 13.84 13.62 13.57 15.18 13.44 14.06 13.58 13.32 13.14 13.19 13.26 13.21 13.30 13.37 13.51 12.82 13.30

FeO 12.36 12.02 12.28 12.45 13.76 13.08 11.59 11.58 12.29 11.60 11.93 11.92 12.33 12.01 12.82 12.01 12.84 13.04

MnO 0.13 0.08 0.05 0.10 0.03 0.15 0.06 0.09 0.05 0.09 0.04 0.14 0.16 0.17 0.06 0.19 0.17 0.16

MgO 18.90 18.76 19.06 18.76 21.80 18.89 18.47 18.70 19.00 19.14 19.07 18.97 19.41 19.60 19.47 19.38 18.86 18.89

CaO 0.04 0.01 0.00 0.05 0.04 0.00 0.00 0.00 0.00 0.02 0.05 0.00 0.00 0.02 0.02 0.11 0.09 0.06

Na2O 0.11 0.21 0.21 0.23 0.12 0.19 0.19 0.23 0.23 0.12 0.12 0.06 0.17 0.16 0.16 0.12 0.05 0.16

K2O 10.89 10.98 10.44 10.39 6.01 10.90 10.91 10.66 10.16 10.50 10.57 10.38 11.19 11.19 10.91 11.07 10.91 10.68

F 0.62 0.65 0.49 0.63 0.97 0.66 0.75 0.63 0.15 0.57 1.03 0.50 0.42 0.73 0.79 0.58 0.98 0.56

Cl 0.00 0.00 0.00 0.01 0.00 0.03 0.00 0.03 0.01 0.00 0.05 0.00 0.02 0.00 0.01 0.03 0.03 0.01

H2O 3.70 3.72 3.82 3.75 3.32 3.66 3.49 3.58 3.94 3.73 3.52 3.79 3.67 3.53 3.46 3.58 3.39 3.61

O=F 0.26 0.27 0.21 0.26 0.41 0.28 0.32 0.26 0.06 0.24 0.43 0.21 0.18 0.31 0.33 0.24 0.41 0.24

O=Cl 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00

Total 98.78 99.37 99.63 99.55 93.02 99.08 95.34 95.95 98.64 98.18 98.81 98.61 96.62 96.55 96.15 96.30 96.67 96.75

Si 5.62 5.66 5.70 5.71 4.99 5.54 5.49 5.59 5.69 5.73 5.73 5.79 5.44 5.44 5.37 5.45 5.42 5.46

Ti 0.17 0.15 0.15 0.16 0.08 0.18 0.11 0.11 0.16 0.14 0.15 0.11 0.13 0.12 0.12 0.10 0.24 0.14

Al (IV) 2.37 2.34 2.30 2.30 2.83 2.39 2.51 2.41 2.31 2.27 2.27 2.21 2.41 2.43 2.46 2.47 2.35 2.43

Al (VI) 0.00 0.09 0.07 0.08 0.00 0.00 0.08 0.06 0.04 0.05 0.05 0.12 0.00 0.00 0.00 0.00 0.00 0.00

Fe 1.55 1.50 1.52 1.54 1.82 1.65 1.51 1.50 1.54 1.45 1.49 1.49 1.60 1.56 1.68 1.56 1.67 1.69

Mn 0.02 0.01 0.01 0.01 0.00 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.03 0.02 0.02

Mg 4.23 4.16 4.20 4.15 5.15 4.24 4.29 4.30 4.23 4.28 4.24 4.21 4.49 4.53 4.53 4.48 4.37 4.36

Ca 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.02 0.01 0.01

Na 0.03 0.06 0.06 0.07 0.04 0.06 0.06 0.07 0.07 0.04 0.04 0.02 0.05 0.05 0.05 0.04 0.02 0.05

K 2.09 2.08 1.97 1.96 1.22 2.09 2.17 2.10 1.94 2.01 2.01 1.97 2.21 2.21 2.17 2.19 2.16 2.11

F 0.29 0.31 0.23 0.29 0.49 0.32 0.37 0.31 0.07 0.27 0.49 0.23 0.20 0.36 0.39 0.28 0.48 0.28

Cl 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.00

Sum 16.38 16.36 16.21 16.27 16.63 16.49 16.59 16.46 16.05 16.26 16.49 16.17 16.56 16.71 16.79 16.62 16.74 16.54 catio n

66

Appendix 1e. Biotite EMPA data for sample JaK-19. Oxides are in wt.%.

Sample JaK-19_bt 1 JaK-19_bt 1 JaK-19_bt JaK-19_bt 3 JaK-19_bt 3 JaK-19_bt 4 JaK-19_bt 4 JaK-19_bt 5 JaK-19_bt 5 JaK-19_bt 6 JaK-19_bt 6 JaK-19_bt JaK-19_bt 8 JaK-19_bt 8 A B 2 A B A B A B A B 7 A B

SiO2 37.63 37.23 37.33 34.85 35.30 35.62 32.13 35.43 34.82 35.88 34.97 34.67 36.77 37.18

TiO2 1.68 1.16 1.34 2.07 2.46 2.02 1.49 1.98 2.12 2.07 2.25 2.17 2.00 1.81

Al2O3 14.68 14.65 14.60 14.97 14.97 15.17 13.48 15.08 15.23 14.85 14.64 15.08 14.84 14.63

FeO 18.55 18.89 20.09 22.09 21.75 21.53 18.62 21.05 21.23 20.45 21.00 20.60 19.92 19.54

MnO 0.31 0.38 0.41 0.28 0.26 0.34 0.43 0.33 0.31 0.33 0.35 0.38 0.46 0.39

MgO 11.89 12.14 11.88 10.86 10.64 9.95 8.89 9.85 9.84 11.74 11.74 11.58 12.00 12.23

CaO 0.05 0.00 0.03 0.09 0.00 0.10 6.81 0.16 0.07 0.07 0.03 0.04 0.08 0.03

Na2O 0.03 0.05 0.06 0.05 0.06 0.05 0.00 0.03 0.07 0.12 0.04 0.04 0.12 0.23

K2O 10.30 10.58 10.32 10.82 10.76 10.39 8.91 10.43 10.47 10.77 10.51 10.99 10.41 10.33

F 2.18 1.49 1.15 1.20 0.88 1.03 1.23 1.30 1.51 1.80 1.34 1.48 0.81 1.55

Cl 0.01 0.02 0.01 0.00 0.00 0.02 0.04 0.03 0.04 0.03 0.02 0.01 0.05 0.07

H2O 2.89 3.19 3.38 3.28 3.45 3.35 3.02 3.19 3.07 3.04 3.21 3.14 3.54 3.19

O=F 0.92 0.63 0.48 0.51 0.37 0.43 0.52 0.55 0.64 0.76 0.56 0.62 0.34 0.65

O=Cl 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.02

Total 99.28 99.16 100.10 100.06 100.16 99.12 94.51 98.29 98.15 100.38 99.55 99.55 100.65 100.53

Si 5.75 5.72 5.70 5.43 5.47 5.56 5.34 5.57 5.50 5.52 5.44 5.40 5.60 5.65

Ti 0.19 0.13 0.15 0.24 0.29 0.24 0.19 0.23 0.25 0.24 0.26 0.25 0.23 0.21

Al (IV) 2.25 2.28 2.30 2.57 2.53 2.44 2.64 2.43 2.50 2.48 2.56 2.60 2.40 2.35

Al (VI) 0.40 0.38 0.33 0.18 0.21 0.35 0.00 0.37 0.34 0.21 0.13 0.17 0.26 0.28

Fe 2.37 2.43 2.57 2.88 2.82 2.81 2.59 2.77 2.81 2.63 2.73 2.69 2.54 2.49

Mn 0.04 0.05 0.05 0.04 0.03 0.05 0.06 0.04 0.04 0.04 0.05 0.05 0.06 0.05

Mg 2.71 2.78 2.70 2.52 2.46 2.31 2.20 2.31 2.32 2.69 2.72 2.69 2.72 2.77

Ca 0.01 0.00 0.01 0.02 0.00 0.02 1.21 0.03 0.01 0.01 0.01 0.01 0.01 0.01

Na 0.01 0.02 0.02 0.01 0.02 0.02 0.00 0.01 0.02 0.04 0.01 0.01 0.04 0.07

K 2.01 2.07 2.01 2.15 2.13 2.07 1.89 2.09 2.11 2.11 2.09 2.19 2.02 2.00

F 1.05 0.73 0.55 0.59 0.43 0.51 0.65 0.65 0.76 0.87 0.66 0.73 0.39 0.75

Cl 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.01 0.02

Sum 16.80 16.59 16.40 16.63 16.38 16.36 16.76 16.50 16.66 16.85 16.67 16.79 16.28 16.63 cations

67

Appendix 1f. Biotite EMPA data for sample JaK-20. Oxides are in wt.%.

JaK-20_bt JaK-20_bt JaK-20_bt JaK-20_bt JaK-20_bt JaK-20_bt JaK-20_bt JaK-20_bt JaK-20_bt JaK-20_bt JaK-20_bt JaK-20_bt JaK-20_bt JaK-20_bt JaK-20_bt JaK-20_bt Sample 1 A 1 B 2 A 2 B 3 A 3 B 4 A 4 B 5 A 5 B 6 A 6 B 7 A 7 B 8 A 8 B

SiO2 33.64 33.45 34.87 42.68 34.81 34.99 29.90 33.67 33.19 32.83 35.70 36.30 35.86 36.40 35.93 35.95

TiO2 2.75 2.95 3.04 2.51 3.13 3.13 3.24 2.88 3.03 2.79 2.79 2.38 2.69 2.36 2.74 2.48

Al2O3 15.08 15.02 14.61 15.74 15.02 14.89 14.70 14.84 14.75 14.81 14.75 14.46 14.73 14.67 14.54 14.80

FeO 21.18 21.43 21.85 16.62 21.76 21.89 21.76 20.78 20.54 21.38 19.88 19.10 21.10 19.49 19.98 19.60

MnO 0.17 0.29 0.29 0.24 0.27 0.33 0.30 0.22 0.33 0.27 0.28 0.27 0.29 0.16 0.30 0.28

MgO 10.40 10.62 10.42 8.21 10.48 10.48 10.61 10.45 10.33 10.32 10.39 10.40 10.40 10.35 10.39 10.43

CaO 0.01 0.03 0.03 0.09 0.07 0.02 0.03 0.05 0.02 0.00 0.07 0.03 0.02 0.00 0.00 0.05

Na2O 0.03 0.00 0.00 2.25 0.06 0.12 0.04 0.06 0.01 0.03 0.06 0.03 0.04 0.03 0.08 0.04

K2O 10.61 10.48 10.78 8.26 10.48 10.67 10.85 10.52 10.60 10.54 10.40 10.32 9.91 10.18 10.20 10.37

F 0.97 1.48 0.73 1.04 1.32 0.84 1.03 0.75 0.86 0.94 0.85 0.64 0.83 1.04 1.16 0.76

Cl 0.01 0.01 0.01 0.02 0.00 0.02 0.00 0.00 0.02 0.00 0.02 0.02 0.06 0.01 0.01 0.05

H2O 3.31 3.08 3.50 3.61 3.24 3.47 3.10 3.40 3.31 3.27 3.43 3.51 3.45 3.34 3.28 3.46

O=F 0.41 0.62 0.31 0.44 0.56 0.35 0.44 0.32 0.36 0.40 0.36 0.27 0.35 0.44 0.49 0.32

O=Cl 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01

Total 97.76 98.21 99.82 100.83 100.07 100.49 95.12 97.31 96.63 96.79 98.26 97.18 99.02 97.59 98.14 97.93

Si 5.35 5.31 5.44 6.22 5.40 5.42 4.99 5.37 5.34 5.30 5.58 5.70 5.57 5.69 5.62 5.62

Ti 0.33 0.35 0.36 0.28 0.37 0.36 0.41 0.35 0.37 0.34 0.33 0.28 0.31 0.28 0.32 0.29

Al (IV) 2.65 2.69 2.56 1.78 2.60 2.59 2.89 2.63 2.66 2.70 2.42 2.30 2.43 2.31 2.38 2.38

Al (VI) 0.18 0.12 0.12 0.93 0.15 0.13 0.00 0.16 0.14 0.12 0.30 0.38 0.27 0.40 0.30 0.35

Fe 2.82 2.85 2.85 2.03 2.82 2.83 3.04 2.77 2.77 2.89 2.60 2.51 2.74 2.55 2.61 2.56

Mn 0.02 0.04 0.04 0.03 0.04 0.04 0.04 0.03 0.05 0.04 0.04 0.04 0.04 0.02 0.04 0.04

Mg 2.47 2.51 2.42 1.78 2.43 2.42 2.64 2.49 2.48 2.48 2.42 2.44 2.41 2.41 2.42 2.43

Ca 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01

Na 0.01 0.00 0.00 0.64 0.02 0.04 0.01 0.02 0.00 0.01 0.02 0.01 0.01 0.01 0.03 0.01

K 2.15 2.12 2.14 1.54 2.08 2.11 2.31 2.14 2.18 2.17 2.07 2.07 1.96 2.03 2.03 2.07

F 0.49 0.74 0.36 0.48 0.65 0.41 0.55 0.38 0.44 0.48 0.42 0.32 0.41 0.51 0.58 0.38

Cl 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.02 0.00 0.00 0.01

Sum cation 16.48 16.74 16.30 15.72 16.55 16.35 16.87 16.35 16.42 16.52 16.21 16.04 16.18 16.21 16.33 16.15

68

Appendix 1g. Biotite EMPA data for sample JaK-23. Oxides are in wt.%.

