<<

PLEASE DO NOT DESTROY OR THROW AWAY THIS PUBLICATION. If you haw no further use for it, write to the Geological Survey at Washington and ask for a frank to return it

UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director

Bulletin 848

THE MICROSCOPIC DETERMINATION OF THE NONOPAQUE

SECOND EDITION

BY ESPER S. LARSEN AND HARRY HERMAN

UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1934

For sale by the Superintendent of Documents, Washington, D. C. ------Price 20 cents

CONTENTS

" '*" ^ t**v Page 1'f) OHAPTER 1. Introduction______-____------_------.-----_-_ 1 The immersion method of identifying minerals.______--___-_-___-_ 1 New data.______-______-__-_-______-----_--_-_---_-_- 2 Need of further data.______------_-- 2 ; Advantages of the immersion method..___-__-_-__-_---______2 Other suggested uses for the method______3 Work and acknowledgments.______-_____-_---__-__-___-___ 3 CHAPTER 2. Methods of determining the optical constants of minerals. __ 5 The chief optical constants and their interrelations______5 Measurement of-indices of refraction____---____-__-_--_--_-_____ 8 The embedding method..___------_-___-_-_-__--__-______8 The method of oblique illumination.___._-_-______-_____ 9 The method of central illumination______10 method.------.------10 : Immersion media______--_---_-----_------11 General features.--.-.------11 Piperine and iodides.---.------.------13 Sulphur- melts_------_ 15 Selenium and melts._____--_--_----_-___ 17 Halogens of -___---_---_-_------17 Methods of standardizing media for measuring indices of refraction.______----__-_-_-_------_ 18 Measurement of all indices of refraction of .______20 Measurements of axial angles.-.------.----- 22 Dispersion of the optic axes______------_- 23 Optical character..______-_-______--_-_-_ ---___---___ 24 Optical orientation, dispersion of bisectrices, and system..... 24 Dispersion of the indices of refraction______27 Other tests..-.______--_.______------27 CHAPTER 3. Some statistics on the optical properties of minerals. ______28 Distribution of minerals with regard to optical character.______28 Distribution of minerals with regard to index of refraction and bi­ refringence ______-___-----_-___-_------_----___- 28 Relation between index of refraction, , and chemical compo- sition______-__-.______.__.-_-_-___- -__-_-_-_-_--____ 30 CHAPTER 4. Tables for the determination of minerals from their optical properties.______33 Arrangement of the data in the tables.______33 Completeness of the data.--.------.------34 Tables.______-___-_-______35 arranged according to their intermediate indices of refraction, j8, and showing their -______35 Data for the determination of the nonopaque minerals...--. 47 Isotropic group.------47 Uniaxial positive group-_--_------_---_------_ 67 m IV CONTENTS

Page CHAPTER 4. Tables for the determination of minerals from their optical properties Continued. Tables Continued. Data for the determination of the nonopaque minerals Contd. Uniaxial negative group______77 Biaxial positive group.__-_---___--______--____-____-- 95 Biaxial negative group..______148 Minerals of unknown optical character.______213 Data on groups..______219 group.______219 group_____._____.______219 group.______228 group.______:______228 Barite group___._---__.---_---_-__-_-____..___---_-_-_____ 229 group....,.-______229 Chlorite group__----_--_-_--_----______-_____-__------_. 230 group..______231 group.____-_.-_-._-_-___-_-_--_--____-----_------_ 233 group.______-__-______:.___-_____-_-___-_---- 233 group. ______235 group.______-___-_---_-______-____--_-____--. 236 group______---_-____-______-__-_____-__ 239 Pyroxene group..______240 Scapolite group.___-______-______.______-_------_---_ 245 group______---_____--__-__._-_-_-___------. 246 group..______247 Uranite group.______247 group.______248 The zeolites..------. 250 INDEX ______------_------_--_-_----_----_-_------_- 255 ILLUSTRATIONS

Page FIGURE 1. The error in V'a as computed from the approximate formula

Cos' V'a = 7^______-______---- a _____,-__-___-___ 7 2. Indices of refraction of mixtures of piperine and iodides_____ 14 3. Indices of refraction of mixtures of sulphur and selenium..-- 16 4. Brass frame for for determination of the refractive indices of liquids._._-_------_-_-_---_----_-_--_...... 19 5. Stereographic projection of the optical elements of a triclinic mineral ()..____----_-_----_----_---__--_-_---_ 26 6. Diagram showing density of distribution of the nonopaque minerals with respect to the intermediate index of refraction. 29 7. Diagram showing density of distribution of the nonopaque minerals with respect to index of refraction and birefrin­ gence __--_----_-----_----_--_------_------__-____ 29 V NOTE TO THE SECOND EDITION

In this second edition of the bulletin on the microscopic determination of the nonopaque minerals (U. S. Geological Survey Bulletin 679) the first three chapters have been left, essentially as they were in the first edition; the fourth chapter of the first edition, which contained the new data, has been omitted, as a single publication of these data seemed sufficient; and the fifth chapter of the first edition becomes the fourth in the new edition. The tables, for the determination of minerals from their optical properties have been brought up to date by more than 500 new entries and 100 changes in old entries. About 250 new species and old species not given in the previous edition are included. Of these new data about 80 entries represent measurements made by the authors. Such data are indicated in the tables by an asterisk (*). At the recommendation of several mineralogists, tables have been added assembling the data of some of the mineral groups, including the alunite, am- phibole, apatite, aragonite, barite, calcite, chlorite, epidote, feldspar, garnet, melilite, mica, olivine, pyroxene, scapolite, spinel, tourmaline, vivianite, and uranite groups and the zeolites. Other new features of this edition are the addition of a column in the main table to indicate the variability of the indices of refraction and other data given for the mineral, and the addition of the calculations of 2E immediately below 2V. VI THE MICROSCOPIC DETERMINATION OF THE NONOPAQUE MINERALS SECOND EDITION

By ESPER S. LARSEN and HARRY BERMAN

CHAPTER 1. INTRODUCTION THE IMMERSION METHOD OF IDENTIFYING MINERALS Optical methods of determining minerals with the have long been used and have been carried to a high state of development in studies of the minerals in thin sections of rocks and , yet out of about 1,000 mineral species comparatively few can be identified readily in thin sections. A mineral whose optical properties are known can be accurately and quickly identi­ fied, however, by the immersion method that is, by immersing its powder in liquid media whose indices of refraction are known and determining its optical constants. In this bulletin the authors give a set of tables for the systematic determination of minerals from their optical constants, describe briefly some methods for the rapid deter­ mination of optical constants, give the results of measurements of the optical constants of more than 500 species for which data were not previously available prior to the first edition, and present sta­ tistics on the optical properties of minerals. The first tables prepared for general use in determinations of minerals by the immersion method were those of Van der Kolk,1 published in 1900. Somewhat similar tables, prepared by A. F. Rogers,2 were published in 1906, and an optical contain­ ing tables and description of all minerals for which optical data were then available, prepared by N. H. and A. N. Winchell,3 was published in 1909.

1 Schroeder van der Kolk, J. O., Tabellen zur mikroskopischen Bestlmmung der Mineralien nach ihrem Brechungsindex, Wiesbaden, 1000; 2d ed., revised and enlarged by E. H. M. Beekman, 1006. ' Rogers, A. F., School of Mines Quart., vol. 27, pp. 340-350,1006. * Winchell, N. H. and A. N., Elements of optical mineralogy, D. Van Nostrand Co., 1000. 2 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS NEW DATA In attempting to employ the immersion method some years age* the senior author assembled all the data then available for its use with the petrographic microscope in determining minerals but found them so incomplete that the method was applicable to but few species. Since then he has measured the chief optical constants of about 600 min­ eral species for which the data were lacking or incomplete, so that suck data are now lacking for only about 30 very rare species. No attempt, at great accuracy was made in these measurements, and compara­ tively few of the specimens studied represented analyzed minerals. Only a small number of minerals of many isomorphous series were examined, in some series only a single member.

NEED OF FURTHER DATA Much further work on the optical constants and more complete and accurate data on nearly all the minerals are needed, as well as detailed studies of isomorphous series and of the effect of solid solution. Another need is a fuller appreciation of the fact that most minerals are of variable chemical composition and therefore have variable optical and other properties. The science of mineralogy needs also good connected and consistent data on minerals. Chemical analyses,, crystallographic studies, and determination of physical properties, optical constants, arid paragenesis should be made on identical material. A highly accurate determination of the optical or other constants of a mineral is of comparatively little value unless the data obtained are definitely tied to a chemical analysis. Greater care should be taken in examining minerals for lack of homogeneity,, whether it is due to zonal growths or to admixed or included foreign material. As few specimens of minerals are entirely free from foreign bodies and without zonal growths or other elements of heterogeneity no description of a mineral is adequate which does not show clearly that its material has been carefully examined microscopically. Every published analysis of a mineral should include a clear statement of the approximate amount and the character of the foreign material it contains and of the degree or extent of zonal growths or other elements of heterogeneity, and this statement should be the result of a careful microscopic examination of a sample of the same powder that furnished the material for the chemical analysis.

ADVANTAGES OF THE IMMERSION METHOD For determining the nonopaque minerals the immersion method has many advantages over other methods. It appears to excel greatly the ordinary blowpipe methods in rapidity and accuracy, and the quantity of material required is less than that required for tests by any other method. One who has acquired the requisite skill can INTRODUCTION O measure the principal optical constants of a mineral in about half an hour, and most minerals can be determined by partial measurements In less time. In accuracy the method is nearly as reliable as a com­ plete chemical analysis, for it is about as common for two or more minerals to have the same chemical composition as for two or more minerals to have the same optical constants. All the optical prop- erties of a mineral can usually be determined from a single grain or crystal large enough to handle with a pair of delicate pincers, and in addition the material can be examined for homogeneity when the tests .are made. Lack of homogeneity in material studied is one of the chief sources of error in mineralogic work. The skill required to measure the optical constants is little if any greater than that required to do reliable blowpiping. The worker must have a good knowledge of optical mineralogy, such as may be gained by any good course in microscopic , and some special training in the manipulation of immersed grains of minerals. The equipment required is a good petrographic microscope and a few inexpensive liquids whose indices of refraction are known.

OTHER SUGGESTED USES FOR THE METHOD The optical method might be used with advantage in work done in n number of other branches of science than mineralogy and in some industries. It should be much more generally used in chemistry, es­ pecially in analyses of artificial crystalline products, to determine rapidly the exact nature of the material and its homogeneity, for .artificial products have as definite optical constants as minerals. It should also be found valuable in many metallurgic processes, as well as in the cement and ceramic industries and other industries in which a knowledge of the exact nature of any material is desirable.

WORK AND ACKNOWLEDGMENTS The senior author began his work on the tables in 1909, intending to measure the constants of only a few of the commoner minerals, but the desirability of having optical data on all the recognized species of minerals became so apparent that he afterward undertook the task of making all the measurements desired. Most of the work was done in the laboratory of the United States Geological Survey at Washington, D. C., but a considerable part was done at the University of California at Berkeley, Calif., during the winter of 1914-15. The work of pre­ paring this new edition was done in Harvard University. To measure the optical constants of 500 selected minerals is no great task, but difficulties appeared continually as the work progressed, owing to the frequent necessity of selecting suitable material from specimens con­ sisting largely of other minerals, to the large number of specimens that were found to be incorrectly labeled, and to the difficulty of procuring many rare minerals. 4 MICKOSCOPIC DETERMINATION OF NONOPAQUE MINERALS The senior author wishes to express his sincere thanks to Messrs. H. E. Merwin and Fred E. Wright, of the Geophysical Laboratory, W. T. Schaller and C. S. Ross, of the Geological Survey, and E. T. Wherry, formerly of the National Museum, for help and encourage­ ment in the work. Thanks are due also to Messrs. Ross and Schaller for critically reading the manuscript and proof of this bulletin and offering many helpful criticisms and suggestions and for furnishing unpublished data on a number of minerals. The senior author wishes also to express his appreciation of the generosity of the officials of a number of museums and of several private collectors of minerals in furnishing specimens of many rare and valuable minerals. He is especially indebted to the late Col. Washington A. Roebling, of Trenton, N.J., who very generously placed his remarkable collection at the writers' disposal; to the late L. P. Gratacap and the American Museum of Natural History; and to Drs. Edgar T. Wherry and William F. Foshag and the United States National Museum. He is also grateful, for many valuable specimens of the rarer minerals, to Prof. W. E. Ford and Yale University; Prof. Charles Palache and Harvard University; the late Prof. A. S. Eakle and the University of California; Prof. A. H. Phillips and Princeton University; Johns Hop- kins University; the late Dr. Oliver C. Farrington -and the Field Museum of Natural History; Mr. F. McN. Hamilton and the Cali­ fornia State Mining Bureau; the.late Mr. F. A. Canfield, of Dover, N.J.; Dr. Per Geijer, of Stockholm, Sweden; and Prof. A. Lacroix, of Paris. CHAPTER 2. METHODS OF DETERMINING THE OPTICAL CONSTANTS OF MINERALS In this chapter the writers describe briefly the special methods which they have found most satisfactory for the rapid determination of the principal optical constants of minerals by the immersion method. The chapter is not intended to be a complete discussion of optical mineralogy, and in order to understand it properly, the reader should have an elementary knowledge of and of the methods of optical mineralogy.4 Theoretical discussions are avoided as far as possible, and no attempt is made to describe the methods of measuring accurately the optical constants of minerals.6 THE CHIEF OPTICAL CONSTANTS AND THEIR INTER­ RELATIONS The significant fundamental optical constants of crystals are the principal indices of refraction, the crystallographic orientation of the directions of vibration corresponding to these indices of refraction, and the amount of absorption of light vibrating in these directions, all for one or more standard wave lengths of light. For most minerals some of the constants, particularly the last, are known only in a qualitative way. The other properties commonly mentioned among the optical constants , optical character, optic axial angle, dispersion of the optic axes, dispersion of the bisectrices, extinc­ tion angle, , and are fixed by the fundamental constants and are significant only because they are often easily measured or estimated under the microscope. Different symbols are used by different writers in referring to certain optical properties. Those used here are perhaps as commonly used as any in the textbooks listed below.4 Refractive indices a, -/8, 7 have directions of vibration X, Y, Z; birefringence is represented by B and equals 7 a or w e or e w. * Iddings, J. P., Eock minerals, John Wiley & Sons, 1911. Weinschenk-Clark, Petrographic methods, McOraw-Hill Book Co., 1912. Winchell, N. H. and A. N., Elements of optical mineralogy, 3d ed., pt. 1, John Wiley & Sons, 1928. Qroth-Jackson, Optical properties of crystals, John Wiley & Sons, 1910. Dana, E. S., A textbook of mineralogy, 3d ed., John Wiley & Sons, 1921. A comprehensive treatment of the accuracy and limitations of the methods of optical mineralogy, based upon theory and checked by observations,.is given by Fred. Eugene Wright in The methods of petrographic- microscopic research: Carnegie Inst. Washington Pub. 158, 1911. Albert Johannsen's Manual of petro­ graphic methods, published by the McGraw-Hill Book Co., 1914, is an excellent compilation of the methods that have been proposed for optical measurements with the microscope. Eosenbusch's Mikroskopische Physiographic, 2d ed., Band 1, Erste Halfte, by E. A. Wulflng, 1924; Qroth's Physikalische Krystallo- graphie, 4th ed., 1905; and Tutton, A. E. H., Crystallography and practical crystal measurement, vol. 2, London, Macmillan & Co., 1922, are valuable books of reference, as is also Duparc and Pearce's Traitfi de technique mine'ralogique et petrographique, pt. 1,1909. The most precise treatment of the subject is given in Pockels, F., Lehrbuch der Kristalloptik, B. F. Teubner, 1906. 6 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS The relations that exist between the various optical properties are of considerable significance, and the authors believe that they are not sufficiently emphasized in the textbooks nor are they kept clearly enough in mind by workers in optical mineralogy. The best available data on over 30 mineral species, or nearly 10 per cent of those for which data were available before 1922, could be seen at a glance to be strikingly inconsistent, and this happened even where the data appeared to have a high degree of accuracy. The following exam­ ples will serve to illustrate. Leucosphenite was said to be optically negative, but the values given for the indices of refraction (% = 1.6445, /3tf = 1.6609, yv = 1.6878) are those of an optically positive mineral. Tests by the senior author show that leucosphenite is optically positive. was stated to have the following properties: a =1.6650, 0 = 1.6690, 7 = 1.6840, 2V = 84° 6', optically +. The axial angle, as computed from the indices of refraction, is 2V = 54°. It seems probable that the axial angle is correct and that /3 should be about 1.6735. The relation between the axial angle (2V) and the indices of refraction is expressed by the equation : 6 L_I -v2 C/32 a2} a2 S2 Cos2 Va = or tan2 V = -

The approximate formula 7

7-a holds fairly well if the axial angle is small or the birefringence not too strong. The error in V'«, as computed from the approximate formula, is shown in Figure 1. The calculated value of V'« is along the abscissa, and the correction to be added to this value is along the ordinate. For all the curves the value of a is 1.500, and each curve is for a particular value of 7 a = B. The curves can be used to correct calculations made by the approximate formula. In the accurate equation a, /3, or 7 appear in the same power in both the numerator and denominator, so that the value of the equation will ot, Q *v not be changed if they are replaced by T-> T» and-r- Hence to apply

6 For the development of this equation see Johannsen's Manual of petrographic methods, p. 103, 1914. Kosenbusch (Wulfing), Mikroskopische Physiographie, Band 1, Erste Halfte, pp. 119-121, 1924; Oroth- Jackson, Optical properties of crystals, p. 143, 1910; Duparc and Pearce, Traitfi de technique mingralogique et petrographique, pp. 78-80, 1907. For tables and a graphic solution of this equation see Wright, F. E., Graphical methods in microscopical petrography: Am. Jour. Sci., 4th ser., vol. 36, pp. 517-533, 1913. i For a graphic solution of this equation see Wright. F. E., The methods of petrographic-microscopic re­ search: Carnegie Inst. Washington Pub. 158, pi. 9, 1911. METHODS OF DETERMINING THE OPTICAL CONSTANTS the correction from the curves to a crystal with a different from 1.500 1.500 it is necessary to calculate B' = (7 a). The value of B' need be calculated only approximately. To get the correct value of V« from the indices of refraction the approximate value V'a B a. should be found from the equation Cos2 V'a = -

FIGURE 1. The error in V'a as computed from the approximate formula Cos' V'a= - mineral is optically negative and 2V« is less than 90° (Va<45°). As tan 45°= 1, a mineral is optically negative if -§ is^^ -§ and optically positive if 2 -^ < -^ 2 -

Cos 45° = -7= for an optically negative mineral from the approximate V2 formula - 7-a V2 or 2 (/3 7)>(7 oi) approximately. Similarly for an optically positive mineral 2 (7 /3)>(7 a) approxi­ mately. These approximations hold only where the birefringence is not too strong. The following values of a, 0, and 7 are for crystals where 2V = 90° and show the increasing error in the approximations as the birefringence increases: a= 1.5000 |8= 1.5099 y= 1.5200 a= 1.5000 0= 1.5244 7=1.5500 a= 1.5000 /3=1.5476 7=1.6000 a= 1.5000 |3=1.5906 7= 1.7000 a= 1.5000 /3= 1.6297 7=1.8000 8 MICKOSCOPIC DETERMINATION OF NONOPAQUE MINERALS The axial angle is commonly measured in air, and the apparent axial angle so measured (2E) has the relation to the true axial angle 2V expressed by sin E = /3 sin V, where j3 is the intermediate index of refraction of the mineral.8 In the preceding equations the values are given for light of a particular wave length. As the wave length varies the indices of refraction and consequently 2V will vary, and even the optical character may change. This variation is called the dispersion of the optic axes, and 2V may be given for different or it may be given for one color commonly the light of and the variation with color may be expressed by r<^v (or r^>v), meaning simply that the axial angle is less (or greater) for than for violet. Not only do the values of the indices of refraction change with the color of light, but the positions of two of the directions X, Y, and Z in monoclinic and of all three in triclinic crystals change that is, the extinction angles vary with the color of light. This variation is called dispersion of the bisectrices. Crossed, horizontal, and inclined dispersion are simply phenomena due to dispersion of the bisectrices as observed on the interference figure.

MEASUREMENT OF INDICES OF REFRACTION The indices of refraction of a mineral can be measured most con­ veniently and accurately on a polished surface with the total refrac- tometer or somewhat less conveniently on specially prepared and oriented prisms by the method of minimum deviation. Most min­ erals are not suitable for measurement by either of these methods, either because suitable plates or prisms can not be prepared or because the mineral is zoned and so differs in its optical properties at least as much as the error in the less accurate but much more rapid embedding method.

THE EMBEDDING METHOD Fairly accurate measurements of the principal indices of refrac­ tion can be made on a very small quantity of mineral by embedding the powdered grains in media whose indices of refraction are known and comparing and matching the indices of the media with each of those of the mineral by either the method of central illumination or the method of oblique illumination. The method of oblique illumination is best used with an objective of low or moderate power and can therefore be applied to a large number of grains very quickly. The method of central illumination is best used with an objective of moderate or high power.

8 For a graphic solution of this equation see Wright, F. E., op. cit., pis. 7 and 8, 1911. METHODS OF DETERMINING THE OPTICAL CONSTANTS

THE METHOD OF OBLIQUE ILLUMINATION The index of refraction of a grain embedded in a liquid or other body and that of the embedding material can be quickly compared by observing their line of contact under the microscope and shading a part of the field by placing the finger or a card beneath the con­ denser system, by tilting the mirror, of in some other way. A number of devices have been recommended for this purpose, and some of the newer microscopes have special slides inserted. The observation is best made with a low or moderate power objective and without the condenser lens. With a low-power objective a mineral that has a decidedly higher index than the liquid will have a dark border toward the shaded side of the field and a bright border on the opposite side. If the grain has a decidedly lower index of refraction the phenomena are reversed and the bright border is on the shaded side of the field. With the moderate-power objective and the condenser lens the phe­ nomenon depends on the position of the condenser. If the focus of the condenser is above the object, the phenomena are as stated above; if below the slide, the phenomena are reversed. It is best to check ;the system used by making the test on some known grain;.a in which , , or some other known mineral is in contact with is good for this purpose. At the same time the difference in index of refraction between the grain, and liquid can be estimated by the relief and the amount of shading required to bring out the relief. This method is equally well adapted to thin sections and has many advantages over the Becke method or the method of central illumination, as it can be used with a low-power objective, and by it every grain in contact with the Canada balsam can be com­ pared with balsam in a very short time.. For simplicity, the grain may be considered isotropic. If mono­ chromatic light is used, and if the grain and liquid have the same index of refraction for that light and are clear and colorless, the grain will completely disappear. As most of the liquids commonly used have a stronger dispersion than most minerals, if the mineral and liquid have the same index for sodium light the mineral will have a higher index for the red end of the spectrum and a lower one for the blue. Hence, if light is used there is a concentration of reddish light on one side of the grain and of bluish light on the other side. For some of the immersion materials notably cinnamon oil the dispersion is very great, and strongly colored borders are present even where the index for sodium light of the grain and the liquid differ in the second decimal place. The relative indices must be judged from the intensities of the colors. In order for the worker to become familiar with the color phenomena under various conditions it is well

Wrlght, F. E., The methods of petrographic-microscopic research: Carnegie Inst. Washington Pub. 158, pp. 92-95,1911. 10 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS to immerse grains with known indices of refraction in oils of known indices of refraction. For this purpose co of quartz or of calcite is- constant. THE METHOD OP CENTRAL ILLUMINATION As the immersion method is ordinarily used nearly all fragments are1 thinner on the edges than in the center, and if the fragments differ from the surrounding material in they will act as small imperfect lenses toward a beam of nearly parallel light emerging from the condenser. If such a lenticular fragment has a higher index of refraction than the embedding medium it tends to focus the light above its plane, and if the microscope is first focused on the grain and then raised above focus the interior of the grain will appear more* highly illuminated. As the microscope tube is raised higher above focus this highly illuminated area contracts and becomes brighter a bright line moves into the grain. If the tube is lowered below focu& the grain appears less highly illuminated than the rest of the field and a highly illuminated halo surrounds it. As the tube is lowered this halo moves out from the grain. If the grain has a lower index of refraction than the embedding medium it will have a virtual focus below its plane, the phenomena are reversed, and the grain becomes centrally illuminated as the micro­ scope tube is lowered below focus. In practice the test is best made with an objective of medium or high power one with 8-millimeter focus gives good results. The con­ denser may be in or out. The condenser system may be lowered or the lower diaphragm closed. The most suitable arrangement for a particular microscope and lens system can best be found by testing it with grains embedded in media of known indices of refraction.

DISPERSION METHOD The indices of refraction and the, dispersion can be measured more accurately (±0.001) by the dispersion method of Merwin.10 The mineral is embedded in a liquid with a somewhat higher index of refraction than that of the mineral (for sodium .light). The two should match for some color of light, and this color is determined by changing the color of light, using a monochromatic illuminator until the two match. The mineral is then embedded in a liquid with a somewhat lower index of refraction, and these two are matched for some other color of light; In this way the index of refraction of the mineral is determined for two or more colors of light, and as the dispersion curve of most minerals is nearly a straight line, the index of

m Posnjak, E., and Merwin, H. E., The system FezOa-SOs-H^O: Am. Chem. Soc. Jour., vol. 44, p. 1970, 1922. Tsuboi, S., A dispersion method of determining the in flakes: Mineralog. Mag., vol. 20, pp.1 OM22, 1923. METHODS OF DETERMINING THE OPTICAL CONSTANTS 11 refraction of the mineral can be determined for sodium light or any other color of light from a simple plot. Emmons u has recently described a method depending not only on the dispersion of immersion media but also on the variation in index of refraction of a liquid with change of temperature. By the proper manipulation of the two variables, temperature and wave length, it is possible to obtain the dispersion curve of a mineral, using only one mount. The work is facilitated by combining all the necessary instruments into a single unit.

IMMERSION MEDIA

GENERAL FEATURES Immersion media should be nearly colorless, chemically stable, and without disagreeable odor or other objectionable properties. They should not dissolve or react with the mineral to be immersed. Low volatility and for many purposes a moderate though not too great viscosity are desirable. Each liquid should be miscible with the liquids whose indices of refraction are above and below it, and two liquids that are to be mixed should have approximately the same rate of volatilization, as otherwise the mixture may change rapidly. The index of refraction should not vary too greatly with changes of tem­ perature. A low dispersion is desirable for accurate work, but a rather strong dispersion facilitates rapid determination. The authors have found the set of media given in Table 1 satisfac­ tory, and it covers the range of nearly all the minerals. Satisfactory liquids cover the range of indices of refraction up to 1.87 and above that point low-melting mixtures that remain amorphous on cooling may be prepared which cover the range up to wLi = 3.17. The values for the indices of refraction (ri) are for sodium light except where noted for the sulphur-selenium and selenium-arsenic selenide melts and are those determined by the senior author at about 20° C. for liquids purchased in the ordinary market. In the column marked T-r is given the change in the index of refraction for each degree centigrade change in the temperature. For all the media given the index of refraction decreases as the temperature increases. These values are mostly taken from the literature. The liquids are rather inexpensive, excepting methylene iodide. All the liquids, except as noted, will form suitable mixtures with those above and below in the table in all proportions. Amyl alcohol is unfortunately a solvent for a number of the minerals that have indices of refraction within its range, and measurements with it must be made rapidly. 11 Emmons, R. C., The double dispersion method of mineral determination: Am. Mineralogist, vol. 13, pp. 504-515, 1928; The double variation method of refractive index determination: Idem, vol. 14, pp. 414-426,441-461,1929. 163287 34 2 12 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

TABLE 1. Refractive indices of immersion media 0

n at 20° C. ~~dtdn Dispersion Remarks

Water 1.333 Slight. Dissolves many of the minerals with low indices. 1.357 "o.'oooio" Slight 1.362 Do. Ethyl butyrate . 1.381 do 1.386 do 1.393 ... ..do . 1.409 .00042 ..do Dissolves many minerals with which it is used. 1.448 .00035 .do . Petroleum oil:<1 1.470 .0004 .do. , American alboline 1.477 .0004 ..do- o'Monochlornaphtha- 1.626 Moderate... lene.« aMonobromnaphtha- 1.658 .00048 ... .'.do . lene. 1.737 to 1.741 . 00070 Rather Rather expensive. Discolors on expo­ strong. sure to light, but a little or tin in the bottle will prevent this change. Methylene iodide satu­ 1.778 ..do rated with sulphur. Methylene iodide, sul­ 1.868 do phur, and iodides./ 1.68 to 2.10 1.998Na tO Very strong, 2.716L1 Selenium and arsenic 2.72to3.17Li do selenide.

"Another list of immersion media has been given by R. C. Emmons (Am. Mineralogist, vol. 14, pp. 482-483,1929). ' V. T. Harrington and M. S. Buerger used petroleum distillates prepared from kerosene, gasolene, etc., for the range from 1.35 to 1.45; the liquids with the lower indices are very volatile (Immersion liquids of low refraction: Am. Mineralogist, vol. 16, pp. 45-54,1931). « Ordinary fusel oil may be used, but on mixing with kerosene it forms a milky emulsion, which settles on standing, and then the clear liquid may be decanted off. d Any of the medicinal oils may be used, such as Nujol. Hallowax oil is satisfactory. I To 100 grams methylene iodide add 35 grams iodoform, 10 grams sulphur, 31 grams Snli, 16 grams Asli, and 8 grams Sbli, warm to hasten solution, allow to stand, and filter off undissolved solids. See Merwin, H. E., Media of high.refraction: Washington Acad. Sci. Jour., vol. 3, pp. 35-40,1913. For fairly accurate work it is desirable to have a set of liquids from 7i = 1.400 to n = 1.87, differing from each other by 0.010, and a set of the solid media to carry the series up to 7i=2.72, the index of these media differing by 0.020. For less accurate work the set can be re­ duced to suit the requirements. The most important range is from 1.45 to 1.87, as j8 for about 80 per cent of all the known nonopaque minerals.falls within this range. There are only about, 11 minerals in which /3 is below 1.40 and only about 27 in which /3 is above 2.72. Care should be taken to prevent contamination and evaporation of the liquids. They are most conveniently kept in tall dropping bottles that have the combined ground stopper and dropper with glass cap. However, the oils with an index above about 1.75 tend to crystallize around the glass stoppers, and these keep much better in cork- stoppered bottles. A 15 cubic centimeter bottle is the smallest that is kept in stock by dealers, and even that size is larger than is required for the ordinary amount of work. It is best to keep the bottles at least half full, but with methylene iodide economy may dictate the use of a smaller amount. The bottles should never be allowed to stand without the stopper and cap in place. A convenient and easily METHODS OF DETERMINING THE OPTICAL CONSTANTS 13 made case for the bottles is composed of a covered box that opens on hinges at one end. Ten bottles are kept in a 2-inch board which has 10 holes just large enough to hold the bottles. The box is made to take as many of these boards with the bottles as desired. The box should be kept closed, as light affects some of the liquids, notably methylene iodide. With proper care a set of liquids made up as directed above will remain constant, within the limits of error required for most deter­ minative work, for years. A set of 40 such liquids, used constantly for five years and checked once or twice a year, has rarely shown a change in any of the liquids of as much as 0.003. One or two liquids that have methylene iodide as a constituent were nearly all used up and had changed as much as 0.006. In general the liquids whose indices of refraction are above 1.75 are less constant. The embedding media whose indices of refraction are above 1.87 &YQ solid at ordinary temperature and are not quite so convenient nor accurate as are the liquids. They must not be heated too hot nor too long or they will change considerably. A small electric plate with three grades of heat is a convenient means for making embeddings with these melts. In practice a very small amount of the embedding medium is melted on a glass slip, a little of the powder to be examined is dusted into the melt, and a cover glass is pressed down upon it. In the highly colored melts that are rich in iodides -or selenium the mineral must be powdered very fine, otherwise the thick film of the melt is nearly opaque. Borgstrom m has prepared a series of immersion media made up of AsS and AsBr3 in methylene .iodide which remain liquid in the region of n = 1.90 ± .

PIPEKINE AND IODIDES 12 Molten piperine dissolves the tri-iodides of arsenic and antimony and forms solutions that are fluid at slightly over 100° C. and are resinlike and amorphous when cold. In general it has been found that the arsenic and antimony iodides .available in the market are too impure to use in the preparation of the piperine-iodide melts, although they are quite satisfactory for. solution in methylene iodide where impurities are filtered out. Even small proportions of impurities give a dark or even an almost opaque melt. The commercial iodides may be dissolved in hot xylene, fil­ tered hot, and allowed to crystallize out on cooling. The cooled xylene, with part of the iodides still in solution, may then be used to dissolve a new lot of iodides. However, the same procedure may be used to make the iodides, as arsenic or antimony readily combine with iodine in hot xylene. By using iodides prepared in this way, and with proper precautions to avoid overheating during solution of the "» Borgstrom, L. H., Bin Beitrag zur Entwicklung der Immersionmethode: Comm. ggol. Finlande Bull. 87, pp. 68-63,1929. 12 Merwin, H. E., Media of high refraction for refractive index determinations with the microscope: Washington Acad. Sci. Jour., vol. 3, pp. 35-40,1913. 14 MICROSCOPIC DETERMINATION OF NONOPAQTJE MINERALS iodides in the piperine, it is possible to procure melts of comparatively light color and perfect transparency. If overheated, the piperine decomposes, so it must be heated only slightly above the melting point but enough for complete solution of the iodides. Piperine recrystallizes readily after slight heating, but after continued heating at a proper temperature a change takes place that renders it a perma­ nent amorphous resinlike material. It is advisable to heat the piperine for about half an hour before adding the iodides. // 205 I,

) 200 '/I

195 /;

1 // (j 190 2 L. U // ab 185 X LJ O /^ - 180 S>; -f

175 A ^

170 ^ ^

« 5 10 20 30 40 50 60 70 80 9C «9& IODIDES FIGURE 2. Indices of refraction of mixtures of piperine and iodides To make such preparations having constant indices of refraction anywhere within the range n = 1.68 to 2.10, mix three parts by weight of SbI3 to one part of AsI3, add this mixture to the piperine in the proper proportion, and heat carefully and stir in a test tube, large porcelain crucible, or glass flask just above the melting point of piperine until a homogeneous melt is obtained. A few grams of such a melt are sufficient for a large number of immersions. The heating may be done in a bath of crisco or paraffin, in an air bath, or over but not in the low flame of a bunsen burner or on an electric plate; stirring is essential to secure homogeneity. Such preparations can be standardized on the goniometer by measuring a prism molded be­ tween two pieces of cover glass, or weighted quantities of the con­ stituents can be used and the refractive indices of the resulting preparation obtained from Figure 2. The indices of refraction of METHODS OF DETEKMINING THE OPTICAL CONSTANTS 15 stich media increase rather rapidly on standing, and they are not entirely constant for about a month. The total increase in this time amounts to a few units in the third decimal place. After that time the indices remain constant and reheating does not affect them. In Figure 2 curve a shows the indices of freshly made preparations and curve b the indices of the preparations after they have stood until constant. The indices of refraction as measured in white light in these melts (above n = 1.70) are almost those for sodium light.

SULPHUR-SELENIUM MELTS Melted sulphur and selenium in any proportion readily form a homogeneous solution which has a constant index of refraction on cooling and remains amorphous long enough to allow measurements to be made. Suitable preparations with any index of refraction from 2.05 to 2.72 can be made by mixing the constituents in the proper proportion by weight and heating in a test tube just above the melting point until homogeneous. The mixture must be stirred and any sulphur that condenses on the upper part of the tube scraped back into the melt. The refractive indices for melts with different proportions of sulphur and selenium for light of different wave lengths are given in Figure 3, and preparations having approximately any index of refraction can be made by using weighed quantities of the constituents. The indices of refraction of melts that contain more than 50 per cent of sulphur differ considerably according to the treatment, and this difference, which is probably due to the presence of X and /x sulphur in different proportions, increases with the amount of sul­ phur.13 By high heating and quenching the index of refraction may even be raised 0.05 above that obtained by cooling in air.14 The proper treatment is to heat a small amount of the material on an object glass considerably above the melting point until the dark form of sulphur is obtained, then to add the mineral grains, press down a cover glass, and cool rather rapidly on a damp but not wet cloth or on 'an plate. It must also be remembered that sulphur is rather volatile. If the mineral to be tested is not decomposed by heating, it is well to mix the powdered embedding material and the mineral and to cover with a cover glass before heating, or to add the grains and cover before the final high heating. With proper care an accuracy of about ±0.01 can be attained. Indices of refraction for sodium light below about 2.20 can be readily measured in the sulphur-selenium melts, but above that point, on account of the deep-red color of the melts and the very ______V______18 Merwin, H. E., and Larsen, E. S., Mixtures of amorphous sulphur and selenium as immersion media for the determination of high refractive indices with the microscope: Am. Jour. Sci., 4th ser., vol. 34, pp. 42-47, 1912. n The piperine-iodide melts are preferable within their range. 16 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS strong dispersion of selenium, it is best to make the measurements for the red light of . This operation can be easily done by 5 § 1 7.Se 6O 7O 8O 9O 2 " 1OO 650

Li 2.7 700}

2.6

2.5

2.4

23

n 550

eso eso Li 7OO 700,

2.)

3 2.0

n TO^ 2O 3O 4O SO . Indices of refraction of mixtures of sulphur and selenium placing over the eyepiece a color screen made by pressing a thin film of the melt composed of 70 per cent selenium and 30 per cent METHODS OF DETERMINING THE OPTICAL CONSTANTS 17 sulphur between two glass plates, as such a film transmits chiefly light that is about equivalent to lithium light. Such a film crystal­ lizes very slowly. Mixtures containing over 70 per cent selenium transmit chiefly lithium light, and index measurements made in such mixtures with white light give nearly the indices for lithium light. SELENIUM AND AESENIC SELENIDE MELTS Dr. Merwin 15 has found that mixtures of selenium and arsenic selenide cover the range of indices of refraction from nLi=2.72 to Tin = 3.17. These mixtures melt at rather low temperatures and are generally satisfactory, although they are deeply colored and measure­ ments must be made for red light. Measurements can be made with these mixtures with a probable error of less than 0.02, but only under the most favorable conditions. The mixtures can be made by heating together metallic arsenic and selenium in weighed quantities or by first making As2Se3 and then adding the proper proportion of selenium. Thorough stirring is necessary to insure homogeneous melts. The following table gives the indices of refraction for different wave lengths of light for several mixtures of selenium and arsenic selenide. Indices of refraction for mixtures of selenium and arsenic selenide

60 per 22.6 per cent Se, cent Se, «* Se 40 per 77.4 per AssSes cent cent AssSes AssSes

640 2.78 2.90 660 2.74 2.86 3.06 680 2.71 2.83 3.01 3.17 700 2.68 2.80 2.97 3.13 720 2.66 2.77 2.94 3.10 740 2.64 2.75 2.92 3.07 760 2.02 2.73 2.90 3.05

Dr. Merwin has also stated that a mixture of 10 per cent tellurium and 90 per cent As2Se3 gives indices of refraction 0.04 higher than the As2Se3 but is almost too opaque to use with an ordinary tungsten lamp. By means of direct sunlight or a "pointolite" lamp even more nearly opaque mixtures can be used.