Sample JaK-23_bt 1 JaK-23_bt 1 JaK-23_bt 2 JaK-23_bt 2 JaK-23_bt 3 JaK-23_bt 3 JaK-23_bt 4 JaK-23_bt 4 JaK-23_bt 5 JaK-23_bt 5 JaK-23_bt 6 JaK-23_bt 6 JaK-23_bt 7 JaK-23_bt 7 A B A B A B A B A B A B A B

SiO2 40.03 43.51 40.12 40.16 39.16 39.67 42.03 40.37 40.32 40.59 40.39 39.91 40.06 40.23

TiO2 1.01 0.73 0.94 0.87 0.99 0.83 0.72 1.04 0.54 0.68 0.54 1.01 0.82 0.95

Al2O3 12.77 10.07 12.88 13.06 12.32 12.86 11.76 12.68 13.00 12.75 12.55 13.17 12.57 13.06

FeO 10.28 9.57 10.31 10.40 9.99 10.03 9.63 9.81 10.64 9.84 10.01 10.06 10.35 10.87

MnO 0.07 0.01 0.04 0.04 0.08 0.08 0.04 0.02 0.00 0.02 0.00 0.08 0.08 0.12

MgO 19.67 20.69 19.84 19.76 19.19 20.00 20.61 19.91 20.07 19.79 19.80 20.02 19.95 19.77

CaO 0.09 0.19 0.01 0.10 0.05 0.12 0.19 0.12 0.08 0.08 0.07 0.02 0.30 0.31

Na2O 0.14 0.07 0.11 0.15 0.08 0.05 0.09 0.10 0.17 0.15 0.07 0.14 0.14 0.13

K2O 9.80 7.62 10.00 9.93 9.47 9.41 9.14 9.74 9.94 9.73 9.98 10.21 9.26 9.54

F 0.41 1.50 0.40 0.00 0.56 0.29 0.95 0.50 1.10 0.78 0.00 0.74 0.61 0.84

Cl 0.00 0.03 0.00 0.03 0.03 0.00 0.02 0.01 0.00 0.00 0.03 0.00 0.01 0.01

H2O 3.86 3.37 3.88 4.07 3.67 3.89 3.66 3.82 3.56 3.69 4.03 3.73 3.75 3.69

O=F 0.17 0.63 0.17 0.00 0.24 0.12 0.40 0.21 0.46 0.33 0.00 0.31 0.26 0.35

O=Cl 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00

Total 97.97 96.70 98.37 98.55 95.34 97.13 98.42 97.90 98.95 97.77 97.46 98.77 97.64 99.16

Si 5.93 6.39 5.92 5.91 5.95 5.91 6.13 5.96 5.92 6.00 6.00 5.87 5.94 5.89

Ti 0.11 0.08 0.10 0.10 0.11 0.09 0.08 0.12 0.06 0.08 0.06 0.11 0.09 0.10

Al (IV) 2.07 1.61 2.08 2.09 2.05 2.09 1.87 2.04 2.08 2.00 2.00 2.13 2.06 2.11

Al (VI) 0.15 0.13 0.16 0.18 0.16 0.16 0.15 0.16 0.17 0.22 0.19 0.15 0.14 0.15

Fe 1.27 1.17 1.27 1.28 1.27 1.25 1.17 1.21 1.31 1.22 1.24 1.24 1.28 1.33

Mn 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01

Mg 4.34 4.53 4.36 4.34 4.35 4.44 4.48 4.38 4.39 4.36 4.38 4.39 4.41 4.32

Ca 0.02 0.03 0.00 0.02 0.01 0.02 0.03 0.02 0.01 0.01 0.01 0.00 0.05 0.05

Na 0.04 0.02 0.03 0.04 0.02 0.01 0.03 0.03 0.05 0.04 0.02 0.04 0.04 0.04

K 1.85 1.43 1.88 1.86 1.84 1.79 1.70 1.83 1.86 1.83 1.89 1.92 1.75 1.78

F 0.19 0.70 0.19 0.00 0.27 0.14 0.44 0.24 0.51 0.37 0.00 0.34 0.29 0.39

Cl 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00

Sum 15.99 16.09 16.00 15.82 16.04 15.91 16.09 15.99 16.36 16.12 15.81 16.20 16.06 16.18 cations 69

Appendix 1h. Biotite EMPA data for sample JaK-37. Oxides are in wt.%.

Sample JaK-37_bt JaK-37_bt JaK-37_bt JaK-37_bt JaK-37_bt JaK-37_bt JaK-37_bt JaK-37_bt JaK-37_bt JaK-37_bt JaK-37_bt JaK-37_bt JaK-37_bt JaK-37_bt JaK- JaK-37_bt JaK-37_bt 1 A 1 B 2 A 2 B 3 A 3 B 4 A 4 B 5 A 5 B 6 A 6 B 7 A 7 A 37_bt 8 9 A 9 B

SiO2 34.92 35.27 35.23 35.23 34.47 34.96 34.56 34.03 35.63 35.12 34.83 34.91 35.14 35.15 34.68 34.72 35.64

TiO2 1.93 1.91 2.03 1.81 1.78 1.57 1.64 1.93 1.68 1.75 2.07 1.93 1.90 2.12 1.68 1.34 1.35

Al2O3 16.99 16.94 17.06 17.07 16.90 16.86 17.06 17.16 16.86 17.17 17.13 17.01 16.85 16.88 16.88 17.14 17.06

FeO 18.43 18.79 18.49 18.63 17.68 18.38 17.85 18.23 18.20 18.27 18.80 17.96 17.97 18.09 17.91 17.99 17.08

MnO 0.20 0.22 0.23 0.18 0.21 0.32 0.16 0.22 0.23 0.28 0.31 0.29 0.28 0.21 0.23 0.18 0.25

MgO 11.48 11.36 11.46 11.71 11.23 11.17 11.61 11.55 11.51 11.56 11.53 11.20 11.22 11.23 11.33 11.67 11.65

CaO 0.01 0.00 0.03 0.04 0.23 0.09 0.03 0.02 0.02 0.00 0.00 0.00 0.06 0.01 0.05 0.01 0.03

Na2O 0.12 0.14 0.13 0.12 0.12 0.11 0.14 0.11 0.07 0.16 0.11 0.12 0.08 0.12 0.12 0.12 0.13

K2O 9.65 9.53 9.52 9.34 8.97 9.24 9.86 9.87 9.51 9.64 9.78 9.51 9.38 9.41 9.66 9.42 9.47

F 0.56 0.00 0.19 0.46 0.48 0.37 0.46 0.00 0.00 0.00 0.15 0.12 0.70 0.01 0.00 0.01 0.00

Cl 0.03 0.04 0.04 0.03 0.07 0.03 0.02 0.00 0.00 0.04 0.01 0.02 0.00 0.03 0.01 0.00 0.00

H2O 3.59 3.87 3.78 3.66 3.55 3.65 3.61 3.83 3.88 3.87 3.81 3.78 3.51 3.84 3.82 3.82 3.86

O=F 0.24 0.00 0.08 0.20 0.20 0.15 0.20 0.00 0.00 0.00 0.07 0.05 0.30 0.01 0.00 0.00 0.00

O=Cl 0.01 0.01 0.01 0.01 0.02 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00

Total 97.67 98.07 98.09 98.08 95.48 96.57 96.78 96.95 97.61 97.84 98.46 96.78 96.81 97.10 96.35 96.43 96.52

Si 5.42 5.45 5.44 5.43 5.44 5.48 5.41 5.33 5.51 5.43 5.38 5.45 5.48 5.47 5.45 5.44 5.54

Ti 0.23 0.22 0.24 0.21 0.21 0.19 0.19 0.23 0.20 0.20 0.24 0.23 0.22 0.25 0.20 0.16 0.16

Al (IV) 2.58 2.55 2.57 2.57 2.56 2.52 2.59 2.67 2.49 2.57 2.63 2.55 2.52 2.54 2.56 2.56 2.46

Al (VI) 0.53 0.53 0.54 0.54 0.59 0.59 0.56 0.50 0.58 0.56 0.49 0.58 0.58 0.56 0.57 0.60 0.67

Fe 2.39 2.43 2.39 2.40 2.34 2.41 2.34 2.39 2.35 2.36 2.43 2.35 2.34 2.35 2.35 2.36 2.22

Mn 0.03 0.03 0.03 0.02 0.03 0.04 0.02 0.03 0.03 0.04 0.04 0.04 0.04 0.03 0.03 0.02 0.03

Mg 2.66 2.62 2.63 2.69 2.65 2.61 2.71 2.70 2.65 2.66 2.65 2.61 2.61 2.60 2.65 2.72 2.70

Ca 0.00 0.00 0.01 0.01 0.04 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01

Na 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.03 0.02 0.05 0.03 0.04 0.02 0.04 0.04 0.04 0.04

K 1.91 1.88 1.87 1.84 1.81 1.85 1.97 1.97 1.88 1.90 1.93 1.89 1.87 1.87 1.94 1.88 1.88

F 0.28 0.00 0.10 0.23 0.24 0.18 0.23 0.00 0.00 0.00 0.08 0.06 0.35 0.01 0.00 0.00 0.00

Cl 0.01 0.01 0.01 0.01 0.02 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00

Sum 16.06 15.76 15.84 15.98 15.95 15.91 16.07 15.86 15.71 15.78 15.88 15.79 16.04 15.71 15.78 15.79 15.70 cations

70

Appendix 1i. Biotite EMPA data for sample JaK-38. Oxides are in wt.%.

Sample JaK_38_ JaK_38_ JaK_38_ JaK_38_ JaK_38_ JaK_38_ JaK_38_ JaK_38_ JaK_38_ JaK_38_ JaK_38_ JaK_38_ JaK_38_ JaK_38_ JaK_38_ JaK_38_ JaK_38_ JaK_38_ JaK_38_ JaK_38_ bt 1 A bt 1 B bt 2 A bt 2 B bt 3 A bt 3 B bt 4 B bt 5 A bt 5 A bt 5 B bt 6 A bt 6 B bt 7 A bt 7 B bt 8 A bt 8 B bt 9 A bt 9 B bt 10 A bt 10 B

SiO2 32.86 34.16 35.60 34.94 34.55 34.45 36.99 36.19 36.84 36.56 35.39 34.94 34.79 35.04 34.82 35.62 37.51 36.60 37.01 36.93

TiO2 1.74 1.38 1.07 1.69 1.50 1.46 1.34 1.60 1.38 1.87 1.11 1.87 1.26 1.63 1.12 1.50 1.44 1.44 1.24 1.32

Al2O3 17.69 17.77 17.63 17.63 17.83 17.68 17.39 17.14 17.25 17.28 17.95 17.68 17.65 17.86 17.70 17.72 17.20 16.91 16.90 17.32

FeO 14.73 14.55 14.40 14.73 13.97 14.32 14.60 14.58 14.20 14.17 14.66 14.82 14.12 14.39 14.79 14.67 14.25 14.01 13.65 14.29

MnO 0.15 0.12 0.16 0.07 0.08 0.17 0.10 0.17 0.10 0.14 0.23 0.18 0.14 0.17 0.20 0.10 0.16 0.15 0.12 0.08

MgO 14.33 14.47 14.17 14.37 14.68 14.19 14.26 14.34 13.82 14.19 13.92 14.24 14.11 14.27 14.51 14.50 14.14 14.01 13.55 13.90

CaO 0.04 0.11 0.05 0.05 0.01 0.02 0.03 0.00 0.01 0.00 0.00 0.00 0.02 0.05 0.11 0.03 0.17 0.15 0.03 0.04

Na2O 0.08 0.15 0.14 0.12 0.10 0.08 0.12 0.11 0.14 0.10 0.09 0.12 0.11 0.11 0.13 0.11 0.13 0.16 0.11 0.06

K2O 10.34 10.28 9.96 10.09 9.81 10.27 9.23 9.70 9.31 9.53 10.11 10.00 10.05 9.90 10.19 9.84 9.20 8.72 9.44 9.59

F 0.08 0.00 0.47 0.16 0.03 0.19 0.64 0.00 0.28 0.31 0.00 0.00 0.14 0.00 0.01 0.24 0.00 0.23 0.12 0.20

Cl 0.04 0.00 0.03 0.03 0.04 0.00 0.04 0.02 0.04 0.00 0.01 0.03 0.00 0.04 0.00 0.00 0.01 0.03 0.02 0.00

H2O 3.77 3.88 3.69 3.84 3.87 3.79 3.67 3.95 3.81 3.83 3.92 3.92 3.81 3.92 3.91 3.84 4.00 3.81 3.85 3.87

O=F 0.03 0.00 0.20 0.07 0.01 0.08 0.27 0.00 0.12 0.13 0.00 0.00 0.06 0.00 0.01 0.10 0.00 0.10 0.05 0.08

O=Cl 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00

Total 95.79 96.88 97.16 97.66 96.45 96.53 98.14 97.80 97.05 97.84 97.38 97.81 96.15 97.36 97.49 98.08 98.22 96.11 95.97 97.52

Si 5.16 5.28 5.45 5.34 5.32 5.33 5.56 5.49 5.59 5.52 5.41 5.33 5.38 5.35 5.34 5.40 5.62 5.60 5.67 5.59

Ti 0.21 0.16 0.12 0.19 0.17 0.17 0.15 0.18 0.16 0.21 0.13 0.21 0.15 0.19 0.13 0.17 0.16 0.17 0.14 0.15

Al (IV) 2.84 2.73 2.55 2.66 2.68 2.67 2.44 2.51 2.41 2.48 2.59 2.67 2.62 2.65 2.66 2.60 2.38 2.40 2.33 2.41

Al (VI) 0.43 0.51 0.62 0.51 0.56 0.55 0.64 0.55 0.68 0.59 0.64 0.51 0.60 0.57 0.54 0.56 0.65 0.65 0.72 0.68

Fe 1.94 1.88 1.84 1.88 1.80 1.85 1.84 1.85 1.80 1.79 1.87 1.89 1.83 1.84 1.90 1.86 1.79 1.79 1.75 1.81

Mn 0.02 0.02 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.03 0.01 0.02 0.02 0.02 0.01

Mg 3.36 3.33 3.23 3.27 3.37 3.27 3.20 3.24 3.13 3.19 3.17 3.24 3.26 3.25 3.32 3.28 3.16 3.19 3.09 3.13

Ca 0.01 0.02 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.03 0.03 0.00 0.01

Na 0.02 0.05 0.04 0.04 0.03 0.02 0.04 0.03 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.03 0.04 0.05 0.03 0.02

K 2.07 2.02 1.94 1.97 1.93 2.03 1.77 1.88 1.80 1.84 1.97 1.95 1.98 1.93 1.99 1.90 1.76 1.70 1.84 1.85

F 0.04 0.00 0.23 0.08 0.02 0.10 0.31 0.00 0.13 0.15 0.00 0.00 0.07 0.00 0.01 0.12 0.00 0.11 0.06 0.09

Cl 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00

Sum 16.10 15.98 16.07 15.97 15.89 16.01 15.96 15.76 15.77 15.81 15.85 15.87 15.94 15.84 15.96 15.93 15.60 15.71 15.67 15.75 cations

71

Appendix 1j. Biotite EMPA data for sample JaK-39. Oxides are in wt.%.

Samp JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- le 39_bt 39_bt 39_bt 39_bt 39_bt 39_bt 39_bt 39_bt 39_bt 39_bt 39_bt 39_bt 39_bt 39_bt 39_bt 39_bt 39_bt 39_bt 1 A 1 B 2 A 2 B 3 A 3 B 4 A 4 B 5 A 5 B 6 A 6 B 7 A 7 B 8 A 8 B 9 A 9 B SiO2 35.91 35.90 36.08 36.07 36.04 35.64 35.62 35.30 35.75 35.77 36.15 35.10 35.59 35.67 35.47 35.64 35.50 35.77

TiO2 1.57 1.79 1.30 1.63 1.76 2.24 1.46 1.76 1.79 1.58 1.51 1.88 1.73 1.77 1.79 1.30 1.86 1.45

Al2O 17.01 17.07 17.03 17.01 16.93 16.97 16.70 16.90 16.83 16.85 17.07 17.22 16.93 16.85 17.12 16.91 16.84 16.88 3 FeO 17.09 16.93 16.95 16.48 16.68 17.22 16.45 16.33 16.01 16.05 15.71 15.92 16.45 17.14 16.04 15.81 16.29 16.12

MnO 0.16 0.21 0.24 0.19 0.19 0.13 0.26 0.25 0.18 0.17 0.17 0.19 0.23 0.22 0.19 0.18 0.14 0.19

MgO 12.63 12.47 12.49 12.57 12.43 12.71 12.54 12.55 12.65 12.52 12.35 12.83 12.95 12.61 12.69 12.57 12.73 12.48

CaO 0.06 0.00 0.00 0.03 0.09 0.12 0.03 0.03 0.11 0.07 0.00 0.01 0.13 0.11 0.05 0.04 0.00 0.00

Na2O 0.20 0.18 0.17 0.13 0.14 0.12 0.20 0.15 0.17 0.14 0.18 0.11 0.20 0.17 0.14 0.19 0.13 0.14

K2O 9.43 9.44 9.43 9.53 9.53 9.30 9.28 9.63 9.68 9.32 9.19 9.66 9.30 9.23 9.70 9.53 9.52 9.69

F 0.00 0.35 0.06 0.00 0.00 0.07 0.42 0.03 0.21 0.00 0.36 0.00 0.17 0.16 0.48 0.74 0.02 0.45

Cl 0.01 0.03 0.05 0.07 0.01 0.00 0.05 0.02 0.00 0.00 0.00 0.02 0.04 0.02 0.03 0.00 0.01 0.03

H2O 3.92 3.75 3.87 3.90 3.91 3.90 3.65 3.85 3.79 3.87 3.71 3.88 3.81 3.83 3.65 3.51 3.87 3.65

O=F 0.00 0.15 0.02 0.00 0.00 0.03 0.18 0.01 0.09 0.00 0.15 0.00 0.07 0.07 0.20 0.31 0.01 0.19

O=Cl 0.00 0.01 0.01 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01

Total 97.97 97.96 97.64 97.59 97.72 98.41 96.47 96.78 97.09 96.36 96.26 96.82 97.45 97.69 97.13 96.11 96.91 96.65

Si 5.50 5.49 5.54 5.53 5.52 5.43 5.53 5.47 5.51 5.54 5.58 5.42 5.47 5.48 5.47 5.54 5.48 5.54

Ti 0.18 0.21 0.15 0.19 0.20 0.26 0.17 0.21 0.21 0.18 0.18 0.22 0.20 0.20 0.21 0.15 0.22 0.17

Al 2.50 2.51 2.47 2.47 2.48 2.57 2.47 2.53 2.49 2.46 2.42 2.58 2.53 2.52 2.53 2.46 2.52 2.46 (IV) Al 0.56 0.57 0.62 0.60 0.58 0.48 0.58 0.55 0.56 0.61 0.69 0.56 0.53 0.53 0.58 0.64 0.55 0.62 (VI) Fe 2.19 2.17 2.18 2.11 2.14 2.20 2.13 2.12 2.06 2.08 2.03 2.06 2.11 2.20 2.07 2.06 2.10 2.09

Mn 0.02 0.03 0.03 0.03 0.02 0.02 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.02 0.02 0.03

Mg 2.88 2.85 2.86 2.87 2.84 2.89 2.90 2.90 2.91 2.89 2.84 2.96 2.96 2.89 2.92 2.91 2.93 2.88

Ca 0.01 0.00 0.00 0.01 0.02 0.02 0.00 0.00 0.02 0.01 0.00 0.00 0.02 0.02 0.01 0.01 0.00 0.00

Na 0.06 0.05 0.05 0.04 0.04 0.04 0.06 0.05 0.05 0.04 0.05 0.03 0.06 0.05 0.04 0.06 0.04 0.04

K 1.84 1.84 1.85 1.86 1.86 1.81 1.84 1.90 1.90 1.84 1.81 1.90 1.82 1.81 1.91 1.89 1.87 1.91

F 0.00 0.17 0.03 0.00 0.00 0.03 0.21 0.01 0.10 0.00 0.18 0.00 0.09 0.08 0.23 0.37 0.01 0.22

Cl 0.00 0.01 0.01 0.02 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01

Sum 15.74 15.89 15.76 15.72 15.70 15.74 15.94 15.78 15.83 15.68 15.80 15.76 15.83 15.80 15.99 16.10 19.73 19.73 catio ns

72

Appendix 1k. Chlorite EMPA data for sample JaK-5. Oxides are in wt.%. Cations calculated as atomic proportions in the mineral formula (on the basis of 28 oxygens)

Sample JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- 5_chl 1 5_chl 1 5_chl 2 5_chl 2 5_chl 3 5_chl 3 5_chl 4 5_chl 4 5_chl 5 5_chl 5 5_chl 6 5_chl 6 5_chl 7 5_chl 7 5_chl 8 5_chl 8 5_chl 9 5_chl 9 A B A B A B A B A B A B A B A B A B

SiO2 28.80 26.82 28.93 26.67 24.44 25.38 24.78 25.52 27.96 26.18 24.85 26.29 24.87 25.14 24.87 25.56 25.30 25.43

TiO2 0.00 0.00 0.00 0.09 0.21 0.00 0.04 0.18 0.00 0.07 0.04 0.09 0.03 0.10 0.00 0.07 0.08 0.11

Al2O3 16.49 17.41 16.48 16.65 18.28 17.63 18.44 18.10 16.05 17.36 17.99 17.29 18.04 18.01 17.90 17.98 18.13 17.83

FeO 26.13 27.58 26.13 27.68 30.20 29.63 31.06 29.12 25.08 25.99 29.05 27.97 29.56 28.36 29.41 28.25 28.55 28.34

MnO 0.37 0.46 0.44 0.44 0.41 0.54 0.32 0.33 0.52 0.36 0.54 0.61 0.40 0.42 0.45 0.41 0.38 0.43

MgO 15.16 14.84 14.50 14.79 14.04 14.17 13.68 13.75 16.02 16.48 14.19 15.79 13.61 13.81 14.37 13.93 13.79 13.84

CaO 0.00 0.00 0.13 0.07 0.02 0.04 0.00 0.01 0.04 0.00 0.04 0.02 0.02 0.00 0.02 0.00 0.01 0.06

Na2O 0.06 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.01 0.00 0.00 0.00 0.00 0.00

K2O 0.00 0.02 0.03 0.01 0.02 0.02 0.02 0.00 0.04 0.01 0.04 0.00 0.00 0.00 0.03 0.00 0.01 0.01

H2O 11.27 11.14 11.23 11.01 10.97 11.00 11.04 11.00 11.11 11.12 10.93 11.20 10.88 10.87 10.95 10.94 10.93 10.91

Total 98.27 98.27 98.00 97.41 98.61 98.41 99.38 98.01 96.83 97.56 97.70 99.29 97.42 96.73 98.00 97.14 97.18 96.95

Si 6.13 5.78 6.18 5.81 5.34 5.54 5.38 5.56 6.04 5.65 5.46 5.63 5.48 5.55 5.45 5.60 5.55 5.59

Ti 0.00 0.00 0.00 0.01 0.04 0.00 0.01 0.03 0.00 0.01 0.01 0.01 0.01 0.02 0.00 0.01 0.01 0.02

Al (IV) 1.87 2.22 1.82 2.19 2.66 2.46 2.62 2.44 1.96 2.35 2.55 2.37 2.52 2.45 2.55 2.40 2.45 2.41

Al (VI) 2.26 2.20 2.33 2.08 2.05 2.07 2.11 2.21 2.12 2.06 2.11 1.99 2.17 2.23 2.07 2.25 2.24 2.21

Fe 4.65 4.97 4.67 5.04 5.52 5.41 5.64 5.31 4.53 4.69 5.33 5.01 5.45 5.23 5.39 5.18 5.24 5.21

Mn 0.07 0.08 0.08 0.08 0.08 0.10 0.06 0.06 0.10 0.07 0.10 0.11 0.08 0.08 0.08 0.08 0.07 0.08

Mg 4.81 4.76 4.62 4.80 4.57 4.61 4.43 4.47 5.16 5.30 4.64 5.04 4.47 4.54 4.69 4.55 4.51 4.54

Ca 0.00 0.00 0.03 0.02 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.01

Na 0.03 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00

K 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00

Sum 19.82 20.02 19.78 20.04 20.27 20.20 20.25 20.08 19.92 20.13 20.22 20.18 20.18 20.10 20.25 20.07 20.09 20.08 cations

73

Appendix 1l. Chlorite EMPA data for sample JaK-6. Oxides are in wt.%.