HALOGENS OF THALLIUM The halogen compounds of thallium, T1C1, TIBr, Til have been suggested by Barth 16 as satisfactory immersion media of high refrac­ tion. The index range is large for mixed crystals of TIBr-TlI (2.4- 2.8). These melts transmit a considerable range of the spectrum and are in that respect superior to the sulphur-selenium melts of the same index of refraction.

u Merwin, H. E.( private communication. The data are preliminary. is Earth, Tom, Some new immersion melts of high refraction: Am. Mineralogist, vol. 14, pp. 358-361,1020. 18 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

METHODS OF STANDARDIZING MEDIA FOR MEASURING INDICES OF REFRACTION A number of methods of standardizing the embedding media by the microscope have been devised,17 but the method that employs the total refractometer or the method of measuring minimum devia­ tion with a prism are much more satisfactory, and with either method accuracy to a few units in the fourth decimal place is easily attained. The Pulfrich refractometer may yield quicker results than the prism, but it can not be used with media whose indices are greater than about 1.86, and even with reasonable care it may be seriously injured by scratching or by corrosion from some of the liquids. The liquids containing methylene iodide in particular should not be allowed to remajua on the hemisphere any longer than is necessary, and liquids from which crystals may separate should not be used, as the crystals may scratch the hemisphere.18 The Abbe refractometer is more sturdy and convenient for the ordinary range of index liquids. Daylight can be used for illumina­ tion. The method of minimum deviation with a prism is not quite so rapid as that with the refractometer, but it can be used for the whole range of embedding media.19 Any hollow prism can be used, but suitable prisms can be quickly made from two optically true glass plates about 5 by 20 millimeters in size by fusing them together at one corner in a blast lamp, taking care not to bend the glass, so as to form a prism that has nearly the desired angle. About one in a hun­ dred of a good grade of petrographic object glasses is suitable. The glasses can be very quickly tested by watching the reflection on all parts of the glass of a cord in front of a window at a distance of about 10 feet. If the two surfaces are not parallel two reflections will be seen; if they are not plane surfaces, the reflections will be distorted. The unfused end of this prism can be pressed onto a small drop of melted soft glass and a base to the prism thus made. Surface tension will keep the liquids in place. Instead of being mounted on a glass base the prism may be mounted in plaster of Paris coated with dental cement to glaze it. The glass plates should fit closely together, and it is well to cement the contact on the outside with dental cement to make a tight joint. C. S. Ross 20 has shown that better prisms can be made by grinding a piece of glass to a rough prism of any desired angle by measuring

» Johannsen, Albert, Manual of petrographic methods, pp. 265-270,1914. Wright, F. E., Measurement of the refractive index of a drop of liquid: Washington Acad. Sci. Jour., vol. 4, pp. 269-279,1914. 18 For a description of the crystal refractometer and its use see Rosenbusch (Wiilflng), Mikroskopische Physiographic, Band 1, Erste Halfte, pp. 650-«59,1924. Qroth, Physikalische Krystallographie, pp. 704-711, 1905. Duparc and Pearce, Trait6 de technique mineralogique et pfitrographique, pp. 385-392, Leipzig, 1907. 19 For a description of this method see Groth, op. cit., pp. 27, 690-696,1905; Duparc and Pearce, op. cit., pp. 26, 369-376, or any textbook on light. so Private communication. METHODS OF DETEEMINING THE OPTICAL CONSTANTS 19 with a contact goniometer, grinding the edges of the two glass plates so that they will fit tightly together, and cementing the glass plates to the prism with bakelite so that a few millimeters of the glass plates will project above the top of the glass prism. The edges of the glass plates are also cemented with bakelite. It is convenient to have the top of the prism slope into the angle between the plates and thus make a tight receptacle for the drop of liquid. A prism angle of about 60° is best for liquids that have mod­ erate indices of refraction. A much smaller prism angle one of 30° or less must be used for liquids that have high indices of refraction. If a prism is to be used for a series of measurements a curve or a table should be con­ structed to show the index of refraction corresponding to any angle of minimum deviation. For the mixture of sulphur and selenium, the pipeline prepara­ tions, or other solids, the prism can be molded between fragments of cover glass. In Figure 4 the front and side view of a prism made at the Har­ vard laboratory is shown. As T E this prism has rendered excellent o service over a period of years, it is recommended as a completely satisfactory means of measuring liquids by means of the minimum deviation method. The device consists of a plate A, which fits into the goniometer head by means of the pin B. On the FIGURE 4. Top and side views of brass frame for plane surface of A two guide pins, prism for determination of the refractive indices G, project into holes in D, which of liquids. One-third actual scale is carefully fitted to the lower plate. The upper portion of the prism and the plate upon which it rests are constructed of one piece of brass to prevent unnecessary movement. The upper part of the prism is cut at the desired angle, in this instrument about 50°, and sloped somewhat, as shown in the side view, so that the introduced drop 20 MICROSCOPIC DETERMINATION OF NONOPAQTJE MINERALS will, tend to lie in the narrow portion of the prism. The glass plates, beveled to fit closely together at one end, are held in place by two brass clamps, as shown in the figure. Canada balsam or a glass cement will hold the glass.plates together. The whole top portion of the prism may be removed from the plate clamped to the goniometer, without altering the adjustment of the prism. This convenience enables one easily to clean the prism. The dimensions given are those for the prism in use at. the Harvard laboratories.

MEASUREMENT OF ALL INDICES OF REFRACTION OF CRYSTALS Most crystals have two (o> and e) or three (a, 0, and 7) principal indices of refraction, and for accurate work it is desirable to measure them all. If it is not necessary to measure all of the indices it is best to measure a .particular one, preferably 3, as otherwise any value from the lowest to the highest may be measured. If /? is measured the others can, be estimated from the birefringence and the axial angle. The measurements of all the indices of refraction of a mineral can be made very quickly and within the limits of accuracy of the immer­ sion method if the powdered grains show no marked tendency to lie on a particular face or cleavage, as do those of the , calcite, and many other minerals. Grains of minerals with such cleavages as the , pyroxenes, and can generally be turned to any orientation without much difficulty. To test the lowest and the highest indices of refraction of such minerals against the embed­ ding media a grain should be chosen'that appears to show strong birefringence, both the thickness of the grain and the interference color being taken into account. The grain should be turned to extinction and tested against the embedding medium, then turned' to the other extinction (or the lower nicol should be revolved 90°) and tested again. This procedure should be repeated on a number of grains, and with a little practice, unless the birefringence is extreme, many of them will show the lowest index of refraction, equal to a, or the highest index equal to 7, within the limits of error of the immersion method. For any gram or any orientation of a crystal plate /3 lies between the highest and the lowest values measured. Therefore /3 can be measured on a grain that shows no measurable birefringence. Such a grain is nearly normal to an optic axis and is suitable for observing the optical character, the size of the axial angle, and the dispersion of the optic axis. If the dispersion is considerable it will give abnormal interference colors without extinction. Uniaxial minerals may be considered simply as a small group of biaxial minerals in which £ is equal to a for a positive mineral and METHODS OF DETERMINING THE OPTICAL CONSTANTS 21 to 7 for a negative one. The lowest index of every grain of a uniaxial positive mineral and the highest of. a uniaxial negative mineral is equal to w and can be measured on any grain. It may be desirable to turn the grain over. This can be done by shifting the cover glass with the point of a pencil. The movement can be controlled better with a viscous immersion medium than with one that is very fluid. Small cover glasses are more satisfactory than large ones, as they are much more easily manipulated. A cover glass 11 millimeters in diameter, divided into quarters or even ninths, is most used by the author. By turning and transferring a single small crystal to different media all the optical properties can be measured. Some grains may be conveniently oriented by observing interference figures. A section normal to the acute bisectrix will give ]8 normal to the plane of the optic axes, and in that plane a for, a positive mineral or 7 for a negative mineral. A section normal to the obtuse bisectrix gives /3 and 7 or a; one parallel to the plane of the optic axes gives a and 7. Any section normal to the plane of the optic axes gives. 0. Fibrous or prismatic fragments require a somewhat different treatment. If their extinction is nearly or quite parallel they will give one of the principal indices when turned with their length par­ allel to the plane of vibration of the lower nicol. The other two indices can be measured across the fibers by measuring a number of fibers, provided the mineral does not persist in lying on a particular face. In that event it may be necessary to roll a fiber, keeping it parallel to the cross hairs, and to observe the maximum or minimum index as it revolves. With a little practice this work can be done easily, unless the mineral is composed of very thin, broad laths. The face or cleavage on which a mineral tends to lie is likely to be normal to one of the principal optical directions. This tendency may be tested by an interference figure. On grains that show this tendency two of the indices of refraction can readily be measured and the other index can be obtained by turning the flake on edge. Winchell 21 proposed inclosing a fibrous or lath-shaped mineral in a capillary tube and turning the capillary. Monoclinic minerals that are prismatic along (c) or (a) show parallel extinction for prisms that lie on any face parallel to crystal axis b and nearly the maximum inclined extinction if turned parallel to the face (010) which is normal to that axis. Prisms that lie on a face parallel to axis b will give for the ray vibrating across the prism the index of refraction (a, /3, or 7) of the ray which vibrates parallel to axis b. Prisms that lie on the face (010) will give the other two indices of refraction and also the extinction angle, X (Y or Z) to c (or a). Triclinic fibers that have inclined extinction 11 Winchell, A. N., Camsellite and szaibelyite: Am. Mineralogist, vol. 14, pp. 48-49,1929. are more difficult to measure, but with a little ingenuity measure­ ments can usually be made. The stronger the birefringence, how­ ever, the more accurate must be the orientation to obtain accurate results. Platy minerals, such as mica, are more difficult to manipulate, and if their birefringence is considerable they require skill and patience in order to get good results. Fortunately in nearly all such minerals the rays corresponding to one index vibrate nearly or-quite normal to the plate and those corresponding to the other two vibrate in the plane of the plate and can be easily measured. The index normal to the plate can be obtained by turning the plates and keeping them on edge; this can often be done in a viscous liquid or they may be measured as they are turned. It is sometimes helpful to mix a little powdered glass with the mineral or to have grains of varying size to separate the cover glass and object glass enough so that the mineral plates can turn over. One of two plates that are differently oriented and attached together may be more easily turned on edge. Many such minerals can be cut with a knife across the plates and the resulting fragments placed on the object glass in the position desired. MEASUREMENTS OF AXIAL, ANGLES The following methods of estimating or measuring the axial angle of mineral grains have been found most convenient by the author: (1) Observing the curvature of the hyperbola in sections cut nearly normal to an optic axis; (2) measuring or estimating the distance between the hyperbolas on a section cut nearly normal to the acute bisectrix; (3) computing the axial angle from the three indices of refraction; 22 (4) measuring on the universal stage. All observations are best made on grains immersed in a medium that has an index of refraction approximately equal to that of 0 for the mineral. From the curvature of the hyperbola of an interference figure the axial angle can be measured, under favorable conditions, with an error of ±3°.23 With a little experience a rough estimate can be made by merely inspecting the curvature of the hyperbola. If the bar appears straight, when turned to the 45° position the axial angle is nearly 90°, and as the curvature becomes greater the axial angle becomes smaller. More accurate and rapid measurements can be made on sections approximately normal to the acute bisectrix, provided the axial angle is not so large that the hyperbolas are outside the field of the microscope. Measurements of the axial angle in air (2E), by using

22 For an excellent discussion of measurements of axial angles, see Wright, F. E., The methods of petro- graphic-microscopic research: Carnegie Inst. Washington Pub. 158, pp. 147-200, 1911. >3 Wright, F. E., op. cit., pp. 155 et seq. METHODS OF DETERMINING THE OPTICAL CONSTANTS 23 a cross-grating ocular, can be made on such sections in a few minutes with a probable error of only a few degrees.23 A grain that is not well oriented can commonly be turned by carefully touching the cover glass. The Fedorov stage can be used to measure the axial angle. The axial angle can be computed from the values of the three indices of refraction according to the formula

_L__L Tan2 VY = ^ y or by the approximate formula 24

Cos2 V'a -^ 7 a in which 2Va is the axial angle about a. For a discussion of these formulae see page 6. As the error in measuring the indices of refraction by the immersion method is considerable in comparison with the birefringence of most minerals, this method is very rough unless the birefringence is considerable. DISPERSION OF THE OPTIC AXES The dispersion formula r^>v (or rw. If the dispersion is strong these borders become pronounced, .and many minerals show no dark hyperbola but a series of colored ones. If the dispersion is extreme the interference figure can hardly be recognized in white light. » Wright, F. E., op. cit., pp. 155 et sea.. 24 A graphic solution of this equation is given in Wright, F. E., op. cit., pi. 9. 24 OPTICAL CHARACTER The optical character of a mineral can be conveniently determined on grains that show the emergence of the acute bisectrix, the obtuse bisectrix, either of the optic axes, or the optic normal (Y); it can also be determined from the values for the indices of refraction. In making any of the tests it is desirable to have the grains embedded in a medium that has an index of refraction nearly that of the /? index of refraction of the mineral grain, as otherwise the interference figure will be distorted. Grains can be turned into the desired position by gently shifting the cover glass. In a viscous liquid, such as Canada balsam, even fibrous or micaceous minerals can readily be turned to any desired orientation. A few grains of powdered glass, dusted through the embedding media will raise the cover glass so that the grains or fibers can be turned. Highly viscous liquids like Canada balsam, Peru balsam (n= 1.593), bakelite varnish (ft, = 1.63), or AFS mounting medium (n = 1.685) are good media in which to turn fibers on edge. Sections that show the emergence of an optic axis are by far the most serviceable, as they can easily be recognized by their interference colors, which are low to zero, and in minerals that have moderate or strong dispersion are abnormal. Moreover, in such sections the acute and obtuse bisectrices can be distinguished, unless the axial angle is very near 90°. The tests are made in the usual way. The authors use the red of the first order for most tests, but for minerals that are deeply colored, especially if they have very strong birefringence or if the grains are embedded in a deeply colored melt, the quartz wedge is more satisfactory. It is often convenient or even necessary to determine the position of the optic plane and make the test on the grain itself by observing an edge where it wedges out. The tests can be made without a wedge or plate by observing the indices in the two directions against the embedding media, provided it is between the two or near one of them. The optical character can be determined from the indices of refrac­ tion. If /3 a is decidedly greater than 7 /3 the mineral is optically negative; if decidedly less it is positive. (See p. 7.) Thi£ relation should be used chiefly as a check on the other data, but for some fibrous minerals whose acute bisectrix is along the fibers it may be the only means of readily determining the optical character. OPTICAL ORIENTATION, DISPERSION OF BISECTRICES, AND and prominent cleavage, twinning, and other phe­ nomena may be quickly observed under the microscope and their relations to the optical characters determined. By observing the in­ terference figure the complete optic orientation of any gram, such as one lying on a cleavage or a crystal face, can be roughly made out. METHODS OF DETERMINING THE OPTICAL CONSTANTS 25 This observation is especially suitable for determining the optical position that corresponds to the direction normal to the grain. The orientation in the plane of the section can best be obtained by meas-> uring extinction angles and determining the position of the slow ray and the fast ray by means of a red of the first order or a quartz wedge, or by testing the indices against the embedding medium. The dis­ persion of the bisectrices can be determined by measuring extinction angles in different colors of light. For ordinary purposes it is suffi­ cient to observe the color phenomena in ordinary daylight when the crystal is near extinction. If the dispersion is slight the extinction should be sharp; if considerable there will be no sharp extinction but abnormal interference colors over a range depending on the extent of the dispersion. It is commonly possible to determine the crystal system to which a mineral belongs from the microscopic study. The fact that min­ erals such as may be sensibly uniaxial or may give sensibly parallel extinction introduces some uncertainty. Isotropic minerals are amorphous or isometric. Uniaxial minerals are tetragonal or hexagonal. Biaxial minerals with parallel or sym­ metrical extinction are orthorhombic. Biaxial minerals with inclined extinction for fragments normal to one principal optical direction and parallel or symmetrical for those normal to the plane of the other two are monoclinic. Biaxial minerals with inclined or unsymmetrical extinction for all orientations are triclinic. Monoclinic minerals elongated in the direction of crystal axes a or c can be conveniently examined by rolling the fragments. When such fragments are turned so as to give parallel extinction crystal axis b and one principal optical direction lie across the length. When the fragments lie on a face normal to crystal axis b they should show approximately the maximum extinction angle. In the conoscope an interference figure should also appear in the center of the field of the microscope. Such sections will give the characteristic extinction angle X (Y or Z) /\c (or a). Pleochroism can be conveniently observed at the same time.' An adequate optical orientation of triclinic minerals may be accom­ plished by the use of the Fedorov universal stage and the convenient accessory, the Wulff stereographic net. Recently use has been made of this method, but no uniformity in recording results has been hereto­ fore proposed. The logical method to record an optical orientation seems to be the one wherein the optical elements are assigned coordi­ nate values on the same projection with the crystallographic elements in the standard orientation. As an example of this method of indi­ cating the optical positions, Figure 5, a, below gives the orientation of axinite, measured with x (111) parallel to the section that is, the normal to x is at the center of projection. However, this is not the 26 accepted orientation for axinite, so the entire projection has been shifted until 6 (010) and m (110) have assumed their normal position, 90° from the center of projection. Further, by convention, the form 6 (010) is on the zero meridian; this involves one more simple shift of the projection, so that the conventional position is obtained. (See fig. 5, 6.) The Wulff net greatly facilitates the changes required. The data for the preparation of a table of coordinate angles, such as given below for axinite, may be read directly from the net, for the measurements made on the Fedorov stage are ordinarily not more accurate than a degree or more. In the table the angles and p are those ordinarily used by crystal- lographers to indicate the angular.positions of face poles on a projec­ tion. Thus 0 is the angle from the zero meridian, read in a clock-

FIQURE 5. Stereographic projection of the optical elements of a triclinic mineral (axinite). Na, N>, N-y are the poles of the vibration directions of the three indices of refraction. 6=face (010), w»=(llO), M=(lIO), i=(lll). A and B emergence of the two optic axes, a, Projection on z(lll). 6, Projection with the prism zone vertical wise direction. Counterclockwise from the zero meridian the readings are negative. The angular values given are conventionally not greater than 180°. The p values indicate the angular inclination of the point from the center of the projection. These angles therefore do not exceed 90° in value. Optical orientation of axinite

p * p

0 0 b (010)-_.-_ .__...__. 0 90 Z_...... -93 42 53 55 A...... _.. _._.__ 18 24 "Y...... 156 72 B._... .__--_.--__.__. 65 90 METHODS OF DETERMINING THE OPTICAL CONSTANTS 27 Extinction angles may be determined graphically when the positions of the axial angle are placed on the projection. The graphic method is recommended for such a determination, because, as before stated, ordinary measurements on the Fedorov stage do not justify more precise methods.

The dispersion of the indices of refraction is easily measured by VTerwin's dispersion method and is a significant diagnostic property, [t should be used more than it is. OTHER TESTS The optical properties are sufficient for the accurate determination of most minerals, but the occurrence and association of the mineral should be considered, a macroscopic examination made, and such simple properties as hardness noticed. It may be desirable also to determine the fusibility and the specific gravity or to make simple chemical tests. Microchemical examinations have not received the attention from mineralogists that they deserve. X-ray photographs are valuable aids and in some determinations are indispensable.

163287 34 CHAPTER 3 SOME STATISTICS ON THE OPTICAL PROPER­ TIES OF MINERALS DISTRIBUTION OF MINERALS WITH REGARD TO OPTICAL CHARACTER The tables in chapter 4 contain data for about 1,200 mineral species, but some species appear more than once, and there are about 1,700 entries. They are distributed as follows: Per cent Per cent Isotropic..______---___-___- 14. 9 Biaxial-K_---_-_---_------30. 3 Uniaxial-f-__-__----_-______6.8 Biaxial-..---.-.-.------__ 31.8 Uniaxial-______13. 8 Optical character unknown 1 _ _ _ 2. 4 Many of the-iso tropic minerals are amorphous, and some minerals that are placed under the uniaxial groups are strictly biaxial but have small axial angles or their apparent uniaxial character is due to aggregate of fibers or lamellae. A few of those included in the biaxial groups are uniaxial and appear biaxial on account of strain. The small number of uniaxial positive minerals as compared with uniaxial negative minerals is noteworthy. A significant feature of the revised edition is the lowering of the percentage of minerals entered as of optical character unknown. DISTRIBUTION OF MINERALS WITH REGARD TO INDEX OF REFRACTION AND BIREFRINGENCE The distribution of the minerals with regard to their intermediate index of refraction 0 is shown in Figure 6. For only 10 minerals, or less than 1 per cent of the total number, is 0 less than 1.400, and for only about 28, or about 2 per cent, is 0 greater than 2.70. For about 54 per cent of all the minerals 0 is between 1.475 and 1.700. The distribution of the minerals with respect to their birefringence is shown in Figure 7. Curve 1 shows that the greater number of the minerals have a birefringence of about 0.018 and that the number rapidly decreases on both sides of this value. Curves 2 to 5 show the distribution as regards birefringence of the minerals whose indices of refraction 0 lie between certain values. The greater number of minerals in which 0 is lower than 1.80 have birefringence of about 0.015. For minerals in which 0 lies between 1.80 and 2.00 the greatest density of distribution is for a birefringence of about 0.035, and for those in which 0 is greater than 2.00 there is no marked. 28 SOME STATISTICS ON THE OPTICAL PROPERTIES 29 30 maximum for the curve. These curves show a striking tendency for minerals which have high indices of refraction to have also strong birefringence. This tendency is equally well shown by the per­ centage distribution of minerals which have birefringence greater than 0.20.

Percentage of minerals with /3 between given values and with birefringence greater than 0.2 Per cent . Per cent less than 1.80______------2 (S between 2.2 and 2.6---_-_----_ 10 between 1.80 and 2.0__---_--_- 11 /3 greater than 2.6____--_------_ 48 between 2.0 and 2.2______14

.RELATION BETWEEN INDEX OF REFRACTION, DENSITY, AND CHEMICAL COMPOSITION Gladstone and Dale long ago showed that Every liquid has a specific refractive energy composed of the specific refractive energies of its component elements, modified by the manner of combination, and which is unaffected by changes of temperature and accompanies it when mixed with other liquids. The product of this specific refractive energy and the density is, when added to unity, the refractive index.25 Or, n 1 -r where K is the specific refractive energy of any substance and k\, k2, Pi, pz, etc., are the specific refractive energies and the weight percentages of the components of that substance. These components may be the elements or radicals that enter into a compound or the constituents of a solution. In general these relations hold rather accurately for varying temperature, pressure, and concentration in liquids and gases, but when applied to a substance in a different state as liquid and gas the formula gives errors as great as 30 per cent. On the basis of the electromagnetic theory of light Lorentz n2 i 1 and Lorenz independently derived the formula -2 T~o ' j = k- This 71 T" Zi CL formula holds somewhat better for substances in a different state but nevertheless gives a considerable error. Another formula recently proposedJ *26 is l°g % n = K.TT

Moreover, some substances, as in some organic compounds, have two or more specific refractive energies, depending on the structure of the molecule. " Gladstone, J. H., and Dale, T. P., Researches on the refraction, dispersion, and sensitiveness of liquids: Roy. Soc. London Philos. Trans., vol. 153, p. 337, 1864. 46 Liehtenecker, K., Phys. Zeitschr., vol. 27, pp. 115-139, 1926. SOME STATISTICS ON THE OPTICAL PHOPERTIES 31 When Gladstone's law is applied to crystalline substances the mean index of refraction or must be used and the relations hold only approximately. The formula Vo>2e °r V^T, however, should be used where the birefringence is very strong. In .applying these formulae to minerals, additional difficulties are introduced, as determinations of density are commonly unreliable, and the chemical composition of the material for which the indices of refraction are available may be imperfectly known. However,, the values shown in Table 2 for the specific refractive energies f -j = k } of the chief constituents of minerals have been com­ puted by taking the average as derived from a number of minerals', for which the available data seemed fairly reliable.

TABLE 2. Specific refractive energies ( j- =kj of the chief constituents of minerals',

Molecular Molecular weight k weight k

HsO...... 18 « 0. 3355. AsaOs- ...... - 198 «0.202,»0.225. » 0.340, ".354 Y203 ...... 226 .144! LhO...... 30 .31 SbiOs...... 228.4 o . 209, < ..232: (NHOaO...... 52 .503 LaaOa...... 326 .1491 NauO...... 62 .181 Cea03 ...... 328.5 .16 K20...... 04 .189 BiaOa-...... ~ 464 .165 CuaO...... 143 .250 COa...... 44 .21T RbaO...... 187 .129 SiOa...... 60 .207" AgaO...... 232 .154 TiO2 ...... SO .397' CsaO...... 282 .124 SeOa...... 111 .147- HgjO...... 416 . 1696i ZrOa...... 122.5 .201 TlaO...... 424 .120 SnOa...... __ ... 151 .145 BeO...... 25 .238 SbOa...... 152 . .198 MgO...... 40.4 .200 TeOa...... 159.5 '.200a CaO...... 56 .225 ThOa-...... 264.5 .12 MnO...... 71 *. 191, « . 224 N20j...... 108 .240 FeO...... 72 .187 PaOs...... 142 .190 NiO...... 75 .184 ClaOj...... 151 .218- CoO...... i..-- 75 .184 V208 ...... 182.4 .43 CuO...... 79.6 «.191,«.253ii 230 .169 ZnO...... 81.4 <*. 153,'. 183 BraOs.. _ ...... 240 .183 SrO...... 103.6 .143 CbaOa...... 268 .295 CdO...... 128.4 .134 SbaOj...... I...... 320.4 . 152, .222(?> BaO...... 153.4 .127 IsOs...... 334 .177 HgO...... 216 .18 TaaOj...... A A ft .133 PbO...... 223 ".137,M75 ti SOj...... 80 .177 BaOs...... 70 . 220 CrOs ...... 100 .36 CaOa ...... 72 .265 127 .165 AlaOs...... 102 . 193, / . 214 .24U,. 152 .27 Te03 ... .. ----- 175.6 .607 158 rf.300, '.304..1 W03 -- ...... 235 .133 FeaOa...... 160 rf . 308, «. 36 ! U03 - ...... 286.5 .134

o and ice. / Calculated from feldspar, feldspathoids, etc.. 6 Average. ' Isometric oxide. «, etc. * Monoclinic oxide. d Calculated from compounds containing the oxide. ' Orthorhombic oxide. Calculated from the oxide.

Atomic Atomic weight k weight k

H...... 1 1. 256 or 1. 44 S ...... 32 i 0. 502, * 1. 00 C...... 12 .403 Cl...... 35.5 .303. O...... 16 .203 Br...... 80 .214 P...... 19 .043 I...... 127 .226

Calculated from native sulphur. * Calculated from sulphides; values vary. 32 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS These values are only approximate, but in a number of minerals selected at random the value of k as computed from n and d and as computed from that of its constituents agreed with few exceptions within 5 per cent. A very few minerals show a much greater difference. As shown in the table for most radicals, the value of k is near 0.20. For S, (NH4)20, Ti02, Te03, and V2O5, it is higher, and for Cs2O, BaO, PbO, Th02, U03, and F it is much lower. There is a tendency for the value of k in each group to decrease as the molecular weight increases, but there are many exceptions. The values of k for BaO, SrO, and CaO show why related minerals of these three oxides have about the same indices of refraction but very different densi­ ties. The values for Cb205 and Ta205 show why the columbates commonly have higher indices of refraction but lower than the corresponding tantalates. The extremely low value for fluorine accounts for the remarkably low indices of refraction and comparatively high densities of the . Minerals containing any of the following radicals as essential con­ stituents are likely to show strong dispersion: (NH4)20, N205, U03, :Sb206, AsaOs, P206, V20fi, Fe203, Mn203, Mo03, or Ti02. CHAPTER 4 TABLES FOR THE DETERMINATION OF MIN­ ERALS FROM THEIR OPTICAL PROPERTIES

ARRANGEMENT OF THE DATA IN THE TABLES In Table 3 the minerals are arranged in the order of their mean indices of refraction (|3 or w) and the birefringence is added. In Table 4 the minerals are divided into six groups isotropic, uniaxial positive, uniaxial negative, biaxial positive, biaxial negative, or optical character unknown. The last group includes only a few minerals, mostly very finely crystalline. As the indices of refraction are the most characteristic and the most easily measured of the optical constants, the minerals in each group are arranged in the order of the intermediate index of refraction, /3. The data for each mineral are arranged along a horizontal line. The left-hand column shows the variability. For biaxial minerals the next three columns show the three indices of refraction in the order a, 7, /3. The birefringence is not given, for it can be determined by subtracting a from 7. After the indices of refraction the name of the mineral is given, and beneath it the chemical composition. Then follows the axial angle, 2V and 2E, and beneath it the dispersion of the optic axis. 2E becomes indeterminate as it approaches 180°, and so such values are not given. Next comes the optical orientation, and beneath it the dispersion of the principal optical directions (bisectrices). The crystal system is next given, and beneath it the crystal habit. The next column shows the cleavage, and the next the color of the mineral in the hand specimen. Then follows the hardness, specific gravity, and fusibility. In the last column, under remarks, is given the group to which the mineral belongs, the solubil­ ity, the pleochroism, twinning, and other properties. For isotropic and uniaxial minerals the arrangement is the same, but some of the columns are omitted. For a few minerals only one index of refraction is known, and the birefringence (B) is then given. The birefringence is said to be weak if it is less than 0.010, moderate if between 0.010 and 0.025, strong if between 0.025 and 0.100, very strong if between 0.100 and 0.200, and extreme if greater than 0.200. The axial angle (2V) is said to be small if it is estimated to be less than 30°, moderate if between 30° and 60°, and large if over 60°. The dispersion of the optic axis is said to be perceptible if a good inter­ ference figure shows faintly perceptible colored borders, weak if a 33 34 MICROSCOPIC DETERMINATION OF NONOPAQTJE MINERALS little more easily seen, moderate if easily seen, strong if the hyperbolas are rather broad, colored bands, and extreme if the colored hyperbolas cover much of the field of the microscope. The attempt has not been made to describe all the phenomena ob­ served under the microscope but rather to give the chief optical con­ stants and any exceptional properties that are not simply manifesta­ tions of these optical constants. For example, the section (OK)} of a monoclinic mineral with strong dispersion of the bisectrices will not give sharp extinction in white light but a succession of abnormal interference colors over an angle whose width depends upon the strength of dispersion. Minerals that have strong dispersion of the optic axis will give abnormal interference colors in white light on sections nearly normal to an optic axis. In general, abnormal inter­ ference colors are due to strong dispersion. The positions of the optical directions with relation to cleavage or other crystal direction are easily determined, except in triclinic minerals, if the position of the cleavage and of the principal optical directions in the crystal are known. For example, has a very perfect cleavage {Old} and Y = 6; hence cleavage pieces are parallel to the plane of the optic axes and will show the emergence of Y. Minerals for which new measurements were made for these tables are marked with an asterisk (*). Under remarks the source of the specimen examined is given. There are about 80 of these minerals, and these new data have not in general been published elsewhere. In Tables 5 to 24 we have assembled for some of the well-known mineral groups the optical data that are most useful for distinguishing between members of the group. The groups are arranged in alpha­ betical order, and the arrangement within the groups is much the same as in Table 4. .

COMPLETENESS OF THE DATA In the classification and nomenclature of the minerals Dana's "System of mineralogy" has been followed with few exceptions, although that classification is now greatly in need of revision. With the exception'of the opaque minerals and a few others that are noted in the index and elsewhere, all the species recognized in Dana's System, including the first three appendices, are included in the tables as well as a considerable number of minerals not considered species in the system and many subspecies of the better known groups. Some minerals whose optical properties differ in different specimens have been inserted in the tables several times. The indices of refrac­ tion of about 20 very rare minerals have been roughly estimated from the chemical composition and specific gravity, and these esti­ mated indices have determined the position of the minerals in the tables. TABLES FOR DETERMINATION OF MINERALS 35 It must be borne in mind that a large number of the minerals are variable in all their properties through isomorphism and solid solution. For the most species this variability is within moderate limits, and if the properties of the end members are known those of the intermediate members can be estimated. As yet only a few mineral groups have been systematically studied and for many groups the only available constants are for one or more imperfectly placed intermediate members. Where the data were available the end members are placed in the tables and, in many groups, one or more intermediate members. Ultimately it is hoped that all optical measurements will be closely tied to good chemical analyses. The data given in the tables as a rule are commonly for particular speci­ mens, and other specimens, even from the same locality, may differ somewhat in indices of refraction and other properties. If the axial angle is large a comparatively small difference may change the optical character and such minerals should be looked for in both the optically positive and negative groups. For more complete descriptions of the minerals the standard min­ eralogies should be consulted, particularly Dana's "System of mineralogy", Hintze's "Handbuch der Mineralogie", Winchell's "Elements of optical mineralogy", and Kosenbusch-Mugge's "Mikro- skopische Physiographie, Band 1, Zweite Halfte."

TABLES TABLE 3. List of minerals arranged according to their intermediate indices of refraction, j8, and showing their birefringences

P Birefringence 0 Birefringence

Air...... 1.000 0.000 1.454 0.008 Ice...... 1.309 .004 Wattevillite...... 1.455 .024 Malladrlte...... 1.312 .003 ...... 1.455 .028 1.325 .001 ...... 1.456 .119 ...... 1.328 ...... 1.456 .000 Water...... 1.333 .000 Yttrofluorite...... 1.457 .000 1.339 .000 ...... 1.458 .026 ______1.339 .001 Tschermiglte ...... 1.459 .000 Cryolithlonite ...... 1.339 .000 (?) ...... 1.46=b .11 ChioHte...... 1.349 ftffi ...... 1.46 .000 Cryptohalite...... 1.370 .000 Mallardite- _ ...... ...... 1.378 .012 ...... 1.461 .013 ...... 1.395 .004 ...... 1.461 .000 Chrysocolla(?)...... 1.40± Mendozite ...... 1.461 .014 Termlerite ...... 1. 403± .000 ...... 1.462 .000 Opal. __ ...... 1. 406± .000 Plcromerite ...... 1.463 .015 1.413 .009 Mendozite ______1.463 .012 Thomsenollte ...... 1.414 .008 ...... 1.464 .011 1.425 .035 Lansfordite ...... 1.468 .051 f .000 ...... 1. 470± .000 1.427 \ to weak. 1.47 .03 Opal...... 1.43 .000 Omelinite...... 1.47 .004 1.434 .000 - ...... 1.47 .004 . _ ...... 1.434 .000 1.47± .000 Opal...... 1. 440=fc .000 1. 47=fc .000 1.440 .005 1.470 .036 1.44 .014 1.470 .009 1.44± .000 1.470 .025 Stercorite ...... 1.441 .030 Boussingaultite ...... 1.470 .010 Taylorite... _ ...... 1.448 .012 ___ ...... 1.472 .034 _ . _ - ...... 1.45 Flokite...... 1.473 .002 Lecontite ...... 1.452 .013 ( .001 KaJinite .. _ ...... 1. 452 .028 1.474± 1 to . 008 Hexahydrite ...... 1.453 .030 Ptilolite...... 1.475 .003 Sulphohalite ...... 1.454 .000 ...... 1.475 .004 36 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

TABLE 3. List of minerals arranged according to their intermediate indices of refraction, ft, and showing their birefringences Continued

ft Birefringence ft Birefringence

1.474 0.029 1.505 0.005 1 471 .011 1.605 .000 1.476 .009 ______1.505 .001 1.476

TABLE 3. List of minerals arranged according to their intermediate indices of refraction, /3, and showing their birefringences Continued

ft Birefringence ft Birefringence

1.529 0.055 Zepharovichite...... 1.55 0.02± 1.53± .000 Mizzonlte (MavjMeM).. 1.551 .013 T^ftviQtnnlritft 1.630 .022 1.552 Weak. 1.530 .024 Alumohydrocalcite . __ 1.553 .085 Tlpoito ...... 1. 553 .007 1.53 .025 Qrothine...... 1.554 .016 1.53 1.554 .018 1,532 .010 Bombiccite...... 1.555 .041 1.532 .003 1.555 .011 1.532 .056 ...... 1.555 .023 Kaliophilite..- ~ ... 1.532 .005 Halloyslte.. - - .. 1.555 .0001 1.533 .042 1.555 (?) 1.533 .027 1.555 .01 1.533 .022 1.555 .102! 1.533 .000 ...... 1.655 .159 1.534 (M7 1. 555 .007 1.534 .068 1.556 .089' 1.534 .020 (?) (?) 1.534 .027 Louderbackite...... 1.558 .037' 1.535 .021 1.558 .OOOi 1. 535± .000 1.558 .019' 1.535 .002 1.558 .053, 1.535 1.558 .031 1.535 .063 ...... 1.558 . 009i 1.535 .060 1.559 .021) 1.535 .02 1.559 . 008: 1.535 .010 Ferronatrite...... 1.559 .068: 1.536 .036 Friedellite ...... 1.560 . 065> 1.636 '.026 1.660 .065. 1.636 TOO 1.560 .020 Siderotil . .... 1.537 .015 1.560 .020' 1.537 nfw 1.560 .02. 1.637 .01 1.56 Weak.. Beidellite ...... 1.637 .042 1.561 .19* 1.637 .029 1.561 .027; (?) 1.561 .011- 1.538 .006 1.561 .026-. 1.539 .028 1.561 .023 1.539 fiO9 1.662 .012" 1.539 .008 1.562 .006. 1.540 .030 1.662 .014 1.54 (?) 1.56 1.54± .000 .OOOi 1.640 .017 1.562 .011 1.541 .000 1.563 .009- 1.541 .022 1.563 .006. Teletrdite 1.542 .000 1.564 1.542± 000 1.564 .006 1.542 .004 Polylithionite ...... 1.565 .022' . ... 1.542 .026 __ 1.565 .022: 1.642 .130 1.565 . 000 1.543 .065 1.565 .010' Olicoclos6 1.543 .008 1.565 .005- ...... 1.544 .000 1. 565± .01 1.644 .009 Elpidlte... ..---.-...... 1.565 .014; 1.544 .002 1.665 . 005 1.545 .014 1.566 .021; 1.545 .002 (?) (?) 1.54 .01 1.566 .038- Pholldollte...... 1.545 .042 1.567 .027" 1.545 Wernerite (MauMeio) - - 1.567 .022' 1.545 .012 1.568 .000 1.545 fine 1.568 .015 1.546 .006 1.569 .004; 1.547 .023 Qrifflthite...... 1.569 . 087: 1.547 ftfifVlr. 1.57 1.547 .010 1.57± .000) 1.547 .025 1.57 Weak.. 1.547 .156 1.57 .010' 1.548 .028 1.57 .030* 1.548 .014 1.570 . 013: 1.549 .013 1.57± .025, Truscottite...... 1.549 .021 1.570 .011' (?) (?) 1.571 .03* 1.549 .016 1.571 .059' 1.549 .021 1.571 .022' 1.650 .006 1.572 .002' 1.550 .011 Beidellite- 1.572 .039' 1.55 .03 1.572 .003. 1.55± .000 1.572 .002. Ascharite. .--..-.-..--. 1.55 .02 Nitrobarite. . . 1.572 .000. 38 MICKOSCOPIC DETERMINATION OF NONOPAQUE MINERALS

TABLE 3. List of minerals arranged according to their intermediate indices of refraction, /3, and showing their birefringences Continued