Sample JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- 6_chl 1 6_chl 1 6_chl 2 6_chl 2 6_chl 3 6_chl 3 6_chl 4 6_chl 4 6_chl 5 6_chl 5 6_chl 6 6_chl 6 6_chl 7 6_chl 7 A B A B A B A B A B A B A B SiO2 28.49 24.23 28.80 25.71 24.39 25.30 25.37 25.83 25.73 26.16 25.19 25.15 26.10 26.15

TiO2 0.12 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.20 0.06 0.17 0.00

Al2O3 17.13 17.22 17.13 17.27 18.53 18.25 17.30 17.34 17.43 17.11 17.40 17.31 17.22 17.14

FeO 29.81 29.15 28.69 29.06 31.73 30.99 29.50 28.47 28.43 29.87 29.66 30.65 29.77 29.16

MnO 0.40 0.53 0.43 0.45 0.54 0.46 0.39 0.45 0.41 0.43 0.45 0.51 0.41 0.45

MgO 13.15 13.74 13.40 13.99 11.76 12.35 14.27 13.84 13.44 13.60 12.79 13.73 13.87 13.66

CaO 0.08 0.09 0.02 0.02 0.15 0.05 0.05 0.03 0.06 0.00 0.05 0.00 0.01 0.00

Na2O 0.07 0.00 0.03 0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.03 0.00 0.00

K2O 0.03 0.04 0.01 0.00 0.00 0.00 0.04 0.06 0.03 0.03 0.04 0.02 0.04 0.00

H2O 11.35 10.65 11.33 10.92 10.81 10.93 10.95 10.90 10.84 10.98 10.77 10.93 11.04 10.94

Total 100.64 95.67 99.84 97.43 97.92 98.34 97.96 96.94 96.36 98.19 96.55 98.40 98.62 97.50

Si 6.02 5.46 6.10 5.65 5.41 5.55 5.56 5.69 5.70 5.71 5.61 5.52 5.67 5.73

Ti 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03 0.01 0.03 0.00

Al (IV) 1.98 2.54 1.90 2.35 2.59 2.45 2.44 2.32 2.31 2.29 2.39 2.48 2.33 2.27

Al (VI) 2.29 2.03 2.37 2.12 2.26 2.27 2.02 2.18 2.24 2.12 2.17 2.00 2.08 2.16

Fe 5.27 5.49 5.08 5.34 5.89 5.69 5.41 5.24 5.26 5.46 5.52 5.63 5.41 5.35

Mn 0.07 0.10 0.08 0.08 0.10 0.09 0.07 0.08 0.08 0.08 0.09 0.10 0.08 0.08

Mg 4.14 4.61 4.23 4.58 3.89 4.04 4.66 4.54 4.43 4.43 4.25 4.49 4.49 4.46

Ca 0.02 0.02 0.00 0.01 0.04 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00

Na 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

K 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.00

Sum 19.85 20.26 19.77 20.12 20.17 20.09 20.20 20.08 20.04 20.09 20.08 20.24 20.10 20.05 cations

74

Appendix 1m. Chlorite EMPA data for sample JaK-10. Oxides are in wt.%.

Sample JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- 10_chl 1 10_chl 1 10_chl 2 10_chl 2 10_chl 3 10_chl 3 10_chl 4 10_chl 4 10_chl 5 10_chl 5 10_chl 6 10_chl 6 10_chl 7 10_chl 7 10_chl 8 10_chl 8 A B A B A B A B A B A B A B A B

SiO2 26.20 26.41 27.33 28.11 26.73 25.72 27.75 27.67 26.20 27.07 25.66 26.91 25.13 25.75 26.39 25.26

TiO2 0.03 0.15 0.18 0.00 0.06 0.00 0.15 0.00 0.01 0.12 0.00 0.00 0.06 0.13 0.00 0.12

Al2O3 18.81 18.39 18.44 16.94 17.96 18.81 18.57 18.72 18.65 18.74 19.13 18.69 18.95 18.58 18.76 19.33

FeO 15.12 14.54 14.34 15.50 13.90 14.83 14.49 14.03 14.83 14.29 14.88 15.28 14.68 14.80 14.58 14.51

MnO 0.08 0.19 0.19 0.17 0.22 0.11 0.17 0.20 0.11 0.26 0.26 0.22 0.19 0.21 0.21 0.15

MgO 25.37 25.83 26.04 25.63 26.27 25.25 25.18 25.17 25.08 25.34 25.24 25.39 25.50 25.63 25.47 25.62

CaO 0.01 0.01 0.06 0.10 0.04 0.03 0.01 0.00 0.06 0.03 0.00 0.07 0.02 0.00 0.01 0.03

Na2O 0.03 0.00 0.00 0.01 0.00 0.01 0.02 0.01 0.04 0.00 0.00 0.00 0.02 0.00 0.01 0.00

K2O 0.11 0.02 0.04 0.08 0.00 0.01 0.26 0.14 0.03 0.01 0.00 0.04 0.00 0.00 0.02 0.03

H2O 11.68 11.69 11.87 11.79 11.68 11.56 11.87 11.82 11.60 11.77 11.60 11.80 11.51 11.59 11.68 11.60

Total 97.42 97.23 98.49 98.33 96.86 96.34 98.45 97.76 96.61 97.64 96.79 98.40 96.06 96.70 97.12 96.65

Si 5.38 5.42 5.52 5.72 5.49 5.34 5.61 5.62 5.42 5.52 5.31 5.47 5.24 5.33 5.42 5.22

Ti 0.01 0.02 0.03 0.00 0.01 0.00 0.02 0.00 0.00 0.02 0.00 0.00 0.01 0.02 0.00 0.02

Al (IV) 2.62 2.58 2.48 2.28 2.51 2.66 2.39 2.38 2.58 2.48 2.70 2.53 2.76 2.67 2.58 2.78

Al (VI) 1.93 1.87 1.91 1.78 1.84 1.94 2.03 2.09 1.96 2.02 1.97 1.95 1.89 1.86 1.96 1.94

Fe 2.60 2.50 2.42 2.64 2.39 2.58 2.45 2.38 2.56 2.44 2.57 2.60 2.56 2.56 2.50 2.51

Mn 0.01 0.03 0.03 0.03 0.04 0.02 0.03 0.03 0.02 0.05 0.05 0.04 0.03 0.04 0.04 0.03

Mg 7.77 7.90 7.84 7.77 8.04 7.81 7.59 7.62 7.73 7.70 7.78 7.69 7.92 7.91 7.80 7.90

Ca 0.00 0.00 0.01 0.02 0.01 0.01 0.00 0.00 0.01 0.01 0.00 0.02 0.00 0.00 0.00 0.01

Na 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.01 0.00

K 0.03 0.00 0.01 0.02 0.00 0.00 0.07 0.04 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.01

Sum 20.36 20.33 20.26 20.26 20.32 20.36 20.19 20.16 20.32 20.22 20.37 20.30 20.43 20.39 20.31 20.40 cations

75

Appendix 1n. Chlorite EMPA data for sample JaK-23. Oxides are in wt.%.

Samp JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- JaK- le 23_chl 23_chl 23_chl 23_chl 23_chl 23_chl 23_chl 23_chl 23_chl 23_chl 23_chl 23_chl 23_chl 23_chl 23_chl 1 A 1 B 2 A 2 B 3 A 3 B 4 B 5 A 5 B 6 A 6 B 7 A 7 B 8 A 8 B SiO2 29.80 29.84 30.53 30.06 30.27 29.96 29.78 30.56 30.03 29.56 29.82 30.17 29.96 29.60 35.80

TiO2 0.12 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.15 0.00 0.05 0.06 0.00 0.14 0.00

Al2O 18.40 18.20 17.87 18.27 17.25 17.10 18.58 17.92 18.03 18.11 18.24 17.98 18.26 17.60 14.16 3

FeO 11.40 11.45 10.99 11.76 10.81 12.00 11.84 11.59 12.39 11.79 11.71 12.20 11.79 11.40 11.70

MnO 0.07 0.10 0.11 0.18 0.12 0.14 0.15 0.13 0.21 0.12 0.14 0.18 0.12 0.13 0.06

MgO 26.50 26.55 26.92 26.87 26.55 25.57 26.67 26.33 26.69 26.28 26.50 26.53 26.64 26.31 26.85

CaO 0.01 0.01 0.05 0.04 0.17 0.15 0.05 0.11 0.07 0.05 0.08 0.08 0.12 0.07 0.18

Na2O 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.02 0.00

K2O 0.13 0.27 0.31 0.02 0.02 0.04 0.05 0.09 0.05 0.10 0.08 0.14 0.09 0.20 0.00

H2O 12.12 12.10 12.19 12.21 11.99 11.87 12.19 12.17 12.21 12.03 12.12 12.19 12.17 11.96 12.57

Total 98.54 98.51 98.98 99.44 97.19 96.84 99.31 98.94 99.83 98.04 98.74 99.53 99.16 97.43 101.32

Si 5.90 5.92 6.01 5.91 6.06 6.05 5.86 6.02 5.90 5.90 5.90 5.94 5.91 5.94 6.83

Ti 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.01 0.00 0.02 0.00

Al 2.10 2.09 1.99 2.10 1.94 1.95 2.14 1.98 2.10 2.11 2.10 2.06 2.10 2.06 1.17 (IV)

Al 2.19 2.17 2.15 2.13 2.12 2.12 2.17 2.19 2.07 2.15 2.16 2.11 2.15 2.10 2.02 (VI)

Fe 1.89 1.90 1.81 1.93 1.81 2.03 1.95 1.91 2.03 1.97 1.94 2.01 1.94 1.91 1.87

Mn 0.01 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.04 0.02 0.02 0.03 0.02 0.02 0.01

Mg 7.82 7.84 7.89 7.87 7.92 7.70 7.82 7.73 7.81 7.81 7.82 7.78 7.83 7.86 7.64

Ca 0.00 0.00 0.01 0.01 0.04 0.03 0.01 0.02 0.01 0.01 0.02 0.02 0.03 0.01 0.04

Na 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00

K 0.03 0.07 0.08 0.01 0.01 0.01 0.01 0.02 0.01 0.03 0.02 0.04 0.02 0.05 0.00

Sum 19.96 19.99 19.96 19.98 19.92 19.92 19.99 19.92 20.00 19.99 19.97 19.99 19.99 19.99 19.57 catio ns

76

8.2 Appendix 2

Appendix 2a. Biotite LAICPMS data for JaK-3. Concentrations are in µg/g.

Sample JaK-3_bt 1 JaK-3_bt 2 JaK-3_bt 3 JaK-3_bt 4 JaK-3_bt 5 JaK-3_bt 6 JaK-3_bt 7 JaK-3_bt 8 JaK-3_bt 9 Rock type AT AT AT AT AT AT AT AT AT Sample Jak 3 Jak 3 Jak 3 Jak 3 Jak 3 Jak 3 Jak 3 Jak 3 Jak 3 Drill core T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 Li 212.00 237.76 203.48 240.78 216.10 258.08 223.72 249.82 185.11 B LOD LOD LOD 0.44 LOD 0.47 LOD 0.57 LOD Na 614.14 620.04 486.72 674.76 520.61 763.00 567.15 731.77 394.89 Mg 71588.41 70551.84 73636.88 72087.44 74113.34 71244.21 70430.04 72566.05 76745.43 Al 85258.49 84808.65 85576.03 85946.49 84649.88 85867.10 84888.03 85655.41 85840.64 Si 170074.22 168369.85 168069.74 172417.43 174793.17 171067.30 167346.53 177421.62 174635.42 P 13.74 16.84 LOD LOD 17.42 18.36 LOD LOD LOD Cl 932.07 903.95 952.25 915.85 866.21 886.45 988.32 985.20 1018.32 K 81617.81 82708.56 80704.57 83196.67 83508.53 84287.01 82481.44 86333.19 83255.91 43-Ca 401.05 343.69 LOD 422.09 LOD 457.29 LOD LOD 230.29 44-Ca LOD LOD LOD LOD LOD LOD LOD LOD LOD Sc 35.96 31.51 36.20 47.77 21.22 39.54 39.10 35.12 37.48 Ti 9022.41 8946.58 8869.09 9143.70 9225.69 8925.34 9037.12 9431.02 9022.61 Mn 1607.09 1583.85 1720.21 1552.98 1672.46 1588.22 1608.21 1667.76 1810.42 Fe 143415.95 145281.60 151579.40 143327.49 154141.13 145833.13 148573.96 154529.35 157953.22 Co 62.71 71.46 65.56 73.73 71.63 70.05 63.61 61.20 78.97 Ni 186.72 201.57 159.24 208.13 208.05 199.15 153.61 136.43 219.30 Cu 0.17 0.23 0.20 0.22 0.14 LOD 0.14 0.09 0.20 Zn 228.19 215.41 246.40 226.90 235.50 219.76 215.12 235.51 254.69 Ga 49.23 53.99 48.79 52.61 52.01 50.35 49.90 50.86 50.06 As LOD LOD LOD LOD LOD LOD LOD 0.44 LOD Br 12.88 10.75 9.69 14.55 15.27 13.81 16.25 12.50 15.28 Rb 400.64 403.26 399.50 409.79 411.96 414.28 404.61 419.12 403.53 Sr 1.22 1.30 0.96 1.42 1.10 1.45 1.22 1.35 1.05 Zr 0.07 15.22 2.63 0.03 43.52 0.04 0.02 5.19 0.04 Mo 0.06 0.05 LOD LOD 0.03 0.04 LOD LOD LOD Ag LOD LOD LOD LOD LOD LOD LOD LOD LOD Cd LOD LOD LOD LOD LOD LOD LOD LOD LOD Sn 0.42 0.47 0.46 0.42 0.40 0.50 0.41 0.51 0.44 Sb 0.79 0.75 0.73 0.79 0.85 0.98 0.94 0.94 0.77 Cs 41.33 43.08 41.14 42.66 38.66 41.94 42.69 41.07 37.57 Ba 1103.17 1142.82 1085.20 1184.61 1133.84 1111.62 1136.03 1164.42 1072.11 W 0.79 0.68 0.72 0.75 0.64 0.76 0.82 0.70 0.71 Au LOD LOD LOD LOD LOD LOD LOD LOD LOD Tl 4.02 3.94 4.49 4.12 4.30 4.09 4.16 4.23 4.18 Pb 1.96 2.42 1.90 3.11 2.18 2.75 3.52 2.71 1.72 Bi LOD LOD LOD LOD LOD LOD LOD LOD LOD U LOD LOD LOD LOD LOD LOD LOD LOD LOD

77

Appendix 2b. Biotite LAICPMS data for JaK-5. Concentrations are in µg/g.