0 Birefringence /» Birefringence

1.572 0 000 1.59 0.012 1.57± 000 1.59 .018 1.572 .020 1.590 .020 1 179 .020 1.590 .033 1.572 .010 1 1.591 .018 1.573 .031 1.591 .071 1.574 .02 1.591 .022 1.574 .033 1.592 .011 1.574 09Q 1.592 .036 1.574 .034 1.592 .028 1.575 .030 1.592 .010 1.575 .044 1.594 .04 1.575 .01 1.594 .027 1.575 .024 1.594 .04 1.575 .005 1.595 .040 1.57 .008 1.595 .020 1.575 .015 1.595 .010 1.576 .030 1.595 .070 1.576 .008 1.695 .012 . 1. 576 .003 1.595 .027 1.576 .014 1.595 .027 1.576 .026 1.596 .036 . 1.577 .006 1.596 .000 1.578 .057 1.597 .037 1.578 . .06 1.597 .023 1.579 .002 1.697 .007 1.579 .021 1.597 .015 1.580 .020 1.598 .045 1.580 .009 1.598 .019 (0 .014 1.698 .008 f Rather Manganophyllite 1.598 .030 1.58± 1.598 nns 1.580 .008 1.600 .021 1.68 .000 1.599 .041 1.581 .010 1.60± .000 1.581 .006 1.600 Strong. 1.581 .009 1.60 .033 1.581 .010 1.600 .045 1.581 .036 1.60 .053 Beidellite - 1.582 .028 1.60 .03 Hydrobiotite. . 1.582 .037 1.600 .008 1.582 .008 1.60 .03 1.582 .031 1.60± .000 1.582 .011 1.601 .010 1.582 .063 1.602 .048 1.582 .027 1.602 .020 1.582 .011 1.603 .031 1.583 .019 Fremontite 1.603 .021 1.583 .012 1.603 .014 1.584 .006 1.603 .054 1 fiRd .012 1.604 .011 1 MM .000 Voltaite.. 1.604 .000 1.585 .01 1.604 .032 1.585 .025 1.605 Low. 1.585 .029 1.605 .02 1.585 .013 1.605 .023 1.585 1.605 .100 1.586 .011 1.605 .000 WcirHita 1.586 009 1.605 1.586 .009 1.606 .025 1.587 .09 1.606 .022 1.587 Low. _ 1.606 .044 1.587 .251 1.606 .005 1.588 .048 (?) .017 'Talr> 1.589 .050 ... 1.607 .036 1.589 .011 1.607 .006 1.589 .010 Dahllite 1.608 .004 1.589 .001 1.608 .045 1.59± .000 1.609 .021 1.590 .015 1.61 .000 1.590 .000 - 1.611 .043 1.590 .030 1.61 .07 TATorHitfl 1.590 .010 1.61 .025 1.59 .01 1.61 .007 1.59 .01 1.61± .000 1.590 (?) 1.61± .000 'Kornelite.. 1.59 .07 1.61± .000 . 1.59± .000 .020 'Collophanite. 1.59± .000 Chloromanganokalite.. 1.59 Very weak. 019 1 "iO.I. no Aphrosiderite 1.612 .004 Oarnierite.. . -- 1.59 Low. 1.612 .029 TABLES FOR DETERMINATION OF MINERALS

TABLE 3. List of minerals arranged according to their intermediate indices of refraction, /?, and showing their birefringences^G&totitiued

P Birefringence 0 Birefringence-

1.613 . 0.047 1.63 0.02 1.613 .010 Chrysocolla (?)...... 1.63 .OS', 1.613 .017 1.63 .oiaf 1.614 fni 1.634 .03 .. . . - _ 1.614 .022 1.633 .000 _ ...... 1.615 .069 1.633 f)Ad . ___ _-...- ... 1.615 .012 .006 .. _ - ...... 1.615 .002 Voelckerite 1.633 004 Lehiite..... _____ . 1.616 .027 Melilite. 1.634 .005 . ____ .... 1.616 .027 1.635 .011 Calamine __ ... __ .... 1.617 .022 1. 635± .000 C yanotrichite -... .. 1.617 .067 Tilleyite--.-~.~~~~ 1. 636 AOC ...... 1.617 .032 1.635 ofu .-... __ .... 1.618 .022 Oedrite...... 1.636 .021 ...... 1.618 .066 1.636 .014 .... _ ...... 1.618 .022 flOT . ____ ...... 1.619 .019 1.636 n^f* Chondrodite - __ ... 1.620 .036 1.636 . 02ft* Delessite _ ...... 1.619 .014 1.636 098; ___ ...... 1.62 .04 1.637 023; .. ___ . ... 1.62 .015 022 __ . _ . 1.620 .008 "Rarito 1.637 .012 Churchite. ______1.620 .034 1 638 099 Bisbeeite...... 1.620 .10 1.638 .019 ...... 1.620 .017 013 . --...-._---. 1.62 .002± 1.638 flcor Gillespite...--. _ ...... 1.621 .002 1.638 .017 Eucolite __ ...... 1.621 .003 1.639 .000 Zippeite _ ...... 1.621 .010 1 fi^8 .000. Lehiite ____ . _ . ... 1.622 .009 1.639 .00» Pseudowavellite...... 1.622 .009 1.639 019) Arakawaite _ ...... 1.622 .040 1 f\d(\ nno . . . . . _ 1.623 .002 1 64 .015 Dehrnite. __ .. _ ..... 1.623 .011 1 64 .000 ...... __ .. 1.623 .003 i fi4_i_ .01 1.623 .023 i fid Tikhvinite. --..-...-... 1.62 (?) 1 fid .02 Uranopilite. .----...... 1.623 .010 1.64± .000 Tremolite...... 1.623 .026 1.64± .000 Uranocircite. . ___ - _ 1.623 .013 1. 640± .000 Celestite. . _ .. _ . ... 1.624 .009 Uvite-...... 1 641 .020 Lewistonite.... _ .... 1.624 .011 T^nlfrnitA 1 641 nno Soda (ephes- 1.642 .024 ite)...... 1.625 .032 1.642 04 6> 1.625 .050 ...... 1.642 !063, 1.625 .010 (pure)~--.---~ 1.642 .015, 1.625 1.642 .024, 1.625 AOO 1.642 1.625 Weak 1.642 .035 NeDouite 1.625 .037± Ransomite---. --~~-- 1.643 .064. 1.625 Castanite _ ...-..-.-.. 1.643 ' . 104, 1.625 .033 Margarite... ------. 1.643 .013 1.626 .014 __ -.'..-...-... 1.643 .035 1.626 .021 1.643 .020" 1.626 .033 . . ------1.644 .053- 1.627 .025 Fairfleldite...... 1.644 .01& 1.627 .045 Nontronite------~- 1.645 .03 1.628 .056 Rinkolite. ------1.645 .01» 1.628 .019 Holmquistite. . .-..----. 1.645 .019 1.628 .008 1.646 .019 1.628 .056 (tourmaline) .... 1.647 .01S 1.629 .026 Hellendite. ------(?)' .011 1.629 .022 Biotite...... ~--~~ 1.648 ; .064 1.629 .015 1.648 .039 1.63± .03 1.649 , .00ft 1.63 .02 1.649 .075 1.630 .005 1.649 .012 1.63± .000 1.65 .025 1.63 .050 T. 65± ; .000 1.630 .021 1.65 .000 1.630 .008 1. 650 I .026 1.630 .010 1'. 650 .075 Edenite ___ __ . ... 1.630 .023 Homilite (altered)...... 1'. 650 . .02 1.630 .061 1. 650 i ..137 1.631 .025 '.Off ..65" i . 000 1.63 .01 Tritomite (altered). _ . i .000 1.632 .030 '.650 ; .028 1.632 .019 '.650 Bementite...... 1.632 .030 . 650 .027 Chalcophyllite- . _ . ... 1.632 .057 i: 65" : .03 ...... 1.632 .009 Epistolite -..-. - 1 li.650- i .072 40 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

TABLE 3. List of minerals arranged according to their intermediate indices of refraction, ft, and showing their birefringences Continued

P Birefringence ft Birefringence

1.651 0.076 1.669 0.009 1.652 .011 1.669 .011 1.652 .024 Schorlite (tourmaline) .. 1.669 .031 1.652 .063 1.669 .012 1.653 nnn 1.67± .000 1.653 .008 Olivine (FeO= 11.9 per 1.653 .040 1.670 .036 1.653 .030 ...... 1.670 .052 1.654 .07 1.67 .014 1.654 .013 1.67 .000 1.654 .029 1.670 .012 1.654 .009 1.670 .032 1.654 .053 1.667 .007 1.654 .016 Titanohydroclinohum- 1.654 .022 1.670 .032 1. 654 .049 1.670 Weak. 1.654 .044 . 1.670 .046 1.655 .004 1.671 .029 1.655 .010 1.67 .02 1.655 .011 1.671 .146 1.655 .005 Hinsdalite . . 1.671 .019 1.655 .029 1.671 .030 1.655 .007 Fillowite.. ------__ 1.672 .004 1.655 .019 chlorophoe- TPfllaitfi 1.656 .008 nicite __ 1.672 .008 1.656 .065 1.673 .048 1.656 .03 1.673 .022 1.656 .032 . ____ _ 1.674 .039 1.657 .012 . - 1.674 .013 Vslsrdonits .004 1.674 .036 1.657 .010 1.674 .019 1.658 .013 1.674 .127 1.658 .065 . .... 1.674 .022 1.658 .055 1.674 .014 1.658 .172 1.675 .022 1.659 .013 Plazolite ___ _ 1.675 .000 1.66 .025 .. 1.675 .028 Hisingerite...... 1.66 .000 Liskeardite.. . . 1.675 .028 1.660 .070 1.675 .044 1.660 .010 1.675 .039 1.660 .010 Chloromagnesite. - 1.675 .085 1.660 .012 ... . . 1.676 .000± 1.660 .035 Parisite... - 1. 676± .081 1.660 .012 1.676 .054 1.66 .06 1.676 .011 1.66 .015 .. 1.676 .148 1.660 .022 _ .. 1.676 .012 1.660 Weak. 1.677 .013 1.661 .043 (10 per 1.661 .073 1.678 .010 1.661 .040 Iron reddingite . . . 1.678 .031 1.662 .001 1.678 .041- 1.662 .017 . _ .... 1.678 .033 . 1. 662 .013 __ -... 1.679 .011 1.662 .098 1.680 .025 1.663 .025 1.68 .06 1.663 .017 1.68 .060 1.664 .035 1.68± .000 1.664 .013 Florencite. 1. 680± .005 1.664 .028 1.68 .005 1.665 .02± Diopside..-...... 1.680 .029 Tfl-jy-v] jfrt 1. 665± .02 1.681 .037 1.665 .02 Strong. 1.665 .029 ...... 1.68 .05 1.665 .020 1.68 .18 1.666 .046 Schallerite...... 1.681 .038 1.666 .010 1.682 .155 1.666 .016 Koettigite _ ..-- . 1.683 .055 1.666 .012 1.683 .029 1.666 .005 1.684 .161 1.667 .007 1.684 .036 1.667 .003 Svabite... .. 1.684 .012 1.667 .177 Ferroanthophyllite . . 1.685 .03 1.667 .019 Thuringite...... 1.685 1 .015 .011 Axinite.--.- ... 1.685 .010 .147 S chroeckingerite ...... 1.685 .032 '. - _ - ..... 1.667 Koscoelite...... 1.685 .094 __ _ .--.. 1.667 .027 Uranopilite -- 1.68 .03 Symplesite...... -. 1.668 .068 1.685 .033 Rinkite ..... 1. 668 .016 1.686 .028 Zinkosite... .. -- 1.669 .012 Titanoelpidite. -.--....- 1.686 .017 TABLES FOR DETERMINATION OF MINERALS 41

TABLE 3. List of minerals arranged according to their intermediate indices of refraction, /3, and showing their birefringences Continued

0 Birefringence ft Birefringence

Dumortierite.. - 1.686 0.011 1.711 0.010 1.687 .046 1.711 .015 1.687 .029 1.713 .019 1. 687 .005 1.714 .030 1.687 .029 1.714 .045 1.688 .031 (manganifer- .. _ ------1.688 .004 1.714 .025 1.689 .109 1.715 .013 Hypersthene (14 per 1.715 .023 1.689 .012 1.715 .044 1.689 .038 1.716 .000 1.690 .018 1.716 .026 Orangite (altered tho- 1.716 .190 1.69 .000 1.716 .005 1.690 .016 1.716 .050 1.690 .028 1.717 .004 1.69± .09 1.717 .101 1.69 .OOdb 1.718 .000 1.691 .028 1.718 .018 1.691 .026 Magnesium orthite 1.718 .018 Qehlenito... _ . .. 1. 691 .000± PiorAfiTlitp 1, 719 .024 1.691 .021 1.719 .028 1.694 .019 1.719 .014 1.693 .005 Epidote (12 per cent 1.694 .032 1.719 .007 1.694 .053 1.719 .021 1.695 Low? 1.72± .000 Basaltic . ... 1.695 .031 1.720 .010 1.695 .161 1.720 .016 1.695 .005 1.720 .029 1.695 .025 1,720 .000 1.695 .014 1.720 .010 Barylite. ___ 1.696 .014 1.721 .019 1.697 .045 1.721 .095 1.698 .038 1. 722 .049 (CaCOs, 52.6 1.722 .048 per cent; MgC Os, 36.7; 1.722 .011 FeCOs, 10.7. . 1.698 .185 1.722 .044 1.698 .040 1.722 .023 Schefferite. -- 1.699 .031 1.723 .047 1.699 .046 1.723 .042 1.70± .000 1.724 .010 1.70 .000 1.724 .022 Basaltic hornblende .... 1.725 .072 (pure) ...... 1.700 .191 1.725 .023 1.700 .006 1.725 .000 1.70 .007 1.725 .046 1.70 .022 1.726 .033 1.70 Low. .--- - 1.726 .005 1.70 .04 Magnesite (FeCOs, 15 1.70 .021 D6r cent) 1.726 .199 1.700 .100 ...... 1.726 .036 1.701 .040 Picrotephroite 1.701 .011 (MgjSi04, 40.4; 1.702 .017 MnjSiOi, 59.6 per Arandisite _ ...... 1.702 .000 . 1.727 .029 1.702 Moderate. Hypersthene (25 per Hypersthene (FeO, 18 1.728 .016 1.702 .013 1.728 .055 1.702 .006 1.728 .015 1.703 .005 1.729 .025 1.703 .055 1.729 .010 1.703 .018 1.730 .080 1.704 .025 1.73± .01 1.704 .025 1.73 .02 1.705 .000 1.73 .01 .... - 1.705 .053 (TiOj, 4.84 per Qraftonite __ . 1.705 .024 1.73 .021 1.706 .037 1.73 .056 1.706 .008 1.730 .068 1.707 .021 1.730 .035 1.707 .000 (?)...... 1.73 .Old: 1.707 .018 1.731 .028 1.707 .006 1.731 .027 1.707 .009 1.731 .022 .... . 1.708 .003 1.732 .032 Diopside . 1.708 .024 Moly bdite ..... 1. 733± .215 ... ___ ..... 1.709 .082 1.733 .019 Uranothorite ...... 1.710 .000 1.733 .015 Strengite...... 1.71 .035 Curtisite...... 1.734 .51 Zippeite (?)...... 1.710 .100 Qrossularite.. -...--.--. 1.734 .000 42 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

TABLE 3. List of minerals arranged according to their intermediate indices of refraction, /3, and showing their birefringences

0 Birefringence 0 Birefringence

1.734 0.013 1.77 0.000 1.735 (?) Melanocerite (altered) . . ' 1. 77± .000 Qi^lrlAritfl 1.735 .030 1.77 .041 1.735 .01 1.77 .02 1.736 .000 1.772 .019 1.736 .000 1.773 .078 1.736 .024 1.774 .032 1.736 .110 1.774 .013 1.737 .055 (?) Strong. 1.737 .000 1.774 .06 rpViQl/vnita 1.738 .013 Britholite .. 1.775 .005 1.739 .024 1.776 .037 TT^lvitP 1.739 .000 1. 778± .000 1.740 .021 1.778 .023 1.740 .025 1.778 .073 1. 74± .000 1.779 .019 Caryocerite (altered) 1.74± .000 1.779 .000 1.74 .035 1.78 .13 f Rather . 1.780 .036 1.74 \ strong. 1.780 .029 1.74 .089 1.78± .005 1.741 .010 1.78 Medium. 1.742 .000 Piedmontite.. __ 1.782 .082 1.742 .027 1.782 .063 1.742 .022 1.786 .046 1.742 .028 1.785 Epidote (22 per cent 1.786 .040 1.742 .027 1.788 .218 1.744 .065 . 1.788 .082 1.745 .042 1.788 .027 1.745 .003 1.788 .023 1.745 .085 ______1.788 .051 1.745 .087 1.790 .000 1.748 .103 1.79 .10 1.748 . .000 1.79± .26± 1.748 .010 1.79 .020 1.749 .202 Hortonolite _ 1.792 .035 1.75 .08 1.792 .034 1.75± .21 Strong. 1.75 .08 1.793 .054 1.75 .030 1.793 .022 1.754 .000 1.793 .028 1.75 Low. 1.794 .009 1.75± .000 Barthite. _ 1.795 .035 1.752 .016 __ - __ 1.796 .030 Mceowrnite 1.754 Very weak. 1.799 .050 1.754 .035 1.80 Strong. 1,754 .021 .000 A rQPrtrtlifa 1.754 .000 . (?) (?) Veuasite 1.755 .065 Spessartite (pure) 1.800 .000 1.755 .030 Flinkite.. ______. 1.801 .050 1.755 .076 1.80 .006 Tritomite (altered) 1. 757± .000 1.80 .05 1.757 .047 1.80 .08 1.757 .040 1.80 .05 1.758 .108 1. 805± .000 1.758 .000 Stibiconite.... 1.80d= .000 1.76 .13 . . 1.80± .000 1.760 .183 1.801 .000 1.760 .000 1.801 .049 1.760 .090 .. __ . 1.807 .016 f Rather Acmite. 1.807 .053 (?) \ strong. ..... 1.807 .048 1.760 .015 Olivenite.---- - 1.810 .091 1.761 .000 1.810 .022 1.762 .034 Hancockite _ 1.81 .042 1. 762 .086 1.81 .05 1.763 Weak. 1.810 .029 Epidote (57 per cent 1.811 .000 1.763 .057 Bodenbenderite (?) .000 1.763 .000 ______-- 1.812 .023 1.766 .000 1.812 .000 1.768 .008 Spessartite...- . 1.814 .000 1.768 .044 Molybdophyllite. 1.815 .054 1.769 .009 1.815 .050 (?) Strong. 1.816 .060 1.77± .000 Borgstroemite . 1.816 .088 Aegirite (vanadiferous) . 1.770 .037 1.817 .105 1.770 ' .016 (pure) 1.817 .22 1.770 .130 1.817 .032 1.771 .031 1.818 .000 Piedmontite.. 1.771 .061 .- - 1.818 .400 TABLES FOR DETERMINATION OF MINERALS 43

TABLE 3. List of minerals arranged according to their intermediate indices of refraction, /8, and showing their birefringences Continued

ft Birefringence ft Birefringence

1.820 0.095 1.92 .14 1.82 .04 1.920 0.071 1.82 09 1 Q9-U (H-l- 1.826 .221 1.92± .000 1.826 .000 1.923 .000 1.83 000± 1.923± 045 1.830 .000 1.925 .000 (?).._...... 1 QO .072 1.925 .200 (MgCOj,24per 1.926 .059 1.830 .234 1.93 Weak. 1.831 .046 1.93± .20 1.831 .047 1.832 .082 1.930 .053 1.834 .072 1.93 .000 1.836 .041 1.935 .115 1.838 .000 1.936 .055 1.838 .050 1.94 .000 1.838 .000 1.94± .000 Toerilit-n 1.84 .16 . 1.945 .026 1 84 1.948 .010 1 84 .17 1.95 1.840 .055 1.950 .040 1.840 flQfi 1.95 .03 T\iot'7oitQ 1.842 .032 1.9 .11 1.955 .263 1.849 .234 1.96 Weak. 1.849 .228 1.960 .055 1.85 .17 i ofl_i_ 000 1.85 .15 1.96 .000 1.85 .04 1.96 .25 1.850 .003 1.961 .021 1.852 .033 1.963 .003 1. 853 .050 1.965 nnn 1.855 .242 Tscbeflkinite (altered?). 1.97 .02 1.855 .25 1.97 .04 1.857 .000 1.97 Wflnlr 1.86 .07 Wont 1.86± .000 1.973 .683 Erinite. - 1.86 .06 1.974 .010 1.86 .01 1.975 .134 1.861 .049 1.98 1.864 .050 1.98 nnn 1.866 .091 1.98 .000 1.87± .000± 1.985 .10 1.87± .000 1.99 no 1.870 .078 1.99 1.87 nd 1.99± nrin 1.870 .18 1.997 .096 1. 870± .225 Bindheimite (?).- ... 2.0 1.875 .242 Wiikite...... 2.00 nnn 1.875 .089 2.0d= .015 1.875 .254 2.00 nnn 1.879 .240 _ ...... 2.00 .14 1.88 .06 2.00 .15 1.88± .01 2.00 1.88 .08 2.01 10 f Rather Armangite ...... 2.01 .02 Chenevixlte...... 1.88 2.01 .02 1.882 .097 1.882 .017 (?) 000 2.01± 000 1.87 .02 ...... 9 ft1 .02 Ellsworthite _____ . 1.89 .000 2.01 19 1.89 .02 2.013 .016 1.89 .05 2.015 000 1.895 .000 2.026 .016 1.895 .20 (?) 000 ...... 1.898 .083 2.026 061 lanthinite _ - .... 1.900 .246 0 m f Rather Trippkeite...... 1.90 .22 Voltzite...... I strong. 1.9± .000 2.03 .03 1.9± .015 2.04 no 1.907 .134 2.037 OQQ 1.910 .087 Uzbekite...... - 2.04 DA 1.910 .055 2.05 IW1 1.91 .01=b 2.05± (VIA Ilvaite. _ ...... 1.91 2.05± nnn 1.91 flQK 2 nC .02 1.913 .010 2.05 Hugelite...... 1.915 .01 Eulytite..-...... 2.05 1.918 .016 2.050 rv\o Fourmarierite ...... 1.92 .09 Calcio volborthite ___ - 2.05 .00 163287 34 1 44 MICKOSCOPIC DETEEMINATION OF NONOPAQUE MINERALS

TABLE 3. List of minerals arranged according to their intermediate indices of refraction, /3, and showing their birefringences Continued

ft Birefringence & Birefringence

2.05 .157 2.222 .038 2.05 0.01 2.22 0.08 2.06 .000 ...... ____ 2.24± .000 Sipylite.- - 2.06± .000 2. 24L1 .29 2.06± .000 Thorotungstite _____ (?) Strong. 2.06± . .000 2.24 .09 2.06 .05 2.248 .000 2.061 .000 2.24 .17 2.065 .000 Endlichite . _____ 2.25 .05 2.07 .000 Samarskite.... __ .... 2.25± .000 2.07 .02 Bromyrite _ .. ___ .. 2.253 .000 2.076 2.74 Manganotantalite . 2.25 .07 2.08 .02 2.25 .15 2.087 .000± 2.26 .17 2.09 .000± Cuprodescloizite.. 2.26 .15 2.09 .15 Hetaerolite...- __ 2.26 .16 2.09± .15 2.26± .00 2.09d= .01 .. ____ .... 2.26± .05 2.095 .000 2.269 .087 2.098 .111 __ .. __ .--- 2.27L | .15 2.10 .05 .. . 2.27 .03 2.10 Weak. ------2.27 .07 2.10 Strong. _ .. __ 2.27 .17 2.10 .53 Pyrobelonite... (?) (?) 2.102 .310 Qoethite __ .. _ 2.29 .14 2.11 .09 Manganotantalite- . 2.29 .08 2.114 .026 Haematophanite.- . (?) (?) 2. 115± .000 Finnemanite.--- __ -. 2.295 .010 2.116 .081 Monimolite - ___ .. (?) .000 2.12 .000 Knopite ___ - ___ -. 2.30 .000 2.13± .000 Brannerite _____ ... 2.30 .000 2.13 .08 Hielmite...... 2.30Li .10 2.13 .19 . 2. SLI± . (?) 2.135 .017 Cuprodescloizite . . 2.31L1 .12 2.137 .000 _____ .- ... 2.31 .36 2.142 .000 Tantalite ...... 2.32 .17 2.15 .000 Ecdemite ...... 2.32L| .07 2.15± .000 2. 32Li .16 2. 15± .000 Ochrolite __ . ___ ... (?) (?) 2.15 .11 Dysanalite..-- _ ... . 2.33 Weak. 2.15 Strong. Ochrolite- ...... 2.34Li .06 2. 15± .07 Hetaerolite...... 2.34± .20 2.15 .04 ...... 2.346 .000 2.16± .05± Qoethite- ______2. 35Li .14 2.16± .000 Schwartzembergite. .... 2.35 .11 Bellite ------2.16 .02 _ - ...... 2.35 .17 2.16 .000 ...... 2.35L1 .000 2.17 .01 ...... 2.35LI .10 2.17 .19 Lorettoite...... 2.35L1 .02 2. 175± .000 ...... 2.354 .055 Euxenite... 2.175 .000 f 2.33LI .02 (biaxial)-. 2.18 .02 1 2. 356N« .022 .. ____ . 2. 18,ed .000 Loparite .. 2.36 .000 Eschwegeite. . 2.18 .000 Uhligite.- . . (?) .000 Kalkowskyn ...... Weak. 2.18 .58 Pyrobelonite- ...... 2.36 .15 2. 18L| .35 2.36Li± .000 2.182 .01 Schwartzembergite- . . . . 2. 36L| .11 2.19 .000 Langbanite. -. 2.36Li .05 7irValif-O 2.19 .000 Wolframite-..- ____ . 2. 36Li .15 Kleinite (hexagonal).... 2.19 .02 2. 36Li .20 "RarlrlftlAvitfl 2.19 .07 f 2.34L1 .00 2.19± .000 (pure). .. \ 2.37N. .00 2. 195± .000 Grocoite...... 2.37Li .35 2.20 .000 Perofskite. -- .- ..... 2.38 Weak. .000 ...... 2. 39u .04 2.20 .000 . _ ...... (?) .000 2.20± .000 ...... 2.40L1 Strong. 2.20± .000 Ferrocolumbite ...... 2.40L1 Extreme. .12 2.20 .21'.000 ...--- 2. 402 LI 2.20 ...... 2.404 .083 2.20 .14 Stibiocolumbite. ------2.419 .061 2.200 .57 _ 2.419 .000 (?) (?) ___ ..; . 2.42Li Weak. Eschynite.... 2.205 .000 f 2. 431 LI .025 2.21 .000± \ 2.506Na .023 2.21± .000 2.45L1 Strong. 2.21 .01 2.45L1 .06 Polymignite...... 2.215 .000 2.46ti .31 2.217 .060 (?) Huebnerite 2.22 .15 Magnetoplumbite . . (?) . . 2.22 .11 (?) (?) TABLES FOR DETERMINATION OF MINERALS 45

TABLE 3. List of minerals arranged according to their intermediate indices of refraction, /3, and showing their birefringences Continued

0 Birefringence ft Birefringence

TT'flllrAwQk'vn (?) (?) 2.81L! .6± Sphalerite (FeS, 28 per f 2.819 Li 0.327 cent)...... 2.47N . 0.000 ...... I 2.857N B 347 2.481 .271 2.849 .000 2.49Li .000 2.979.1 .268 2. 50Li 3. 2. 50Li 3. 2.5u .28 3. .10 3.01u .28 2.554 .061 3.084 .203 fimithite...... 2. 58Li .12 ...... 3. 176NB .110 2.586 .158 3. 22u .28 2. 59i,i .15 Smithite _ . ___ . .... 3.27? 2.6Li 4.303 1.109 2. 6lLi .15 >2. 72L| .000 2. 6lLi .20 >2.72L| .000 ...... 2.616 .287 Chalcophanite ...... >2. 72Li 2. 62Li >2. 73L1 ...... _-..... 2.63red >2.72L1 / 2. 633 Li .040 Miargyrite...... >2.72Li Very strong. I 2. 654N» .043 Lorandite...... >2.72Li Extreme. 2. 64Li .32 >2. 72L| 2.665L1 .130 >2.72Li 2.69LI .000 _ ...... (?) 2. 70_i .000 (?) 2.75 .30 (?)

Abbreviations used in Table 4 fibs..-.-...... absorption. isomor___...isomorphous. acic. __-.-.---- acicular. isot_ __-_--_-_ -isotropic. amor__....._. .amorphous. mic. _____-__- .micaceous. anom_...... anomalous. mkd___.... .marked. B_._ _ ___..._. .birefringence. mod__._.__ .moderate, b. b.------....before the blowpipe. mon__ ...... monoclinic. biax__.-..--.biaxial, oct __...... octahedral. cleav. _____--_- cleavage. opt___..--..optically, conct. ------concentrated. orth______orthorhombic. conch ------conchoidal. penet___.__ .penetration. decpd _-.-.-_-_ decomposed. perf.. _ -_.___- .perfect. dif _.---_-..-- .difficult; difficultly. perc__ _ _... _ .perceptible. disp... _ ------dispersion. pi____.___-.plane. dist. ------distinct. pleoc_ - _____ .pleochroism; pleochroic. dodec. _--..- _ .dodecahedral. poly___ _... .polysynthetic. elong. __...... elongation. pris. ______.prismatic. ext-_------extinction. ps_____-_-__pseudo. extr_ ..-._--- .extreme. pyr am ______pyramidal. F. ------fusibility. rect______-__- rectangular. fib-__------.fibers; fibrous. rhomboh..__.rhombohedral. f us_ _ ------.fusible. sol. -__-_---.. .soluble, G------..-..specific gravity. sq___.--.-..square, gelat.--._---.-gelatinous; gelatinize. tab___-.-...tabular, H___-.-_-...hardness, tetrag. ______.tetragonal. hex..__-..-.hexagonal, tetrah.. _ ...... tetrahedrons. imperf.--...... imperfect. tr__...... trace. incl. ...._.-. _ .inclined. trie. ______.triclinic. indist-----... . -indistinct, trig. __--_--_- .trigonal. anf us. -.-..-_- -infusible. tw______.twinning. ' insol. _.--.._ _ -insoluble, uniax______uniaxial. isomet__..., -isometric. 46 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS The first column in Table 4 shows the extent and nature of the- variability of the values for the minerals given. The symbol A means- that an entry has been made of the same mineral or one of an isomor- phous series of which this mineral is a member, having a lower mean, index of refraction. The symbol v indicates that an entry has been made of the mineral, or a related isomorphous member of the series, for which the mean index of refraction is greater. The symbol 0" denotes a variability in both directions according to the above method., The symbol u indicates the probable variability of a mineral entered', in the tables, although no other entry has been made. The probable variability in the other direction is indicated by the symbol n, and the double variability by the symbol C. The combination symbol \/ indicates the entry of a mineral or isomorphous member of the series of higher index of refraction and the probable variability toward a. mineral of lower index of refraction. The combination symbol £, indicates the entry of a mineral of lower index of refraction and probable variability toward a mineral of higher index of refraction. TABLES FOB DETERMINATION OF MINERALS 47

' '£" Ofc '|35e Qga a® Tfl g« 91

.11

.2° I 8.9 M Q

bili Hardness gravity,£ II II II II II II II II II II II II II wo o o enO o wo& wo .-H O ,Q 03 _03.«

3®2 O 0 o

i * I I I

Js-a

1.2 .20

3-O aF" -2i2 !<5 O fa O S.

al I ss Ig 12 |l f || « |f. ^Wo o^ otf O>H _ . _

MO5O1 O CO «Pt* ^^ 8 « CO CO t>Q ON COC^

<> 48 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

J? c3 . "S"" g . « qO (§ 9 ^ .2 (il o tf § 3 Jj-S'B 3 * 'Co t>>'3 p. « 3 «a <= ft .S1 W 08 Pt a i1 T3 -^ rt £3 HH O S H W

73 a> 6 T3 S *3 «5~ "i 1g W § 1 S 2§J s 9 S .S _g -9 -2.J 's'gl W "3o''3 -^"s 1® 01 -5 S « w « m | .s ""a -d 1^-- § !§ ^ 1 «§ § -1 IS 1 sof M ^^5 "3oo sd * <» f7| "I?! "77 H WO»3 WOPH MOPn WO MOP^ wOt3 tdO>2 S <» & ^ c 3 0 & a a C3 "3o ^ 2 e J i ' 9. a & -8 O c c s % c c ^ 1 c 1 .-§ .§ 1 a § 1 2 0 =3 | S "1 I 5 g ' > W O (H ^ > 0 5 *^s o1> P a i ! 1 |c i a t « c 1 £ O T: c -^ i C "o 1 ! rH c . ! i 1 ! ^ c « ^ fe« ~ O fc -v 1? O O W 'e -a 039

5 W ®£ W £^ *» ^"S "S . c e b c c e 1 c c t « o1 1 fi 0 1 5 1 0I l^§ >31 "3 " 1 i* 1 i§ ? ll i i a0} o j$4 1 o |g 50 | ! § UD .2 im 2o §3 S § c Ct is 1$ 1 !5 1> S fl !z P

~H~Hrh(or»o 1-1 N "H "H 8 ~ ~ . ~ ~ ~ ~ rt' ~ ~

<> c> < c c> o || TABLES TOR DETERMINATION OF MINERALS 49

iJ -t- ii a O S O O '1 ' ^ W; Intricatetw. e J3 O g- ^U S* 1 w'S "jj" a> i T3 O *3 >.. £g ~ T3 '* 1-1 iteDecpd.group. inHaO.Tastesb *3 ' eightfrosegments aliteQelagroup. inHsSOionlyhot inil.acid.B=O.OC P aliteNeargroup. aliteQelatgroup. O evansite.EasiIT

D. lackensb.b? 16cent.per 1 3 E o it. o ** si P m O O t3 f*' *Q *JJ! ^ o 73 SCP 3 a ?!§85 o o N CO CO M N 03 O to 03 ra A

S _. ^s A t7 T?7" T7| «7| "M" ttT 1*71 "77 T77 TM « 17" HON MOPH WC?M wo5 wofe MOfa wo>9 wofe WOP^ no s WOPH II S S° ! 2 & "> * ^ a 0 § 1.4 S

1 .a 9,5 & ^ « c , ' I 2-35 «" S « |l | 1 ; 1 I? c ?4S8 3 -3 a i C C t> 0 « « O PP ^ < > i * ». fe 1! 3 ' ^ 1 i P § c gll i I .A. *. ' 1 T: -^ r-l C C S, **" C I ? C C -V ^ W c ^ ! i 4. t t 0 i P Ow C ! c O s o 1 a | 0 ! e o.oS' c ^ c e I c *^ = ® -c o ° 1 g -s r ti 1 1« ; o 1 c E I < 4 < 0 P < SJ P S P c |o | 1 0 £> ; Pn iS !n o ! Sw co « HydrousphosphateAJof NasO.CaO^AlsOs.lOSiOj- 3Naj0.3AljOs.6SiOj.2Na< NajO.3A]jOs.6SiOj.2Na3 5NajO.3AJb)Os.6SiOj.2SOa 5(Nas,Ca)O.3AljOs.6SiOs 3NasO.3AljOs.6SiOj.2Naj NajO.AljOs.4SiOa.2HiO SomeSreplacesClj 3AlsO8.PjOj.l8±HjO Analclte_...... Hackmanite...... o Haiiynite...... Bolivarite_....._.... 3MgO.4SiOj.nHsO Cristobalite...____.. W 2AljOs.PjOj.4HjO Lazurite__.... Rosito&ite--.____... Fanjasite______. Sodalite.______. Evansite.___... AlloDhane._- <5 Stevensite______.. S Noselite______evndCD SiOj 6" J KC1 ^ 1 CO

0 <> Cl 50 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

-2 ^ a s . 1 § O CS 33 « Ji s ^ 2 ^ 2 "2 £H ^ b 2 a *> fa .S "3 § 2 S S 51 | ° -° aj »

3 § ^*» Oi a co a W 44S 'S. "- w o .^ W ^Q. 5-3 - S -d M ® 8 a "E'3 ^ s a -3 « 6" 'i-B "a ^ H a T3 g '§ ^ W fl ^ "^ frt A^ 'c ca 3 .2 "!® ft '3 '3 05 eS ^ 2 . . ^ .9 ^ fe § £> .a '3 C9 H >. >> . >>S §. * d W T 59 Tl Q X OJ 4JM -l^* M< >H X X *"" f. 8g | 0-55 o «0^2 .§«-flno a S§1 s& -3 en 6"" C

*** 3 a S **H o O ^ S-^ IO co «£3 «5 g >>,Q 00 £ ^3 . O . *^ §'£ «§ «s «, ^ a S ^H £9 eo«^ »o ci a' S co c^59 ^c^.^ i~*c>i (O"3 Coca'0 c^a 3g II II <§ II II ii II II -| II II II § II II ||' II II *§ II II II II || II -g W& MO»q WOfa WOhS M Wo5 WOfa MO 03 Wfa MOfa OS

yellowish,

IS "o i 1

*s s c C ' c .** S t t f-3 ^ i |a tj, -^ 1 1 ^ "3 |"c ^ 0 £ S O o i O ^

i 1 «ta c c o Si K. a -0 -c S p, 3 p c c c 1 S O 1 a §

a Cs i-v 4- 6?(0 i 1 a « sr 4 c *J 1 s J 1 1I c rf B +.c. ii 5 < 0 PM -<| < 1 1 ! a 0 j « o 3 i o"a> 1 !a ! I c« 100 o i W o 0 03 ] o 03 ii 1^ i fa c 5§ j E- n5 c !z; p.

lll33333§§S J-l l-C "* .IH i-' ^ -H -H ^ ^ J

CD >< CD TABLES FOR DETERMINATION OF MINERALS 51

c'.f

o -

h- u- ^ V § SBo eo T CO se$c* rH § ^ cj 3 CN ci a ci g cr C»' II II 1 n ii ii a n ii n i t 1 II II 1 II Ofc n O tt 0 ft od d Oft & oi U. tr Oft t & c i C 1 * a c *= >1 2 a 1 > S 1 1 * 0 Hi 0 j: C u c* fe 4 >'1 4-i0. 4J 1 3* jE .,. 1 \ 1 ! £ 1 1 4 , 1 < pq PP o 1 & £.