Sample JaK-5_bt 1 JaK-5_bt 2 JaK-5_bt 3 JaK-5_bt 4 JaK-5_bt 5 JaK-5_bt 6 JaK-5_bt 7 JaK-5_bt 8 JaK-5_bt 9 JaK-5_bt 10 Rock type FP/QV FP/QV FP/QV FP/QV FP/QV FP/QV FP/QV FP/QV FP/QV FP/QV Sample Jak 5 Jak 5 Jak 5 Jak 5 Jak 5 Jak 5 Jak 5 Jak 5 Jak 5 Jak 5 Drill core T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 T-1010

Li 655.17 797.57 579.62 765.54 631.28 646.84 731.26 706.58 622.62 601.48 B 0.92 0.49 0.57 0.44 0.38 0.95 0.78 0.47 0.85 0.53 Na 602.59 465.45 395.47 469.30 407.81 526.67 474.18 428.69 462.48 429.13 Mg 52812.10 66260.19 53950.68 66854.72 57792.85 56644.57 61357.34 61468.73 55529.39 60617.49 Al 81871.44 76367.48 79569.30 75203.18 78722.54 80760.06 75944.10 75229.64 80918.83 77902.24 Si 167837.21 180984.66 160285.13 172440.80 168601.68 173113.24 173955.63 172356.27 169103.13 164364.02 P LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD Cl 959.67 777.75 844.54 752.41 771.02 830.85 873.06 843.78 855.23 890.93 K 79898.48 84472.74 79423.55 81308.74 81085.70 82267.00 81684.97 81474.43 81653.04 80363.28 43-Ca 197.03 LOD LOD LOD LOD LOD LOD LOD LOD 175.64 44-Ca LOD LOD LOD 144.28 LOD 137.30 132.85 55.12 LOD 130.63 Sc 5.69 2.74 5.47 2.90 2.94 3.54 2.99 2.84 7.64 3.03 Ti 13698.54 12405.05 15475.36 11337.56 15105.65 14987.03 13441.88 12976.11 15658.41 13514.18 Mn 1330.67 1210.60 1246.53 1166.21 1294.21 1364.41 1234.69 1184.47 1247.54 1311.53 Fe 163544.27 162400.08 169239.84 157384.12 165352.10 173962.02 161898.76 161150.28 170976.85 159795.72 Co 6.76 6.41 7.63 6.89 7.04 6.41 6.86 6.11 7.43 7.47 Ni 161.27 173.18 178.19 166.30 157.49 162.26 161.99 160.26 182.88 158.07 Cu 0.06 0.18 0.15 0.18 0.13 0.33 0.14 0.08 0.34 0.19 Zn 739.73 751.51 698.07 739.02 721.58 772.08 714.01 723.57 744.09 621.60 Ga 70.10 58.99 60.09 57.52 52.54 57.50 56.52 58.27 72.60 56.02 As 0.28 0.34 0.36 0.67 0.39 0.30 0.34 0.52 0.30 0.45 Br 11.41 13.21 11.60 13.47 18.94 15.39 9.61 17.40 12.71 14.51 Rb 598.28 815.40 586.66 816.21 605.38 612.31 711.46 749.87 597.02 628.89 Sr 2.24 1.46 2.57 1.52 3.05 5.55 4.18 1.95 2.44 4.84 Zr 0.08 0.02 0.03 0.16 0.08 2.03 0.18 0.02 0.05 7.60 Mo 0.04 LOD LOD 0.05 0.06 LOD 0.04 0.04 0.06 0.02 Ag LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD Cd LOD 0.83 LOD LOD LOD LOD LOD LOD LOD LOD Sn 5.87 0.40 3.39 0.28 2.62 4.73 0.65 0.53 5.07 1.45 Sb 3.12 4.01 3.10 3.54 3.70 3.43 3.35 3.22 3.29 3.23 Cs 45.91 68.48 42.11 67.48 44.72 44.10 61.84 63.28 41.46 52.73 Ba 207.18 483.92 204.30 444.42 317.75 332.48 417.04 501.41 328.30 435.10 W 0.85 0.15 0.97 0.34 1.03 1.04 0.38 0.28 1.06 0.70 Au LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD Tl 6.29 10.42 6.36 10.90 6.35 6.58 8.42 9.59 6.08 6.81 Pb 4.08 0.92 4.46 0.77 4.27 4.74 2.23 1.39 4.64 3.26 Bi LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD U 0.02 0.01 LOD 0.03 0.00 0.01 0.02 0.01 LOD 0.06

78

Appendix 2c. Biotite LAICPMS data for JaK-6. Concentrations are in µg/g.

Sample JaK-6_bt 1 JaK-6_bt 2 JaK-6_bt 3 JaK-6_bt 4 JaK-6_bt 5 JaK-6_bt 6 JaK-6_bt 7 JaK-6_bt 8 Rock type FP/QV FP/QV FP/QV FP/QV FP/QV FP/QV FP/QV FP/QV Sample Jak 6 Jak 6 Jak 6 Jak 6 Jak 6 Jak 6 Jak 6 Jak 6 Drill core T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 Li 616.82 652.08 618.89 591.64 642.46 658.86 634.17 674.50 B LOD LOD 0.38 0.44 0.39 0.81 0.78 0.46 Na 332.44 345.44 326.52 346.40 345.61 382.24 343.77 369.38 Mg 52239.25 53237.44 57287.93 57549.45 55788.55 59381.02 57420.18 55103.78 Al 75309.02 77214.24 78749.00 78113.93 78749.00 81553.90 78405.00 79860.38 Si 165716.28 170210.25 168837.60 166074.14 163826.02 178172.74 173059.96 172990.96 P LOD LOD LOD LOD LOD LOD LOD LOD Cl 808.60 684.55 853.49 825.64 794.15 869.98 975.15 901.79 K 80145.65 83168.86 82966.92 78242.05 80336.07 87781.07 84385.84 84218.61 43-Ca LOD LOD LOD LOD LOD LOD LOD LOD 44-Ca LOD LOD 35.02 LOD LOD LOD LOD LOD Sc 3.32 3.09 2.76 2.56 3.28 3.39 2.96 3.30 Ti 12505.20 13317.46 13279.88 11579.18 12756.44 12705.97 12397.92 13217.37 Mn 1754.37 1801.04 1825.13 1828.55 1754.17 1910.67 1814.84 1820.54 Fe 164189.84 168571.61 169136.94 170247.92 166242.69 179435.51 171876.25 171834.49 Co 5.08 6.37 4.31 4.31 5.07 4.51 5.58 6.42 Ni 117.68 112.80 115.41 127.38 112.09 137.27 103.28 97.65 Cu 0.15 LOD 0.27 0.27 0.10 0.41 0.25 0.07 Zn 699.82 737.62 731.21 735.60 698.14 739.88 735.00 755.81 Ga 58.16 59.52 57.38 55.92 63.03 67.68 61.24 55.93 As 0.63 0.59 0.54 1.85 0.44 LOD 0.87 0.58 Br LOD LOD 14.61 14.33 16.17 15.76 17.12 14.79 Rb 591.10 612.18 627.12 585.23 605.67 685.86 601.26 626.26 Sr 2.73 3.00 3.77 2.90 2.69 3.00 3.02 2.61 Zr 0.04 0.20 1.16 0.03 1.96 1.00 0.18 0.02 Mo LOD LOD 0.02 LOD 0.10 0.12 0.07 0.09 Ag LOD LOD LOD LOD LOD LOD LOD LOD Cd LOD LOD LOD LOD LOD LOD LOD LOD Sn 1.31 1.25 1.33 1.34 1.57 1.06 0.94 2.08 Sb 2.10 2.83 2.77 2.56 2.45 2.65 2.63 2.43 Cs 31.80 25.43 21.07 30.57 18.76 34.81 15.08 27.59 Ba 635.63 640.52 672.13 494.37 890.46 959.08 679.82 563.96 W 1.21 1.16 1.28 1.31 1.21 1.40 1.21 1.05 Au LOD LOD LOD LOD LOD LOD LOD LOD Tl 5.91 6.15 6.16 5.61 6.03 6.49 6.02 6.45 Pb 4.14 3.70 2.14 5.71 3.31 6.68 4.27 4.32 Bi LOD LOD LOD LOD LOD LOD LOD LOD U 0.08 LOD 0.10 0.05 0.07 0.10 0.22 LOD

79

Appendix 2d. Biotite LAICPMS data for JaK-10. Concentrations are in µg/g.

Sample JaK-10_bt JaK-10_bt JaK-10_bt JaK-10_bt JaK-10_bt JaK-10_bt JaK-10_bt JaK-10_bt JaK-10_bt JaK-10_bt 1 2 3 4 5 6 7 8 9 10 Rock BTS/SK BTS/SK BTS/SK BTS/SK BTS/SK BTS/SK BTS/SK BTS/SK BTS/SK BTS/SK type Sample Jak 10 Jak 10 Jak 10 Jak 10 Jak 10 Jak 10 Jak 10 Jak 10 Jak 10 Jak 10 Drill core T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 T-1010

Li 228.88 256.88 218.30 241.60 288.05 266.23 216.36 230.09 214.44 221.24 B 1.37 0.78 1.39 1.61 1.46 1.01 0.80 2.51 1.22 1.23 Na 779.96 1751.36 1095.04 1000.42 1697.50 1468.73 1019.98 921.69 945.41 1200.59 Mg 115009.88 111553.28 112318.34 122463.37 107902.43 109803.26 111471.09 114603.39 111974.64 110633.25 Al 70810.59 72662.89 71816.12 75732.40 73139.19 70016.75 69990.29 70149.06 71128.13 69117.07 Si 188989.24 189395.03 186449.83 205903.18 188834.30 188144.94 183006.16 196086.66 187051.12 188966.13 P 15.28 13.85 23.15 22.94 LOD 18.75 LOD LOD 18.19 LOD Cl 919.67 818.70 860.44 1039.17 909.37 852.94 889.37 1016.84 793.93 973.03 K 82373.10 83594.28 83146.13 93239.34 83034.18 82639.10 82760.03 87707.95 82336.61 82719.18 43-Ca LOD LOD 78.21 93.85 LOD LOD LOD 191.53 LOD LOD 44-Ca 34.58 69.29 95.53 90.45 32.38 LOD LOD LOD LOD LOD Sc 3.53 8.05 5.19 6.08 1.22 2.74 2.12 0.95 0.88 4.31 Ti 8229.26 8027.11 7917.09 11746.00 6114.90 6532.08 6661.63 6941.81 5951.84 7160.81 Mn 845.35 853.91 835.69 952.50 850.95 828.56 800.70 861.58 819.02 821.68 Fe 95796.88 95631.55 97459.61 111690.06 93899.30 92143.22 92160.60 98938.52 93419.34 96562.53 Co 84.06 84.75 82.11 94.66 80.68 80.66 79.83 85.94 80.59 90.98 Ni 972.36 872.55 953.85 1291.33 979.09 994.37 1045.57 988.81 906.02 1409.71 Cu 0.15 0.13 0.08 0.34 0.09 0.13 0.09 0.74 0.13 0.11 Zn 238.60 241.46 237.66 261.35 246.07 239.59 229.42 236.23 215.10 241.08 Ga 90.53 103.21 101.51 125.59 97.80 91.11 91.55 108.90 103.25 108.99 As 0.29 0.27 0.26 0.45 LOD LOD 0.26 LOD 0.39 LOD Br 17.24 14.84 14.13 20.50 17.29 13.37 19.18 15.41 18.88 16.78 Rb 431.83 394.97 401.31 486.08 398.16 390.41 395.25 454.48 428.64 413.94 Sr 0.80 3.98 1.53 1.23 3.49 1.33 0.75 1.56 0.65 0.83 Zr 0.06 0.24 0.15 0.16 0.02 0.02 0.06 0.17 0.07 0.14 Mo LOD 0.02 0.02 0.05 LOD LOD LOD LOD LOD 0.04 Ag LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD Cd LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD Sn 0.88 0.70 0.82 0.99 0.69 0.71 0.86 1.16 0.85 0.95 Sb 0.36 0.28 0.44 0.50 0.39 0.31 0.33 0.36 0.34 0.67 Cs 149.20 120.16 128.99 164.44 136.94 117.16 114.23 135.80 121.92 141.17 Ba 1961.92 2360.65 2291.06 2661.56 2322.46 2133.18 2032.56 2160.27 2054.09 2241.70 W 0.16 0.21 0.61 0.13 0.31 0.19 0.21 0.15 0.18 0.19 Au LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD Tl 4.51 3.93 4.06 5.22 4.14 3.98 4.16 4.72 4.36 4.51 Pb 1.50 5.15 2.50 1.30 6.48 3.93 1.84 1.55 1.48 1.83 Bi LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD U 0.04 0.03 0.02 0.02 0.03 0.03 0.02 0.04 0.03 0.05

80

Appendix 2e. Biotite LAICPMS data for JaK-19. Concentrations are in µg/g.