1*. a p^ i rr a £ g f C X o 0 a g O fc D C ) t 5 t C JM ci. > 00 e c c c i/ .c c c c » c: 16 T T c T c ,« | 1 E 1 ^ O < 0 <1 O S rH o V «5 e § 5 * 1 IN CaO.PjOj.HsO.CO 3NiO.COj.nH2O(?) mCuO.nSiOj.HjO ? <5 KrO.^MgOisOs MnO.SiO2.nHjO Al2Os.2SiO2.nHjO Al2Oj.2SiOj.2HsO ^ Hydrocarbon Hydrocarbon c O jl a a , Neotocite. M Q TTallnvsitfi 4. 'c Cnrnnite w ."t !° o"o I« Succinite Alkaite Halite. Scacchita S '| ! ZarntitA 6 1 a a 1 4 i fc =3 * I * 1 EH t OQ' 1 H ,5

O CD 0 52 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

t>» 5 t i a ^s3 & -3 ^ 0 -M PH t CI5 t "e1 "*3 u? 'c^ Q * 0 . T I ^H 0s W 3 . 0 ' I1 'C ; s C3 O 6 > ° 3 :^H 2a> n(H ...T i > : £ ! ^ ' C >'I i < ^- .9 "° ' *1 & 1> j J o»a t i s ato e _C f. 1 j && 1 I3 i '^ < I | | "e ® o 7 C e ft a a. PH t c S: t i 4 £ 1!

w fl ^* os wT 03 -^ X-c*. ci « .11 n jTlx-N ..Tl M 3*3 "Sii . Sr £ «>e? 1 't^Si -}|«o . o; «> CON 2 fitH CC f>(NM e* >S c II II 5 | II II 1 II II 1 7 1 II "a ' II 1 '77 "i^l It T 7| W & WOfl CJft C tr Oft t 0 t 05 &10 nlOft WO5 O tr o5

| 'I 1"Z | f *o 1 5 ' i 4 e |C a o a 4^ a 1 1 | x2 a i 8 - -c c 1 1 'C c M C p; > P| 5 ft ^ P C

| i ,c c 0 o c a c T ^ 0 c 1- 0 C * | 03 o 3*^ a ! a .a§ i ^ *-> 1 a? . s a J2J3 ^ S m , e J ts -c c c o F 14? lla§ i§ | I 1 rt O C) 03 I o 1 I 1 < ' <1 S a EH § 0 il o"... ____ Hisingerite.______. Nitrobarite--_ w» c 0 ColloDhanite__ ...______. O 5 M 2 .- Qarnierite______. 6 | I 1 >fi P 1 S c i| - g

HH cj o «o 8 J O3 O O! *o *c U3 1>c i1C iu: 1C >o >a ic g ^-

. <> < > C D < > < > < > c: > ll TABLES FOE DETERMINATION OF MINERALS 53

§ 3 .§ fi 1 § U2 3 £ 3 03 'S 7 g 0 a a fr 1 M CO 00 2 e 03 "§ e- o 1*Q N ^ a S « S 3 O «3 K> S toa '3 a £* I 3 7 ^."3 a> .§ 3 '3 S . _i 09 -3 8 s* ^ M. ^S c rt *, |S t> If &' 1 1 S -* O ". C ^ t> "1"6 B. W(2 S da S a 8 al ^ Dg >. C3 O II 2^ 6 jjj-S 'f i-i O D ^ o 3 § o ^ a ^ W . "g W W _B ^> DO 1 8 2 o "I .3 .9 W a> p- 1> o w" O if ° 5 'o "3 -S o PH § P CO CO

^ r g CD Ss T s? -.-t,^ 4 z 1 ""3 .2 c - B 'E C c a ' S '? 1 & a "^ £ b * F a &: t 11 1 & 2S 1 1 I £ E £ £ f 1 i i 2 3 tf (5 C PC H PC PC t 1 p. 1 c PQ

"c 1 1 c f E £ ' -A. g c 1^ a a gIt C c O - E c -V- fc O H -V 0 c < a .« f 1 \ *»,£ c c C 1 4

C> O O c: o CD c>

> 1 a I § j "1 S * ^ Q C 1 > a °* CB . S o i3 ' £ is '§ ^ 6 o "^J ? §! ^ a o . a 11 til - -1 -S o "3 "3 2 "3 !° ;» ^ -3 -3.9 s 0) ramOmOftrara w aO ai m«2 § U iP M , .41 in co CO LO C^ CD IT >oco meiico N*H f

d 1iO t C ffli ^ : P" h d tx « 0} "oo j£ cfe X -o ID ^^o 00. 0 i X:S H £ a§ o * ^ c "5 c H O M T c & j t f § | 1 1 ? 1 o | 3r* PH n o PP 1 | O n *^2 r~\I M U li | "& o5 a 1 ! o i f a a 'S -6 | f a c c o 1 c § fc , I O ^ o -" 13 < e § c "§ a d £ 72 ^3 03 C EH T3 2 . ll 9 l£- c *c3 h ic § J .2 c c c CO e t S S c t c I 0) to c c& w 42 0 t f 0 a |S. 3 5 PH < PH <1 0 PH 0 c- a NM* r o io _O Q 0 'S O O M a 0 M S IS (3 3(Ca,Fe)O.BjO.2SiO»..i]s 3CaO.7Fe2O3.2PjOs.24dbJ 6FeaO3.CaO.5iPaOs.23±]. SiOa.TiOj.ZrOj.FejOfcM o 3CaOAl}Oj.2(SiO.,COj). Pharmacosiderite ... -- andMineralcomposname Homilite(altered).__. SUicateCaTCe,Y,ofh, 3 CaO.AljO3.2SiOj.2HjO 3FejO3.2AsjOs,3(H,K)jO. containingFandB Trit.nmit.fifnltArAHl. S FejO3.PjOs.6±HaO 0" FeO.SiOj.nHjO MgO,CaO Koninnlritft T/ovnhnrrit.fi Orp.nnalit.fi Hisinererite PTihsr'hit.fi Eeueiite i * Plazolit.fi ry E w 1 o 41 4 CO 4l 41 U5 O . e S CO CO CI

CD CD

£ "* ^ £ version.i o m g a S p a W ^s" tw 11 £ M 8 Qpq rH o 0> £ ^ 53 1o o 0)a Altersbltoa. alterationoram variablhighlyn inbirefringent:r Dataforpur 3§ biAlterstoa. PH Maygelat.. t §, a ^ 55 OM Maygelat.. oE P 0 ag 153 OJ « °> |§J "S. d 7 O 0 23x3 ago 1 ^] to o bo a S a dS i Epidotegroup, Neargadolinif 2g !2 Blomstrandine a S-a fractingform Insol.inacid. o §e splinters. ss 1 1 §J § § & _ a a "3~^ *oif 5 alfaS 1 "3 1 11 "3 "" .9^ ftil c a 3 M o P.^- W h-l O hH O CO M CO CO

o N 2 Its «s J . i *>n 3 A«» 59 IT 77" OOCT ll ii S ii n a II f 2 777 IT 77 771 II II 777 ttOfe wll W05 wo WOP-H wo woi ' 4 0 p S S § o ® 0 a * JjJ g 1 S a -7oi a u o c ^ fc o . 8H * 53 44 t i e. i J4<3 " ^ 0 a & c fe e> S t> W QJ r- o3 A £ i -C iP 8 1 2 S> S as gi< a ^^ £ is i 2 c pq c p < tf PC « P PC P

i /

W 1 0 _E , i S 1 d a * c 1 \ i c 2 g » o a g 4\ £. o ; fc - fl c So" V D1 ( CO go o _«

-\ & _^ 1 03*0 ^ *^J c * f £ IN c J ^ C "S »& E . .'s, x i c 1 E « 1 a o PM 3MgO.AljOj.3SiO; 3CaO.3(Mg,Mn)C ThO,SiOj,UO,C2 19 4(Ca,Fe)O.3(Al,C Rhodizite--...... 4(H,Na,K,Cs,Rb)j Orangite(alteredth< Stibiconite.....__ 5SnO.4H.3SiOOs2 PyroDe...... 2FejOs.POs.9H2O2 Spinel-1_____. is" 4(Ca,Fe)O.3(Al,C 3A3jO».6BjOi ThOi.SiOO.nH2 £ !l< Berzeliite...... Delvauxite_... S 'isS Uranothorite__. 6 \* Rowlandite...... 6SiOj.HO2 3 ' "^ eSiOs.HsO " ^IS ° <5 1C- 1 o Jp- ? co* -30^ & £5 £ PH -5 CO <

CD <> O c> c: CD > 56 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

S 2a go Q "52"^ fl ^S fl CQf^

« ° *£ fi N" ° «? § . rt § g d 3 .a,o'8> "* .§, I < '3 to "2 a .S'a "°^.§ "^'d « C § "3 § M .;*" "®O9 'I , & 3 a » £ a"S «^'s Sr^S 9 3-35 « |S| M °J | S o ,° afto, 3 . 8S a° i2'S S&S TJ * . ft ffl ' §" 0 -d §§ M g & 0-o 3 S 0 fc-2 '§ '3 "S'5 Q'3r^ '2 P « w C5 03 Q w bO M» °3 OO (D rM §1 -9 « -S sll ^i» '9 § a >s O ro O ra^^O TO ra ^Jra '43a °.i oa 1| O "* §J P^-° O M IO HH , "O'p S «> M o VM Km Cj IT S >oS «OCOfO "5COa tO CO .0 CO'*' 'O'*' t-COco "5 *co ^-eo 2

i -FH S £ P >- o C fl s "3 c |£ 5,- Bj - O O § Q J S | | ** * J cs *3 *« O a in 1 w a . a ^ O K" fZj Pi ^ w Pi ^ 3 ' CO be ^ i

O S -»-8 -*- "§ a £9 2S2 aS 2-i oa £P fc ^. C 05?

"^~ S3 ' O .O ~^ cs S J3 ^ * « £ r-' tj f" 0 --1 3 8 "3 £ J- V ~^" O 'S H "^ "§ na ^f to"i o fn 3 ^5 "^"S FM O §?<3 0> "3 . " . n'^ e a?i-H o> o L4 5 c IH » a) 1® o tl w cs a aa a E t» -M O O M O C w1« w11 co1 !3§ ' nrJ oi I 5 HH M M -"q PH ti t5 M M (2 a o led ! ! fl IS 10 !8 '^ 1 tl? 1 «t 0 1 o 33 ;o i"^ i'S 6 CO is i 2 ! *" S d !o I O 3(Mg,Fe)O.AlO.323 3CaO.3(Mg,Mn)O. 3(Fe,Zn,Mn)O.3Be § §. 'W '§ S^ a Berzeliite___ ...

e «' rt ^i « . rH ^ r- »-

'Ca '"£2t>> <> c: c: o <> o c 3 TABLES FOR DETERMINATION OF MINERALS

a* a 5° 09 CO PcJ .O "§^730

"36S s il | 3fe^ftSoj Ont. incd7i a-a& ota Difficult colorle **%p-§« JJ2K III H . o o o S

to eo co *^" II II II II II II II II II II III II II II II II wo Wol WOPn W Weft WOS WO WOPn.

! 4 X 5 t>i i .2 1 i g f s t>e j E CD c Pb C « g" . £ 2 5 T *.fl 8 e M o > £ g c £ - H & g ^ 6 c T: O 1a> £?j § £ ^ 1 as g tl 1 ! t» £ 3 2 .3 (C n m P= Q cc | PC O fl

ui c c J3 c OD FC -c 0 a f o C fl e C C o O c c C !? O 1 C g

o" J* -* c : ^ c *- C 09 V ^ 'CS H E ^ *u "V PL 0 '_ » ** | § O «^ i s -a E a i IE ^ 1 ^ *.§ 1 1 S £ 1 "*" h O 0 M o ® oj-v- ,r P. c & PH PH .& a £ 1 1 J i a ! cT O 0 03 O io 1 i CO 3(Mg,Fe)O.AhO3.3Si< 3CaO.3(Mg,Mn)O.2Ai SilicateCe,ofTh,Y, 3CaO.(A],Fe).O.3SiC8 Ce,Ca,Y,B,Fe,Si, SilicateCe,ofTh,U,< 2BeO.FeO.Y_O.2SiO3 3(Fe,Ca,Mg)O.AljO3. containingFandB Almandite__.. 3(Fe,Mn,Ca,Mg)O. Melanocerite(altered).. .....___._ Yttrialite_____ (Al,Fe).O3.3SiO3 (Zn,Mg,Fe)O.AlsO3 (Y,Th)O3.2SiOjs (Mg,Fe)O.AhO3 Mankintoshitfi tainingHjO Rhodolite______Pleonast.fi Berzeliite.. Almandit.fi Hessonite Oadolinitn

O CD <> <> <> CD <> O CD <> <> 58 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

1 a ;O +.ii £c:5 0 5 a!" < 1 (H 1 T 01 ft '-E i § *. § C ^ l o i £I 2 c d , ! 00 . C 9 £ c 3w £ ! 1 (N 3 e ^§ C 0 0 CC '« -c f 1 g a> .T O (X o 2i c o o , ,1 "i 1?yq .1 >a f 'I - -i .t M I s 1 I . I a f ~ 1 » 03 b'' I "* ? 730 -c « - ' 1 P CD c P f IS e .« i M s * 1 || I . '*' ft10 &~ P a ; I-}"* ft n . ri, . 3'g -c la c 3O« £ P S^ 't | t» S c '1 c °4f ^ C _o Eb_P o: )r3 "O ?r o cI 1 fe-aj S £ CO M C I 5lW*^ «. 0 E 30 fe >; a oo « aS ~8 "Sc 1 11 ^ E i^1 ^ 3 -£ 1 s |,0 M | «.« | | 0! CO e i* f sfl o3 CQ CC C a 1 C a tn 0

U i ' +30 a 11 o O rfS*3 1C |^3 °P c> ub if * ^4 -H ; 1 u: S 3 "5 a rH . II II 111 II II n II ll| II II II II II ii n III II II 111 II ll H H CJfl WOPn tc Ofl tt CJfe IE H 0 PC ofl c Wbfl tx - 3§ J *Oa -a o 3 c 4- 1 6 a 1 e "3g bo 2 c 2 c 6 ! of 7 c f E f c O 1 OT p a 5 ! P K £ ? ^ q s 1c g '§ i o > > 5 c S2 -r s ^ 3 £ 2 2 1 bjo,Q g fi PC O C P C P- c PC 3 f i o S?CO ^ j a t. 1c C ' _J fe c 1 .P c 0It e 1 o I S -A. -*. ' 4 .5r c C g C 8 a i 0 «^- -v _*. a ' 1 ff T- ^ 1 O -. t c O Is I ^o S® c M OS -*- -4- e C. i-t « Cc ^D+S C If | fH C * O-y- C 2. \ 1 IS * I o I fl 3 1 1 &

1 2 io 0 CO Ira

oa <5 S i3 0 3(Mn,Fe,Ca)O.Al2 4(Mn,Oa)O.(Al,Y; Mineralandnamec Qahnite..___.. (Zn,Fe,Co)O.AlaO: SMnO.AlsOs.SSiOa 3CaO.2(Ce,La,Di)! Hercvnite..-. SbjO..nHjO(?) Almandite._-.-. CO (Zn,Fe)O.AlO32 Stibiconite--_ BodenbenderitA 3(Si,Ti)Oj. Spessartite_____. Beckelite-____.. Spessartite_____. FeO.AlaOj *~1 ZnO.AhOs Snessartite_ Qahnite-- 0 S cl 1

O "T 4 N «5 IN 10 s i

.21? 0 < > <> < > < > < > < > < > < TABLES FOR DETERMINATION OF MINERALS 59 o *c 2 OQ w a 1 d 03 lp. n eo XI1 fi M'oui a o..ri * 0 d 1 s'3 wS fa 03 | 03 IN o 3 91 0) g ao w r 3* p .a 32 tcj| i I! " 03 £> . ^ QJ a £5 1 03 _; §'i **4 fll 03 Probablyrelat ingentpart. mineral1pure 1Sol.inacid;soi miDatafor §""20 2 Red-bGelat. birefractingi Garnetgroup, Garnetgroup. 1.0cent.per Fib.Resinou Alteredzircon 1 Garnetgroup !.lyaltersont Garnetgroup. 22.5centper pyrochloNear forminpure 3 9 s5 -^ 3

O M

CO 8 00 -LI --< oSa- , s Tl 00 t* i 1 io «g . cs I 5? CO ^t t>; io *O O »y T^ i IN. Is- ^4 9. ; iO -^ CO ^ iO ifl 'rt ^ ^ CO COCO Is* co S3 ^ ^ CO ^ CO CO 1O»OT3 ub co IO ^ ^t ^ CO t^ CO CO II II II II II II II ii ii ii ii ii ii II II ii ii 5 II II II II. II II II II II ii ii ii ii ii II II II II II W WO wo wo WOfc WOfc wo W05 WOfc WOPH WOPH wo WOP* td O WO PH

M i i ; o * ci ° ! ' *" §o 1 O 03 tjr md -^03 § d 2« c i gbo 01d 2 bTS Jj 03 ^d a » "S | 2 to f X Q . |g t> & c M 1 a 44 1 ^g >2£ "a ^ "o T* 03 **> .- "a| a t>3 03 "c ass £ 3 »Q ® pQ ft < 0 ft 0 W O > o fl >H i i

Ui t. 28!O tl ! a a I a g C c o c i1 a T a d o o' d a d c c 0 o >H O O o O c a 0 O C^- C- £ O £ C O - v c3 -c ; ^r c O o 2 ® ? CO o -t n . E ^.3 -. t V . O 03 u C 6 a0 . c O ^2 O *- 1 CD *^ ^3 S* *i ^ s~ "H '3 *"' y 03 ^ 03 " c ^, a "^ 2 03,13 'o Q 03 i 1 0 a^-"" tT g-n" t 0 £ T: i fe Sta 03 £ ON § OtN E t = CN t-i bbx] c o1 O-~r-as aC a nS C c/3

00 00 H H "H io 00 00 00 GO 00 00 i i i So So §8

<> CD CD > <> <> < C> CD <>

163287 34 5 60 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

^»S5 0 § a OS oJ '"' OS O "S; o W°

o? lolu S§ & Si

1 «5 J to s tl ts a ^3 ^5 co ^, H .3 73 O w § ** °^ Q. « "O O M rt flS^S'ft^'^'rt n» L'fe " S S « ft o^ -o 2 o"« fe 0 'h § el'^ I |II1 n I 0) a 2 PH ra O PH 2U '3I Io °«2 O OS*73

O 03 « « M «^ a-M-W -30 41 S'g 4< IO 2 ^3 "^ t>- Tt< IO U3 $2 N CO U3l£) t* CO ^< "2 »O »O IO *O^2

II II *^ II II II II II II 3* II l| F§ II || II || 1) "* || II || II |] «5 W& WOA WO WO WOA WOPH WO WOI^ £6 WO WOiH

^ ' S i « 1 1 k P 5 I* 5 ^ o "3 "o^ ° 2 fl 7J ,0 O > ^s -a !»t- 1s ^? H & c 2 2 ^ sts § a 1 § 1 O O PQ >H O 0 1 o 5 «

« a Ml 2 C3

03

j- -V i« c. l| C 1 ° r- 1 J3 "a « 03 t c tH to c C E ' T: e 1 1 - s a = Q < I O 1 1 ^ 1

a O CO 43 43 E-i £1 o_ fl ^ o 03 i q 03 i 5 |'l s> Columbateai s ® 3b2OO(.nHs4 nium,etc. q 0 a q 03 a 4- S S S- a >H « ilaYita C .tafifo O ^ § c (D2 _t o I ? H | 0 g a O a£ | o3 ^ rl -ai * 1 1 0 a is 0o S ll C3 § 5" pq" 6" S~ g" S" S" g" g~ (C"

41 -H 41 e ^ * * 2S2^2SS

'§| <> <3 <> C> <> <> C3 CD <> 61 s

CaO7.56ceiper O section.Inpn '3 TiOa16.9t.pe 03 sctionsky-blue. insol.acid.lyin 2 | O 03 O .9 d O 10 g f I M 03 IN « q t. Pyrochloregroup. Opt.Uniaxanom. Gelat.Red- refractingandopt UBetafltegroup. inHNOs.Sol.Ins sol.inhotEasilye browninsection. Pyrochloregroup. GelGarnetgroup. ignitionAftern GelGarnetgroup. Samarskitegroup. SpinelNeagroup. Insol.inacid. cent.

S 00 "O H 3 00 0 t i 00 . 00 10 «S 00 . CO . t- >or^ g. U"??^3 "^si n H n H II II II II 1 II II II "T I ii 7 Jlt7 WO WO5 WO5 BO 05ll i t>» 0 M S 2 1 2 u c » 0 2 hT >» 6 & I g i S 2 c g 1 o A « t 1t XI ^ 5i E fe s c a * 1 2 j< & P * *(t OS ai ! 1 £1 Ii « 2 Mta "5 £ 2 S ! PC1 (C >H < pq PQ PQ o PH PC PQ P1

j 3 03 '§ «t P> " a c .? a *>. c ^ a c i 1 C c c S o g ^ e r^ * C ^ O ^£ Z- C

-A, ' C |T J ^* _c "= t o -- t a> c S 0 "8o O c 94 0) *- ^ 4- i" = +* 'a 0) a) i^ a « a S E 2- £ I 1 I s i 1 t-9 A CO | <) 1 «"^ 1 S 1 M o" « =3 * 0 6 of 0 0 o «-( ^3 l *"< ^ PH g a , 2 O 38 ',Sg « 3(Fe,Ca,UO,etc.)O.2 ofTantalocolumbate 3CaO.(Fe,Ti).3(SO23 0 n '--BE-1 a? Percvlite.--_...____ o:btOi.(Y,Er)iOi.H»

a H + + _ >r 41 -1{ O ^H ^H US- .» \ : § S § i O O O g £ i " " M IN IN M « cs c* .

O CD <> O O O- C> 62 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

73 P q a m ' CD .2 .S » W a ° 3 fe c r»*^ S T3-S? 8 Ma 555 S - a a § u .a CD W 3 S 9ES JZ O fl 5§ S 'M ^ Ii 73a« b 1II -^^3 eO +3 -3 os o S r£3U coO ^1-4 2 *§" ^ I 5 fo J2 N HH ,2 'O *£ 3 «>? a 0 »S aS 1 si S - 1 i 51 3 " 5 57' CD to|>j O3 P, -303 fcc t>> wj^ g ft K P5 1 ^ "3 o £ *

'US .i5 O So 10 O to * - q oo

U5 i-H . .-, -H^ u,!^ S w. at ^ »o *o»o w »o *^ ^ .is Y *^ oq . o'S ^ai co 10 53 «2 ii ii

^ Jl s 1 s^ .M« > 0 Sfe S ^» ^J Q c _C3 g I 2 fl 03^3 ^5 "o "a f c 0 "i 1'S S 4^a » a ti | 1 Pfe£1 O -Mc : 1 11 1 1 I 1 t- E ^3 (H-° ^ ! 1 O PQ 3 C Pn M 0 W S pq 4 CD 1 § tx> Q 03 6 "C 03 ^ to ft c o a is. -g a ^ T: _^.i 3 a 1 -H C c P i-H o c «-< o c o T- i- ^ 55 o ^- O fc 0 C c 73 1 . 4-1 u t; C. PM O J C 4. I C C, 0 0 CD 0 oil bi 4^ 2 I| X CE "55 '03 4- ±32 *- -f- "a "a ». t- OD 4 a P W "g c 2 d c c ^ r to E E a C S 2 E a «" S o o '1 C . o < A. PM ^ 43 ^ ^ a sT ! ci ^3o o 'w v- ' ^ 0 *~^ U3 1 1^ 03 6? ° o a * 's" q O E o 03 ! of 6 W o'S ^. Calciosamarskite.. Mineralandnamec< Columbatetitand TaaO.ZrOa.(Y,Ce)s 6 etc.)3(Fe,Ca,UO2. (Ce.Y, etcOsOs.S Ce,Er,U,etc. Sipylite_.....__. ColumbateofLEr, Cerargyrite-.....__ tn 4(Ca,Fe)O.2SbaO4 . ..._ (Y,Er,Ce)aO3.(Cb 0 FeO.HaO FejOs.nHaO 0 | ! T.nrftTislrit.A rjcd "*a S | TCiiYATiita AgCl Mosesitfi 6- I 0 t 6 | M I CD « £ S | ^ g « f H C a a

in to J co « IO O 1^ 10 10 rH o o o o C > o o o S § ! T-"t e oi es IN ei CN ! oi CN* CM* oj CN oi

C3 >> 03 3 0 Cl C> 0 0 0 TABLES TOR DETERMINATION OF MINERALS

d d blackslag.a 03 M 2 _o thinedges.on P. u becomesition d air.indizes ignitionn= 8 o> 1 1 6 O W d 03 1 a to S H 5 X) 00 '3 d .j 03 CO CO InsectionSol.HjSOi.a: acid.RapidlySolublein03 BlomstrandineAftigroup. .9 powderacid.InSol.in AfterHjSCh.igDecpd.by acid.inFusesEasily1sol. Decpd.Pyrochloregroup. Isomorphammonia.Sol.in bromyrite.Seandgyrite 7 Translucepzirkelite.Near 1d 6 Blomstrandinegroup. red-brown.Insection birefracting.faintly HH red-brown.sectionIn B.71=2.142.with H -. red.section D.

1 2.24. "3 'I CO

CO . CO ^* S3 ^ oi " TT "3 1O O 10 >O * 2 ^ "Jrt "5 uj to touj 2 * T)i O * II 3 II II II 7|<3 ii II II Oft, W OS W O B 0 W o w 0 W oS w OfR W OS W oS woS w 0 W O £ S O A) b d 1 X 03 2 w a M 3 fc 03 Q t J3 , ^2 g * ft -*Jo p2 ^ 1a o i£ 1 B 3 d "- >> . 3 C i ° c J* d O ffi S * 'u ^ 3a C3 | 1 s 1 t 1 S 5 E §9 JS IE 1 PQ s e p O W PQ M 11 j: c. u C d c o O O"5 1 i o. 1 c E S c Q £ c . -*. f -c »r ; -'- c > § S' t S c > § c c 1 1 , PM" i: . i big « d s I : d e c £ o 4- ^J o C. OT 'C bi .. 5 p C f o £ +J ^. C^ "fc *w 2 0 « t 1 ?3 *^-s - £ 4- 4d S t, a C o t: a t a a "a 2» C3 t-< (U >73 c C S c E c i v I « ~^~ V c S 1 E PL 5 v < 4 P. z £ H- z M >- £ M fr 1 ,_,- .- 6 o3 IB "o A 6 \y T, ^ >o o 6 **1 "^ ^i£ c5- 5 3 o . Q) ffl ^" 6 o a afO ^ ,H Q> o "+3lei "S . § ^.hd O ^ O CD q o ., j 1 tiO /* % o s~^ d a> ci ^* » § 0 o 03 . *3 V « P n Jq^ 233 03 £«! M a 6 O 0 | «»S p IS" 2 o i B 1 IM C * £ s « S SjS- c O > ,- S 1 > c> ft5 > fi U Ii c r§ b ft _ t>

<> CD CD CD CD <> <> <> 64 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

I 2 -9 » O ^ . l 32 ! [? o 1 2 fl 2-2 PLB <1 O ^J o « w -° 2 -^ o ^ xi e1*3 10 P ** o -C. - .S i| x] .S | ft ® 5" S 03 t

T3s -aP fl ; -*-~ t-ts -bfl0 w£>>, >» g .£Pd fl .8 P d7? 3 S _: K« . B ^ S .9 1 § °! 1 foj £ i bi i«i i « '3 XI U 'o . M '-g ° ®§ .£. §"* § 1 &1 -8 '^ 1 I* § a | 'I ^ £, >§ § g.S §, ^.S S § 3 ? °^ 1 fl ri ^ L! ^3 ?^(DW M _j .t f ? si II 5 1! t la -s 5 ii 1' s? 1 TJ WM a> 3 « (H 3 S o« -3 3 pp. a .S to » 41 *O'£ '«?: 5 OO.^COW^-LltfjcO t** 3 ft OS HOh BOfH O HO PR BOfc BOA BO BOlz< BOS i _o o 1 1 j S O . | ^ > 2 u "oo i O >>o S a i 3 1 1 fe 1 >1 'S >! "S "= S"o 2 §; -s g« s & g i 2 5 "3 a> "3 £ S a J= PQ B 0 PP 0 >H pq ft > PQ

; i* t i VI

a : M 0 o o! ;6 'rt a S o « ^H o 1 *fl 0 ^ o iS- O O _xT '5 & E-i03 00 m SS1 8 ° ''S (N 'Nic c5 « I o -. bo fl 0 Q "S^ a 'c^ y. s ^ o S 03 5 id 6' 1 e ^ PQ 2(Ca,Fe)O.2C NasO.FeO.3C 3(Fe,Ca,UOj, (Ce.Y,etc.) Polymignite....Columbate, ti Mineralname£ ''"IS" *"* ^ Ce,ofetc. O -*-* -gcq _&? a SCbsOs Samarskite ,5 §o 2o & *. 'g I il J i VJ Ss'-'Sbji) w 1-" >* Is |b |s i 3 |g|^ |5 J N ^ h-1 P

n ii n n TI TI Tl »O TI *O

e ci ci c^ N e4 e

03 X

S l c: <> c> CD <> <> TABLES FOB DETERMINATION OF MINERALS 65 a bo S fc-ofr-a0 9 II Magnetic. IS section,ini actingwith i a >> 09 M 0^« s .M ,0 »bfl _g 1 2^:3 1 Ss°- 5 P§ 3 SQfl P a !o _; i-a 03 § a 5 . 22 So Reddishbro 2 ' me"? ® becomesbin reddishightI S 50 o'.w Practically Dif.insol.ac lightddark flo Sectile.i. a^-«n c3 p. 3 *Ago tr&f IO 2^ d «' tfGua >o §S °JH}« a 03S '%*sfl insol.Nearlyin toopaque.J inacid.Insol. perofskiteNear dif.HCINe Blomstrandine sectionreddis 7« o so .a chloregroup Spinelgroup. calculatec2.39 transmitteIn 3 . Weakanom. acid.LiSol.in mittedlight. sotropic,with O § a jo gpq Spinelgroup. P fracting. acid.Sol.in gg_bo?5 Q> '". M <5 .9 35 II &l A "3 |o e »§ 2**1 0 co w S5

J3 "G j J3 c S ° ; - ^ j, I, 5 £ £ i c 1 0 xsfe tC 2 3 fo 1 d s« ' 1 's. ^ a 2 1 44 M J<: ^ 0*1 t c. a ! S 1 i OJ £23 S 1 « j 3 0 pq Oil >*1 PI oJS pq * pq pq

OJ O u | rj 0 4. u O ^ e a *-& fC. 3 --V. c a c 1& c c 5 s i p C 8 ^. a PH -V C £ % Ja t? ri j : 0 | 0 O E 1 f JC £ s 0 ® . "t « 3 C a * S S3 ° E cE .S OT W jj < O PH | 45

aT 71. w O*3 0 >H c9 ^ II »_, S 6^ o O» Ce,U,etc. Th,U,etc. Matrnesinferrite Dvsanalita_ MgO.FesOi Samarskite__ Monimnlite NiO.FejOs 30bjO4 Bismutitfi Br&nnfiritA PolvOTftSfl l>? -a | s K~noTiif.fi Travoritft r?S §9 IS I « 3^: S<1 & pq w K 4 Q « '1 is is 23gl «s S« S 9! K c? 1 CS OOO> IN C cJ CS d ^^ CO c4 d <>

O 0 O O CD 0 0 66 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

>, a ± 03 t>-£2 go M ffl 03 CJ OT d ^ C P 'J£tS . c ^ a 2 a M Q _j .2 4^ W O « O "^ u "c 'c W c a d£ .9w iP ^s _c S o 5 ,_; 1 1 53 « a 03 ft A ^ "3 "^ a c? . 0 o i 'a r aci 23 *>* - s §° * W ^i £ ^. O1 t- ea -o M "-1 C u. "rf a 03 "2 0 a S3 nS -3 v _. p, '^H | 'cc M* CO IT CJ ^"* O II o g ft S ft g i 1 fi 1 ' "3 1 1 03 P CO aO ai d °fi o O Hardness,s gravity,an bilits ro co to "5i-( "5 , J C*l CO "^ CO II II II II 1 15 77'i? til 771 i ii If ii ii ii ii T W Ofc W W 05 WOfa WOS WOfl W 0 W Ofe WO BOP*

0> I CO 1 S M c. ft 1 £ rM O "a _ t! o ^ d) c3 1 O *3 2 'O 3 ^' o C 0 5 WC "* w c S " O : MB . to * " 91 jj C £o ^ 5 c c ^ 2 1-3 Q kl b c Jc a o rt ^ £ O F*> CS O k C pq M 0 >H o K ^ «

V-t J3« Jd3 «»- I M J3 bJO fc ft a 2 3 e. c O a _A» _^. _A» _A 5 «^ c C 0 0 * C c o C ^H O rH F- O »-H "Sfe !z -*-- -v- -v- -v ^ ^ a 1 , ^ p 03 a 0 03 U t. +- » a> t c. C C3 -p M. ^is E- C E^ H o p s-2 "< "a fc? t "S t "8 c »cC 'S 'S o> 2 E 2 a * a a-g C P 0 o | C 1 « r~ CO 1 1" p 03 o O 03 S Z 0 a "E a 5 S ^ a? o 0) PH o ""-^ i03 a3 O 0} 1^ o a "3 c "p" ^ bo a Q> +. p a 03 3 a -Tn c c xS, 4-a W -4- Titanai PranMini Mineral e, i fa S3 '"a^I "P T S J3 |«s T- » OT ^o | ^ p" ; P "J S * P ! n N x a S |£ |5 |o |l< C s Iw9 §s S a 4 tc5 ; Ij '-3 i -5t5 oo S §SJ ^ p3 g» i | COCO CO ^ T cs oi ci c4 c^ e> IN IN *

^! <:> <:: > < :> <:: TABLES FOR DETERMINATION OF MINERALS 67

o .a a§l " g S g.S 73 m 'S .^ °2| S a 1 S3 «2 03 O § 6 ffll "" g O W. ^ 0 ft £ fc 31 c M ."O a: II P w {3 cp«O 2j co S 6 a W 2S CO V y><~> ^1 6 S 2-g 5 S a, o,H 1 Og ' § .0 t^ " CD 3 CO IQ . a |S *«? ft a w -C d a03 SJg 1 .a a ft § HNOin3 MkJ 01O II thinnest 3 3^^ tJS « lightittedi a fi S ^ CO 1 O >, w- a -o p '« ° OS > O g S rQ W ^JcS'^a d fc S a cc? 3 M c 03 g a c bOr4 1 g 0> ^ a ' 'SP > q o ^ S & -3-as a>? CO P CO n3 o1 -J^ 3 ^ S "1 § o S3 ftp, Jj S CQ P & ftS-S* Hardness gravitjfusibi a^ Si 3 |8 4J S rt *t n o o O P 9 si IN '^ *5 s>> f£ p,?4 ^ p a'S a 3-° « O ^i ® W - & co a 07 ft) 5 »fl t 5 GOSf 'l-c a en t> SCO o fe ^. fl'S 5 5: S 1 t d 8 g o g 1 ll Z > 2 c9 S fl _a *M tj H S S 3-. « 1 ; 0 a : 3 op "S'd ' a eg % 3_ca 0 i M oj g ^ fc 1 M ^3 « " *3 Qd r 1, co o. < +*2 _e S 0 1 CO t w M*S ^ ^ D^" ^ Jfl j8r CO B H £ W fc^ W « . «i^ « -1 !l S? Is^ f a 3 M M H ll o !? a 1 2 » 8 a 2 "§ ^ a'S o q o * °8 2 fr. i fe, X- W « < a s_/. . t2 S^0^. M CQ CO _« d ^ CO^ J3 . a CO "ft S co 8S IN 1 o o «£ « 3o2 §=2 So ^03 CO 1 o .-a 'SJ, g S oj 3 ea * p>3 S fl W hn .9 i >FH N ^ N 03 2ffi W aS i S* aP M ^ * aJ]3 ^ h- 02 C cS co O OJ ojcd t 5 "" 03 « 3 ° "^ 55 H 1 w S 00 H o -H N 3 S sc<- >

j .- 2 a 3 e< O fr* w c^ O /: 081 l| ? CO C 1 55 i W c4 o ^j" ^H fc A fl^ 1 03 PC

> < O c > <> e.a 1| 68 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

I B 1 ^ B^ s§ | a w s o» "3 os-tj ' o a. > 0 0 rt'S t>> 8 [>>» 2 a ^'.a g §£. ^l* ^g -a « 5 £-9 -dial ' «P x P x' 03 ** CO i l^e «° p0,-S- 1^1Q^« 1"e» ^w co sS -i« Sw . 1 1 %- !B i! fil-a QI 5? i ° -S5 « .9 i| 8W 5 3 §11° t.g^ «§ | | fi| "5 M» oi oj ,; °»y, z M .r-i ^ z r-^ ^ ^^ ^ J-g |" -al is Sill . §!» iq 5s S IQ 1 N |a ^W |^ M 1P5 3 M P 1 3W a

g-o

-" pn illo 2 S § »Ci-t WO5?S C1«3*H" O5 CDio^H NPi COwa o t-J Tj N «S >»O > lOci. ^Neo "S'-JeO COW.-J CN Ociril COW.-3 O II II II II fe II || II II g II II II II II 11 II II || II II II 'ii II II u «J W O WOfe ^Ofe WOfe WOfe WOPs WOfe O WOfe bjOPn oc .a ^ 1 "3 £ O a C c c CD CD C C c T "c .- X 3 * * g c & ^ ^

ia 1 ?| fea > 4^ + 5.1 sa 2 +3 c3 OS H CDS to !.!-*- 'C |»H w rH *"rH~ O a o 1 u £ rH h-H O 1 rH O ^- 1 -V (i z 2- : | c «. e. s03 X! 1 X 1 * I O c £ C CH EH s08 to _ X to £ c c . ° C bi C ' .a 1 ^ ."§ ^ ^Mg e- B 1 c t 'HxJ c c c f f tr M £ to tf S 1 Is 1 t? £* t- a '" . S O /- <5 a <5 o 53 a . §53 00 "3^ S 55 W CO CO ,_, 8 a 0 <5 6 O « fs n 3 W On «

rHO «OO t^OOOOO ^ ^ V M< $ $ * ^f * «S >O 3 ~ rH rH rH i-i rH rHlH r4'r-

*& -^ CO C^ r^C4OCSCOC

II » m

03 >> CD CD CD CD > < 11 TABLES FOB DETERMINATION OF MINERALS 69

+; P. 6=0 og W3

Slfe -So -3 Q*" 3" |

^ S H o t> to IN 2 -io> «OIN| COIN'9 «OIN CM,-),); «-c*c» Nfq II M II 11.3 || || || || || II II || II II II II II II II II II II It 1) WOfr 35 WON WO&H WOfc WOfc BOft WO WO |5 | c & _c tf 0 v V ' "en ^ Cfl V a o1 CO j co co D*

<. "C?la f X -cI 5 .Si E a 3 _cr a s E i £« a.-* 1 fc o-^ 2" O c s b ' 3 .0 "C E X .& » ' X b i i f*rt 4- s< 3"C 1 c 0 g s 1i a "cf 3 to O II w £ PC 0 EH £H ^ M 6 COJ 55 o o » 4(Na,K)2O.CaO.4A1.0~3.9 Mn)NaiK*(Ca,Mg,&A11 Al2O3.3MgO.2MgCh.8H2 3(Na,K)O.4CaO.6Al2O3.2 Neardavynebutwithi Quartz...... O.Al2ONa.9SiO2.2NaF23 Koenenite_ .__---.. 12SiO2.SO3.4(Na,K)Cl bO.8CaO.16SiO2.16HK2 O3.7SO3.22H2O2(Fe,Al)2 O andCO2much Fe2O.2SO3.10HjO3 3H2O.2CO?2 Conuimbitef?^._ Hydrocarbon Hydrocarbon TVrirrosnmmit.p. Oso.35^HjO o Anonhvllitp. Natrodftvvnp. Fihrofp.rritp. AshpToftinp. Davvnp. ~LRHClt.fi SiOi 5« 1s T,«ifl.:A M g c

C>

Xi, .-sa ^- -g *J O-!; Q.®llb. < £ § § !« . WC£§N-- 1 c | w 'e I,S §3 £ u 3"£ o d >* . ° to t>3 t">« So w 5 3 t«,o ,2 * c >>.ti x i-8 | ti

o

IN IO ^f -H CO CO o c i-;u_ "O lOio " T}4 IO «O *H *g Y * «o . ". o 111 Cv (Nrt ^ si § O C3 | II 7 7 1 II II 1 ii 5 n ii ii if n n 7 ii II -1 J 1 7 ii 7 i ii..

..i O '3 s t> (D P a 4- O c « c o "c fe ) X ^.e. GJ2 1 » u 'iv a £ K XI 6 a c X . StS a .^r ow 1O i ^ _c i g f i X X "c 0 o = "S 7 £ | t ^3 g & 0 g > £ C P. ^

CD o ^ 1 I o! .E «-. 03 'I _ u

rt "c 2d 43 ° 3 | O a Z V .t r 0 *c X § « s y O Q> PL < f" s a u b. I ^ C a a 1 & 3 bi ) 'ht ' X .£ £ ' t 1 4 u 01 E- E- ^H 4 1 EH s 1 1 1 .0n 0 W aO d O q q ^ q W W O o WCO 0 CO o o CO O C3 d 8 do 5(Mg,Fe)O.AlsOs 5(Fe,Mn,Mg,Ca)FesO3.8SiO.7Hs' Mineralandnamei FesO3.3SOs.9HsO Compositionunk 3NasO.FesOs.6SO 4MgO.AlsOs.2SiO 3MgO.AlsOs.2SiO MgO.BjOa.SHzO W^»* 3AhOs.2PjOs.10Hi ----.-.--_ Chlorite(white) Pinnoite------. < » Coeruleolactite__ Ferrinatrite.--_ .2 Jnlienite--.-- MgO.HsO Colerainite-. Alunite...___. Ekmannite_ X '=E o 1 1 o O 1 (N iO N to o to io *c *^i CO CO Is- § t~ 00 "O S IO »O IO * 10 1C 3 ~ !2 *

24 o >o o< iO -

'^^3*« < > C 3 > ><> C3C3 TABLES FOR DETERMINATION OF MINERALS 71

_2'3 3 .2'S Sfc OH = O g 33 S&A 1J 03 S o T5^5 H ga," o-a ^73 a W *o SS3 Sol.inaci Slowlysol.: .0 2V=very as«« onlyigafter 11 - 3? S!*: ll fl "** p ®.2 .9fe 11=3o _r o i-) « .'w 65 1 .2 -° PH g i *O .0 o a II j-j ^ G o« g S PH _j . <3- 3'- 5 W-"t5 3 3| ^ . , S'S eg'© o "3 te.g-s Chloritegrc 0° 2Eto= ^ ° § T <3'O *l ® £ a .- »H *^ Ci .9- O p, 3 S ol 'o 3 ^ "o "3 2«ii W CO CO P P 0

M oo I * *» 1 tf^ »>O F-t 1 1 COifc V^" *° "5to M W CO ^>3a «5 ft- . g o t-

1 ' 3 3- 2S c? ^ 0 i | B: (A a I CJ _«3 03 " cj & |jq ^ 3 "-S i C H> I ' § B ; -S « 1 k "S -a Si H 1 1 '3 ' c "T*^ fl ^ e ! . 2 . § 1 | I . & . 6 *> 2 * 1 ^ 1 4 3 a> f a S ' I 5 '8 ! !5 ^« "a 1 p -g _6 1 13 §"£ * a : P= P O C) 0 ^ H PM H PI3 B P: ft ' 3 4 [ tl. I 1 i-

. 3 «>_ .1 J * i | I. _t 1 «-» U ; c e ^ a 5 g* a -s 5 S | i s | 8 ^ ; | 0 o - tub b X > ! C^§ 'Co 0 'C w a a. « 5 .a tH EH § f- tr H S

] ] J io 'is °i ; ;9 ' > jo iw |O |S l«" IB i"^ [IN ;o Ifr 0 !" 10 ' O rt ircolite----__.... o :~ s mesite_...... 2(Mg,Fe)O.AlO3.S2 3CaO.AlO3.3SiO2 £ %. ; ° '5 s ii Ii | :« S [aneanbrucite.__ (Mg,Mn)O.HO2 5-^1 4KCl.MnCl2 «6 il 1 1 <5 Jl i^ t4 j'OQ tu o-c s| .s O a udialvte eo*^ i3"« *C 03 g| | S 6 1 af O c i |1 11 1 'i ^ O «5 £; £j 5 ^ 0 g << CO W !^ PH S -H S S- S § 5 § 8 8 § § § § | 3

O ^>^°- « . 02

CD <>

3 r 1 -a sf-ail ^a s:| ^J2 5 -' '§ flrtj *:5 - ^

03 <-i O Oi Q -3 f K |° Cj HW*»~!^ '^jtf

few Q P* . C3 O 2 K S o3 d P3 ^ *~^5S^'^9t^ > fl s 01 r-< ^ 0 ev. W m w/YN^ K*O {'3*^ w :^ "3 «« ' ' ^ » ft fl fe§!SS J S 43 5 T3 S ca o . ca t 1 L! .^- § a ^>,-i * 1 "Sg J ,-oSnw tf 1 1 i d gf«|ij . . 1 gS § t> O9 4Jw ^ **»IS 1 ^l_g Dg. ;§ Ife sliiisi"°§25® [fe°*3 d O CD 3g

2? '** c *ca w H a ifOQ 1H iJIi 1

^ 111 IO CN o 2*-1 Sui « S| S3 & >0 O

a a 1 "3o. ! i i "fl i "og £ I | 1 1 m H ® »T "® ^ o ' cr I/ O "o"<8 5 S? 1" CD "^ r ' 8 « "iS I ^r « o CD P c < 5? "o t*> dO ^!> -5o MCO ^O Ho >-=c c 2 O 55 0 O « O C C o

CD I

»- "- r tl oS 8 h CD .2 ® CO CD P. 8 ft d ft ft ^T 6 ft .^ a ^_ c c 8 g _H 1! 1 III i i s s C3 MI ! I I i »rt o ,0 'e I"S s!s« « -i ^§ 2" J £ s03 M bo® 2 S S^ E^ C c s _+J 5^2" bi I bi^ bi h 1 t ) tub *C ft *2 >> ® *~2 cs ® *c "m *n t> *c *c E- 02 ^ « EH EH EH EH E- EH "8e a 0 io o O ' ' ' ' Q ^ ;o jo : i W o iS |o CO 1 iw '00 5 8 : 6 !^. j* !o » !p CO § 13 02 !^? 'j? ILT O ;\^ CN 8 io » 10 o in j io O j^l a O 1(1? !(£[ !«! ^ S2b *3^*«®eY? "T,-1^ !<1 -r^ Hi ii l§ 1s i i Dfilt»it,fi O £ § O O a

o OCN 2 IN CN CN CN CN NNCO O I C5 3 CO CC CO CO CO CO CO CO CO CC CC COCO rH r-4

* i-H u: u oojco c C Or^ IO CO ! <« CO .CO CO CO ^ CD CO CO CC 2 r'rCO CO Jp * II * * r- pq <> " <> 'S| , > > < TABLES FOB DETERMINATION OF MINERALS 73

fromveda Henderson

Sg

SA i t-J Sfcs*

*I

iO O CM Oi 11 ie? S rH O. *O CO , "3. ^OS. »O ^ ioco 3 coco co ^ j2 ^TjiS 'OcoSS tfJ co 52 *o co II II II III II II H ii n| ii ii ii n | ii n| ii ii | ii n| ii ii wo wo5 wot* wofl wo woS wo5 woS wo>r '.*' K tstf ! f f t c £ "a rl '- I fe Md p§ *£5 fe a c 1 l> u 'I 2 i 1 . g } ia I a "°. 1 ^ g \ »B ^ Ci -S I 1 2 "(I " fe C"o 1 c c ' fe »C te c *? 7 6 4- & ^ 'f. § S 1 j 2 | ^ 1 bl 0) £ 1 I 1 4 1 1 2 PJJ > >> > c (H fC a n ^ > C 1 o; "G " . aj . !r fta g £ 3 03 b 1 - f 4. «*. ? II 1 | \ u t 4J03 "S0 _&. C « £ > loi C C .2 1 PL, i, _^ (->> _A. 1 - i ^H * * G rH C C r 9S i c g c i- i o o c S i -v -V 1

y .2 1 £ .£ PH O § ' 1 (X > 61) -t c t i i OS a c rg .2' g -= .£ 1 i . i * >; g C h ra i g 0. EH W E EH EH fr EH £ tt td £ ! ; i i i? O -j- io W 03 |O O 1 iw n O W lt~ O td S '9 to 0 -.. (Y,Er,La,Di)O3.P;2 4CaO.BO3.As2Os.4:2 faltered^Auerlite. Silicophosphateofr . 3AhO3.CeOs.2PO52 (Ce,La,Di)FO.COs MgO.2CaO.2SiOt 2PbO.3AlO3.2PO26 Diootase___.. 2(Ce,La,Di.Th)OF Florencite___..... CLQCQ Parisite___. ---___. Rhabdonhanite. CuO.SiO.HO2 Cahnite_..___... Phenacite_____.. 6 ^ 2BeO.SiOj 3CO2 Willp.mit.p. 0 Yj00.P325 w 'E £ 0 1 4 1 Ov^ .£ i 1! ifN 0» 11 PQ M

CD CD CD CD O TABLE 4. Data /or the determination of the nonopaque minerals- -Continued Uniaxial positive group Continued

Hardness, specific Varia­ Remarks o bility C * Mineral name and composition System and habit Cleavage Color gravity, and CD fusibility O O hd 1.746 1.724 H=3 Sol. in HC1. i i 20CuO.SO3.2CuCb.20H2O isb blue. O=3.40 o F=2.5 1.810 1.730 H=3-4 In section pale green and nonpleo- 20CuO.Bi2O3.5As2O5.22H2O blue-green. Q=3.79 chroic. F=2

1.765 1.75± Sky-blue ...... Q=3.33 Same as ? 16CuO.2CuCl2.Cu(NO3)2. needles. 19H2O Hex. (?)...... H=3 LJ weak 21(Mn,Mg,Zn)6.3Si62. section. G=3.719 O ^As2O3. AszOs. 10H2O !z! 1.804 1.757 ^lOTlfimperf...... H=6 Sol. in- HF. Pleoc.:a>= colorless, O BaO.TiO2.3SiO2 tab. G=3.65 «= purple-blue, etc. *i F=3 3 1.801 1.778 Fib. ___ ...... H=4.5 In section pale green and nonpleo- O LJ 4(Cu,Ca)O.As2O5.lHH20 emerald-green. 0=4.13 chroic. Usually biaxial. 2 F=3 O 1.803 ' 1.794 Trig ...... $ LJ 9(Mn,Ca,Pb,Mg)O. pleochroic. £> (Mn,Fe)2O3.3As2O5.3H2O d High llioydist - Black, reddish- H=5 Qelat. before calculation? Com­ ThO2.Si02 mids. brown, orange. O=S.3 monly isot. from alteration. Infus. 2 19 1.90 Triookeite UOOy highly perf. Soft Arsenate of Cu ^110^ less perf. F=easy up into flexible, asbestoslike pieces. Bluish-green in section and nonpleochroic. 1.910 Hex. Tab.'jOOOlK \ 0001 ^,^1010^ perf.. H=3 6PbO.4(Ca,Mn) 0 .6SiO2.H2O Q=5.74 F=3? TABLES FOB DETERMINATION OF MINERALS 75

-^.i«> "O a 1 .S S ^Sa §^5 HI a a ag* 05 *i 3 a j i 49 II £ S ° d ° s £3 LangbaiBoth Artificiald. units.A570r o |-9 red,deepnot Et £ Streakorang o 23 o .9 S«te N ZnO.forpure 49.11! w 1 Tl 1 8'- d *8.9| S 3« E-i®^^ ^S^^fll| a W PH q S cci^o 2l to d o a ~ N W «3 inHC. imittedIi §* 3 6 °« n S 15 2^73 fe o--§5 3 D O . ajtN-g.g cd * §!Jfeo-S N 3 .q >>CO "3 oH °2 w Z3 I °p a - a ^ §£ . SSWg .2 .S g « . ^ »O *o tg ri °

S?

^1 2. >ol ?2 «l JB. t- . ^! ts:^- co«S SI*"^5 COT)! COT)! rHCO COT)!,)! coco 2 M* flf 7! II II II II ii II II II II II II 1 II II ll ii 2 TTl T?| POpc, WO&H wo WO WOfe WOP=( WO WO WO wo5 wofl WOfl

Es EJ a 3 * I ^ o S i o K» C) S CO "« i ft C § ^ 2 73 & 3 " « C fl 3 E* "c ll cg a a> E* - > C a C 1 ^ Q F^ £ '^fl* i c ai C | 1 d * 5o 1 a! ^ S"0 c f ® ct 1 ro »- & J ) ? & « P c. PH PC P (. a t I 1 E X 4- Ci. | 1 i2 ii- | «t- o c c. J t I ^ 1 ^ 1l< 1 -AivJ "° c ^ _*. c -ti « 5 l ""S c i a 6 i S § g i 1 »- §

'"1 i S S 2 'S1 ! ^ S ma ! o 2 fe w 0 'JV & - Q, . PH - PH CO 2 PH PH PH bi . tsi 1 r b I bib c 2-° £ T- 2 § « 1° ^ -M 03 -*_ t- > *3 > 4J CD 03 -w a a <£ W EH EH W W E-i t EH EH W W ; 1 O ;O 6 CO 0 ! O ;co S "5" j § « ei i !0 O PH q ! I'0 cf O ! jPn PH O

o»S 0)Es CD^ Sototo I

W ' PH

0 0 o c:

163287 34 6 76 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

fe 3 "3 £" 9*20 b'OSJ.,- "m S8 " & 53 (§ ag^flSlsssS^te S "la * IP * 5 «| . { * w 1 ' ! §jd I|!ifi i !i li & Remarks <5 <2°° §°i §ln :i s |i « ! § g§l |§ PS,! i»!L^ 2-^ 1 %% % 1 <5 ^l "38 S W |v9 '"* ra g'ii &..^"OT "" -s pj> «§ . Wg .98 p aj.j3 § ,g & ^'S§ m £ §fl^ do g a o®® -3 "3

CO GO 03 CO CO (3 PH CO (9 S GO

cpO

11*w S ** oJi^S CO oo 13

§ 111 cocoon ,-< -Hiort cot~: -H>O . ot~: J3 mo 2 *«> ^-^ S3 ^"i coio2 o II II || || II II || II II II II g II II S II II 3 || || || || || 2 II || || || 5 W HOfe fc WO^H WO WOPn WOS HOS WOfiH WO 5 WO WOfl

*c3 p . ! d i 0 « H £2 bJO H £2 ^ B-g g Q p "og ~£ 2 -fe i _wA t.o o Q o ^ O *. .-i w 0 aT a ^ I 2 5 l«- ^ i .s "S £ * a-S ?? «XJ c 1 * a 43,0 ^ 5 3. a « 0 S3 £ £ £"* > > 1 £ > § I

S I *«s 03 3 *K» ». -0 «-, | tr. 03 o" .a « c* s 1 a 2 -a ft 6>o ft a> T3 -iJ O *§T3 s.s tilli i : «j += w 03 1 M M -4- o P a 03 £< 03SP a M! *-" s^ | "*° a CD cs a a w a w 01 CO H tr W W £ £-1 PH ^! fn p ; o i S*ll i d 0 a p ^- o i * JH o *s 1 O 0 6 ^ CO o 0 CO 16 jp 1 ^ y-S^ :q ^ CLJ 1/3 O |.- S a O 6 q03 § s2 s£ W a "S ° rt ?? r/i - P-( _W a 'qPn IgPia "!Z a -S^ iSg 03 *3 S " gi^ "c3 boO uO'^t-i '3hn'fc M 'S® aa^-" 03 % ® ®O Pf^ § J£ g£ -a" »W -a-< gS Sw SN feo SiS 2O S pHpntSMtS e W^QraO

» « £«« -. fej J J CO J J J co J? 3 IH co oo o> «-i t- o 10 o c5co rt i-l r-l rH PI N CO COCO »< "3 IO T)( t>» pi pi ci pi pi pi pi pi pi pi pi pi

rt 5- -d J 3 >J " 00 »J iJ rt OCO § 1-1 (-J i-H O* C4 »-3 t^« O i ( P C^ iO *H P) M P^ IN Tjl ^ CO CO O M id ^ pi ci pq Pi ci Pi pi pipi Pi n pici

|| > . < en c: c: TABLES FOR DETERMINATION OF MINERALS 77

"2 0! S| 3 i ^ fr W § « f° § A OD * 3.5 fc T3 t> n 'O'rJ §£ §1 > e o ^ .S 0 . 3 V f1 a ^ a ^ W S 1 S « a 2 c o ^) SBN 0 c = a^a 2 a* 1 1 g 4-" *IT H tr i b S§ .2 « o c >» c T3 "^ '^ .1: a-a o 3,2 K i At 8 Si 03 c (HS<2 | O M 3 - "o *e a ° 1 S g «I 03 CO CO N M M

|| .ts'a a> cc <=> Tg s cS "5*H rt K *O l> *O O 10 « u, U5 Su. «- CO ^ co O CO £3 C- 00 (-) ^ c* CO C< CO CO I-H CO ^ f ( ^ c^ co c^ ^ ^ CO f*3 ^ i-4 * c4 S3 II -3 II H ^ II II II II II II II II II II II II II II II II II II II II H OS WCS W 0 5-eIs WO WOfc tr Ofc W Oh 0 W Oft woft (i oS *» 0> " -O. 1 > . .2 b a> C T m S £ 2 2 "3 C

S 1 i ^0° 2 \ '£13 | £ £I O *r- C 2 .1 -§ J O £ 1 i s "c t- ^3 £ «s 1 g ^ < O C ol C u £ o ^ C _ «S sS Oi jj !-5 _ 0 *^

. I 3 1 "" £ 1 If «s- >> 4. J ^ 2 ^ *n»o "n S 'KV 1 ft* .5a- 02 ® *- ® pri g 1 - C £2 -So 0 g O fe §.^" S** C | 1a Pl^ ' U i W eg <

| I '^ .52 X w 0, C '*c a ^ i Is il 4-3 i£ u 3 C O 1.3 4 C 6 1 - i 1ft b 0 03 S 's cc W « > f, 133 i. xj 0 i3 V d -1 ID !f o w « S | 4 10 s ! a W t^ PH EH EH fc E" EH EH W E^

CUD'S i S >. 6 i O O 0 g| W i/5 1 IS CO o :<5 P.O. <5 tf> 3 3 6 3 10 CO * 5 "*< | w II CO , " 5 6 'O .52 '3 o 03 |W a « -2 T3 tt S ,. J 03 O P lineralsthof biaxiproper CQ -a ^ .t 3 5 M &. a. .gft s o ;E 03 ~ 0 .3- 1 i Cfl S rtl 3 °5 t 03 "a ^S £4*7, £. bo !. 05^ 4 2 EH °S .£ S §2 3§ j 0 f CQ S C" > O S 2 1 O c W C -~ * _ w S 'S J IM o c iH Is" (N -^ W! ? CO CO Tf | III i IN'3 ci cq ei e> °'a _ « t> l?'3 ^ « S ^< s 1 ^ 1 Q) ^ CO ^ " I? 'rt 3 S ,_, >II *fe rt -H _ rt rH -H c _] 78 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

; a 'cT;3 A ° h "j 3 2 2 3 c9 1 £ S 03 § W [JQ 3 >> 31 ' 3 S £.S<> 3 1 1 3 t3 12 1 1 i j S ||^ H m i 3 4. 1 1sa M i 0 0* _£ 1 I .0 ft J3 'S * f.5 4 3 *o K XI 1 5. C5 o> C T iO « ci . J ® i '«31 *o « 't«o°W ' 5" '3 3pq« .1 13 £ it «; ? P i \ "3 "S -1 «3r& g i 1 ** 03 ' S a 1 a 4.*2 .£ 3 .t' "? "c i1 f£ 155 c > ^ >> a-«'i-] o Si t/1 Vi I |1 C W . o >! S I)

£>> w"£S i t? "° 0 '§ >r S o3*~ 2J « *^" «c o tr> ei ,4 * eNeli :» ' * 9 " ^rt J >ci(N, O O.03 1 II II 1 II II 1 II II I II II 1 ll| 1 '77 T II 11-2 II || 3 1 II II 1 II II n C5fe (r Ofc tr Ofc t Ofc tr 0,9 t Ofe C wo5 wo5 n1OPH t OPH ~ ~ "3 1 > 15 «S "s ^ ' > b ) A" q a S> £5 ^ §| S "3 u . V w feo° j O £ p T£ c 2 22 »"c -£ 5 _c i % T 1 1 i s "o |~ O 6 1 J 5 |° | ~ 6

M s ». ^ S o s 4 ° 1 ol .^- o -9. s -fio C 5 0 o | I I X I? S TH" f s a s IN i2 g g c 2 o c S I h '2 a »- c & «. d CN a v c c « <8 'c X 'E § C. < < 2 "S Ec 5 ft .a g0. to X t t t- S 1 -c > > a

TJH 3CaO.CO.SO.SiO.15H23 O.CaO.4AlO.CO4Na23. O.CaO.4Al2O3.24Na2 Mineralandnamecompos O.AlO.4SiO.2HNa23 Ettringite_...... 6CaO.AlO3.3SO.33HO23 Loeweite -.--...... 0MgO.NaO.2SO.2^H23 Lewnite..---..---...--.-. Sulohaticcancrinite..---.. Nocerite------i.-- Hydrotalcite_.------6MgO.AlO3.COO.12H2 .------K O.3Si0.5HCaO.Al032 Beidellite.--______... .2MgClCaClO.12H2 n 2MgO.MgF.3CaF2 O3.3±SiOAl.3±HO2 Tachhvdrite.-.-- H Thaumasite______._ O9SiO.3H2 O9SiO?.3H2

|

£ a 3 i I 1 g § 1 3 3.1 § ,

1 « ? : S 1 : ! ! ! ! :

< C c D < >-°a a D > TABLES FOR DETERMINATION OF MINERALS .79

2 ll 3M '3 3 S 73 " 3 a £ 0 o o tJ 1 £J 0> a> cti Un *S <3 "3 71 Oel B 1 3 "I AlO2 per 1? O 2§8 d 3" °H S II s 1^ &^S «| 1" " o oo-- Lo E"? «33.0 Al 3 . "3 a 3a .3d ,ll^ O^ jarM S S 8« ftn ||A CD Mr>> 0) 00 >.

to to 2 "5 ci ^ « r-i to oi co

d S a) » 1 ^° 1 d ..*-« g <{ aj jQ *- § 1 1 5 bn a- 1 &«s 1 a 5 T O - j5 §*1 5 ,£j a> £ j £ ' 0 § 1 6 B o ^ O |J

_*. 1- o UcS. . 51 >) W ~"~ S K 'S -w t -w t: .2 *3 .° ^ ' .S 2=^ "§ 'O fe fe E D. -* O .3 -^- QH 1 £- ,0 ~A~'~< ~*~ ,o a "a i -»- i O.H §° S 1-( ^H S § 's - 1

p. i i I 6- 1xi 1 03 CO -4J E ft S fn -S X ) bo ^ 0. bo d c 03 S0 8-2 § « i *j a ^ >. ! tf ® w a S a a S £ £ ti ft- w t5 E-i (I B B B B I o : 1 w | . 1 6 S |O CO O :o o CO « iS B o |B 1 O 9 '1 1 0 ,5 |i S £; 'O (Na,K,Ca)(Al,S8 o 6 KO.Al2O3.2SiOa2 KO.4CaO.AhOs2 aluminite.nc... 6ZnO.3AhOs.2SO 1 S 3 io S '-°- 5 J5 0 a d 6 j « s 5 !9 « 1 oo ,4 ^ . O A -C I5f ft 1 'ilarite o -"d « ra1 'SOeg I* rj -SO a A"7 Cjto3'*' aO| Z, 11.So M& ^-H^^M I. ^J * 1^";« i^^ 1^ ^ 03^ W^tq-«;f^

OW CS C^» -3;. b- Oi OS IN P^ U5 *O iQ *o »O iO ^O 1C io § O »O »?

o 80 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

° 5- 53 .o o W* W -a .

a o *O 03 o O e3 oTi'w II II II II II II || £ II II || 0 D II II H WO WO WOfc 5 WO W0 WO W0.9 wo

ll sE

;0 :o o $ io ^ u ' * iw o" rn i HT iw ELI ' frl W ^ '!T1 CO- o TO - q S oj q Pholidolite O.12(MK2 aico '§°'®PQ 5HsO So 10 ?5 a &* 8«i II N

CD > CD <> CD <> < TABLES FOR DETERMINATION OF MINERALS 81 tive pale 62 .a CQ S-a n a a §"£ 3 g fill 1 w «lll S us 1* «.« a ft. i nSSfe fe dOS 2 -.2 d- §o| M §o bib O 2-S2P 'S S S3 q w 09 >> *H o5 isol.in Datafo s-ao 0>TD O.P 03 fl 11

t> 1 1 3 £ o "c 5 « I a ^ "3 1 £ ' 1 10) C1 S 1 S £ t. c 9 C O >H C O C > p1 K* >H C "c 0) P. *_ "i ' MQ. ' a(- »Q W 1 1 S c a? C fe ' ! 1" S. | . 1 . 82 | 1 I 0 r; . i § I 1 £ 1 1 1 ' W "Ss ,£ -CO . 73 "&». Za 0} 1 . a tr ., ^a X 4> 3 PN g I 0 y 5 8 Sje 1 iE-i fi! l b o-S CO § ? 0 °5 d! I .t 4- 1 .£ "Sa 1 S I1 i a. " U ' <£s EH PC II i°< p-g. s ti E^ E- e fc t EH i i® 1 i 6 !O |3 § iS ;O o o i 1-! :« O W Wcc

CO 03 ? »» r r- § 1C US s 8 s§ £8 r-I i-J »H f 5 5 s i 1 1 S3 I £ 10 § S1 i S >o S

c> 82 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

'C iS <5§ | o^ §2 .8 a S S 1 1 b ,| GS 01 £ C8 '®S * «-a »g | § ®^3 "a C f-Slof s a .g J^q ^ 3 M^3 ' . |I II S ^ a H |M -2 a 1 .g|»|| f S J3 giq "g^ « -3 II O ri °^ S O r^ 5*® P^ . . s ^ & * [g ** *O *t> P-H - ® c5 o .S P* M S'o^'ja a) si ajl a 1 W 2*t-T"3 c c a) « S'i £(« ° .-i 5 gS* |S -o 5 aj PH o ~^ ; ft p 3 a V i |£ ~ o ( ? [22 '* ' 'Wo t £>. § } .O '"S fe §« 1 5 c h "H' >"S . 305

O ' '§«

ft w >o 1** o » ^ 3 ^ ^a ". a § . t~ «.s HH ,H |? t 2 «{? o 13 c«2 oo fi 2 eo IN »3 *' ci "O «O Pi T)< "3 CO * N S3 ec CO (> Q £3 feb'S II II 3 II II || II II II II II II II II II tl Ii 1? ii "i ii 5 ll II II W W O .-H WOPn WO ti WOfe WO W OS W Ofe W o5 w Ofc .3 c 1 1 £ 3 a 3 "f | s3 1 a CO i- o S3 ^ a CD*"^ a Sfi "a d j C £§ T:& 7 | SI?» 1 0 0 2 => n 0 ,2 0 5 M »^ r^ 0 "3 ti M "3 O "3 "a o "3 5 2 to c s a n o o ^ O (H P P c P!

j i 0 ^_ ass i \ c 1 a -s s a>SS "J .Mtl . 1c 1 a § _a £ _fttg S. ^ : c t 1 .8 I o o . o O S S CC . 3 i 1 i s i 03 51 s . a o O " I 11 1 f i I 3 z "C 2 P ,0 i S 0 * til * 1 1 C3 >-* a > X i I 8 § 5 8 S a a c ra W S P. W W £ £ fr ts W _

Q I 1 1 ; 0 'S5 i io i j i ~ ' i? in O a lO 1^1 iV, ~ i^ 02 O a ;S ;^ «W o i,s «» W § o j^ q c il id 13 o" ;O < 6 *i O § '3 ''« a 'fe W I.? « o to EL. a IQ S |o ; ^ ~ .go Jo ^ Jo (Ce,La,Di): O T)< Mineralnami nhftlr>nnhvllif: o ^0 & !^ iS-y? 3 eo fl **i § a| ii i N 5 J<< iTt^O p3 ^ ®X fl o c"s o 3 Is Is 1 Is I OS w 1N 1 O i a] 8 IS |8 | t^ c « « £ OOP s s s P C

a S S " 3 S O 1 1 ! »- s 0 «5 S «5 «> CO CO CC .ce CC> 3 «: i- 1

S 9 -i S a> T i co r* c^ c> a r^- Oi C ir S £ S S S if i «> r- *- ^ II m a* a s < CD >> <:> TABLES FOR DETERMINATION OF MINERALS 83

with Abs.: /. ificial Z'SO OS arka o>=v inte 3 « - «§ og MS .g O^; n t>> 9 .^ gj -"^8 O 523*3 . ticalauom.in 3 'R ll P o w 3J« *A 2% . g Apatitegroup. j£ . ® a o.3. g|g a 4J> rt Tf ® ^H fl -is S3

O io p>> tH m JC" P ". 'H S3 "? * ".IN co t"7 T7 77 T7" 77| H II II II II WOfe WO WO' WOP* WOfl WOfe wo WOfc 35 WO ' a i ! b i '| Ca 5 a 0 § >i > : s i 1 bfc a 0 *> " a "2o ag I « 0 .2 C ^o c | O b bk "S 5 t* _c 8 1 "c 'E_b O "c K. 0 5 CDa 5O k. S ' 2 O O PQ iJ O W Pd ^ C « g" . a n v_ .. 03 t- 2 Q , L "c -t abtl-B Ci, C i ft - 2^- "2 1 c o a o ~^!S CL ^ 2 e » 1 O r- S c c a. c o be c «^_ ^ o § Kf -v § -V1 !Z ^ -^ -^ ^ ^. ' §' ' tr i 43 0 £ K g ^ a 103 £ 3 O1 . £ >- V ^ ^ ^ 0 -8 a pM X bfl"^" b f. s_/ > ' 'i w £ g a a . ^ cd to a > M 4-i OJ -*. .£? j ^ a V a

] O O 0 W O to N 00 W 1 q s O £ i S w 03 S 1* ^ CO s PM q ] "2 o* ^ :o S 0 feO M 6NajO.6(Ca,Fe)C NajO.3CaO.PO52 (Mg,Ai:(Ca,Na)2 15CaO.(Na,K:)O2 O.CO10CaO.3P25 * iS 8MnO.7SiO..5H2 Chalcophyllite(alti O.14H;7CuO.As52 9CaO.3P.Os.CaF Dahllite______O..CO7CaO.2P2s So 10CaO.3PjO5 ftourmalinDravite ,_ |O Fliinranat.it.fi Lflwistonit.fi O ^ M NaCl Voelp.kerite 'coOH TVTfirrillitfi Frftnf-nlit.A Bementite § 15 5 d53 s200 rH >7 i' §g 1 f+ EH S

toCO

> CD 84 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS ;?: sa a I5" |i S 8.S. 0,2 -8 O * P j^ M n g ^o a ft s^ 3 (§0 _^i . «"§ j 53 £j 03 1 1 bo ** "^ o Sj 1 w -2 *-* '' *^ 53 jj C' 9 T? w rv h P O dr3 P^ » ; s ? .9 II g Pp "3 P OOJ-JJ ?"* r*^J J3 BN=> * 3 _ 2 r jdi: 5P ">>Ps ^«, s a fsljKN '9 iN |§-HKr «8. i.xi « "if *^ CD *H O« 9 "> .1- r-« h^ ® "^ O £l SCO J~* Pr^O S *8^ §sA s| 3-o.oj -g g 5JI & a*- So« bPns at«§ &I 3 SQ 311 a| H 33 s| . 3^ 8s-§ g £ «"l2 a -s -S3 § -'§ «i -a § la 3§d S" a^ fe -go-i ^«5B ^.s, 3 fl L2-&2 00 MU, * -o iQ g>'§ rH CO ^ PH P^ s. ja o3 ^C P5 ! S 5f-oi £ W S 'rH CD C 2g E 3 g * * a -V >J fft ' !pd «tCD->- i^ «a5- x S S* I 09 EH fr « EH « EH tf w

\ ! ! 1 g ( io I 4 ' U M J^e« ;W fe ;i» p? § k :w i9 g g H i^ i" iw *« 1 0 i O | * .£ s § 1i 9 iS Ca[Fj,(OH)2,C 27FeO.10AliOj.18 Mineralandname a gj | |g OCaO.SPjOs. « dSiW* i"^ o^ i^ o^ Dapbnite..___. If li !| | O H 1^0^ !O iiW '^ ii^ S3 as ig 1 go !' § |? | 1 O*" 'OS "Sx -3/5 3 . -30* 5 - S^rH §3 §^ S * ^>OJ 5

i s N S 3P "^J ^t ^ 3 S ! ! *

rH «5 rHCO "O f3 S3 INCO <3j3j S V : d rH O r-, rH d r-, rH rH r-J r-i rH rJ II * * ii ffl pq Hf 0 0 0 0 0 0 TABLES FOR DETERMINATION OF MINERALS 85

J -2, |

H 5 t" ft k$i *S®i*r 3

8 II* "H IT! WCfc Ho2 wol WO WO WOft

1 j J 1 d tt ~ 1 1 1 a 1 I rt i* ^ to" Q f* t/5 3 E0 1 g W O r- i ^"1 ^ o3 WHs* 13o *o £a J« « 03 Pk « *S °^ *n ik i*a 1 1 1 fM ^ O S IX C ^ R C S . i 0 o" g j o 0 0 i o ""*" . -V- ^3 ,j c «rt5 ti a s> - S i « . 1± afe 5 . , E I - a « ^: *"* 9 c C c A s c § I ^§ 1 ^ I 1 !Z -V- 1' « ^i I ; _^"* * <- § ! cfl ro »^ ^. .^H , Jo 'J^ » t fe O ^ u !

0 <> O 86

cS S S *> -geia -S.&2 5 44 ST. s* a § S °A M ScO 3 " ^S «fi « . 3 -o 2 ««S fljl*3 a -22 ^-a^ SjoS S . . » q o, c S"i 2"^ 2 S s"'-3 |A| 2 ^ d 1 Ip .ag- *1 IP J2 " t-t p^l * Ji ! i !|s ^11 g| f§i aus «« iilli I ill ill !t ^II! 2 wSil II®ft "3« i® 111Swh IS3 -s^SxJ5lll oSSi -c1 IMS0.5.0ft- 3 W S O I=H C- > CQ P fe

tg

ifj OS C^ g S ^.vJ "^ O ^ (_,* -» *O CC to w 53 ^WcO COCO'3 "^CO ^ O ii ii ii ii 3 ii ii ii ii ii ii ii ii ii "" ^7 4j7 T7| T7 T w WOfe WM WOfe WO&H WO tC O&H aiP^ raO WO»H WO WO a i $ 3 ; i 3CO "os 1 a a a M o j J I c c * T i . g a . "ti C 1 £ *t & a> 5 = c ^2 ^ 2 c & c 0 0 H- P PQ 0 i i Ite. 1 1 - c E fe s "§ I a . 0 C }c ^ i 1: ll 1 _ « o .^ J£ ^ r~ ^~ i -v- C a § c 8 § 1 - 1 - 1 'S a "3_§ a 4- JS c a « E c c a .z X 03 5 | E "p0 S b i fci b. i i tuD ® o c s- a .s a a> a, .S a & a O3 ft f e E^ E- £ W EI &< PJ ft e a O _o ; ! W 2 ' i o o a. j W ' o io ". (. o u » . § : (2 :W O O O H ~ i « o if- A - s2 :2 9 9CaO.3(AS2O.P2<6 Mineralandname U O -§02 103 .Sin inoo S** i!O *r* CaO.MgO.2C02 8MnO.6SiO.^As2 Ca(F,OH)a a4- O § ! i 1 Ifl 1 111 g 1^ Jo 5 Rnhftllerite i '0 ^ P! ^0 ^0 .So £ Rv«hit.fl o |o «o 'So aO | £ IS 13 | 1 Oi JS N'-' ci> CS CON O W b *o> ^3 ^* fl ^ "c c P4 > W * P. O 03 C

CO CO CO Is- t> JO 0 S ^ S COCO CO COCO CO CD CO c6 O 3 S

i S 1 6 9 i . 1 886

'§3 0 0 0 0 00 > > 0 £.0 TABLES FOB DETEKMINATION OF MINERALS 87

3 <| c g e .2 j2? t c '£c i c ». ^43 T c "cc J§S' T C c "c cfl -^ O m a 1*c "c C fi C O PC c (i O

u a «tl« ». V- c C" S3 c & £ C 1, E ft h 0 f 1 E T3 a. n: 1i ^ ~ S c ,= C C o 0 C C ^ c § c! c gS ^ -v £ ^ a i X i | y > fe C \ '^ 1 C V C8 a g * p. c~ B y i £ b ) c § t _&fi C > bo ^ X | 'E t. i c IM Cl ! a S t3 H » ' 6"1 £1 p B e § 'tL i 0 6 £ B 3 6 i CMw 0 CO o x^i ' Ov CO 3 io B - X o <" 'S o o a 0 COI o b* |Q NaO.8FeO.8AlOs.2 CaO,MgO,FeO,Al2 2RO.6CaO.4BeO.A « O 12MnO.9SiOO.As2 Vesuvianite(berylliui -S "a? 9CaO.3AsaO6.CaF2 ^r & Svabite....____. tS s § o 53S '» 16SiO2.5HO2 FeO3,SiO23 "56 v- Genevite... ^0 .1 -5 s« 1 Palmieritfl 1 1 Ankfirit.A d Id ,2 2- 1§ 1 *- H M C * 5b£j a 1" 1 s I< | s 1CO 0 co E-1 S a ! s Ka° 12 is 1§a **rf° 1!I1" 1* s««$ If!»?lt If"2^

w M.i i |:i 1 1 p iji fit M 0, ISg S M ~Sq I& Q o* 1 I"?-:'S-S-a SEl'TJu T 5,5?^--Oft- & «" « ^0 »s« S^^, « i °§& 1 * il * 1 lo | .5" 5g|o firfo -° "So'fj 'Si-i "^ ^ « o3Q C3-* 2'3^> .S^g .ooO

.9 fl O m II 5 "2 . "a <3 £ ^ ^ . . t3 fl o a "a a- pa>2 flOro" g So §« PH ^S^ t§ 3 o "* - ° a "§ 3-"*5 "<* OM w ^fifl ra p M W'TO fl §£

^Q d -H « . -H . -US 2 « cs S ^^ ^o^j* ^52 111 co **< cs 59 ^ c^ coco co CO C^l co 2 ^ co 9 »o TjJ 2 coco J2 co* o ** 3-. o W M" ll II II 2 n ii n n ii n n O K MOA uo MO no £ OM td 0 .3 WO.3 WO»H O P-. WO t9 2 i 9 i c fl o; § C 1 -c "3Q 3 e 3 4: "a 1 £ a O .» 1 n c *} i a c a «= S.-P £ is Q.O. & '1 1 w, * e 1 3 S S3 £ ® »c O & £ C PH £ P PC 0 F5

8 "*~ bo 03 T o> ofe tc "g ^ a fc *B*^ ? & 5 P« ^ C 1. J 5 5 t-H * - i H C C S c 8 S c r- -V v. a 1 I 2 ID A, ; 3 « 03 ^ § fe 3 a a g S w F "2 cg w .£ .s0 .& 1 .S"E 1 ^ .6 i t )- 03 EH EH & E- fi ^ E- E- £H EH n ;o oa 0 ^^ o o |co bo u 1o ^o Q. ^ S-0 *5 ',O

12(Mn,Fe)O.9SiO.A:2 Calcite(manganesebeai O8MnO.(Al,Mn).AE23 Vesuvianite(cyprine).. 4CaO.AhO3.4SiOj.H(2 Ce.Y.Ca,Silicateofe fluorineandtaining Mg)O.2COCaO.(Fe,2 andMineralcom]name CaO.(Mg,Fe)O.2CO2 Masnesit.p,_ Freirinite.------__ O.3Na2O.2As6(Cu,Ca) PQ Ankerite__._.

2 S 53 S § t- _- t- t» 3 s : .H "

ON O rHCOW IN P» ^H JjJ ^ .