Sample JaK-19_bt JaK-19_bt JaK-19_bt JaK-19_bt JaK-19_bt JaK-19_bt JaK-19_bt JaK-19_bt 1 2 3 4 5 6 7 8 Rock FP/QV FP/QV FP/QV FP/QV FP/QV FP/QV FP/QV FP/QV type Sample Jak 19 Jak 19 Jak 19 Jak 19 Jak 19 Jak 19 Jak 19 Jak 19 Drill core T-1017 T-1017 T-1017 T-1017 T-1017 T-1017 T-1017 T-1017 Li 538.99 569.20 415.83 405.51 434.34 480.43 490.34 516.26 B LOD 0.36 LOD LOD 0.89 LOD 0.67 LOD Na 323.52 319.50 936.60 327.64 319.90 306.35 306.45 325.10 Mg 68965.84 70136.81 60074.21 53022.72 54826.93 66709.08 65761.46 67609.80 Al 77611.16 77267.16 79225.30 75811.79 80204.37 78034.54 77267.16 77981.62 Si 181356.61 175536.74 166304.09 156231.35 166050.87 170596.29 170899.20 170513.45 P LOD LOD LOD LOD LOD LOD LOD 134.64 Cl 785.31 778.24 828.24 903.78 860.66 840.50 942.68 841.48 K 84796.68 80646.75 78027.62 75632.31 79669.44 80194.67 79825.61 81631.41 43-Ca LOD LOD LOD LOD LOD LOD LOD LOD 44-Ca 89.37 118.05 62.06 41.10 66.22 55.49 193.50 118.19 Sc 15.02 13.38 21.97 4.89 5.28 20.45 22.34 16.16 Ti 9478.51 10191.27 11773.22 9799.65 11619.97 11721.99 11311.57 9670.24 Mn 2647.27 2477.77 2030.77 2144.49 2159.54 2673.30 2603.90 2566.21 Fe 145953.68 135636.75 150688.55 153311.16 161634.36 149375.49 144154.71 140770.49 Co 1.86 0.92 0.06 0.19 0.12 8.68 9.14 0.34 Ni 221.13 228.22 77.94 22.24 58.13 203.89 196.41 240.68 Cu 0.17 0.11 0.31 0.15 0.23 0.09 0.53 0.16 Zn 759.27 713.43 959.42 1074.91 1101.54 771.56 740.76 748.99 Ga 86.75 80.44 70.56 68.85 73.02 65.84 69.24 80.60 As LOD 0.28 LOD LOD LOD 0.37 0.43 LOD Br LOD 14.17 12.53 14.81 16.94 12.00 14.61 LOD Rb 534.73 523.59 497.23 483.28 515.83 526.21 531.00 508.22 Sr 2.74 1.82 3.07 2.82 3.47 2.40 4.48 2.23 Zr 0.07 0.30 1.76 0.02 0.03 37.70 393.50 0.01 Mo 0.11 0.07 LOD LOD LOD LOD LOD LOD Ag LOD LOD LOD LOD LOD LOD LOD LOD Cd LOD LOD LOD LOD LOD LOD LOD LOD Sn 3.00 3.04 1.60 4.70 4.46 2.54 2.59 3.25 Sb 3.52 3.35 2.87 4.43 4.47 3.17 3.63 3.46 Cs 20.94 13.71 38.91 28.06 35.77 25.45 30.72 25.38 Ba 357.01 353.79 362.14 287.78 237.45 296.78 463.85 227.60 W 1.02 0.87 1.31 1.20 1.45 1.18 0.98 1.05 Au LOD LOD LOD LOD LOD LOD LOD LOD Tl 4.21 4.01 4.05 3.97 4.80 4.26 4.50 3.96 Pb 3.48 3.34 5.06 5.57 5.82 4.40 4.98 3.81 Bi LOD LOD LOD LOD LOD LOD LOD LOD U LOD 0.05 0.04 LOD LOD 0.20 1.72 LOD

81

Appendix 2f. Biotite LAICPMS data for JaK-20. Concentrations are in µg/g.

Sample JaK-20_bt 1 JaK-20_bt 2 JaK-20_bt 3 JaK-20_bt 4 JaK-20_bt 5 JaK-20_bt 6 JaK-20_bt 7 JaK-20_bt 8 Rock type AT AT AT AT AT AT AT AT Sample Jak 20 Jak 20 Jak 20 Jak 20 Jak 20 Jak 20 Jak 20 Jak 20 Drill core T-1017 T-1017 T-1017 T-1017 T-1017 T-1017 T-1017 T-1017 Li 359.35 354.72 365.20 336.58 348.20 360.57 348.47 343.61 B 0.73 0.50 0.49 0.34 0.55 0.48 0.47 0.48 Na 295.93 248.35 240.01 217.97 233.78 244.52 289.07 227.46 Mg 61243.88 61732.77 62065.09 61818.06 61305.44 61158.02 60730.39 59121.06 Al 79648.69 80310.22 79145.92 78166.85 78219.77 77293.62 77796.39 77637.62 Si 163767.23 170049.86 168298.80 166317.34 169296.06 170025.90 172921.13 164544.41 P LOD 15.45 12.18 13.32 LOD LOD LOD 13.22 Cl 826.91 805.38 795.02 870.99 910.78 819.93 912.44 891.44 K 78358.04 81032.39 79845.30 79043.41 80071.56 80257.00 81065.09 79126.93 43-Ca LOD LOD LOD 51.85 88.60 64.26 127.41 LOD 44-Ca 53.31 55.42 29.85 44.35 81.08 47.27 78.32 28.44 Sc 43.72 42.95 42.66 44.26 40.71 38.33 39.31 42.07 Ti 15656.85 16305.31 16880.71 15931.84 16197.88 15850.81 15916.78 15880.17 Mn 2118.60 2179.42 2150.05 2134.19 2165.21 2108.94 2161.15 2104.63 Fe 162323.23 162580.93 163268.77 161165.81 162802.46 162240.24 163676.87 160119.58 Co 88.35 94.63 96.73 90.19 90.40 87.72 87.16 90.70 Ni 127.77 131.59 121.48 108.27 116.18 125.17 133.28 108.68 Cu 0.42 0.21 0.14 0.18 0.52 0.28 1.90 0.25 Zn 487.18 509.90 514.40 503.84 491.65 518.96 525.58 482.93 Ga 123.48 97.59 113.37 119.87 119.41 119.20 123.12 122.60 As LOD 0.39 0.31 0.35 0.42 0.34 0.32 0.33 Br 12.45 16.71 12.23 10.68 14.39 14.88 12.62 14.14 Rb 423.40 348.74 319.15 398.33 431.81 399.69 424.03 411.72 Sr 11.39 7.06 7.69 6.45 6.62 6.28 7.98 8.26 Zr 0.02 0.03 0.02 454.92 158.46 0.07 0.08 0.03 Mo 0.07 0.08 0.14 0.13 0.12 0.06 0.09 0.10 Ag LOD LOD LOD 0.08 LOD LOD LOD LOD Cd LOD LOD LOD LOD LOD LOD LOD LOD Sn 2.16 2.18 2.17 2.27 2.25 2.19 2.32 1.96 Sb 3.93 3.48 3.48 3.50 3.40 3.34 3.58 3.51 Cs 38.86 35.30 29.44 36.68 41.48 36.53 38.47 35.23 Ba 1893.17 1395.04 1697.43 1804.24 1819.67 1782.48 1821.28 1935.29 W 0.97 0.94 0.83 0.97 1.00 0.85 1.02 0.93 Au LOD LOD LOD LOD LOD LOD LOD LOD Tl 3.13 2.92 2.73 3.10 3.17 3.21 3.18 3.28 Pb 7.63 5.56 5.06 5.42 5.67 4.92 6.67 7.24 Bi LOD LOD LOD LOD 0.07 LOD LOD LOD U LOD LOD LOD 4.91 1.44 0.00 LOD 0.01

82

Appendix 2g. Biotite LAICPMS data for JaK-23. Concentrations are in µg/g.

Sample JaK-23_bt 1 JaK-23_bt 2 JaK-23_bt 3 JaK-23_bt 4 JaK-23_bt 5 JaK-23_bt 6 JaK-23_bt 7 Rock type AT AT AT AT AT AT AT Sample Jak 23 Jak 23 Jak 23 Jak 23 Jak 23 Jak 23 Jak 23 Drill core T-1017 T-1017 T-1017 T-1017 T-1017 T-1017 T-1017 Li 177.98 204.02 196.93 190.96 205.66 219.31 201.96 B 14.65 15.60 2.14 10.32 4.04 12.37 43.08 Na 606.78 1095.08 802.25 539.38 955.21 1052.24 804.26 Mg 140786.18 113122.28 112869.54 124193.33 112580.41 120133.99 139171.87 Al 60437.74 68640.76 66629.70 64671.56 68138.00 68058.61 67820.46 Si 222962.51 176923.44 184825.04 192166.33 173531.31 183009.88 222739.97 P 23.63 31.38 38.22 29.23 23.86 LOD 36.87 Cl 924.36 822.84 933.21 785.31 833.47 897.01 869.47 K 71949.13 78222.76 82350.85 79787.39 76930.78 80748.60 80521.27 43-Ca 67.79 179.97 LOD 83.50 LOD LOD 106.11 44-Ca 87.88 145.06 LOD LOD 20.29 LOD 115.95 Sc 43.45 47.69 48.19 47.95 44.90 43.96 47.25 Ti 5814.72 5740.22 6296.57 6604.94 5712.53 5892.93 6107.48 Mn 567.46 596.20 584.02 577.70 579.94 616.73 597.90 Fe 78638.77 78695.12 80556.13 80797.94 76378.11 81175.73 83294.69 Co 46.41 40.24 41.87 43.62 39.31 38.82 47.50 Ni 1087.85 903.23 1021.10 1061.83 842.38 1024.29 1115.66 Cu 0.30 0.51 1.20 0.27 0.18 0.34 0.61 Zn 162.66 160.64 141.94 148.19 151.03 162.61 160.04 Ga 46.79 54.65 53.54 49.76 52.21 51.77 49.39 As 0.27 LOD 0.71 0.23 0.35 0.41 0.59 Br 17.13 16.82 17.08 9.17 14.41 15.63 17.33 Rb 315.75 349.16 363.07 357.68 348.73 355.26 369.66 Sr 0.65 0.92 0.80 0.62 0.54 0.45 0.62 Zr 0.19 7.13 1.15 0.07 0.04 0.04 0.05 Mo LOD LOD LOD LOD LOD LOD LOD Ag LOD LOD LOD LOD LOD LOD LOD Cd LOD LOD LOD LOD LOD LOD LOD Sn 0.55 0.59 0.55 0.60 0.50 0.64 0.56 Sb 0.52 0.38 0.31 0.38 0.35 0.39 0.47 Cs 93.35 80.86 112.68 106.47 85.27 97.54 105.45 Ba 954.81 1127.44 1030.22 1012.16 1080.62 1073.70 1010.79 W 0.07 0.11 LOD 0.08 0.07 0.10 0.51 Au LOD LOD LOD LOD LOD LOD LOD Tl 3.51 3.64 3.61 3.78 3.74 3.69 3.89 Pb 0.24 0.32 0.38 0.24 0.76 0.70 0.47 Bi LOD LOD LOD LOD LOD LOD LOD U 0.03 0.05 0.06 0.03 0.05 0.04 0.05

83

Appendix 2h. Biotite LAICPMS data for JaK-37. Concentrations are in µg/g.

Sample JaK-37_bt JaK-37_bt JaK-37_bt JaK-37_bt JaK-37_bt JaK-37_bt JaK-37_bt JaK-37_bt JaK-37_bt 1 2 3 4 5 6 7 8 9 Rock MV/AT MV/AT MV/AT MV/AT MV/AT MV/AT MV/AT MV/AT MV/AT type Sample Jak 37 Jak 37 Jak 37 Jak 37 Jak 37 Jak 37 Jak 37 Jak 37 Jak 37 Drill core T-1034 T-1034 T-1034 T-1034 T-1034 T-1034 T-1034 T-1034 T-1034 Li 200.69 207.84 210.48 205.01 187.33 198.18 212.35 198.46 184.42 B 3.25 1.12 0.42 1.25 0.51 1.86 6.00 1.46 1.46 Na 965.86 872.57 934.31 976.14 838.61 842.18 842.26 1245.79 821.20 Mg 68166.90 66826.47 66844.63 68530.87 65963.57 66273.93 65373.71 66402.23 67971.39 Al 89783.39 90312.61 89333.54 90550.77 90048.00 90339.07 89254.16 89333.54 90497.84 Si 175516.05 171071.69 171714.93 179153.17 162894.86 166206.83 172801.33 158900.76 161461.23 P 53.25 47.67 42.58 38.01 29.38 31.00 39.08 22.28 21.86 Cl 1003.31 891.81 839.37 1038.07 872.17 937.91 997.05 918.20 852.31 K 80951.01 78644.90 79841.38 83533.58 76777.57 79090.06 80672.77 74958.81 76957.17 43-Ca 75.54 56.28 109.55 LOD LOD 89.69 107.96 70.25 71.80 44-Ca 38.95 42.22 75.03 LOD LOD 35.83 101.89 LOD LOD Sc 7.54 5.48 3.99 7.45 5.45 5.22 4.73 2.29 3.87 Ti 11944.48 11303.13 10798.47 11606.15 10780.32 10944.86 10598.56 10004.33 9877.04 Mn 1855.00 1788.71 1802.90 1887.32 1745.12 1800.63 1975.16 1725.70 1724.30 Fe 148956.16 143425.81 144368.36 152823.21 141581.66 144384.93 150153.58 138676.16 138151.72 Co 30.55 28.92 33.20 30.32 25.17 28.15 28.96 29.71 24.08 Ni 54.85 48.64 76.30 53.24 44.16 47.55 46.12 47.51 40.36 Cu 0.93 0.16 0.12 1.39 0.09 0.14 0.35 0.11 0.12 Zn 296.68 272.64 281.05 296.36 230.72 241.45 240.78 274.75 159.53 Ga 38.48 42.51 42.31 46.13 40.84 39.79 41.14 42.42 34.63 As LOD LOD LOD LOD LOD 0.33 LOD LOD LOD Br 14.12 14.26 13.15 16.55 13.25 14.07 14.63 14.13 16.25 Rb 478.21 514.05 517.25 547.62 495.05 492.14 499.74 485.25 457.90 Sr 0.99 0.85 0.68 0.79 0.77 0.75 1.23 0.58 0.73 Zr 0.03 0.04 36.22 0.06 0.04 0.77 54.45 0.02 0.03 Mo LOD 0.06 0.04 LOD 0.05 0.04 0.09 0.06 0.07 Ag LOD LOD LOD LOD LOD LOD LOD LOD LOD Cd LOD LOD LOD LOD LOD LOD LOD LOD LOD Sn 0.12 0.10 0.10 0.09 0.10 0.12 0.08 0.07 0.09 Sb 0.18 0.13 LOD LOD 0.09 0.14 LOD LOD 0.19 Cs 31.35 33.46 32.65 38.14 35.37 32.61 33.01 65.60 30.54 Ba 584.04 757.26 760.48 772.48 693.36 688.62 693.30 787.15 526.11 W 0.56 0.54 0.62 0.73 0.60 0.57 0.65 0.62 0.50 Au LOD LOD LOD LOD 0.01 LOD LOD LOD LOD Tl 3.99 3.97 3.86 4.20 3.91 3.91 3.69 3.91 3.73 Pb 1.39 0.62 1.23 1.07 1.04 1.17 0.89 0.66 0.97 Bi LOD LOD LOD LOD LOD LOD LOD LOD LOD U LOD LOD 0.03 LOD LOD LOD 0.03 LOD LOD

84

Appendix 2i. Biotite LAICPMS data for JaK-38. Concentrations are in µg/g.

Sample JaK_38_bt JaK_38_bt JaK_38_bt JaK_38_bt JaK_38_bt JaK_38_bt JaK_38_bt JaK_38_bt JaK_38_bt JaK_38_bt 1 2 3 4 5 6 7 8 9 10 Rock MV MV MV MV MV MV MV MV MV MV type Sample Jak 38 Jak 38 Jak 38 Jak 38 Jak 38 Jak 38 Jak 38 Jak 38 Jak 38 Jak 38 Drill core T-1034 T-1034 T-1034 T-1034 T-1034 T-1034 T-1034 T-1034 T-1034 T-1034

Li 236.85 240.49 240.46 225.78 225.87 240.40 240.33 237.31 223.97 235.01 B 0.92 0.52 0.58 0.60 0.63 0.86 0.64 0.58 0.45 0.40 Na 862.14 782.50 914.48 759.32 860.78 873.22 855.23 875.87 819.49 816.74 Mg 85637.19 84416.48 86857.83 80620.67 82885.70 84437.17 84793.32 85029.03 79827.50 78566.02 Al 93831.97 93302.75 93964.28 91662.14 91079.99 94281.82 93964.28 93726.13 90259.69 90550.77 Si 182420.93 178845.16 180811.02 164528.64 172578.16 180625.29 178714.04 175368.24 169075.59 174002.09 P LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD Cl 674.73 746.18 890.28 800.32 859.82 1003.45 943.41 874.97 769.35 581.08 K 83621.24 83463.05 85048.61 77480.37 80927.95 85493.24 84548.25 81586.31 78549.02 79391.05 43-Ca LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD 44-Ca 79.31 55.72 LOD LOD LOD LOD LOD LOD 95.41 LOD Sc 5.76 4.32 4.90 3.04 4.62 4.05 5.36 5.15 2.57 3.55 Ti 8809.80 8069.21 8487.60 8457.23 8931.41 8402.96 8252.12 9049.26 8511.67 8641.42 Mn 1171.86 1170.24 1163.63 1137.92 1135.50 1188.07 1141.01 1157.06 1094.31 1139.03 Fe 117646.61 115461.83 115350.59 111784.09 113292.87 116838.69 113795.99 115236.50 109434.77 115351.87 Co 42.29 45.42 44.04 37.98 39.43 45.58 40.24 40.39 35.95 40.48 Ni 294.02 283.81 289.41 291.51 275.95 295.49 281.55 287.05 362.35 304.81 Cu 0.07 0.10 0.09 0.08 0.05 0.06 0.10 0.08 0.13 0.12 Zn 213.67 202.24 201.99 178.28 195.65 201.06 205.12 202.59 178.58 178.27 Ga 42.35 49.58 48.21 49.17 49.72 40.32 46.87 42.70 42.15 44.61 As LOD LOD LOD LOD LOD LOD 0.30 LOD LOD LOD Br 10.20 11.39 11.45 13.28 17.32 14.96 15.69 13.82 13.10 15.14 Rb 393.00 409.87 420.29 388.25 407.97 404.77 432.59 397.42 379.88 406.49 Sr 0.46 0.30 0.35 0.36 0.47 0.40 0.23 0.62 1.34 0.36 Zr 0.04 0.05 0.03 0.04 13.25 0.10 0.03 0.03 46.77 12.24 Mo 0.03 0.05 LOD 0.15 0.04 LOD LOD LOD LOD LOD Ag LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD Cd LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD Sn 0.12 0.10 0.13 0.15 0.09 0.15 0.12 0.11 0.10 0.15 Sb 0.13 0.11 0.11 0.14 0.15 LOD LOD LOD LOD 0.19 Cs 52.95 35.22 37.05 37.06 35.69 42.57 41.48 39.66 34.34 37.17 Ba 405.93 604.35 631.83 627.18 645.57 358.74 596.62 484.69 424.20 527.03 W 0.26 0.49 0.51 0.43 0.37 0.38 0.53 0.46 0.37 0.35 Au LOD LOD LOD LOD LOD LOD LOD LOD LOD LOD Tl 2.94 2.73 2.74 2.68 2.65 2.72 2.84 2.68 2.56 2.55 Pb 0.91 0.73 0.65 0.54 1.14 1.45 0.52 0.95 0.76 0.55 Bi LOD LOD LOD LOD LOD LOD LOD 0.01 LOD LOD U LOD LOD LOD LOD 0.01 LOD LOD LOD 0.02 LOD

85

Appendix 2j. Biotite LAICPMS data for JaK-39. Concentrations are in µg/g.

Sample JaK-39_bt JaK-39_bt JaK-39_bt JaK-39_bt JaK-39_bt JaK-39_bt JaK-39_bt JaK-39_bt JaK-39_bt 1 2 3 4 5 6 7 8 9 Rock MV/AT MV/AT MV/AT MV/AT MV/AT MV/AT MV/AT MV/AT MV/AT type Sample Jak 39 Jak 39 Jak 39 Jak 39 Jak 39 Jak 39 Jak 39 Jak 39 Jak 39 Drill core T-1034 T-1034 T-1034 T-1034 T-1034 T-1034 T-1034 T-1034 T-1034 Li 234.49 218.03 222.54 226.23 209.96 213.23 209.93 208.32 211.92 B 7.48 2.25 0.86 2.81 0.88 0.59 1.84 0.56 2.90 Na 1480.79 1135.16 1184.03 1229.63 1377.36 1432.92 1304.23 1318.22 1350.11 Mg 73983.37 75694.85 73654.63 72310.14 72379.59 74664.12 72937.90 73409.59 74247.40 Al 90180.31 90074.46 89704.00 88910.16 89121.85 90735.99 89386.47 90048.00 89227.70 Si 177702.02 176502.47 169541.35 174166.34 165841.90 176137.07 172286.14 170931.61 175643.81 P 116.38 100.38 81.31 76.00 61.00 72.47 139.92 43.41 46.16 Cl 773.68 884.68 843.15 946.04 839.13 846.67 802.41 785.89 827.43 K 80523.36 76849.97 78360.88 80429.09 77281.03 80543.95 80181.04 79429.56 82278.09 43-Ca LOD LOD LOD LOD LOD LOD 171.88 LOD LOD 44-Ca LOD LOD 37.50 LOD LOD LOD 97.42 LOD LOD Sc 4.62 4.58 4.59 4.81 4.69 3.91 5.19 3.83 5.30 Ti 10582.35 10152.42 10169.81 9987.85 10443.37 9951.98 10324.22 9990.05 10651.07 Mn 1419.50 1484.74 1469.41 1347.20 1309.26 1357.58 1390.61 1347.70 1464.86 Fe 130978.08 132793.68 129442.21 132533.84 124117.87 129861.49 131188.14 126184.22 132112.21 Co 22.83 24.55 20.12 22.08 22.58 20.58 21.74 21.49 20.09 Ni 319.05 319.80 319.79 303.22 311.95 310.08 307.84 308.91 328.01 Cu 0.09 0.07 0.09 LOD 0.10 0.08 0.07 0.06 0.11 Zn 170.41 202.92 188.06 170.27 181.76 177.16 175.48 173.41 182.63 Ga 42.58 43.64 40.55 40.59 39.86 46.07 41.32 42.14 43.20 As LOD LOD LOD LOD LOD LOD LOD LOD LOD Br LOD 12.32 12.66 13.60 14.89 13.62 16.36 17.70 12.13 Rb 358.04 340.74 336.15 339.87 336.04 364.38 358.48 356.56 341.13 Sr 0.70 0.43 0.58 0.65 0.59 0.49 0.68 0.55 0.90 Zr 1.55 35.85 3.24 46.46 7.30 33.45 51.94 27.80 0.04 Mo 0.10 0.08 0.06 0.06 0.04 0.06 LOD 0.05 0.04 Ag LOD LOD LOD LOD LOD LOD LOD LOD LOD Cd LOD LOD LOD LOD LOD LOD LOD LOD LOD Sn 0.20 0.14 0.16 0.16 0.12 0.17 0.16 0.20 0.25 Sb LOD LOD LOD LOD LOD 0.15 LOD LOD 0.20 Cs 49.69 39.39 33.43 44.41 28.65 48.27 47.03 49.11 51.82 Ba 559.90 611.99 590.14 566.03 588.61 654.92 542.58 622.28 650.87 W 0.43 0.62 0.53 0.45 0.46 0.65 0.40 0.51 0.55 Au LOD LOD LOD LOD LOD LOD LOD LOD LOD Tl 2.30 2.36 2.28 2.25 2.24 2.35 2.48 2.27 2.19 Pb 1.46 0.89 1.11 1.13 1.22 1.22 1.26 1.09 1.90 Bi LOD LOD LOD LOD LOD LOD LOD LOD LOD U 0.00 0.01 LOD 0.01 LOD LOD 0.03 0.00 LOD

86

Appendix 2k. Chlorite LAICPMS data for JaK-5. Concentrations are in µg/g.