'§| 0 0

u- M * ,CS . o . >o8 . s . JM;« 55 2 -* -^ co2 «eo^< WTI<^ ii 7 T T ii T ii 1 If TT| ° II 1 11-3 II II || II II II ii T4 WO ft, WO W ofc ft oS wo5 ft O ft O,S WOfe WOfc ft ofl i i 0 ,0 -t~i 1 1 ? 8 0 * g 0 C fe - C3 0 C a b^ o fe © 3 i i i B- ja s J» ^* C * 3 - o a t 1- O 00 . t C =3 * o cj m o ^3 »- § s 1 " f 1 *" te "3 £ 73 *3« "c « ^ c £ TO C t» f

b 4! u 1 a 1 C1, c "§' T*h +« t o » *c t. 1 03 *H i, _a 5 1 'I *o J: j< ~ E c 12 TH" i- ^» TH" ^H" ~^t 2 C *- o o s? | 8 8 c - I 1 -v

03 ' 1 i ^ ca '^ ^ 5 . _S f ** 1 | g ft| .3 'S | 8 & .2 « ^ H §,1 f ft .a W * c & S"S § g * i *c t LJX3 biS M § M t *C 1 |i a w £ 11 E g« g* |« g g ! . |0 ;O loo !? !jg 03 1 N ra PQ :2 ^ ;O 'S O ^ !"S w W iq 1 0 0 K. r 1 O 'O n ** ''[* * gO «| « JJ ! S o>O ®O O W ipc< *J ~ .-Sm S ^pq « n a S 0 «" !«"? §(2 S a ^? d So s'o |§ ^| I o 1 £ If 1 s 1 u = 0 lf° ^§^0 1« So |"O^?JP O--Q goC d |.-g-13! 36°P 1|*« f$ || | 5 | 5OO a>O tt to SQ) r^o a Iss a S g^'<» -c-ts s« SfrSfa S5aS ^PH>.£ e OM ff!Z a? 1** Cfc Sfcr fffc 5*3 SO & CH ^^ ® ^ 96 ON oeo a« TO 6 O o ^ PQ tf

00 N oo o t^ o co r*» oo O o s fc t~ t^ 00 00 oo oo oo . oo

c: CD <> 90 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

[US 5«o 1 ICN-W T-j,cf "o5°°r-s t3o8 1,fcs * III 1 SQ i i^g 43-2 ci5«S S5o5 3 O M T" *? C ^« .£ 1 _» « Es c S e XS 3 a .O .e "al t t oos iS> 02=8 c^S E5?gUP. p| Sg 1 cr§ i 0 § ^ l »! c I"! i < Pco -rH f*> i. <>«& 3-w O. C c: '§§ I**-*- ^ *«s * ^ S E 10 9l* 1 §0 «S >O ^ P« c , 3 M «-^.a « ;(S.l >0 4 , 1 o $ i N.0 w II | N '^ < IS§" I iti^ 4-» ^C sO c: 'fe'5 M 7 %iW i i i»- ^S p»B5 d ?: e 5'gi^ o-o "3 £ ^o S £> PH a is t>> o»r g§ ri T Oco" -c o^ T 2"*3 a 3ii = ^?5 fc-ScS 1 DO 'c slis ^- I a fe-o.3. c Oo^ '^o ^"S « f^o . «i% ?^ 1 £ §§ ' ^^ Ci d c o s <* g-pS .£ »S £'5^ IP -£ .X* S »«» 3^ "£ sis r1 M >SS - 2s - S'OPH ? .a^o ^ ^ iii , ss ^,^coS 1 o* -5 P^n ^

JD K, E3 o c§ c:) " 5««a*3 (Nio s . S . CN.O CO . ^t CO . cr 00 . s i o COCOTX' * co S3 « CO 2 CO CO Tji * co a « *' a ^ cc co a -o co J2 cv oj MC II I! II 1 ii a i II 3 II II || 1 ii a i ii a i 1 ii a i ii a i t| Q W WOfc tr 05 tr OS WOfc tr 05 tr 05 c n 05 tr 05 H OM c b ] ! a > X £ e c £ £ "3S t- ' V V c c/ ? V O t> 1 > a N a a > > T c s c j ^. c _c c a 2. M 1 S C "a "cC « .E C 'oj 'c c >H P. C >H C > C PC i CD 03« (> 03 'S "n .S3 1 CO 1 §_ j c S ^: c C O c e a -H C ,= T; I 'i C 1 i -V os !£ 1 IS 1 jgC3 1I i S 13 PI a c «» 1 -4-3 C3g ^ CO *- « ! s « CD "c0 'c0 M c C c 2 rr c 4-91 bi.?3 SJ t ) bi) b 1 * .a*C ' X £ c^ -c T 'C 'E a 03 EH &H EH EH EH ft EH W a _o i O 6 S W £ !o *^. CD 1 0 B "* a o o o W IS OT W o to ,1 o 1O 0 6 O « IB 'o? a < 9 * 6 8 i" 6 O S 0 S 6 p > rt OJ^ fe o g II i& 1 N oj 0 § f^ T O £ S K PQ w S

o o o CN O3 CB to CN CM CO CO -^ s s? 00 00 00 00 00 co5! coS 00 oc oo£ 3

-H »O to CO o: g 2 CN s t^ c£ s . r- to to S 00 S S V o II W _ «£ > < > < c > < > S3 < > c > > < >-° TABLES FOR DETERMINATION OF MINERALS 91

co 5 "S .9 o 0 fc 0 <°° "3 . "O . S d ' XI IsIH CO .SP d 1 9^ 5 SI XI 3."§ w g | .9 '3 .9 XI a g S ^ S Wq* .93 .a o . fe AluniteSol.in:group. interfere normalgreen PleocSol.HNOin3. Insol.Transmitsgreen: 6 Sol.inacid.Dataforpi AluniteSol.group. Aluniteabsu>group.e Pleoc.:o>=darkreddi Basedividedsixinto GlowDecpd.HCI.in colblue,nearlye= HCI.Sol.inStreakbr pleochroic.Langban, Sol.inHNOApatite8. g « Sol.Nonpleochinacid. Pleoc.:darkbrovto= yellow.e=palegolden mazapilite.VarietySo transmittedlight.LS extremelythinlayers. Sol.HNOs.Nevada,in SA e=nearlycolorless.

-d ^ mendipite. 13 ments. Do. ^ to GO

-"COM «OCO ' "COSS M ll li ii II II II II 3 II I'll! TIT IT "IT 'iit'n Tilil I'll If <§" Ijli MOfe MO MOfl O O MOEei MO MOfn MO MOPM MOfl MOfr coO

' a ^ "8s fe . i q § ^o V . * 5>w »H S g ?) "3 1 o oj o 3 A »CJ ^* . ^ XI rt *5 .. fl o ft ^ ^ .2 ^ p C -ft .' «^ , r: c _eg i =38 2£ . g §.9 .§ :^£ J > . j 3 2 {H ^M o - pq . >H pq O O Pq a pq £ £

0 1 i fe i 1 a j ! J 3 ^* I CJ t. t- t » ! 1 _ ? 1 j 1 a 5 I 1

^H* S Ir3 1^ ^ o *O o ^H" o S S ^

I I B- 3 1 1 j I E I i § t xi 03 ' & 1 S 4-3 1 : 05® _0 i 0 ft ^ 4J XI f; XI xi 0 * -2 oj > Z S a K -t3 | 1 % < H f C H " £ bj E-i f E- B H

ip 0 P jo :° j o iq M ? is ^ ' o £ 0 O co io3 w M d q CO o "o? ! S < CO ! i s i§ O 6 'O Ig 'O pq CO OS ]CO ' w T)< ^ q ^t< f i^? i^ !5 9 ri .15.JJ .-§0 .-§O !o -O «s O O Arseniosiderite 6CaO.4Fe2Oa BhOs.SHjOtf Hedyphane..- 4HPbO.4H« s°, ss gs :s js :o ^ CO a 0 S£ SS -Sg .|fg Sfe ;S ag « PbCh T»nssfirt.itA 1 0 £ 1is i o 'i co *c I ll 11 -1fe ! ,eo!s £i c7 PH ' <1 <)- 0 pq- Q Q C> <1 PC

>o U3 N CO ll 1 b. to t- oo 1 s g 00 88 8* g a> en o ^ O O i *^ »-t r-t 1-1 i-H i-H 1-1 rt .-C 1-1 N (N N d

IO ^O "So o i s i g t-> 00 1 « a g S o -1 r rt - "* -1 - cs II II o II S « PA pq *

163287 34 92 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS .. . X § § 0 I a .2 a q hj "9.^ Jo1"2 5 s* a> 1 F ~,a.2 -^"S "T" t> o 'SJo^j S JL' tn O 5§ 03 T3 .9 * . I. "11 § isl If ^0 * w M i^ ^a33hfl^*C3K o3 tjj o> a 03 B J3__ "S g ^ § I.S 1 g'ffl 03 W H ^3 S I 1 go a °* -9 § a § *« "" o "5 d S S^^w - S5|S o - .«2 . o a S S fe ** * -tj Ss«*-*^ *z ^ 'W IH rr3 > £* ^-SJa is a> °>§ ' W S"* * * S« fcd fe JQ"U B<3.S a'B^rs 4^ 4B. i. I-H3 +i .a«rt .a*** .a' ' .a 30 s'S.S* -3§En § -3 3(3-3 -3-2 -j5 "o "<3 CQ CO CO O CQ O 03 03 CQ CO

O 03

«r>2 ||| -H IN CO j. oq "^oq >oo "5 ; OiO ^lO "5COio j °1 o O "'to O B M" II II II II II || II II || II II || II II II II II II II II II IN? || II li" || il IT 7 BOfe BOfc BOh BOfe BOPIH BOfo BOPn WO PR BOPM BOPM

i U ! o> s S" . 1 i fe~ & o" S >- a -2 ° £ 5 "o ® =3 X t, X! a *» O 6 c ^ I .£? -c § H, s >> 1 _O O g£ £ o a 2 S 2 1 *3xi "0$ o 'o3 ^ o o o c >< !* >< « o B S O 0 1 a> -^ § i 1 CO J > i "§ i a h > 0 I ^ 03 o 0,0 .SIn c* p. . t» 55 oj H C. i ___ 5 ^."C ^. o _a .53 £. S .£ gUi. -HO 0 tj O D* G -^- O l-H O i 1 1 I

"^ IS 03 o' ^is c1 A s « ^^ O 3 EH ua O «' .» § « 2 03 0) L c 03 EH "3o g" t. i {' ^ 1 1 1 03 k, U X 4- 0 as w I XI a 0. W EH PH PI S tl £ W e- a ! ! _o J | - I 2 ;o : c.S iw i a !o> i 1 0 o io i j 5 O B w i" i § a 0 CO -P 9 S a B -g 9PbO.3AS2O.]5 a °" °' !°' ! ~ a ^ ...... Mineralnamea a S so | BisOs.COz Mat.lonkitfi S PH 3d |o | d If ll ^2 i^ ai X! PM PH O B W PL, PQ B S

» w CO "5 3 § S S S § S o <-< IN c

00 S co <3 . ^< 1C * T)< r-5 £. 8 O) O [> ^ O

i ^ CD |l . TABLES FOE DETEKMINATION" OF MINERALS 93

| , fe . ! p" _£, ; 0> * to o ® 1 i * sJi a T3 a M« 5 £ a o ~ to2 I ® » 43en i-.ca" a tc "5 ? 21 -^ t- d . 1 '| "S | £ cb is >, ^ O* C Q s in SP O SJ 1* 1

' S Ul te i' .§O. a 2 _ H <3 S § « .23 D< ~v- -» ^ ] a o «s -X. a *-* -H 1»- c £ ^^ c I § C I 1 I I ' 1

*2 a s J a £ j£ H H g £ ^ ec o « .2 S PH .Z .0 S tf &o ^ k M 2 QJ ft ' P5 AH ft co S c¥ 1 < i-^r 6 0 .^ S . T i **§ ^ 1 O ; * is > is . .a ro « «Q> ." w 5 Q "S a « u. ^ V 1 O-4-> E ft EH H ft E- E- EH EH S ~ EH . ^

o» 3 8 d ^ 1 PH » ' ^* 53 0_i ' c« c* j* "* w ' 6 O f£j ; Schwartzernberglte.. 3 4-s 9PbO.3AS2Os.PbC] Pb(Cl,OH)i.4Pb6 Ecd'emite------.2PbC]O4PbO.As23 .PbCU.9PbO.3Va05 bCl37PbO.I«Qv3I> ^ 0 | Fe)O.TiOa(Mg, :TAtiB*itfhfth..... 6 m p i 4 6 o o a 5 ag £ 5 1 § Ii g ! d ~ ^ 0 .£ o |o sj | o S 0 S IN Sjf 1 XI j< S |1 1 £ 1 O* 02 CM O kH ^ * tt & W 00 S C 3* >

> *4 > i > IT > * CM X CO tt> C§ CM C? c Ps n c* S3 £ ec vi CM CN CM" CN CN CN CM' CN CM' : } o» es

CM >r i « j 3 > i > o oo ex > "5 -^ i : ? *H I-H O a» CM 1 8 c5 PA

CN ci oi o i Ci CN CM' c^ CNI ^ 94 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS Si ji |i £ tf pif |i s| |ji °£ £ « 8^ -gg S .§ &a ^a uPwS la if s * 1 P JM :? l» ^3 |S §2 ija & "SS, l-ir2 ~3 3 22-S marks ,a% "^ 112 3 £gft.£2 5 |§^2 «1§2 "S S Ml43 j:} " -I|£ lil"a. M«siboa> cj 5 l^i ? « , fl ||l || gf§ Il°f| lo " W_oS S.1^ "o .3 "^ -3 M 2 .. §*-S £?^- '"a-o 2^'§-S^> .3 S . .9^2* "S^itl-: i j5p. |&& I-B, |-Bl gal^-i |-a8 |S& §5^2 ,. i 15§ i

"S °3 CD O. - CO 00

oc 111 ,§ iSa ,31 coS 0^ 0^2 ? N ""^ ^^ ^ O 03 bo.5 1 n v n n a n n a n ii ii H 'ii n-2 ii nii'ii ii if- ii n"n' W WOfe W05 WO WO WO WOfl W WOf^ WOS WOfe 6:a ' a i '3 r^' >r 1 .2 gS 5 9 1 ' A 3 "3 - M « "o A i t/ t - »M Q C 4 [> O c/ ^ i| -a 2 g 1 ! 3 te CI ^ ^ te * t T g s J& (^ S 3. ^ 0 2 a', i I S OM *5a 1 t O PH P £ PH f= CQ PC « C

^- s J a | c <3 c O 1 f. ~C5 Pi -^ ^. ] w . -w i? w 5 | J 03 «t- «*- 0 § h O - SS. CO c ,§ ^ to . g! _ft 3 O I> O CC i 03 I EH £ a bo to co bi b 1 0 OS ct a aS . 4J IH b o t bio i 31 i M _b 1 CO "fc 4 t. +±*S K I ' §2 13 |s I o 11 S« J 5 |d Sg || p gS ss g § 2S |& IS |3 S£ 3^ Icl § P W PH CQ CQ-< B iJ U PH.

13 J -^H IO O> 9 J OJ CO OC o o uS ^ co -t^> 2 CM t-* 3 S rtl -9 CN CN' CN' c« CN >-. IN CN CN V 2.78Li 3. 01 LI .. do...... H=5 Sol. In acid. red. The FeaOa O=5.2 data given are for the artificial Infus. product. /, A 2. SSlLi 3.084L1 -.-..do....--..-... {10ll}dist-..----...... do...... H=2.5 Decpd. by HNOs. Tw. pi. < 1120^. SAgzS.SbiSa O=5.8 Composition pi. {0001 ^. Tw.pl. F=l 4 1014}. Streak purplish-red. In section red.

A 2. 94N a 3. 22Na .....do...... do...... H=5 Sol. in acid. Streak red. Abs. FeaOs G=5.2 &>>«. Infus. B Biaxial positive group CO [The minerals of this group are chiefly orthorhombic, monoclinic, or triclinic]

Hardness, Varia­ Mineral name and Axial angle Optical orienta­ System and specific feJ bility a 7 0 . composition and dispersion tion habit Cleavage Color gravity, and Remarks H fusibility H g B=.001 1.339 2V-430..- . X-6...... {OOUperf- White, red­ H-2.5 3NaF.AlF3 2E=59°. ZAc=-44°. Uio>, noi^ dish, brown­ G=3.0 UlO^lameUar. r<». good. ish. F=2 *1.411 1.420 1.413 2V = 76°... . X-6...... {OOiydist.. _ . White.. __ ... H-3 NaF.CaFj.AlFa. 2E = 120°. ZAc=69°. Q=2.98 Tw. pi. {100\. HjO r<» weak. Disp. strong. F=1.5 Greenland.

n 1.438 1.452 1.44 Orth. Woolly...... do...... G=2.00 l_l CaO.(Na,K)2O. F=easy 2Al»O8.12SiOj. 12HjO 1.439 1.469 1.441 2V-360.. . . Z-b ...... Mon. (?)...... H=2 NaaO.(NHOsO. 2E = 53°. YAc=30°. G= 1.574 {OlOjshows two seta PaOj.QHjO r>o rather Disp. strong. F=l of poly. tw. lamellae strong. at about 90°.

1.447 1.459 1.448 Taylorite ...... 2V-360...... do...... H=2 Sol. in HjO. 5KjO.(NHOjO. 2E=53°. F=1.5(?) 6S03 r>o rather stroug. CO 96 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

S "S .» >?« .9 S S^ n ^S I- 1 m^ 03 « 0303"3 O^ 2 a) »S X2 . w ^ 03 o 1 tn i !11 1 Illi 1 1 c '^ -d ""Sg.a "? §, 3° So -2^ M "o'S . a a) "". .5 ~a S S PL±? So r^ 1 !* l on 1 i 1 1* MW l n I

icS*!? ' «= o^ * 4- ^ (N'eq -H I-H « IN r-i J3

[ ' Xl" "« G G [ ; § ^ got; 5 1 i r^ ,2 o '55 ^ o 1 J5 1 « a "3 so t; v 'o i £ - . ci'3 s , a c i o oT ^ a aT.^ ^ aT O S "C 'O -So ^ o ~*~ "i~s ^ s~^ "^ t3^g "31 "° a i S3 a) "3 a) ;? S ° 5 o 0 ! £ ^ ^ ^ & O i ; txc ! u 03 M J I o 03 0? "S fe .2 01 1 0, S Q. Q "O S 3 I' O C G I 11

4 I ^^ xi S M XJ °3 03 * a XJQ 03 44 X! gS I X O 03 n d c 03 C C J3 X! ^ P|£ d 25 Hi7l x o ,o K o c 73 oj t o5.pt, oS.fr tJ« M t CO ^ 2 § § 0^ 0 S S oo S Jx 03 c/ I i C ! . i - "Sr 2 I ] "5 ! ',%, :« S It b 1 °.g " P 1" « C 1-.-°' * i o ' o 'H * ' g" < => if c I J< J< &g « if t K ° flM II N UN n K || M UN ^"3 II O >H M N >* X N N M P^ V P j \ \ 5-2 ! t; ' * ' p| O Q ;°J o ' bjo ' CD ' ' Tt1 S * M ~.t 00 ~^ n ^ H ' ^" H ' ^ !! ^ *^ 'x_ « 5i C ; II Si o> II 7 ^ HA a liw 1 WA y J[ WV £f , II W S * WA J 0) t. q ^ ^ £ * N " - S^ (N t. 3 K|.N 0) K, (N t. g N CM (N H-5 CN ^ IM

^ ; i 0 ! « io ,5 Mineralnamean 6 W 1^ iW 3 composition CQ o '^ O ' ^° O S N i|^ I c d 0 T - jfl Jl a| 5- | a Mo | ri ^S -fto oO .2 o'S ° o |S | O ^ r^03 3,S 3«co C c S 2 « °- 3

OOt <3> COOO« 00^*- -

8 !!?? !§§? ? §

03 CD >£ TABLES FOE DETERMINATION OF MINERALS 97

0332 Q

. ? P-; Q.I g w &||S &| a-a a .g S * 8-2 I3i 1^ a O N)

"..- o 1 S "?' Irt S fir II f 73 II II II WOfe WOfe WOfa N WM wofc -i - S0^, S c a >> ^ . 4. d ,&, m.~ "S a 2 W ' *^H 4- fl"^ ' a C a. c c a ^ § i o o c c oo£ - ° * g 8 §5 £ 2 ^ ^ fe 1 o' ' J£ p: P & o" i o ^- *- ! 0 *- S "§ S F y S tit: Sj-a S, J. J _ jS o Sa ^H"O o" ^H" I-H oE o to S o c O O ~4 O C

" s : <- <. i ? CUD rri | i- a> H § « « ! £ a. ~ !5 «,« W -"-!:? ' ~'il i " 2* a J3§-2 ' ei o p XJ C 2 ^ "^ ^> o -"J^lH ° c c ^fl c (j^ « Q § O S S ^ ^ 1 £ S O P5 ^ i 1 , 0 o-H !? u 1 |j i 33 > b i 1 || o ' * a? C ii e I II -0** -0 0 ^ ^. 2 "3 e if *N * * N II X II M < i N II II N >H >. >H |H N M N H is o i o t {3 0 to ^ c C i! t. c C c 00 K> 1C t c II o a II A II II S s3 | f .*- ^ CM u o IM CS > i-5 ^ W IN ^ | io . .4 O ! ribd 'M 0 0 0 0 M 5.-, w AhOs.4SO3. O.CaO.2AlNa2 <;o to NaO.AlO.3Si23 Os.9SiOAl.5I2 S»^ i " Misenite__..-- (Zn,Fe,Mn)0. . . CM tS ro ' (Ca,Na,K2)O.2 Melantente.__ FeO.SOO.7H32 ------CuO.SOs.7HO2 KO.2S0.HO23 Fauiasite___. O10SiO.20H2 XW O Ashtonite...... Dietrichite .. 2 a 5 O22H2 O ^ 'S^-O a §«2 «s H .^ig^. |^ X 22 O «^ .*" O2H2 "'x 'S'o5^ tia PH-' I N Z

OC> W"II o

CD CD CD CD CD 98 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS ts §

ii ii 1-2 || 3tS O

a o U

s - S Si 11 o r t

! II

II N UN >H 8s J«

I Si V" I WA

!O, Jo S-S8.2 5|Wr o3 '55 o M .2 a a H sa § i '3d^GQ lil- §8 3^ Is* IP 1^ § o

c: CD TABLES FOR DETERMINATION OF MINERALS 99

Habuhlswaldarees­ a HCI.byTw.pi. acid.Mimeticby Zeolitegroupnear Decpd..by Qelat.Zeolitegroup. forms.Vesuvius. IsleFromFlan­of II 6 Decpd.Zeolitegroup. HCI.Opt.pi.some fooi^pi.andTw. 4Oil}-simu­penet. latingorth.tetrag.or ders,Annerode,and m .£? ZeoliteDecpd.group. |||j W ra . U10}.Hex.tw. sentiallythesame. O ou.{ aO FeO0.3cent.per }cruciform.001{ times//{010K 3 X) |W. gc>l '3 2'3 H-^t a CO fea J d a'o !l .9 a ~ co *o *3 S CQ N w fi ID

8 " >O U5 00 * t*- ^> i2- CM ?* 2. «300 . Hi 2 V71" * IN CO co Ill" ii n ^ 177 77? II II CM- II 77| II II 777 77 ? WOfc WO ft wS WO WOfe WOfc WOfc a t 1 s? » a Cl 9 g & e | a c *f 4. c T "^C 1 1 1 1 "c "c CuO 3 ^ 0 Q; O 3 ^ ^ *d ^- . ! IM a J ' d o.2 5 .a 1CO O 8 1 ^-1 « 1 k a iS -0 I o tH 03 C o oj8 to S g ki O o > S S *r | S o * _-^ I XJ Q £ M V) n a 0 ° §0". P o oil i (9 X> .2 t!® ^ X ^J a ! fn S O s «.o~ fi j ^^ 0 . M , t Q .X) r"*!~$ a xj a o s"^0°. § § 5 o° g ; X) § o ^ S S 0 S ^ s s Id' | ! 1 0 - j . i ; I-H [ J . S |o ! 0 IrS i '2 l ! i Jro :?= i? i II 1 it n . , t 7 u . a ; l!> ! o o j* J^

6X1 I d "'S i0 ' § i jo. ! n o'l ~l~r-l d> 1 >o a O i-* o 10 0 II 5 * n o to II C a> 2 3 u co H a s7 ^ Is II 9 ll » S ii » >ca. oo n wy n g II WA II W V 1 S " gA II W A c II W II A > > N " sCO &*" £ CM £N " % CN H) g (N ' " i ! « ; :o o 'O '0 iw O.3Al2BaO.K(2 O.2MgO.(NH4)2 3(Ca,Na,K)O.2 .18SiO2AlO23. Os.6SiOCaO.-Al2 BaO.KO.2Al02 10. 3Mg0.2SiO.2H:2 NasO.2Ca0.5B2 ...... NaO.2CaO.3Al2 i^<2 2CaO.UO2.4COs 26SiO2.20HO2 Dachiardite .. . ,;OCQ -

5 8

» «?

CD CD 100 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

i'S ^-jj-j -^3£ -d q ^ 'S °* *^ S ^*.2 T3 . .

to d "f * q-S ^ §"S 1 fi § ^2A M t-i T 1 ° oj3 ""*^'TJ '-'"o'S cico PM ^ a ' '^1 |J3 S.^H^KjCUr? A 0 CD td O "° "" w" * ^"O H M bo's .S 1^ M TS '3 S 4J Co'3. (§55 § SX-S.S "gxi fe^-2 02-OfiO WM!? N M -. "O «S «7B O t*> »O CN »O "° § - § 77^ "'li'ii' '"""' a S "^7 '""""ii' "ii"iii7 """ii 77f WOPH WOPn WOS tn WCSPH MOP=H MOfn BOft WOfe

', "^ ' " i Sa £ g c/ U "o I c/ ; T: « -0 & O 'Z J*1 e o o .tJ a c p,2 "cc "eC T3 ^3 _X.ti T3 QJ-J C ! o ^ 5 £& o c C i O ? O 0 1. C i § ,o "g j CD | to 1*. a t- t> ^^ a 2 Is a | .^. ^ -^i 0 I-3 o^^ oP o^-*-

V XiS ""a S?°" ' u' ^ ** o . . P- cS'^'g.gg ' . B O 03 *0 a, 03 ^ - CD C3 x | III w -§ i 5 w w . In 1^ c *- o SSflga1 * O cJ ri x: c fct. CQ § £ C ^ O II 1 o M N t^ ^ X N N N N3 a ! ! ! JD.O bo S'3 o * ! ! ' 1 ^ ±« frn * ' * ' 'cfl S CD H CD IN 0 1C O * A i-l 0 CO fH CO o> .S3 C£ II CO II 00 ^ . ic II a q; 3-0 II WA "g | Ig II W || A b II g A J 1 "! 0" CM w CM IN CN >> CM K

73 : ri i. io o 9« 6 » !<5 IO 1-5 M «§ o oo S 9, 10 ;S ®^o " Mineralnan composit: 1 td ^ w a «? a ' " S .-§0 js i^ §|^ .-§41 ^s 'Sn Tn "'" " £24? '3_:trt Sx oO"* ' -SpD ~M o 1-* O V^ bo cc c/) -^ O Sww oOfflS <-) TScaW S?"3W sp.5? jsj3 tuo iSa £ m "31 N 73^*0 OT 03CN^3 .^ S r~) & P /! ^ ^ 5. PQ t> H . r*»ooooo3 ooo CN CM

- CN * CD t^- i 1 CN CM

* 3! rH CO TJ. * CN 0 00 S i 8 § s ii s s ' s -< i-i 0 r-J rt r4 6 -i « 8 II II * PQ PQ

'§S03 t>> C D 0 >s TABLES FOR DETERMINATION OF MINERALS 101

- ^ * * ~ 9 « ? ^m hrt T3 !* O nri Jri ri2 O . tnfllr^ n TI *S W flSw« n C w x ® S . . 52 o cd - ||S ll* ^ f!l * « *! -Sf|f .=| -°||?| 3. gS^ -3N.S ~ "5-Sa -3 Jg -38 -3»>^ sS 3 -3 » »<*>-9 CQ N W ajcoo3<2 COM CQ aj CG Ps ^ *5 ? « > o «*«« 05 . -< "51 WO® CO?JCO - I "^CO.^^ »O"* "^CCu^ S .S M0 «S «jii >j_^^ ^cs'c^'^cscs roc^i * cs 2 *- N . C^CN*. Ic^cq ^ i i,-j O03O N^ " " S a? M 03 S3 o " «3 1^1 a c a| 1 3 . «z 1o ^ o ,-± g o S s ££° 0 f3 . * "3 ~ c "Q f u i? ? O ? C & 0 i o >J o 1 1 ! ^8 i a ' ^ a s = 1 | 1 nl| | 1 -»-o -^ -* W ^ oo « c *-c 2 11 ^ ^H -v- O ^ I ^^ o o S c I 1^ I I ' u fi | « i u g il § s X V &3 1 !2 IfllS ^ -^ 'u .0 M iJ . ^ PH s P. C a *c ^ 8 dfjl df .c x C 4. *§ 38' c c ^ hi *"-^ !«-»- V- ^> t, 0 . o o o ^ S S o c S 0

o bb ' o" tub 1 C ' ^? P 1 o I ei 5; °\_ll ' T-* > a O^ *O t* i p-, U Cv ~T~ i 1.2 II M ^ ' II to II h(l 1 i M « -o « « >i > N N > N

03 . <>' § . ' . C3 5 o- i .f O I o O 10' 2 °_, *g Q rH 1 CO 03 N ® OS i "O QJ ^'1 ^ 0 1 E oo£ o CO o ' S ** 1^ I. . U- c i^ II o r- c Vli"a §7e S 7 a sfo s?» g "il ol P= II »' S II a II W A II II WV II W A II W V II W V II W A II WA " W A II W A >« - > a M fc. >. IN N ^

g 0 JO O ' "i q |6 M A W |W W ! IO o O F- ,o " '^ !w 0 1C I n ^° dw .^ ^1 \ tS O .rJO |c,O CD ca *; S w C5 '^ x*^ft O y^ '^ CL r?W CL 3J? r? * O "*"* G>U/*\ * * (-N -^ I--3 !§<§ 1^ §! 1^ ^5§ ^6 Is its ISi §s§ MLS o!z; o«-*o» ^g §3 sS "sG-00 S 13 » fe sr? -e^^ fcfc'" ."W ja--' S^ .os'N "SIN oro COTO >>O ,| & «o gjz; 58 W P-( CO

N ra n oo oo o 49 e5 I rt i-l HrtNc^ (NCS S5 ^ S »OiO»O WJU^tOiO >O»O iO »O »O 102 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

1 C £ *1 .9 ||| _ ||t| i jo 1 g o |3 3% . >> SO go' ^ feflj 3 3 * 'S o . So. § .^^. .^H,°- a, -^~S .a 03^_ffl 9 2 1 1| "c ll §1 !§§§ l|b| I w &"". n S W 2 .PTS a^ ;g ofS .a ^1 ^ ?T ^ te te *^ "~* n ^ o p0 i "Q. ~I «*H 'p ^ ^M§a «»! p^ ^< O Q N ra fi CQ 03 fi K ca ' . 13 § «3 ~a K.2 «»s -,sS' *O © -i-3 .0 10 w M w . C1^ "55 ii ii ii u n u II ll ll II II 1 n ii ii W 2«~ WOli be o! WOfe WOfe "O p ^ £ "* ofe O o M 2-2 > O 4- 2 c "0,° .3 a a a o g HJ 2 S2 ic 3 "3 M 3 fl 1 & O CQ O ^ 0 ^ Q J i 1 05 I c 1 "o S3 .. J i !> f ^ biQ 8 a §, & s o" 8 o Ii lg | a> § .8 1 s I u \enonopaque Felted.Orth.? Trie.(?).Fi­ brouscrusts. andSystem ° !s Columnar. *£ Continued habit .^^03 "i P . 2^o 4- o " O dilll o """ O 3 "303 8 C g <2 ! o' 0 6 .2'§ P ! o isi g £ 0 -ll^K. .j§ ! II 0 £ o r-? « II jt s 3$ -S ci 7 OJ B II Q ^ 03 *!> o ^T t <^ "^ / C3 'tio Q Oa 43g P 1 N °H O t«i P o IfN II £H ii ^5* x: 03 D. N >H tsj N r* *2 0 X 3 o H 1 i K *9 H p^ ! *» ! s ^ 3 '3 § M i O -Si ^ Cfl "32 a g a i°o a c3 i a o Sn t-t CO I co 1"1 8 ^ « "M |°f J 53? $ | fVI A ra »5 »fl A II Cfl tlH 3 CuO n r-rl A ^ > N ^ 1" c^ Nfl « ^ N " s. S3 03 § 3 "e.e KaO.4Mg0.11BjO3. Copiapite____... Spadaite. ..._..... CaO.MgO.PzOs, CuO.2AlaOs.SOs. Hydromagnesite__ Mineralandname .....__ SAlaOs.lOSiOa. Chalcoalumite..__ Kaliborite...... 4MgO.3COa.4HaO Paternoite...... MgO.5BjO.5HO83 ? composition NajO.4CaO. MgO.SiOj.2HaO RO.2Fea03. 6S0.22±HO32 rji 12HaO HaO 9HOZ ISHaO PQ | 5 w c5 8 8 s ^ S S "O IT IO IO * - ^ ~ -' -

o "O s 00 03 35 "O s s ? ! i-H

to § £ § 1 "O-<" i | Q ~ -i 1 « -^ >-* rH PQ

ll C : 3 > TABLES FOR DETERMINATION OF MINERALS 103

. 03 l up. ne.

. Feldsp Poly most Othe mon SI a .§;§ a for 1 k/l O *

IO o -rS «s r^X cv^ uj'Oeo co Jj S X S «sS irii1 T77 777 | t^t "7 H 77T u nl? 777 ,H BOP^ BOfe BOi*( B05 BfcO BOPn i ; '; _0 o £« ; o m w ^i pj 1>l . (j .0 4 o o£ O 4 C C £ g s § ^ P :S 73 T: 1 "3 73 3 "e ! § 1"3 1 CO a 3 3| O & PH ^ ^ O. ^73 O) 'o 73 t s""c h« J r j fl ^ 1 »»- . & O ss -rH O -v-O "" «-! "co v o o »j . «J © O 8 .2 o S-S5 f- 3CJw s CD

i '3 u aS eg % «2, | _ 03 a !*'is 1 tf '3 "C X ; <5 P- 3 "s !!K.l .cT e .c _o §1 5 f. c S"" o's| §Il 5'sll 1o"" £ s o c ^ 0 2 6 . !o° I | 1 £S K_« :g 1 ° |7 1 ^'-rt bO il o -cj i " ! §« o ^J S O i « id § io I U ^ 1] u O bO ^.O-y-^H o ^ jll e Jl « <.a -g o ^ ^o < || N , « o^o""" UN Nfl i: u M 1 UN II *Q § 1 M N X > Nl ^ M MN N

; 1 g 1 o j ' -^4 t«0 0 -g il' M !o' a o" o -T3 ! 'O * C3 io"§ ti nio o : S| ojto *" o So 0 la 0 s7* ll 5 II 0 ^ O a 7s ml °s O 0-B "gv II Wn 0* II cs " sv 7 WA 7wy II A >«« > (A t. 1- IN (N IN (M cs 1 « i - ; i ^ to ! . ! io ! lo io I o IS s i Vt .^ ! ;O 3 i -O \& 0 jS >» CO CaO.MgO.3] MgO.AhOs. RO.2FeaOa.6i io £° "ydroboracite 3AljO3.2POj2 13(HO,H]3 ordonite._. o 1 C« ~ Jo PsO.9HO52 O tjW ravellite__. opiapite__. | « '^o '£ OQ '£« 6HO2 22HO4 I«S I 6 .20 c if 2s S'p caB || il I 8 1 llM g j=fe 5? < w B £ O O N 104 MICROSCOPIC DETERMINATION OF NONOPAQTJE MINERALS

*> fci JS«S". ^ gg'tt J-s ^£ ' i2 5 e s |S*8S -dg.; Jf^1 ^ ^ ^5 i - ^ B'^'O 6'',* ft PS E &. fa _; fl-^ S >

.M S -aSs ^^l^o t«A -a-3^ d®^ 0 I lu 8J 2 ill ^|| fiSP d 1 a| §«ol| 3 E -2 ^-g te^j^^^ ®d,A ^S^S &M PMasd 13 a> 0 - « 13 -s sJ B3^-i -^-N wl|N a 1°| 1'0 ~ -o5| Jltf IP -a M">- llsfj *JCQ 3 gai£ snt^'ON g§<) -3X^0° I<1-§es8 g iw 02 M PH CQ CQ PH PL . "O ^"§^ ~H CO IO to W5 QJ(J3 «^H O IO I »1 1 t-- O > 5 '3 ^^ IM >Oul5 IO «3(Mio 3 «"P II II II II II || -g II II || II II || II II || 1 HOP'S WOPt CQ WOfH WOpH WOfa CjS 00 ! . _L a" T3 .j ! '"£ ! I* £® ! Ul 1 "^ 2 "3 ' "oo i co b! ""* ^ l> a> d > O O i ' 0> J . Js i i vfs s So t-'n ti D. ] ; h M -5: <» « « 3 i i ® S o 1o gp> ft_g. ft-B_ i | p,.S_ g K cS V) . o^raoOJj: +A o° -^ ^~ o a CQ 5-rJ" 5-*- -'EO U ^^- n fc, «^ 9i § § t« 0 S H 0 ~" « OS ' tl. ' 4^> IM 1 S bi« w I ^ < ^ § a ^ I "Sg<0 tii . i °s || "J i KO*>K°« s « »*> ' n« S"0 ^^ i o"^r» « |3 « iR-o 9 o , .0 S-^-S^r Q e! 'ffis -2?:^ «'H N i -3 0 V. '* 1-i 00 E ."** < oo co II o to II . ,4-> -j a to II a -u oo -S B a 1^ || || HA IIWV W ^3 IIWA" II 1 V | J- ^1 jj,. K,.(Ni.K,.(Nk. a^ >> >s *- E «£, CJ CN M CQ K M S CQ e a a o io ;§o iS ^ 3 o 1 08 a CO «s B19 .'oii i«°ife«a .'c?i S" O wo» HR'§ -3 « M * o s» ; tj :^ oo Silicateof homboelas n ft .4SOFeO23 H O cj t, p a*- l^o ii§ 3d 2&% §s v S J a> o Fe CQ a S < i§ |iS !« i| 13* |3 I ~f_i aS 1^ gw si § « 0< 2 rng w w > . o o < o «

*O CO t-* O O CO -^ "O Tt» -^ Tf 1O IO IO IO ira IQ *O iO IO >O ^O IO «o

oa. ri r-l r-t i 1 r-t i-t >-l ^

rt ^-i -^ r CM t>- IO tO io O *O O5 "^ iO *O iO iO u? ^O 2 f-

Os iC r-t CO O O -H i i i i i 5 T-H ^-5 C: ^ a II B .2 >l C ."t^ «S 0 < 0 >.o TABLES FOR DETERMINATION OF MINERALS 105

6 "3." "3*3 "o "3.T3 § I>.JH 0, 0. I O 03 3 r^ <" §1 ^ £?<3 par nioC ss g j> 2S<> « 43 "§1 «^T _;|S !« 2^ o~*"" IB! ! bo 4><1 w CQ PM

i to t>» m o 10 o ^ "^ "^ ^ o »-< 3 co o^ co c^' IN IN COCO ININ 11 II II II II II II II II II II ' II II WO WO wo WO WO WOS 1 ; P J | | a i8 J |.2 £ \ 1 &i -*Ja? o»-" a^ 1 ' s 1 ^ O * p i £ >» a "S *3 * i o r-4 X a 5 ,2 C o >H £ i ; ; "ri-"- fe 4 _a fto " ! | _ o" , *r? ^ >s^" . « - i a 1 o te ° te 0) ^^ C ±.si -& S_v_ 1§ e2 . 5S 1 I 1 tf ; ; £ bi i c.

a °> § ^ N O M O O ^ ^ 9* M N I a a !' :' ; | bi , . 1 ' bi) ^ a cS ' 'T) ' 43 ' a!^ ; : a

^ S cS'w a .= Si II a "a a J : " A"I &?iII W A "gI 5 ii y ^ >> A b y i CS V. fe t. c >- >" *- w ; 03 1- IN A £ > H5

I o O i jo 0 : so w iw i W ! O O^ 2FeO.3(Fe,A 10SO3.35H2 Metavariscite. odd 9 * '® 0 « <5 i .1 ~5* ±30 !S 9 1 * la | 33 » SQ 1°^ o 2 O ai^o ^"*!o "t o 2-3 > ) 03 C o 1 U sfe *"fe " < *il 1 Cj 3 pc^ ^ ***1 n > PH H w S s s

0 106 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS 11*11 . *pg. i J2 3 IjgT-sS it'll <5 la . i^*"1 *5 '3 "*O'Crrt ^lS W4 *E3 « S . n " ^""3 S W S) W oj 'aflo2-*-> 2ia cfl'SHiS**4 §"'3 "^ '^ ft PH W O w ft ra M

»3o * ^ « -H CD cfl ^* «^ O CN 96 IO ^* N o §'§ > flS cOcNjS cV>3 t-ei cocoS2 cocNjScoco i-Jc* . ""I w"^ PI MS * -'2 II II | II II II II II II § II II 2 II || II II § WOhH W fe WO WOrH WOrH WO W O rM WOh , t t > i i J3 [ _o "30 a "30" ' ^1-a ! "C t>>& S !*> js ! wfcttaw CDS "3 0 | 2 MO S j O CD . rn qj1 ® PI i CD C "3o .tn'd o ^ JH J3 6s & U « "C "3g °feV ff a OrH rl o O P D P « P O U ; J ' S ^ a> W _p. i . s ' o _"S"§ o" c > f-H *~ isa -Sca O H .2 S A JD 10 «j '3-r! o 3 S 8 ft ! 1 I ! O

fc ,Q M-"- u t. fl «rH a < a 0 -C 05 -w j EH .MS 3 6 82 «ri C j CD ca . (X i _o jag n'^5 x q a I 0 £ o CO l-l M""" 1*4 -^r^ i. hH "~ £ o o So f>i ^ l«si a < lot* '11 § 1?-o ft S S 2 ^ II o II -o <; o -<5 p, NJ II N UN 0 0 0 X M M M a x-i Ul ; j M O 5-2 CD i 1 0 .! O 'C -w jj ' 0 fl CD 3.3 c fe g-33 o! o, o In "* °- S3 I II II .2 a ^1 7w 1 w 7 |v |v' |AV 1 H 73 b ' ®£ K.N K, « > N ® « c3 Z % CM J= CQ Cv S r^ e '<£ d fe i d O o i^ OJO s M .^ Waenerite__... Mineralnamea composition 3MgO.7CaO. C>3.7SiOa3Al2 9HjO.Som< . ! *& SMgO.PjOs.M 2^ i^ S. °, Pg - H a COY,Be,3 0 fl * TClnirHta SJfil 13 1 M! 'I? '§ M g ££ ? csco pS fQJS? * 1=1 OV_) C °<] 5 '£ 3 CD :2

^ 5 3 S S 5 S 5 S

OS 0 00 CD-M>OI005

8 S 2 rH'" 2222"

0 CD > II TABELS OE DETERMINATION OF MINERALS 107

-^ Og. 3^> 0 O Jjco 32^ 'i |ss§ S fljco Ifsll* %*** !-* < llf-sll ISO Cj »*-! M +^> ° t*CQ w is P.7 FA1O12.17,23 MgO34.6,Hj insol.icFearly rol.inether.. ss«-g ft! SiOontains: -oW^««50 t,' gj hloriteigroup. acid.»1.in o . d .H^ « 8li^ cent.per w \mi. ^ll8 r.lr.i Ats. »O O'O . a sjlijil CD T) bit< S PH 8 &3 8 33 3xi > S3 tmSai'g O OQ O CO ft Z< CO N o O PH

e~ ^ CO o .g rt g § CO ^ 41 § M cooi F" IN c!l COIN coesco CM' 0 O

k ^6 ^r "O . S p p Q> tn h-i +j o o o « t ^ t "0 §> t i .s 0~3" p cTo" 0 e c 1 _| J55 ±r s" J. c o"o ^ M rH O ^~"""~ o§ -y- 2 ^-v- O 8 8 -V EM 1

S3 a? 1 _* 05 &£ £ CD 1 II EH e8» & * 0 0 i ^^i GQ ^ EH S i .0^ PI 0 -*L 8 1 '"I 10 C ^3 fl p,] > t- §8 g C P OQQ ] %'"" W O s ^ § s S i o-H j-H ! !« S2 ! ai |co -H ; I 7--|- J bo if- 0 ox 1 II II ^"S u |7 a TT £ e x * ^ g II i I' i* -'<^ fl~~" a T: II N a r N <>H UN o N II X C ii td X N H N ^ O N N N

i ! M ; 1 0^ |o' 'o * o' ! o o o' (po >H co '13 80* o oo o 4 0 S cJSft ». H & '" ?o °c f ii s ii r S ii TC to 'I on o & " N II w 1 WV JV 11 W II II II T W II W/\ J> N IN ». 11 t. >> IN K^CS > [> N IN cs o IN CS OJ cs IN

ra 0 i^ !<5 !O : « 6 io 5(Mg,Fe)O.Al(2 5MgO.(Al,Cr)2 Leuchtenbergite.. (Li,Na)O.3Al(2 5MgO.(AlCr)2( SMgO.SAhOs. 3MgO.AsOs.8B2 12MgO.3AhO3. 02Al.POj.3H23 Cookeite---..... Fe2Os.3SOs.8H2 7SiOO.10H2 3SiOj.4HO2 Hoernesite___. 3SiO.4H2O2 4SiO2.6HO2 O3SiO.4H2 5SiO».8HO2 S 5 Kornelite___.. 4- CaO.SOs Penninite Augelite____ Fichtfllitfl 1 c CigH32 1 p> 1 c X: _c e fe < C K

<> 0 163287-34 8 i * « o CD .... «o £b -1- 3 O, 5"?. 'S« a "H <3 S a "° ^ Sa> "° ? 3 3 MO .11 2»_ <)o 1-1 * « OT ** Remarks o§ a a c-. a fci CD .O CD ° S£ si, Ii 1|1.O. 9 -s_ ffl ifa> tS |iCD "O utiCD '-1 -< IS"^ R "3d"| T5|| "O SnS j«" §a § CO cScn ""-tS t>- O ^ CO ^^CO*^ 00 1 . *-" *- OO *O 00 ^* r« "^ SO . "H **" CO co

rH 4-» A ." a>CO > "3o o . ® CD * a a> -2 i c _c: ' O O ( sl n i- r- £ 0 -3 ft -3 °l 1 ' " ! & O O o c C < i i "S i a> 1 ' ' 0 "~ o <*. r .2 "S "Sil oO a>Ii OS CD J. 5; .is" -So' I = u> a O ^ o" oo oo O rH rH -v- 1 s" O O O 8 1 O r-1

o 0 «- bi a 5 ® g« ^ -Oj j . g ' _o 03^ 5 1 t S I CO as §1 ^Ij I 0) 03 CO . -*J S^ c a 9 -diSS J1 ^' S a* c Is 1 cfl O fi C 5 ^ r v t-i ry o" CO § w 6 o 0 P- CQ S r?

C3 1 io-H i o' 1 i ° 0 i ii i o *J II " o a 75 3 ' < ! ^ f Ii S w a) II « £3 < n N l" ES9 | a, II ^ II M II ^ ?M r J O N N N ES3 N ^1 N X N 1 \ o' i a) oa So'S CO !CO

'<»' "3 o CO 01 § o 'CN 8 o I o "To o £ CM M CO O .- __, '><^T-1 rH II "J 10 a o II o II S II ot 'a || P^ ^ | W II W || t £' 1 W 1 a J> ^ ® [> ^ J> 0 9 t> N s>^ t> E CM r* CN r^ CN CN CN CN ^ co

Anthophyllite.-.-. O i i°M O ------o ! ,O .-._...... Ca0.2Al0O.P235. Mineralandname 7MgO.8Si0O.H2 3AlO.7SiO23. n (Ni,Mg)O.Si02. composition JO 0, 1^ ^ c 12(Mg,Fe)O. 0 a Garnierite_.. 10HO2 O6H2 O«H2 3 1 gCOrH |grH g

rH CO >O op oo oo oo oo op oo c: S 1O U5 g

00 « O rH 10 1 OJ * O5 O5 t OS OS O IO kO O ^

a rH f-i iH !§!?!; 7

ca ;>, ss <> > o o < c: >s TABLES FOR DETERMINATION OF MINERALS 109

001}-and tw. ove W SO4.byHBa­2 ctiondivides sixsegments pi.heopt.par­ theedge.hex.

5sOJ-v- a! 1143°oagus iW Q]bfl § *ft!i- ht o , . how ery ."^"U>H CP Alterat Gela Si'0 ra 20 58 into wit allel s*t» bo-****» rs

COIN co -iw 2 UN 2 H H II II Ill- ii 2 11 li WOfe WO 5 WOfc 1 ^ 1 T3 ® S -9 ! &J3 , CB n <0 '" ' [ 0.2 ; v M 2 t- 3' ; ! ^ «-^ ^ U3 CO t>> ^ $ ! -^ ® o *n -^ t> c o5 s _ . ' a 1- i «! sg 1 «§ 5 -g 3 c I 3-2 -Q ^0 f W 3 03&f -Q £ E ^ JM OPn |# JM fL, j? O

.23 IN" ! 1 ^ \ O. -«io d iM i . , C" o ^O ijj i ^ i "2 S§> u. O sjp -v-s>>?-i . s-^-'i- fes. !s fe '"* 's ~^-\r^ p t Q4^H *O CX 3 -"- w o'-S ftO rH 03 i ' **3 g^i.S 33. o § 22 .w 5. 2- ^ ' S- 2. o 5. 3.

I 3 J K ' fe -^ --1 * o'S CP t TO >-4 . O Q> '"^ OJ .2 W I a. ^s S« ta a ; a £ ' O3T3 J^S -v- " . j^-£ 1 03 . i ft Ol3. Is _-^ "5 S Q ci -2» A d^ B d2 ca C a2 ° is jjii si 0 'CH OJj O O*^ ®O "~f 3W * ^ *Qi "*" ^ ' o S §S§E^ goS

i 3°'2 iI' ijs'*-£4 i\ __^_ ii go 1 i' H lo' ^=-§ oo i CO g .. g*' 1 cj~^" 'So 1^°° ! 2 -5 ^ | ^* i ii % 2 1 © ill i ii 9 i «o®o*. tj -Q ^-M ill, '"2. I H^S^P. u :S> o If »^ <.< «<.2 0- g ^ *>x | gg ,Mf< f£pJfgf0l~" II SI «H «N UNO ll oW!* O H w-o <1 X >H N M CS3 N

! °'S*i i^' ;8 ^*~*' 8£ w 2^o o £ 'alli o-^ o iila ^ o !°2i-i jo Soi^S 1H 0rH°s °T!OIN On o . QO CO H O Is- R 00 C> fells, S Us, Silo ^ ^=>is » Sii 2 ll II WA II A ll WV ii WA II WA S &V ^ iw ii w *> N t* 0^ frl N M IN N(N<2I»> >>ININ

usterite.-__ -.. 3CaO.CaF2.2SiOj. iambergite---.--... onteiniteulf__... CaSiO(OH,F)42 4BeO.BO.H23 \L i if i* i" II I0 L 3§ i3 iS i? i|S :S§ 2§ ^i OH2 1cfl ^ co 1S> ri fi"*r 'i 1Si-w 1!o3^" IcS^t'3 iis^ 03 iifli^ 1-1 "SS "IS Sw S2 5« SCN -g^ |^ 0 PQ m 0 OOwi? <)O^

CO CO

<> 110 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

Q > *. Showslamellar twinning.Deliques­ hloritegroup. andY=nearlycolor­ < effervesces,leavinga Decpd.hotbyconct. H SO<.Pleoc.:X2 less,Z=greenishor 1 yQ Sol.inHzO.cent. gelatinousresidue. 1 ( Remarks jj _T*2 f X p^w 9 ^ = |^g|>o.5 -g ol.inacid. £ I brownish. 0 U *( 0 3«'3< t-ii >'§ >> 'i 1It «^ t,, 03," ll £ « q V5 Pn 4 I 4 < 03 <1 GQ " £ 5 W O

%o °« CN .0 Is £J3 000.0 ir|S CO to JjS Cj Jsf: 05 S T3 Sj +3 fQ ""* CN CN *r'" CS C*^ f_< ^ 'w II II II i II II II II II IN II 1 ii u u ii ^E2 WOPH H10 WO m c3 wo wOfc j co aj j j J co O ; I 1* "30 0 * " S3 i ^ 0 S «"S 1 c 0 O o ^o 0 "3 0 M "3 !E "3 J O o O & Q O

0> 3 a> .£? 1 j p>CO IS 1. g j u 2 ^ c'( , 3. ! 1 o 8 o o c o 1 Flat­on. £ ^. tened//{OOl}. ystemand t. habit C oE /^ | s ^.a "3 -XJ \» I f: q CO « o°a w i o 6 s P^ s J i o' "* i . J01 a "5j 'i £ CD ! IO5 '§§ ^| ! , « ^ ;7 \§ «. I'"8 j * '< c °ll | 8 UN ll TtsQ ii M II N e O X N M N ^ N

a i [ 10' a fe a -f| cC c. j|| il *^~ |a 0 r-l 11 S ll «> S3 S S II o SB w o II W A II WA "1 "*< a a ii y cc w. C4 CN ^ CM IN CM * 3 JO o !O io !O jo C6 , i W i^r? IS !O [ ^J NaO.AlO3.2 |CO ICN Mineralnani< compositic 2CaO.AsOs.2 Vivianite..... 3FeO.POs.82 id ._.. Prochlorite-. Haidingerite Fremontite_ 1 03 4CaO.3SiO2. 2FeO.2MgO2SiO .2H2<2 Jo !a HO2 IdO a O °sw 1 g^; PI O PH W

IN 8 o"O § CO CO « 3 r- 1 5 !

CO CO , CO o T-t CN - CO CD s S CO CO CO

"O S g o 1 >O *O COg §»o CO§ 8 t-H l-H

*."S < > <> Ill

S *»* r *.-» O to Q? /^LJ" O (**N N +2 ,^ 43 O t>» rN ® » «

3^l^sl US 31a«a> 5O^&Nlif spnoSIlll ia§

>» CD . »H Oi OS*-* 4 S >o J3 CN fQ « N ^S CO CJ OCO o co w fi a ? " 1 1 II -3 II II II II II II II II II II 5 mOfa H fn wOfa MO MO ^ 0 6: ,OT ti o 3 'a » '« *. § a o ? S- -. aj £ - £ 0 2 SI 1 | S "3 O SS O OOP ? fe ;' ti « o ca i ^ w . c .2 I" t | -S "" <« S O CB22. CO S_ -^S 2C 5;° 5 ^ ^T o'o o SJ III 2 O O *H ~*~ ^~ | g g

O i ^ " bJO fr 2 >, «j O c 2 « « & It jf 1 1 'Scsis 0 . fe . -S WJg . * Ti*'^ ° c « u ^ PS o c § §, '^M ^ ^ 2 5 ^H f£- 5 S ^00 £- r o ! l'So'gJic5 °° /t? G £> jg -g II O 1 1 J2 ! scu 1-1 5 § d ^ 8 jf- a ISuNfi < 1 N ii' "S" ii ^ n 3 X K N O N N i is =i ', ', i 15^ £ 8; 3" ' O ' ° UlN m IC<5 O Cft p, O »-l .1 1 2 2 I CC 7j TWA 7gv ! 10 H c» a 1?" | £ ClN»-K;i9 ^1 ^o p.® K P

CN CO CO W CO TJ. c § {£ <-* CD CO CO CC O CC NM

tM CC S 2 CO CO CO CC CO CO

o 112 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

Z=deepcanary- « -^, tT f*>-i t>> tn 4-3 "~* C3 fl fl bn.interference palecanary-yellow. Y=canary-yellow. ^Soig-0 ! Pleoc.:colors.X= yellow.Typema­ 5°lfwlw Remarks 5 M^I| l^g> bolemphigroup. fe^ II o bo^.fes O w ^ & -o^*<2 terial. §.; 2 ^ .9 o>5 3 D f ~^^ 3 g'3,833 !«l"l§!flpHPM^SSPn < O 02 B O < . -a '-S 41 . §£ K~3 ^ ~* 4J 1 *O gj *^ ^ TO "OTOtO CM co OTO 2 CO CO £3 Q« (>'w II II II II II II II II 2 II II II w"!5 B HOM B B.O i a i j 2 0) i 1 "oo W 2j 3 _» q '-3G O \ ^ d fe 'So _b "3| o fl [3 £ o O PC >H o n O i ts s> is | bo cs ^ m 0 *J VH cs nS" O 09 CD ±-3 0. a 1°; O O 1-H ^. 8 3-rt

o a tj a |"o bi 1 03 I 'S § ^a I H M B| S CD . O a" c jc fl P c u S"" O o CO s o C "S_CJ ° 2 i .2 i o' ij.- il>

JS o if t. < O N X N fl a I ^ ; bi CO 0 t- i ' bb bib 0 + o ^ 1j o ' lip 2 0 ^ ic'g oc C co ts o'?2i3 j»5S 4 o :s: » i W ^ CD <° II m IM w CN ® || CO "jT .2 =3 *(JH II 5^ oc o 'llW X r \/ ll A II H A 1 II W A II > * j> ^ "~ J> I> N C8 § M cs CM o CN

o 1 J ! . « Mineralnamean Calamine_------4CuO.AlO.SO:23 Ripidolite.-.-._ .4Si02AlO23. Edenite------18MgO.4AlO;2 composition .--- 8CaO.2NaO.2 26SiO.H0.3I2 2UO.SO.4HO32 2ZnO.Sip.HO2 7(Mg,Fe)O.

8HO2 OQ~-' 6HO2 "5i

C o"" H

o ^ ^ ,^ 00 CR * to to to to o 5

to CO TO TO S TO CN ?- to to to CO O S

CM Tf. 00 ^ oo ^ to to 00 to to 8 " *"

'C "^ > > < :> TABLES FOR DETERMINATION OF MINERALS 113

H w . e> ~£ S'O >, #6 isj* fall A ii ii *"s 13 ..' ||P|||N|||;V (XJN5 01 a> JH i /IO a> _ cfl "o T3 normalblu oo .ja felat.Pleoc.; low-brown, yellow.Di interference somewhat £ n 12*8 mineral. * . 2 M O ol.inHN ri^g-fl >><5 § 'A W aall-i gw .a N. .a ||, -3.se.sos .^W ^ Si M CO o CO CO <1 CO *! CO

"O "5 sg S S «2I S<« S fe ^» coco 2 coco 2 MiN'9 coco 77 n n -2 || || %5 || || S ' S || || || II II o* "II wo WoS lo wo5 wofl w woh wo P^W 0 ff fo3 ; Sw _3 o a ." P*» C _0

a> g ^ g V. a ll I W C/ £ n 0 C a a g Jj " S « "S « a _o's gt> 'c_c t ^J o a) be g3 U) r±tj """* f== 0 .£? S W CO >i o" o ^ O 3 tJ

J ; ; C8 i

t) __< i o> §-^ . a O. 5g a0 ; V 1 a o I"" i O ^ !

« '.13 J n CO a) > 1 u p W >1 ^ ^ 4O *^ Wt . )_ o tab ^ "fl J3 ' 03O hh w a '3 a 1^*" *§ * _O ^.~^ 5 j-. 5 -g .§^-0. £j §35 M^ 2 £ S iC1 * ^»8 a £ |5^°5 ^ d §-§! £ "" _J d|g 1 g o £ o 0 0 C S S S " ; ; | 1 o 1 _i 'o rj bo 1 p "? .13 i ] ^ ;«= 8 a 1- II Oj,^ i i K "-* 3 2 "oS'gd >xi i u b Is |2 & u "J 0*3 §.23 ° " "S "^ el j£i £ II 0 R HN - .2 II M wP < II N C X X N S> ^ CH ' >> 1 ; o ' ', 1 1 bi) 1 t< 1 a bib ] 1 CS ' [ | . o ;>bi o' o ; f?tg ; . :sC§ ol *O ii " 0 || fcj .£9 "to II Cd a> TC || a o bo U3 II d g II .2 o M 3X 1 wv II H A II ^ * II W V a>R IN V.

21 CS >3 IN tN O3 d W ^

! 0 i «0 i i i :9, <5 j id PM .'o9, tN ; SW &£ i *- i to-° c* i9,1 ^* iii CO i§ . CuO.2UOs. CuO.SAljO ontronite.. (Ca,Mg)0. [etatorberui 2Si02.2(i i'o ^§^ ''2 :'<» id 8HO2 5 9HOZ c 1 ill ooq' J3co .SO ^co * h Z, EH Q PQ

(O CO CO CO II* 114 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS 11| -i| if 2| II "41- |i| {^ ^f-t^ ^3-^H jO ""*"" p gj T

»^ o^^rt fl 3 0> w fl «* O» . P* Remar Ifllf, iffl] p°J i1| I S|| §.2 .S"-.§ £982.8'" S-g'5 a BcSg s .S o * ***« K^TToflJCfl'S'S 3 23 "l"1 ^ O P fl 'rtS O^SN03'rjo -g^os.p"*-3 ^M^XJ^g^wrt^Do -gHP- ''JS -3 3^-° rH o ~M "Sow*"rv i^lCQCQ MCQCQCQ <,-CQ

. "O .S § .*§<» «S d _ Js^ 2 13 ^4-3,Q cocoii ii ^Ocown n ii ^MOn n ii cococoii ii n ^oc^eoii ii ii coci'Sn n it coco^ii ii n ocon n cocic^ii ii n W cm"" tdcb MOfc WOfe WOP-H MOta MOfe WOfH MO HOf^

'3 a o te Ho Jr p^ 4-3 "oo 2 d |1 B O jj g ^ 2"xi t .2 0?^ r2 O t dT b P !3 So £ 'r a Co CuO jJH O -*J c IT |S 1 gl 2 o Q P W op ? o n ? O ; § II fl 1Co sg . " fe-5.3 3 i i CD .«. ftco ® 5:°"^ 3 &. S O * Tn".S ^3 Tn"rt O O « S . o C §" ** g-v-COCOC o o

O a xi 0 CD ,Q ;( a .2 2 £ Tj T3 C3 _g as ^ ^ _c ^.§S . ^ I" Jl| df || £ to « 7 § til t ^ EI S o""" O EH ti SO S a s««i c?o ii CD o "gjtb °SS _° sts *? « ^ sSo . o-rn 1 cj .i c Ii -d v || c ii ci ^"M i 0 II a II < II II N II M H"" H II N o ^N * H M

a IL, 0 _CD.O s S O M -Q . 'g fl a3 oo* o* § o" 03 ^g bi ,£? 2 O II E> © C> ^H C, -i3 a » .2 R ^j ^.C^J ^^ ^ ^^**OT** S^* J^.*" iS ** C3 c^

CNCOTfi «IO«5W5 IO CNCNCN CNCNCNCN C1 S * COCOO CDCOCOCO CO CO

oo co to IH io io r> CN -

1 4 >-H O> CNr-l»H*H gjCN B u" n

II < 3 > CD 0 TABLES FOR DETERMINATION OF MINERALS 115

8 dllh-ss "SH "^ O a^i§ ^M-sisid 42 gof-slb?! "og^ci _£ § ^iS'i-'S « .«K§s a

CN CO >O t~ rH «5 00 l~. lOMiM f (O IN IN <0 CO 2 _ i roO O o

^3 4-» 3 a a Ifl P c M^ "it*" 0§ gj 0 £ i .-§ = t M ti a£ 15 £ £ g ? O PP 0 o ^ o £ ;*

1 | || S J!^. 1 o"P< D< o" 1_ ' O-v-08 § I o 8 u ! ^ CD 0 03 DJO 1 a ^ca .2 EH bfl o3 ^ < . ^ g ^ S ' .0" ' q-S.% . CO ri a +j ® S 03 Or/5 C f o o i 0^" O hn O Q, 1w s § S S S £ ', 1 j _ io-H i i ICO a. bi 0 ;!& II 1 . C 1 io b ll "a o< a II <>< a ' c I ll si II SI ii M c < 1 S) M J« si M > I ! : s >, ^ 10* | 0 -JW I a >" w«oO d o o 03 o-H2 "tico * ',?. S p1 4 4 S t> c? 0 0 CO O Tl O 9sV ^ 0 C a g " O O: G fl> V2 ** i?" t» fwv II W A Tgv ii ii V tfV w & 0"" k. CO * 1 >N " > ^ > DC c^ A ; |o 1 | 1 IO ^ Humite___.... 3(Ca,Mg)O.Asji 3(Ca,Fe)O.BOi2 2SiOO(?;.7iH2 9(Mg,Fe)O.3AJ2 10(Mg,Fe)O. Picropharmacolite .6 MgO.2UOs.2SiC (Al,Fe)O3.2 14SiOO.F:.H2 2(Fe,Al)O3.2 6MgO.3Si02. 3CaO.SiO.CO2 Sklodowskite__. 4CaO.Na2O. Mg(F,OH)2 OS3-05 5SiOO.7H2 Edenite..____ 3(Cu,Fe)O. 7S0.17HjO3 S^-oO Chlorite____. cc 6HO2 7HO2 4. ^'sf-jWa w «w ^J T sS^s i B3 S (5 « EH

o o o CN IN CO 0 10 * S S S 3 2 S 2 2

e» fc ! ! S . S ! 5 ? CO

O N CO CO 1 CO d CN S CO CO CO CO Si s rl i-l ,-H ,-( -I rt r-t

. 0 c: o 116 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

*: te^?-2'2 rl .3* fe a a d O-i a ^ O oy|lg^cB .a* §£ §s CN .a§ '3 -; * gs ^ -§3 ^w "3 Ld ll^U^I s^. a§ as S ,0 W M < <1 O O i i

t» CO lgll "O 00 CO Ss SS «r§3 . 'C g^jO WCN'S COCO 2' CO TJI' ^5 CO CO CO CO coco'co OcNiM'X to co 2 £j ft >*W II lira il li 5 II II "ll II II II II II II II II II || tV || || <2 w"!!5 WO Wo5 WO£< WO WO WOfe Wo5 ~3 i a 1 1 ^a S|. 1 1 01 g ^ a 1 1 "M q^ fc "oo £ bfl'-' 1 o S r- 1 .S $ ^* IM 05 ca CO C-o" o' a gO OCN O o S I I

-O d ; f> " " b.0 a s ' ^ W CO CS w 'C a w t 03 , pH "2 "C t. 0 ^ 03 ^_ fc i - as _^. ^ ^ a 6 £§ O Co t. x: o . c § fl d 3 X3 q o .S g £$. -g o O tj 03^ wr cr £ ^ O O S P- O 'S i 10' i-H i ; !o lOi sg o II i: eH 1 ' « ' "^ tu i « g<. "II => ]f i, c o II ii ^ UN UN < c UN Fa O N N X r* N S M a ! >- | 1 ] i CO toil ' O ! ^ O3 ; ^ i0 - o- n O 0 CO o § | £- oo o no t- !2n 2 c? T CO 03 0 00 O 03 5; ii »£ CO CO & CO 1' CC l' ft 33 HHV "3 T II V II II V II W II W 7«A J> " « *- K..CN i. * J> W ** ^ ^ t> ^ a 03 IN CN

CO 0 CO CO S CD CD CO S CO i

00 CN CN g CO S - CO § CO o o

§3 00 S CO 3 fCO S a 2 ! 2

l| CD <> 0 0 c: c: > TABLES FOB DETERMINATION OF MINERALS 117

flO II .awSo - 0-2 H-S 2- So

COCO oco II II II II II II II II II c II II II II II WO WO Ofr WOfn WO wo wo WOIV . . ! ^wo" 2* -13 P gg^ pa .2 * | 11 1 O) o 3 " ti o'S ^ 6 § & S 5 . fl "S sioS 5s -s 1 -3a -« 2>w C cu * (J * co !£ 5? ^ JH 5 PH ^" ~ ! ^*o* g 1 w 3 o .SP^I- Q J J-a T3 *- 8 s a Q ^- a 03 e- CO C 1 |al fa 8- £ fp 1 O , w . . . cu> .- ' 2 "S <«3 c -2 la cs &§ £ "C"3 .2 2" "S^ j 0 o M f OJ P- s. sf w 5.ff~ c O ^ CO o> 00 ^^ r 28, * * Q b £ s' t U. U) U i_, g ! bi^. '"'cTs' ' « L II « ^ -o ^co' « <^J>-iJ>HW II i |g SS3J31 u X II ^,1. {W >H j w w ft H ^ (H X

; b ! ' 4J ! 0 o' 'o'S 0 J 111 Q) CN iico £ CN Tlco ; j > I J 2 a o^io ^ f co 2 7 i |7 -2 e. i T( i II a> * II o c V/\ M U 1 n A il * > S A ^g A J,

n O °a |O c« O i M N ,_ ,£ 5 1- I . i<3 "a? 'fatS' "c?/-^ l^ri 'OO iP"* o earthsrare wO !S"x W^ ! -H cop!^ On i Wo3 'O Titanosilicate fcw -S ^J tD Na,Sr,Ca a"S Sgcf.j S§» Jl! pj Jg? :|g0 JI 0 | M ffj Losevite... S^CL .2*^^ w^"3 ^o3^ §^W j n^-S A |l ||sd ||i 'oC'4 ^

W C^ CO (N 3J oK' c« os -H CO S <£ 10 5 5 -5 5 3 S CO CO CO CO

! 5 « 5 ! §1 ! !

ss

CD CD y -3 ft-3* ii .a 5-3 5'3.S«5 -efe 1^ *? o w 5>» 3w N . <3'3 <5'" §'£ .y1"""1 -Hc>i ~~ M 25o: -- "3 P«« Rfl'Sflp «3 .go P^ Q .SJ ' S3) o & CQ 33 O3 . .3 03 -^ CO HH c3 £3 ei rj Remarks i?! i^fl - t[° i:~s!f i0*! fc isX-, .'SiriJ'x ii Ma's 23'a S _ §"3 a (xj. aiifl . SSlS^fe « "^S § Q S .«° -9§2g q rt c3 03 »J p^ turjffl T3o P^T3 .9oS(3 n3t3O -ftfl., -*^r?! 3^1 a§.s§5 «1 £Sa IsllifS §>?'IS |< 03

w"u §« O to to «o . §2 1>^ >CCC M "CO S.^S CM'. 5? 0.. rQ y JJ|Q CM IN tOCO . CO CO'TH t^coS "Oco'co to co 2 co fo >o co 2 £3 a'i>'3 w^sr II II II II g II ii ii n ii a ii ii ii ii ii 2 ii ii n ii a WO WOfH WOfi, WO5 WOfa WO5 WO WO^ V. xi i »- o i i « S W p +: I-H 1 !«!_ <»' "* te V t- ~^~ . ' J *.S3 7* t>. m -« T' a Ti o .9'-+3 o -it 4f H" 1 5 i °t 1 a "» bo 2 2 o 0. "3 .5 °^ § o r^ O [? 0 (H 0 w O

0 § "* 82^ "S ! 1 ' ^- * ft ' d. 'Odo fe bfe 'Oo ca a 5. "s ? 1 o> O *~^H ^ o *-* _A_ ^ cuo ~A- 0 o o^ ot^ ^- «> £ ""1 M 2rH £ oo ^" rl °o X o o i-( O O ^ IT /-\ rn B -^ -v- ^ U -v fl '|«§!? £.S3 ^ 1 « cfl 1 s e 1"° c O Q 03 fl c. ^.35 .at i 1 w ^ »-» IH §°5 *a S £ O 0 e3"^ £ OJ "n oo a ^H " < CP ' 0 ;§ 1 I 1 CO l J* », § fl'fl sg jii iii g o o o *rt? -S y ^ c3 * > o O*3 u .0 ^ "^ ^ o w «C II , II « II .0 n X UN * O 2 ® II ^ ii ^H || a N t^ ^ M N w a I j ; "tab!" I ; ; ., a S3 CM 05 Q, i o' 0 9*» ^ I ^ 'CO "O . - Hja co II O> 00 & (X ! o CO a o- to _, .= bo ^ '^rrt w £f II A II A II V I WV « 'g 3 ii w ^a rt ^ ** ^ * t> *~ t> Ms. g yCTJ K, CJ M C^ (N CN (N CO (=i CS d a I eo !^J 0 id Mineralnamea: |O j^ j^o composition ! * .ti 00. ^-o o :Sw CuO.SiOQ.H2 r/i ! cp^S\ i<5« -w-a)§S * |W 2 O sSq .s-So ^ i § 6 i in " Jb^ . 6 5 o lo^ 8 I3a s§« 1 §^ |l 1 bo - 5 |<3* 1 i- W 3 1- 5 CN oCN C S 1 MO fc P^ Pt S N 5 . O O O ^H CO 5 !

c^ r- c " r^N coCD ccCC to to to §5

coco ^ co »o lo^to iO CD CC to to to to o S -i r-! rn' . ri 0 II

C3 ^ 0 CD > > < 0 TABLES FOE DETERMINATION OF MINERALS 119

feS'sX-i 11 fe II -3 " PV3. an& *|1l dS§-0.N ° P g o ° fe *"> « ci"3 sg.S13 3-°M . b& . ^"Sg § .as "lllrfS OM < 22^ a d " fe 8sfe.2 2^-S«|i «> te o n .M -a ra (d t* -3 $fl >p, 3S >,tB QPn AH CO PH fe

C0«lluj cococi "Jco'co t 7 II II || II II II II II II WO WOfc MOPn MOPs i ; o .; o ® a _ t^ ' 1 Cd y S o£ t>te P , [ §2 | 1. H "o fc 3 ^0 . 6 >2 t>> d ^a fei S I "3 .23 ' "n. o .S a> J3 Cd O d a "3S CtO ** 2 ca o, -sS ||. M ' O O WO I 0 O

0 -n. SoeOOQ

1. I- iao J 1 -O 2 Is 1 r^ I o ' *i ° .-*- o u I M <3 -go M d u d bib J c. o d e o s . ^* 1 o 03 s a 1*1 "S 3 O 1 - p*i f^ 43 HH _-!. c W d ** d^ d d ^ cj ® a b d o <303 w*O.O4 MO o c 5 a-o a > ll ; 1 IO* i Q* 1 ICO 1 *N Q W T~*" t_ iii 1 !*" j!^ s^| Is

9. 1?N llNfi II II >H II M t«fl Qr^-OCO M N H JH (H O >H

; 1 d o .| !0 .* '0 0 O &K?« I L o'S" o'S-w P*3 c3 o'§o 0 CD Q 0 S > c o'2 te Q> S II M r 11 ft WVII =,i ll wa ? ii A ISA 7wv 1 feA 7 7«v K^ NCQ > * ^^ * ^.CN l» »5 w CM K K^CM k E > CM a O CM CM & ^ c\

! 1 " O j 0 9 i 2. i5 . Id jo W i eg W ! 6 | g is Ico o (Naj,Ca)O.I NasO.AUOa.' linoenstatite. Fatrochalcite. NazCMCuO. . §o~o sSWtrf jo 0 [iortdahlite 2(Si,Zr)O» 'O(no'nz)iO8(SV'J) 5 MgO.SiOj fc.a a ideite.. "5 4. 03H8 'f _c 0 E d dOco S^NCO -1(5^ 1 1 CO

s s TABLE 4. Dala for the determination of the nonopaque minerals Continued to Biaxial positive group Continued o

Hardness, Varia­ Mineral name and Axial angle Optical orienta­ System and specific bility a y 0 composition and dispersion tion habit Cleavage Color gravity, and Remarks fusibility

1.655 1.670 1.66 Z//flbers...... Yellowish..... H-4 Fe2O3.9MnO.4P8O5. r. _ .. __ - Y=6...... U00}perf ...... H A_A K 3MnO.P2O6.MnFj r>» strong. ZAa=42°. ^OlO^poor. Q=3.79 mineral with 1.7 per F = 2.5 cent FeO. Abs.: X>Y^Z. 1.650 1.680 1.660 Z=c...... Or&v stc H-4.5 LJ (Al,Fe)203.P2Oj. r>p strong. O = 2.6± 4H20 Fus.

V 1.645 1.715 1.660 Blue...... 2CuO.2SiOs.H2O X _L cleav. Q=3.36 Pleoc.: in blue tints. Abs.: Z>X: 1.659 1.680 1.660 . _____ 2V = 20°...... X = 6_...... Orth. Acic. c.. { 100 ^perf ...... H-6 AhOs.SiOj 2E=33°. Z=c. G=3.23 be pleoc. r>w perc. Infus. 1.626 1.699 1.661 2V-90°±.--.- X = 6_. ._____._ ^010^ highly SCoO.AsjOs.SHjO r weak. ZAc=31°. {010} elong. perf. gray. G=2.95 pleoc.: X=pale c. F=2 pinkish, Y=very pale violet, Z=red. Colors vary. 1.645 1.688 1.661 2V=77°...... Z = 6...... {Oioydist-...- H-6.5 Tw.pl. {001}. 2Na2O.BaO.2TiO2. r>» rather YAc=3°. blue. Q=3.05 10SiO2 strong. F=dif. A 1.640 1.680 1.661 2V-90°±.-.-. X = 6_ ...... ---.do.---... H-7 V 2MgO.SiOs r» strong. Y near c. Foliated {001} Q=3.34 in green. Abs. X> PjOs.iHzO F= 2.5-3 Y))Z; TABLES FOR DETERMINATION OF MINERALS 121

I. Ab

enegr aciin >Y>Z.