Sample JaK-5_chl 1 JaK-5_chl 2 JaK-5_chl 3 JaK-5_chl 4 JaK-5_chl 5 JaK-5_chl 6 JaK-5_chl 7 JaK-5_chl 8 JaK-5_chl 9 Rock type FP/QV FP/QV FP/QV FP/QV FP/QV FP/QV FP/QV FP/QV FP/QV Sample Jak 5 Jak 5 Jak 5 Jak 5 Jak 5 Jak 5 Jak 5 Jak 5 Jak 5 Drill core T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 Li 153.04 131.44 158.16 173.83 204.72 168.63 165.77 162.56 162.10 B 1.64 1.94 0.85 0.67 1.95 1.30 0.76 0.62 0.46 Na 54.07 41.08 19.91 11.22 36.31 51.20 11.96 10.54 9.15 Mg 91323.37 85892.54 77377.42 74460.74 87703.12 73549.07 75442.53 77195.89 77407.34 Al 90399.24 84786.42 86260.83 85222.95 85990.88 83824.55 89108.69 89395.26 85061.84 Si 130002.15 129955.40 116445.65 117567.57 126542.90 119530.92 116889.74 117871.42 118572.62 P LOD 22.18 LOD LOD LOD LOD LOD LOD LOD Cl 726.62 588.91 514.88 580.76 633.80 548.59 600.78 644.35 599.95 K 77.92 61.33 20.76 18.14 33.09 117.46 15.89 13.44 14.88 43-Ca 343.58 320.10 LOD LOD 251.15 267.50 LOD LOD LOD 44-Ca 161.15 45.88 78.12 LOD 117.69 140.82 LOD LOD LOD Sc 5.45 1.71 6.09 3.10 2.15 3.63 4.71 5.44 5.48 Ti 61.16 65.90 95.97 187.97 125.37 164.29 165.58 146.87 103.58 Mn 3791.81 3599.73 3340.22 2770.43 3371.30 3071.50 3263.55 3350.51 3334.28 Fe 218044.01 212652.28 204443.85 209088.95 203809.64 209151.77 213063.92 213976.00 202703.56 Co 0.67 4.06 5.84 9.38 3.97 9.84 10.51 9.48 5.35 Ni 252.87 245.88 389.05 311.77 187.17 340.28 357.87 394.03 395.22 Cu 0.14 0.36 0.07 0.06 LOD 0.22 LOD LOD 0.04 Zn 957.14 984.80 979.47 1042.70 900.27 1045.87 987.10 1076.48 1019.05 Ga 161.78 132.48 134.70 124.41 106.73 133.72 132.66 137.02 145.99 As 11.82 21.96 3.20 3.86 27.40 5.05 4.75 4.98 3.43 Br 10.38 10.91 LOD 13.89 10.70 9.78 12.19 11.54 12.14 Rb 0.54 0.47 0.24 0.34 0.28 0.43 0.35 0.24 0.29 Sr 5.17 3.60 1.91 1.59 3.38 5.24 1.19 1.45 1.56 Zr 0.16 0.36 4.49 0.24 0.04 5.38 1.10 5.26 0.47 Mo 0.11 0.13 0.08 0.12 0.16 0.06 0.13 0.17 0.09 Ag LOD LOD LOD LOD LOD LOD LOD LOD LOD Cd LOD LOD LOD LOD LOD LOD LOD LOD LOD Sn LOD LOD LOD LOD LOD LOD LOD 0.03 LOD Sb 0.17 0.26 LOD 0.29 0.33 0.41 0.19 LOD LOD Cs 1.74 1.32 0.66 1.06 0.83 0.76 1.09 0.65 0.83 Ba 0.54 0.55 0.15 0.15 0.28 0.29 0.15 0.35 0.23 W LOD 0.02 LOD LOD 0.02 LOD LOD LOD LOD Au LOD LOD LOD LOD LOD LOD LOD LOD LOD Tl LOD 0.04 LOD LOD LOD LOD LOD LOD LOD Pb 0.35 1.55 0.16 0.28 0.52 0.92 0.16 0.27 0.17 Bi LOD LOD LOD LOD LOD LOD LOD LOD LOD U 0.04 0.10 0.01 0.01 0.13 0.03 LOD 0.11 LOD

87

Appendix 2l. Chlorite LAICPMS data for JaK-6. Concentrations are in µg/g.

Sample JaK-6_chl 1 JaK-6_chl 2 JaK-6_chl 3 JaK-6_chl 4 JaK-6_chl 5 JaK-6_chl 6 JaK-6_chl 7 Rock type FP/QV FP/QV FP/QV FP/QV FP/QV FP/QV FP/QV Sample Jak 6 Jak 6 Jak 6 Jak 6 Jak 6 Jak 6 Jak 6 Drill core T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 Li 135.96 137.38 151.10 125.46 128.20 135.84 145.30 B 1.73 1.75 0.85 1.41 1.66 1.34 1.40 Na 40.13 27.45 10.86 37.33 22.77 28.32 24.09 Mg 75521.97 78714.32 66589.05 73170.50 74152.80 70826.22 76701.97 Al 84284.67 87220.50 83941.61 82185.68 83200.22 81787.84 87523.48 Si 123223.90 127407.71 116141.80 119671.16 121283.92 117661.06 122125.35 P LOD 14.35 LOD LOD LOD 15.68 LOD Cl 649.24 565.38 544.48 540.06 525.08 550.35 636.09 K 965.61 128.09 17.57 46.40 40.94 146.91 233.09 43-Ca 327.75 219.27 LOD 116.92 204.96 LOD 156.61 44-Ca 95.23 93.14 26.18 83.27 81.94 48.41 100.39 Sc 3.20 3.83 2.56 3.55 3.52 3.68 4.13 Ti 281.93 91.51 130.67 85.45 86.04 95.20 111.35 Mn 3627.03 3703.22 3521.15 3561.33 3546.04 3609.35 3719.26 Fe 218463.65 222631.85 219291.54 214239.97 217256.84 217665.34 222525.10 Co 1.04 1.22 3.75 1.12 1.32 1.11 1.45 Ni 156.92 162.58 153.19 147.39 151.64 162.07 151.01 Cu 0.37 0.47 0.26 0.48 0.68 1.73 0.34 Zn 1058.90 1081.45 1078.79 1017.89 1046.07 1051.82 1081.57 Ga 154.14 162.08 114.74 148.34 150.50 142.46 159.57 As 30.80 25.60 7.86 28.81 31.04 19.48 25.35 Br 12.85 8.26 6.80 12.15 LOD 7.06 10.72 Rb 7.50 1.23 0.22 0.57 0.64 1.50 2.43 Sr 2.24 2.80 0.83 2.48 2.50 1.60 2.44 Zr 0.38 0.58 0.13 0.37 0.24 0.30 0.31 Mo 0.22 0.16 0.09 0.06 0.09 0.10 0.10 Ag LOD LOD LOD LOD LOD LOD LOD Cd LOD LOD LOD LOD LOD LOD LOD Sn LOD LOD LOD 0.04 LOD LOD 0.04 Sb 0.74 0.83 0.63 0.83 1.02 0.54 0.71 Cs 1.63 1.22 0.47 0.95 1.55 0.89 1.37 Ba 4.90 0.71 0.17 0.32 0.26 1.05 1.06 W LOD LOD LOD LOD LOD LOD 0.02 Au LOD LOD LOD LOD LOD LOD LOD Tl 0.08 LOD LOD LOD LOD LOD 0.02 Pb 3.78 3.79 1.07 3.50 4.15 1.79 0.62 Bi LOD LOD LOD LOD LOD LOD LOD U 1.32 0.39 0.63 0.65 0.15 1.76 0.35

88

Appendix 2m. Chlorite LAICPMS data for JaK-10. Concentrations are in µg/g.

Sample JaK-10_chl 1 JaK-10_chl 2 JaK-10_chl 3 JaK-10_chl 4 JaK-10_chl 5 JaK-10_chl 6 JaK-10_chl 7 JaK-10_chl 8 Rock type BTS/SK BTS/SK BTS/SK BTS/SK BTS/SK BTS/SK BTS/SK BTS/SK Sample Jak 10 Jak 10 Jak 10 Jak 10 Jak 10 Jak 10 Jak 10 Jak 10 Drill core T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 T-1010 Li 91.33 98.90 87.66 105.69 119.67 105.20 104.92 98.93 B 0.92 LOD 0.43 1.98 0.46 1.26 1.08 2.57 Na 40.55 2.07 5.64 46.37 4.29 11.83 10.41 25.49 Mg 125278.86 135142.54 130232.43 146069.48 133128.07 130265.02 129065.18 127100.60 Al 79864.28 86442.57 81396.79 92049.09 89865.61 85940.49 85703.17 82495.02 Si 122966.79 129581.43 122592.82 129534.68 124509.43 122873.30 118923.22 120606.09 P LOD LOD LOD 20.74 LOD LOD 19.48 18.95 Cl 558.61 716.09 625.56 682.25 627.70 673.21 632.71 611.75 K 52.45 6.69 36.11 1311.61 16.51 114.71 26.56 1262.12 43-Ca 116.24 LOD LOD 161.85 LOD LOD LOD 106.01 44-Ca 76.95 LOD LOD 45.13 LOD LOD LOD 78.64 Sc 4.28 3.77 2.53 1.08 2.56 1.96 1.94 1.49 Ti 329.15 352.00 272.70 334.83 282.77 244.83 291.06 358.70 Mn 1109.55 1215.85 1200.50 1338.51 1233.13 1196.41 1200.81 1195.85 Fe 98522.90 103163.23 98677.17 106434.64 98230.94 98555.74 100720.96 97086.05 Co 84.28 91.81 86.48 89.52 84.59 85.78 85.64 85.54 Ni 923.27 1075.13 1027.84 1177.39 1239.00 1282.33 1273.69 1298.85 Cu 0.13 LOD LOD 0.54 0.04 0.07 0.21 0.21 Zn 259.55 286.75 279.69 290.24 257.02 253.90 280.09 256.89 Ga 39.37 41.77 40.34 41.04 36.80 38.85 39.93 41.36 As LOD LOD 0.36 0.28 0.28 0.28 LOD LOD Br 12.37 10.98 12.22 14.92 13.81 13.58 13.07 10.25 Rb 0.43 0.09 0.49 9.25 0.24 1.41 0.27 9.34 Sr 1.20 0.04 0.10 0.83 0.15 0.46 0.38 1.08 Zr 32.31 0.07 2.24 0.14 0.14 0.01 LOD LOD Mo LOD LOD LOD 0.04 0.05 0.07 LOD 0.05 Ag LOD LOD LOD LOD LOD LOD LOD LOD Cd LOD 0.58 LOD LOD LOD LOD LOD LOD Sn LOD LOD 0.05 0.07 LOD 0.07 LOD LOD Sb LOD LOD 0.15 LOD LOD LOD LOD LOD Cs 0.45 0.11 0.83 9.28 0.50 2.48 0.52 8.79 Ba 0.47 0.06 0.12 21.93 0.08 0.98 0.31 24.51 W 0.02 LOD LOD LOD LOD LOD LOD LOD Au LOD LOD LOD LOD LOD LOD LOD LOD Tl LOD LOD LOD 0.12 LOD LOD LOD 0.12 Pb 0.20 LOD 0.04 0.08 LOD 0.04 LOD 0.09 Bi LOD LOD LOD LOD LOD LOD LOD LOD U 0.37 LOD 0.03 LOD LOD LOD LOD LOD

89

Appendix 2n. Chlorite LAICPMS data for JaK-23. Concentrations are in µg/g.

Sample JaK-23_chl JaK-23_chl JaK-23_chl JaK-23_chl JaK-23_chl JaK-23_chl JaK-23_chl JaK-23_chl 1 2 3 4 5 6 7 8 Rock AT AT AT AT AT AT AT AT type Drill core T-1017 T-1017 T-1017 T-1017 T-1017 T-1017 T-1017 T-1017 Li 114.16 120.63 114.98 112.15 114.73 111.20 113.59 127.91 B 3.96 3.26 6.07 3.37 7.00 7.15 6.22 1.93 Na 20.77 21.50 16.44 24.88 16.76 13.24 25.67 19.37 Mg 162114.22 166831.88 160732.53 159847.92 162859.97 157525.97 153471.79 182665.79 Al 97242.24 101039.10 92411.55 96257.85 97957.25 94961.19 93600.15 109252.49 Si 139398.20 141618.66 140777.23 139211.22 141618.66 138790.50 140543.49 152861.21 P 80.81 43.41 44.15 27.46 33.47 28.48 29.63 35.30 Cl 637.47 622.95 616.09 650.92 786.08 739.24 789.02 753.11 K 566.88 1742.91 447.43 537.74 748.31 880.76 536.50 225.48 43-Ca 94.86 208.58 582.98 128.13 468.79 389.92 457.61 294.77 44-Ca 40.67 163.19 506.87 78.47 411.56 385.29 352.52 283.73 Sc 35.26 36.93 31.78 37.15 35.34 33.75 34.20 37.96 Ti 265.62 388.61 227.90 305.68 301.76 285.40 276.40 267.59 Mn 1021.80 1061.80 969.80 1016.38 996.21 962.88 964.33 1126.51 Fe 94904.13 97452.76 92975.03 95905.95 95195.23 92136.62 96833.55 104532.02 Co 49.77 50.07 49.68 49.71 50.74 48.69 50.29 55.00 Ni 1242.71 1195.11 1220.33 1170.16 1168.92 1181.64 1169.92 1260.08 Cu 0.33 0.48 0.53 0.42 0.48 0.73 0.71 0.80 Zn 207.31 206.27 195.56 202.64 192.47 189.36 182.38 222.13 Ga 27.65 27.99 27.09 27.55 27.76 27.43 27.85 29.27 As LOD 0.33 LOD LOD LOD 0.30 LOD LOD Br 11.51 13.68 12.44 11.25 15.84 12.52 16.84 13.12 Rb 4.39 12.29 3.31 3.72 4.60 6.06 3.72 1.99 Sr 0.93 1.11 2.33 0.82 2.16 2.00 2.16 1.44 Zr 0.01 0.02 0.03 0.01 0.02 0.02 6.98 0.02 Mo 0.04 0.04 0.03 0.06 LOD LOD LOD 0.05 Ag LOD LOD LOD LOD LOD LOD LOD LOD Cd LOD LOD LOD LOD LOD LOD 4.02 LOD Sn LOD 0.06 LOD 0.06 0.06 LOD LOD 0.05 Sb LOD LOD LOD LOD LOD LOD LOD LOD Cs 4.56 9.30 3.10 3.15 3.16 4.04 3.18 2.50 Ba 4.43 15.38 4.14 5.21 8.25 8.01 4.90 2.08 W 0.01 LOD 0.01 LOD LOD 0.01 0.04 LOD Au LOD LOD LOD LOD LOD LOD LOD LOD Tl 0.05 0.15 0.05 0.04 0.05 0.08 LOD 0.04 Pb 0.01 LOD LOD LOD LOD LOD 0.04 LOD Bi LOD LOD LOD LOD LOD LOD LOD LOD U LOD LOD LOD LOD LOD LOD 0.02 LOD U LOD LOD LOD LOD LOD LOD 0.02 LOD