. l.in abov as :s-§ ^SnKftnl.S'S89 fc'gH PH

CO ejiejp IN S S «« "OeoCO 01"O Tf< INCNCN $ CO *O CO 0$ ^ CO CO ^ CO* t J CO CO CO «3 CO ^ CN CN "SCO . II U II II II II II II II II II II II II II II II II II II II II II II 3 WOW W o bd o td o P6* WOW ! ; ;'; g £» | a § a 0> 0 d s!§ ' s J .-£ CO H 1"- o 2 g' -a « fe " . Rose-r( a> S '3 'a * » CD pj s 3 o £ & i '2 H 4J Cl i « "o A Wy> "5 2 *CO 273 o a n2 p-21 PH is o" 00 MM | a [ ju °°.E-9 ^- ® 03 (^ it. en 1 _g a* ao .a §| «M -&O'Q'OJ ki d tH j || 3 i0 a SSC- 11 E § o O h- § § S 2 u ItSrS j .23*u * 2 u a 0i _O O c PH S w ^_§a o$_^. S o w S3 2 c JS d j-jaj d Q*fc 'ft *^ d -w W fl o V c o o S O PH 0 O S o' ; j.. i _ 0 > 3 i '" .a . 1X5 , IT* ta ! M j ! n CN ; -6 t II ' 1!) C D1O 1i ii ? d "3 II ! JS ^ f c «< "ac o u .a <>> * ! II M < >H II N II S3 « i N ! |w

J \ M ; >> M j i M °'H i . a ^ ° oj '?- P, Q1 |CN CU o'^ o-fi§ oil 0 i-l Q, E Ef g C3 .2 {2 ii o S II e "o_ II o a SjTe $ II a u wv II W A 5" II j 11 S Y. T ii WV |s B a >^fe jj,. CN V. M IN 6N CO CN ^

Lindackerite--..-. Spodumene_-..-.-. 3SiO».Ce(F,OH)'j 3Ni0.6CuO.SO3. Reddingite.----..-.- Sfirandite.------.- (Mn,Ca,K,Na)Si 3(Ca,Fe)O.BO23. (Ti,Zr)O.5SiO2. 5MgO.7BO.MgCl23 Homilite(altered)_ O(?)2SiO+-nH2 LiO.2MnO.PzO52 LiO.AlO.4SiO23 2CuO.2SiOj.HO2 ---..-_..- Rinkite --.---...-- (Ti,Zr)O2. O2As.7H25 3(Mn,Fe)O. O.3CaO.Na2 Ce(F,OH)3 NaO.3CaO.2 PO.3H25 (0,OH)3 'c£ LithioDhilit.fi '5 c c c JS a o I-D

CO CO «D CO CO *H B i C CO O ^3 I>- CO CD I

1 §.- i 1 1 1 i i rt rt C ,H r-; « -; ffl <> c < > c: c> < c: 122 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

«,,'sT>>s:CN""S^-r^ 0? taB^oco a .d . Oc3g"«5."Ts. ft ^ p o-S^ -S&a^dO _M S CD +j ^ Remarks 1j* >- ''""O %^ll«l-j«l°l ||!l:--ll"iS S^ S g iron. a'o| o3 '§^r 0 §S§_.d§(N3 iis^isa iflSls&Ti PH" W o . "O en d t>» la -1 ION m S3 ^ . ««^ >oc3 »o g tj'S "JCOcO - CO to co 2 i^ co^o toco c3 ft*? "^ II II II II II II II § II II || II II W "cl WO PH & o tdOhH tdop^ wo

*"" m o WH fl} "3O a o d ^ ol ^ '-i3 M *3 >HrO M d O (H O o O 4^> O 03 4J 1 d §> CD ti « ft - :i d .d o CS ft ~ e .2^. o 0 M -*-o' f ^C. !2.° O ooo ; i-H 00 CC I ^H-v- C- PH § 0 s~^~

1CO ^ a 1a1 as PH cc W ta'*' 5 1 e fl £ if « e "S 03 0 § ? O 0 " ^ <-2 o || a II ft II M || * ll M P . UN II >H O N N N M M d ! g/S 0* ^ COa 'i O I 0 §§. of CO .2-3 So " II gt k* pV » ii v T w. 7A n y II WV ^ rt ^ ^* ^ c^ K^CN W C3 CN CN N CM N ^"e 3 d « i

Q § 0 I 5W :9 'p'q S.2 .60 ^3 «^O 'CQ o O*Eo ;d T)< O ll« s al S 1^. ci CO ^ « ft -4J p£| co a ^ Co ^) .Q ®O(*"? ' * H) |M d T5 * OJ co h- CO CC CO CO CO 01 tH »- i-H ' 1-4 1-1

- CO CO CO 1

r 00 CO COs § c CO CO CO ,-4' a rH C> r-J -H II PC

sa <> I 1 < 0 c: TABLES FOB DETERMINATION OF MINERALS 123

gOOia CD ta:r> 11-S"

CO _. . . ««2SS " fl o& .^«8§ . bo" 5SS? Mr-»-2 .-peg O » 2-2 ^ 2 ®«^§- §lo&g § 5 w .tJW q 9 ° g> a |SSy -9 IfSs aa-*do -s .9Ssi S«i*S

coco ii n = cocoII II > P ^ O 0 Q

0^ >, :« !S3 6 03 M 00 ' 2 '43 co IH ^ T3 O I'd T3 03 v. CD jj rt J« .

0 ' ;0 . 11 i. 31 ! * 30 S N > *?** ! ° <3 §2 1> II o <* ' c c II ««| c II II IN II M II N TN N !* ^ N w H PH o' J hi ' bi bi) . bi "jI * I ' .H C 1 p a t . CD , 9 'O g O i g 2 JJC^S S o C 2 o o'S £ to ° Io CO o i-i 2 o CO ^. a § O> n N 5 ° S ' H io II » "3 V ^ a * to II a-w 1 t- oc Cft 11 § A b V II pd A" il A II 1 A CN 9 u §6Q) K $ >« w K, > > CN en | ^ H CN CN ' a 2PbO.3Al0°3.2S03.2 Diopside-jadeite..... Diopside..^...... Magnesiumchloro- .'..Fillowite-_-._ 3(Mn,Fe,Na)O.2 Na2O.2MnO.POs2 Spodiosite------..... 3(Ca,Mg)O.PO25. IVO«OO!S2O-£Z! Na»O,CaO,MgO, Ironanthophyllite 7(Fe,Mg)O.8SiOs. CaO.MgO.2SiO2 phoenicite. 10(Mg,Mn)O. is AsO.7H25 P2Os.HO2 io a SomeCaFj AljOs.SiOj PsO5.6H02 4- a 'c OHS! HO2

4. ^,co a. Irt Z

<>

163287 34 9 124 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

"3 a lias's 1 W !3ssl 'G S fe 0"°^ -ir § i Remarks 3 PS' II 0 c . o 1 d I .^S- 30 '3 03 '1 ate 03 Sog^^o Sfc- .9. sa§«d S . o O _,'2 g cu o> "3 ^.s a § 0^ ll w CQ CO u 'oi u « 0 tt. QJ ^ ^ § . fcH O*J £ o 0 * O 0 o « ^ . f^ O ,' ,' >, 00 | O J aa§ o. 1 a c i O 8 "*" 8 o o o II i «' _c;. &<0 03 MO" v> . ^0 »3 bb a c"4 .J2_2 T3-£o S _wO 03 4J « 53 03 03 ^ ^( a ' PH _o P5 21 | p* aias 03 -u _rt =":« S .g' E5 ag d CD -t-a a ^ A^Z >> S""0°. ol® o ^^ 4^ -4-a > O 01 o "" S ^ ' O 0 'S ;' |tO '5o j ; l ' * ; ii i !i ! H 1 !<; O ^" £ l j& \ e II a II u II o > ;g UN II >H 1 N II N II N> « a 0 KH H M K. H H q ^ a >, gl :>, ! til ! ~'w IA! I 03 ^ .0 0 ^ ro' a ', j^ SM i 03 a*§ !"* o"° > *-" Q, O 00 Q S 0« .2 a S OJ IO if Cl If II A by» gA a II twy H wv H *" 03 IN S S ^ ^ IN Pharmacosiderite--- Ludlamite_------Ironreddingite-.... 9RO.4PO.3HO.Z25 SomeF.RFe,= jo Harstigite--..---...-. Mineralandname 1Akrochordite-...... AlO,6SiOj.2H23 composition 7FeO.2P.9HO25 3FeO.2As235. 4MnO.MgO. Ca,Mg,Mn (Mg,Fe)O.SiO2 6CaO.2MnO. AsO.6H25 Hypersthene J§ a 13HO2 Jig 3

"O CD to 00 00 OS S cc CD CO S

O3 CD « S K ss CO CO CD < <> 0 125

° ~ {£ p o fc II l~'opH?^ .tia>o aegirite.andopside blacktoFusesa ^ "J HP S3 di-betweenPyroxene HCI.insol.Slightly -|§«s Slt50si Sa ! § |2 isl t^§« l^Bt §fs *, fisi!?'l O PH H 5§a|g g WaA o-'^iS * M «* 2 o * ^-TI '3« 3S _ gg \- is!*! JU-sN: IsjSjosaS ll -s'8f*

TO « >C *O **- CO'5 'll II II II II || TTlf ii T T If 7 V ii "" ii ii J MOfe HOh KC a ^ >. i p a> o u C8 Brownish 0 fe CPa S & J= ^2d *j 2 . o § Sg 5p *o ' Iwi black. 0 5.C ^ a) c

^~O ow CO CO ^- <" 1 1 . = HI "C ao" Q &o- S 1 go o o 0 8"* o^" r-( O *- I I2 1

u W (j P* § C . bu u 0 . 3 J5, to p £ C O ei P^ w 3 S w . n . . ° 5 C C C p C O C ^5 I 5 o S o O >£, & S $ !?i 2 k f SL' o4 \ II " ^< *> jf *< 1* I J= II J= < -C < II M II N II ?- II K UN tx J« N N X > X I ti ' P J3 JI i h P MM "° PO OJ OH os 0 0 O 0 I E n o n ^ II ii to CO II » *A "iTv" ii w/ J |A bg Tg II WV > S ^- > - > ^ >^ IN IN CN CN ^ K* M CO

Iw lo Triplite------Fe)O.PO(Mn,325 Koettigite.------Zincschefferite,----. Urbanite.----.-- (Ca,Mg)O.4SiOf OO5.8H3ZnO.As2 Zn)O.Mn,(Mg, JJ id OO.2FeNra23. MnF2 I &. j|» 111 a^o i^. a^W |g § ^rtcoill ii,c«« Hi!« FM O

CO 1^ 1^ 00 00 CO OO 00 OO § o 111 CO

Q (N t-- 10 o O O5 * O §? = § co f- r- to i^ I-

»o CN eo S S t~ CO S s

<> o 126 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

ao-S-g-a gS^^S MnOZnO3.3,7.4, "S-^-a ^aocaq withmineralfor CaO12.6MgO23.7, Insol.incent.per DataPyroxenegroup. Remarks flfifel " « " n=a^2^ ..a ^ost^^n 255^ tH.^So5«toeo® Q> ^ §-9«a S *v~~-li£ gsa.a u, g g tjj'a 8 => acid. Oa . .flS^-ai .3 0> t3 jg OrS^So2QoS'2 L4Oo3b*OJt> *"!?XiiO 0 . U 0 03 0 « K t>,wi«tcuct> >c3P.ao PH 03 o

|s% 1OCO«-I S> ""os Jb 'd §.-"2 <0e*w II II II II II <§ II II II . w "ll)'2 Wfc MOfa MO5. WOfe-

t* a" o £ ! a" 4 Ui u o ^.d * ' ba i | . "o -? M »£2a-g M vc o fe § ! oa §3 £ . 23 t a ® o O O pa i O O j h- oo ! 00 00 i a> ' a a S "-1 vj H 13 § 5 s, 03 O So" " 1 a i O §E 8 2 2 8

c b£ be a a ; " -23 oi O O (M 2 M 3 I 1 2 5 w PH £ PH U 05 *" « fW*^ 5 c' a a ' a ® ^ o ° ° S CO o" S^ s § S "5p? i MO ; 1 1» i-H i d '§§o> i 03 ^- is § «5 " i >> ii ' || fc?c^. o as ' +J^ 1 « I ^ m *^f is .§ o -° a§ ~° ^ ^ ^ . " W o II I O a II N 11 N -^^ O N >H >< >< w a ; i a>.2 ! bi> 1 o'l i ! bbi> a § ll jj » a £'2 o-H|| ?|j i|f ^ > 2 J » P II V" £^V 7gA 7w §v" ^a *> *~ t *~ K IN V. > M 03 V- 03 IM > IM 01 M id id io i Jo ® IS a> Mineralnamean (Mn,Zn,Fe,Mg) composition '§ 'OQ w sffersonite-- -- :S 1! «i H oj1 ®" 8^° J a«<3 ^a'O g^4- Sow pa ^PH* 2§,^ o^ a £co <) 5 3 S Ss 5« H r^ H O i-Ju/ PH PH

Q O f O> i i ^ -! rH

CM 00 O O) OS cc to ^ §

00 IM 00 00 00 CC O to _' 1 i (i ' ^' rH O II PH Ha <> <> 0 < TABLES FOR DETERMINATION OF MINERALS 127 hlite. orless, * e> Zw,= |og^;|9 Pl **«deepoc ro «£H ^0»,2W =palle =yelllo ^«? OO-2" - CI. brotoow ftS » M ,8 ^t-£4 o Y= Jlfw u, --- l.iin Z yeous x®~y St^S i ^t a$ on , red, I gafc I? .5§ "& gf§f %a ns^SoSjs - 0 Ins 2 is" 5»<5O2fePn£S 3 slAi gt&§ss V OH fc

8 . J>ro£ f Su» -H r~u ii*' a2 cocoesu u u iiand ii u <°« ii ii ii a ii u ii u wos wofr woe* w WOh wo WO o a w (3 ^>O § 2-a 33d 3 1 s« 0> -*" o tr" 2 2 »i SB, j< a K & ffeS(-1 >*-^ 0^ ft c IS T SM t> a)TloS j- S^s "cc 2 >.£? as i-< toTJ S «" 1 |S1 03 O w « n t-5 « ^ 3

M *- § So j 1 'S J30 i o d" 03 "S o ^*S U| a o f. a o' 1 1 1o' Q -s- fc- T3 o" O c C f-l o Sal I ^1 J^ ^1. 0 o^ ^-

u o u ,£5

Ii^ ^ M > -< s TO !i° * _£" a-*j"i» 5 -o O1 II || "C . w « w II ) u :1 t> ftx H S50oWo'>> «» 1?" o'<-S3 -c i :< 4 < Ss3 .til =>< ii X UN II NQ II ^ t^ II N ||°C==H > Us ^ « ^ JH N N M N >H

M o' . o ;'°sl '»;£ °si i 1? o_, ^ » <«>S JL ~& : g> ii M c c IIll ot & & U e . rj. II 0 II 0 .C> T T £ SII « II A II WA II WV 1 WA tf >(Nw ^, N *- > M K a >N ?r fj N cq (M ;o . i 0 d ^o <5 ?- o :w \ ~S ,"5 '3 S M r- O o fc iS ^ ^H 4CuO.AS2O5. i d O SO N K? "^ 0 2BeO.DaO.2 id^ 0 rf ^"0 Euchroite 0 a V. S O W <

c> c> 128 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

i- .; ' 11 i^ o ' ' 7Sa>cjaas o ^iio-iS^B-gw ^55.^ S?"os's a B

as O^ 42CB "°J>-l2j3 - S1 a C"5<5 . *c CM CN "^ | ^KJ^rSfa? »*f-9<2 S ^9i| 0 g aj|O o .CB '" ^j ^ 3_aj ^ .2 .. n d> > §*'3."S§ 'C^So^^'.S ^ o ?j 9. " ~ f "aSSfe!? -A; l^^^-iS^ -m^~ 'a-S M2 2 §-S &£ 8 & S c Oc?.&H p, ^ o SS §«M44^ >,'S'S.'5P :&^c§So W ^ ^ « P i£

*3 $3%£ ^ co 3 B "^ £»>~- CO 1^5 'O ^ . to -&ih n< _§

a $> '§ ii 7 f n'n-a ii If "7 '"77 tTfeo bi BOfii tdC^tS tz B ^ P^ pcj ^5 fi^ td O f^ "S ° "B £ '< '£ 3 I| I ~J "oc B S *?* aj c 5 o * - O >;« -^ § )S ° B § .3 S3 *^ bJU .M SS 1 £ 5 O 03 cc « o 3 vJ i^j t- ' Sj C8 OJ 1 a 0 be a A cc r S "C 3 S: ? * a «ftS a C I i o"S C?O S- S5 S- C- a s 1 . . « &< « ^8 1 a S.U, .S3 . M ^ . is *c i" = P '£ CL C e^ >- ^ « =s 51 C _ o' . T u ! ' £s 3g o (5 £» o SB & .. | 1 d ' ' ii «a afe SO^IAB c^l g 32^ -H io-| a^ i »H O O O CO B ^>*» ft iC X nwv° w SV 5 V 1 .WA M JIA II II A K|.CN >. ^ t- < *- > | CO CN

d C o i pQ i O S ra ' ! *-^t TO ' S S ~ B O i B-*!* '^ro 3'wBC od o'c5 <5o ? JSi'o i^-o * «a -

iT5 (O § 8 £ S! O O * r-

CO ^ 0( *? - ? §

83 S g S 8 b- t^« t^1 r- CO «k t e r-

.25 ^ c> c: ' <:: <> . TABLES FOR DETERMINATION OF MINERALS 129

&°*i g Si* es-ao K\II so>>n a ^& l.inHCI. ^.2: ommon'JlOO S 5 I ^ MfeT-S P- "33 fe yl'S ^SBS*|B< § *d EiHo llo-HllS:o°°

N «N COCO II II II II II II || II II WO HOP* WO £ c | c o 1 c C a a 3 j I Ml w 7; £ e « 1 At S3 T: c a 'S1 ct ^ u 03 E PH O £ O O p>. >'8 rt ; .b 1 ^ S , f. 1 is I 1 . 6 'i! si £ a ri ; S- 2 '!§ 5 L .S3 o PH £fM s o ~T g S o, T3« go0 d £ ri a a a o 0 S'" o c1 "S N o s S O S S ^ i i i io1 i i ! i« .«g ICO -H i CO |00 M ' M o TO |7 II -o B i'l* II s 1 £ " *:<: if u u N I «N tjH 1 N NJ N CSJ X X N °''e? i _ . bi i i _ t. j fe j oO O 'as cc a 1 1 ft * ** ' W ^ , o J3 tu fehi , j *^ i S *^ o ~H »o £- 1 ^4 ^ 1 O cB f- > 5 i 0^ < ^ 0 rp ,_ C 1 U3 « -7 fe is O I! 1^ C a 2 S II a !S a A ^ O 11 V II W A ii wy Ufa A JiSY 1" £ II E A CM

;o Insol.pidotegroup. ^toniOr-lO-S compound.pure Abnormalinacid. interferencecolors. *««) rH W 0> In­yroxenegroup. dicescalculatedfor 3 ft «,O « Fusesb.brownto Remarks "§ §o«?o£>2« OO "^ ^? ^ JeS ^ O> a ti& ^S43 | ^03 ^? ^ M^os ^ j CO a>T globule. 1 a^?| S"S fell! O W ^ PH o PM ^ "w 11 II II II II II II II II U II II "w So£«2 - Wofc o Wo wo WOfr o

oa j g g "3 X!s oj c O o X ofe as 3! SH a 'is o PM PQ O U ; BE ft 03 o ! cag. I c o"; II 1 1rH O |E o 1 o § s i tn 1^ og ~C oj . flS ^ 3 1 ll 8P c in ££ d§ d . d -c dls c xi o °o 2 o § I ta 1^ r- E a ^<1> I o| ! ! 0 - 1 \£ '-1 ri it?[CO ' * "^ i "^* O II < II II : u *»3 TJ ^* ! o 1 *^? 1 u .a *>< t^10 t« UN 1 N ' IN A k i* SH o r 9* a ! J 0 - | ®.2 * W> » d 1 "ojb'g '°'H °S . ti.a to to o 0 O :s£ 0^l§ o ! "3;§ I II " a |7| S o S|| WB 5?rt AtJ S g s> 1 ^S £? II W V II W n W HA i ^§ 03 > NK ^ ^ >^N w ^> CJ >«- > Ol' w '-' e>> ...... ..... Magnesiumorth "o? Johannsenite-.. MnO.CaO.2Si Tt* 6SiOj.HaO q la 2CaO.SiO2 "c c SB- H +.a HaO 4. |>o^j| 3°."" |f | s,^/ K c

10 oo oo 05 o> V-H § ' » §

" S 5 5 S .S 3 K

»o 10 IO § J5 o I-H Ir* rt' ~ ^ ^ ^ -H

II > 0 0 0 CD 0 TABLES FOR DETERMINATION OF MINERALS 131

«'dJ?OIH ' tx **J ®*-" w a ^Q5«dl8> a l i|| I"""* «- -3, 2_2.> o *| P.T3 u- ^S'o.r M '3.0'ON. O

"^U5 3£>> 'I n "* ll' li S3 WO 5 a g b4 c l ^*d 03 § o -*. ?1 2 a & si '1 w-O § W -i< ^ M ^ 'JS S? c 03 £ ^ c 2 as b. §^° o S 0 . W O S

!"C c i-H is i $ i** a S I ~^-8 «n ii r^~ . Jg ^ .a | t=:.s > . to Q^JH^ C ll So 58 3"*C O 03 ^.2 r® s -go d ON c a IpJS 0.0. o o_^" S^" 'c a co bo '-*! bi 9'S ^ d "2§ O 2 0! E1^ CO i"^ *C o 0 ''W ^"5^ pH 3 § .0 c §- §0 & o""° c §1 ^i r* S s a ! M 0 »*N§< i i ^gN || !** to H 3 if a II ; ll x o . i u a u V) U Pi

> d l!,sg « < « II « ^ o ^"43 N§<=lll UN ?H 1 N II N Q ^NQ « ; PH >< w N > X

. ! |y 1 » ( bi IS i _; CO H : 9 Q 1* ^ 1^ 2 i O Oo O M o * * o o is 0 S £ -« a 0 O> ft r*i n'v 2 vCt a$ CO II a § ai» "A II V N &v i II W A II A" 0 >* > j> k- >> * *> N > ^ *~ O CM ^ w (N N

o | |O io s i l« CO o i . i<5o w !Q-O iaspore...... O PHJ? *>3 io° ;O s 5^w ^S i8^ AhOa.HaO 5 Apyroxene c S-d JO^ c ^-2 :id§^? :iS2 1 rt uj -*S CUD w Is 3^ is 3^|S» 1j= S. T3(N .

<> O o 132 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS & s cJ-oso-^ocii; -&»iigjiag S-aS^ I « gS-'PS 2^ ^^HNcSgg ^C'O-g 0 . f SS'S'0 ^,* S '3 -0 -oNfi 01 ^J L^ || "S, a c8 Bij'cSo''. ^fl'^'Ss' M J.^'^S -.2 Q r5 o3Olo £fe l" "^S 0 ^. % B S » n^ i s| y> '3o^jH« g" . SMi^jg^^ CD . . cj ^ * bo tf .s| ^^ ^f ||l'°*H tii: .s§®2Soi Sx^S * _ » aS SX&^^s! D.S

. -e «5 lea *~ 00>o eo S Tto T Q'^ L*i'*3 ^ u^ to »A co »o lib T3 Oj-*j,jQ toco «t> CO r^ to CO W3 CO CO CO CO CO £5 cx t> '55 II II II II II II II II II II II II II W"!"2 wo WOPn WO WOP^ WOfc S-o S-o ta to 3 a"" . 'a » "3g « -c a -o ^ "O 3 ;> S r- W ? .£*! ^ H 0 ^cgis §2« i'Q 2 S'OS c 3 D !* PQ O ' P5 ; » ^ _^ i ! OrH ', MO I-J- Q -a J ^ J 8 s 1 *-* *-<-v- O *"* b CB 1 ft ^"g g So" S _O s 0 0®g ^0 cS 0 1 O I O 1-1 Pi Pi Q -^- ^ -H a 3 \ ' J T3 w ^ I a «! .2 as S 1 ! ® 2 S & a Q c o t 2 1 **£o 3 "C 'C 'E " 6 CO * 1 - o< 5 1 ; _ ^ 0 M > »'"CD 0 ! _ ti ] ! bi b*s i « !o o '! -' ' i§^ § -2 « » §§, g 3.2 o .2-3 II W A '"gA 7 7gA '"fVft 1. ^ N k. *1 H * > > <:N * M ** -»

- f2 S 5 ! !

S s g g a

8 rt r-i -1 rt 11

'C.-S < C D <> CD CD TABLES FOR DETERMINATION OF MINERALS 133 : fc " M * t| ja-w ®x3 flll ISP 2S5§.se10 ^^ a +» < o 'O , "* ? .22 « *o s &x ii h sl^fililllt*,r^ 9?W co "It P-S-S.S -,

II II l WO woiz;

S3 if. fl

°0

L-HS

a II ll si HtSJ II N ll*

8-H II- a II W A II A

o p 'EiOJ®. FeaOs.MoOs - 1 a 7iHsO 'EiO Curtisi CoH6 Sfa,gs 134 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

^- 9 " [n:Mg:Ca=95:2:3. \110\.Lamellartw. Pleoc.:X=deep brownish yellow,- Y=goldenyellow, Z=pelloale-yw. compound.pure blackFusesb.b.to pidotegroup. Commonlyopt. . "dl yellowishY=green, bluishZgreen,= earlyinsol.inacid. In­group.yroxene dicescalculated for a g g N )1.inacid.Data formineralwith48. leoc.Xstrong:= globule.magnetic liemarks SalmChateau. POs.centper2 Maygelat. green.

& PH £ PH H CO CO o « 0 a >, CM CO o 1C 32* |s£s OJ CO 3 t~ . "O£5 a'p'wCO _-W.Q coco' coco CO CO CS CO CO ^« *^ CO* CO IT"! CO CO § II II II II II II II H II II II II It H ii ii bo wo wo WOfe WOh WOC-H ! So' 2 J 4 ^ ""S a a * fl'5 ^ V * B' q" * ,,. s| S !*®!| Vfe '42c o m o X o (D.5 a on ®Ja as U| 342^2 o S 13 >< O W >H ^ O '«-! ti t4 ! bo' ; -*-*- ; S no ft !«« ; °S '§. CS 1 fc ' a I x| S £ o,o^T || o" 5 S o" sHE ' o °§ 2§ =^- o ^~ ^ ° 5- :^-

V « .22 S . o p .23 .52 Ja~t O £ ^ CO Q|S £ £ >II |Ss 1 o n O o'S 1"1 _ I ii I I 33 o if t o =>'< -o n" SN§ c C3 ® S 1 ! bo |o .S . J4 I ^ edium... fg o'§ P »stron £8 ft 0 o£ 3-1 S ' SVaS o »Vi OC ^ H U WAX 01 II A w m 7 A H ^3-° B' £*" c^ K «tn >- 90 CM & > S e 2FeO.5AlO.4SiO32. Rhodonite__...... ------Ardennite.-----..--. (As,V)O.8SiOj.25 Hedenberglte-..._. AUanite.------3(Al,Ce,Fe,Di)jO3. .._.-.-. Scorodite...... (S Mineralandname composition 3CuO.SO.2HO32 08MnO.4Al32. FeO.CaO.2SiO3 J. 4(Ca,Fe)O. Os.As205.Fe2 (Mn.Ca) MnSiO26 eSiOj.HjO H 05H2 HO2 iO4H2 n H o ' ^ 0 ^ 0» CO if -< ff * -; ^ - -

CT> "O S 00 S 1 CO " S a0^ CO 0 0> (N CO 00 K t- S S3 22 K t^ a ^ rH r-l r-i « is t-J »-; 11 3

3 < |s < C3 c: > TABLES FOR DETERMINATION OF MINERALS 135

Oft" : S*»,r o tas O O Q3 «a *-*t3 CD «v, dl - S ^ 'IS 03ahrt>n B ^ Eioa 2_: sectionp nonplend .a| Klfa ^ linln& "a a i-. 1 4 CJ 82 Ilil^ ^ ^JaKNS 1 PH

I"*" CO CO CO CO N ^* CO II II II II fl II II II II II II II II II II II II WOPR woh wo WOfe WOfc wo WOfc

as3°

! i ! itic ffl : "o : j| jfl afe ^ "5 ° j S^ -OS'S B 0 i CO ! a _ ca X P4 ui 6 "^ O 5§a"^ 5 ; g« gj2 o _«. jq'8 ^ & X xj| a a §5°^ fi .S 0 °2 ti^-^B »H 1- O~" o PM % ^ 0 0 EH ^ ^ ^

J I j-H i «3 :«*5 ! I ^ "^ _A_ ij 1 o t "* CO ! . !co u | O ^ I ! r-3 QJ *° , 1 ii 3 *. S / 1 II Jq H , t 1 {j O O ^ »-\ o u A II Q> j o ^ ^ et e il <= fl N " II =>< 1 - . oa ! '5 i d O (-1 1 _.2 . ! a o'«5 'Soto W o'2 o :g >* i55 u a 4 0 00 a o. 2S ^||g S « 0 !8l » ~a S& C'' II f^A g II ois Sli* e>S Cl ?wv II ?H y j' IIWA W 53V SI t> ^ ^*

Remarks w . w^ go s-af &TS

02 W M en w Iz M

CO *§

O5 V OOiQ «jiii

a |g ; i o 0 O . tuO ^ 5 I t3 . ; 0 o o q o « 1 r 1 O o1 tub a !« w g « Continued || j I i so> S | « §' 5 c 5 CO o^ S 0 oo H** o I o

Opticalorienta­ positivealgroup tion e « ; =>' « II o < e II UN ii M n >i " I If" k>111. k>NN ^ JH « fj N f\ r*i s "9 M ! u, ! i ^ Axialangle anddispersion .-« 1 i-Jg- S i.-! t< CO "H < ^o o a ft 2 II »' S II =j c? WA £% twA" "iA TwA £y ii wy jiwy ii IM»- S H JJ..IN i> £ K ^^ "» » H (N Ca C^

3 0 0 | Mineralandname o ii I !| composition ^ |o !d2 o'^ w '^ 3 ;| r og o | || j|S ^ N-o O S" 3 2° ~ J do > si o^o 3^o j B» -26 30 -aW §«0 a ^H-^ '^Trt O 0* "CS 5 . 1 < i oco 2 c3 CO *C s |o §S aS sS Q PH 5 W « M « EH ° it N! it 01 ? § § 1 , »O CO CO iO o t- co S S So S ^

(M CO 00 OS CO rf -j< co r* CO t~» t-* ^ t- t^ 1^ 8

'C.5 .tis> : '<>'£ <> ' C DO > TABLES FOR DETERMINATION OP MINERALS 137

^ II 68 ll H §!" 3 a a

5wl R N" i ^ OJO .. S-gS q-:i W i °"o. -a «^ r » no'S^s'^.ii W »-H O S.^ -I °>.^»?SS .1 « .a tn4?ona fl-^ -2 i 3ft . O PL< W

oqo INNNco II II II II II II II II MO wo

*: O ' ^ 0 o i -d O" -*^ ' -2 J CO 4J> q O £ fl O ; . "^flfl Sw> 43 .2 t* ® rt 2 *O fa '^ Ui t>» CJ .23 lal ,«l ? * p >y] *C) ® Oj M (b'S O te a W ll) El S3 3 ^ ^ 4343 *-» ^5T343 2 PH fl & pq O CQ PH O PQ

'C ' ft _-l I ! i, "S s *C "*^ ' O o _ 03 -v" ^ Q. S °^ -Si. -*. o -H 00 > ' O cfl 0 -I 0 S- Co 8 S £

i « P " * O bi * .2 a o «- I £ 0 ^ -S ° ,' f6 1 d^~ .42 { 03 03 4: C C 0 oS 43" 4: K .2 * c C 0 C- tf tf Ul kl 6 EH 0 ^ a a oo

^ O 43 ^ ! . ! *^o a 03"*^ ."t^ rQ o !° I .S^ 1*^ ^ a "o' ii i 7 i o S oo^ g o E u ii* u ii . a^- 'o c II -c ^^H -C / ^ < ^< ^° II {« t ^ o, t3 ll N 1 N 1 N II X ii ^ H is] I N k, r* O W KH > tx r* N K >

>» CD cj ! |_, be bb bo i ^/) . ^ °g°§> 03 S-d o'g ?:§ 1 ^ o g 7s.fi g 7 1 5 71 = s , 5o » .3 e> -is.? WV" 1 W *§ 1 WA ^ V £ ll v -gA av i IN u N, N 3 > IN w a - « s. CN 3 9 'a ;9 w ^ j .5W 9 q O O ' '3 ^ W "a !"£ |W 6AszOj.4SOj.33: 10(Pb,Mn,Ca,M IN 4PbO.9FeOs.2 0 a O a ^'i.,^ ! « !Si IS l§o ll ' "^ "W '5'®W ' PH ' OT SAsaOs flaHnlinito CM C3^ fcC^ *3' ®. ^ is;6 aQ^M§ cf^S 'SoBS -go§s T| iS8 1 i8 !§^ WM a*1 J P IP 1 i 5 a 5 o > c 3 PH PQ OH

<> 0 138 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS pd. X: Z= ary a 3*fsT3~ ^ o

SWbMH |9 S| 2§lil ^ S "

II II WO

* a& isli »M ,0 0,0 fl fl O O

as

i-H

! e o II lie* UN UN H

. af 3 II » o II HV II V

iai ! O i^". 3(Al,Fe,Mn)O;2 Uraconite__.. composi Io2 nazite..- Piedmontite SO3,UO,HO32 Mineralna ! 0) ® Ce,La,D 6SiO.HO2 PO25 4CaO. dl^ 320B «<) rt

<> c: >s TABLES FOR DETERMINATION OF MINERALS 139 a&t W ^ faT >" C3 T3 S* OM ^ f~\ lO'O*'*-* T1 ,43^3 , ^ « S 5 o 5 g 513 Qy^S fl S xs S -o * H «^H 8*1 SH m - 2* ftl$ba .$ C> 2 Ial5 W*«l *!«33 * '

islfla»S~ >-k,"t;" ii *i°f! oawSsil ri _ a" £ogSr-nJ.*o'o^j $0-1 I3,2,0m: S8g C3£5 If Sfcjainsi aS.a'oS) »£StiPM SP4.2s)&,3 ^f« osi a S « o

_ -U» O^ II ?H w^i coco vn Jo JMuj II II II II II II II II II II II II II wo wo WOP* WOfc wo WOfe wofe 1 1 p J3 : A-1 d ; 2 CO [> a fco 2 !> s -°. «d T i L« EJ . ® ^ . a, Q . S A 's §

_A. w c ~2Z 0 O 03 ; -S .9 « o" " ~"~ a ; 2- Cb g 1 2 a 1 -.IS £ o C o 8 I 1 c "E rHss iO 2 § | *j «. 1 U i t & c 3 -S2 £ 'o

C ja a c 0 -J « *3 c 1. 1 £8 £ Hl-i feH S C o ^ s 0^" C o o S

j [ COT1 o^ oj ! ! Tf T II . i i 1^ U « 1 e ! a « II .e < c t <. O || U || .C 1 N) || X c S3 1 S) || X I ll si UN ll SI X N > SI >- XX >

2 bb ! bi ! U e'-O .£? a o o Q o;^ . °a> "M i I O) fl ^ 2 ;2 . ;g § -S r-t | S t> 0 0^ WS^T" i^ U] >> ^t 7 o a Q. CO g^ CO O5 V C II (3 +J c' 2 a d OO (5 10 11 ^H a "Sv i WA 1 WA m II WV 2 W V 6 0--J bi >y n y ii w > y w K »^ ««- > N v. fe o s 55 CS CJ « IM >J H^ IN N >

q O |q .8 o'q W '3 '2 q "*. .Sf' \< ^ M Om « n. * . I P ^ Barthite_... 3ZnO.CuO.3 5w -So |o id d » t$~ ^|fe P ^ 2HO?2 Rfnrnrlit.p. » '^ooq 'SoS-s £ ql -go -gd !§MO j ^ a>J^oowi bjo^^-^*~* p fc "2 00 "3

163287 34 10 140 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

ci-Q En 3 a. s >

Il H ii ii WOP^ WO S WOfe WOfe IWOfes WOh

3 *"S 1 ^^ © 3i © o * * H U3 b^ O "* CUD o 3 Q O

« > a s

Axialangl dispersi d

2 A

o !O s ;W ^o ,'o neralna composi

CD TABLES FOR DETERMINATION OF MINERALS 141

flo N J-s* 55 a g a 03 g PH

"9 -.a S S ^ e '|S3l?I ^111 ^Ili 111x111 Ifil ll! co en CD M w

2 !3 >> >i JD cs ^ ^* 1 ^ r8 ^ "^ CO fr-» CO 10 *> to c^* »o i-- c**i *' * co 2 * eo' S IM C«5 CO' c5" CO «O rt *& CO N *O CO CO CO »O CO II II II II H II co II II II II II II II II II II II II II II II II O WOfc WO fe o ad g a -0 3 T3M '< qj c} i *" Jslu a . . : ^ c/3 g (B fl . R ^ -23 "S ^ cj "^ a? fg o.& ^| ^ o o o2 x a &3 o« o Z3 * * £3 O o! )o ^a M >» S tao1* "o "a ^3 fi ^3 o E Q « M « 0 > [M £H O «S" 2 S 8 o rt 2 - m 03-v- 1cc ; i§. F *" 2 "E 2 <3~ . M 0 S . . air -^- w -*- t/i OS « 2 g 23 25 'S® ill O -H 1 o S ^- Oo .2 j Ui *c PH .2 M aS * n PH "o 032^" «c->- f s: c 5 C § t; . c ^ a o s 0 0 O O I? (t I | o' >r- <* tj i ! 3 1 C ' u II 1 -Q ! u 0 C - 1 ; 0 - & bi ti A i o !o a o* « SP ?o' ° O5 1- Q c stro o o II 0 J3 .S _ s II « II 0- g ireft a °O u" o «*- cst^ 'll s wv w -g K II H A II &V II W A w II WA « CS K ^ si IN > (M t. ^, q !N ^ a~g < cc IN N fq K^ C*3 W ]O 0 0 o3 o a ^ ! M W^ '"? ra i ~ 03" p^ §0 O " On3 m o 3 .^ > O -2' **pd <5 j| O !*5 w ^ -9 ^."2 o i [D <> 0 So £Q -fiO « *W 03 ^ c^ ZS « I 6§ -302 S .igWajj ro N a, to r £ 1& 10 IS8 I O c30 PH W [3 H < Q < ' EH O

M -H II OS C^ 11 t^-

i CO 00 OO OO OO CO OS O> O

) t^- ^ I ^W »C O »O CO O3 i CO -* J 91 w O* CO i O O)

"H r- Is- »c o o l**cO«^ h*t*»oO*H O ^^ O 00 00 00 00 00 O S O 142 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS i^i|iillllili * i 03 "i\ .S3 w n . ^ M °^«artel"o SO«>H '"3 S § : ^ N -So SI[I8tII9H § ^er-^SSl^-il^ «§, ^^ Ti^« 2|& i§ S3||S B-IJ^S SI is»lg ii^ '131- § ^ jlfcS ^ 0 O 03 ft CO M

Shlfc CO i «i B"^ >;3 "PcStocs "^S.^^o T"^!^"" r- . T3o3 ^'£'2& -*J ^O ^ 10 ci *o *o c* co^i coco -*coS ^ ^** 2 II II II II II 1 II «. II II II II II U II *S W "2-= WO WO W WO WO WOfc WO£ bo

to ^ 3 -g . o 2 1 Is H V "oS ® « ^*F-« fl L fc*^^ ^. 3 *f* 0 03 S C (->, M ^ H 0 3s 3 1 1 §:1 1 -1 fi 0" o"' 00,0 o

S lM^-

o «§ ^ 1C3 N53 P< ' !i 5 *?«*T o { s»- 1. w Q? _*_o _*^ ' ^»_ -5s. ^ ^~ S ^-10 o ! o O ? a o ! » 5 S^" o ! c rH r- g -V- -V

» ^_ S a xJbi .g 55 i .9S" c fe &i _, a a a % ja^ c x -« 3 ^ § tr1 ^ PH M S E- _°_ p t>^3 a3 ^o. _ * r ^ ^ rf.nii.Mi.at >nui;aoo al £ biS c« 25 § f §§" §51 § ' §1 ! ** 1 III ass a c EH "* g "a& |o' 1 ^""is ? s o M .£ T^S S a 'C £4 »o °_0 1? i + ^2^ s & *§'*" £ S 5 j; < j;)/ § O Hfi j; e S SOD * 9 +3- ii ;* ii N UN ii !S3 II O, M M >H >. M S* .2- O a ®^> ! tub i * . ^ ,s tuo o ' fl *O o £ bjb bb i PQ *hn"w Is !*2 £ ^ x <>'9 S 3 0* So, fl i CO m O _ -v °^ i o S . O 0 rH ' *-* * * 0 -a ?UI J o II a oo » ro 7 1 7 3! WA II V II H II w S ^§ IN k K. k S, ^ -1 i ^N > ^ N CS 3 o 3 q :<5 :<2 :£ \s O 5 05 fl ;«> j[fl j^O ;CM fC a°"* ! !/ ? ! °W id / ? ! a V q l !p _oS !®-o 4 ^ <5 3 a 9 s J ^ fl ^ ^ S 9£e n§W § o < -i 0§CO ^W E3K* 5:<5 *~* '^i S**-' ^N a M M W . Q £H PM N

ii n sO sO sO § o^ s~H s"H 41 ^H rH rH r 1-1 r^ f-(

o r* O O5 OS * rt rt (N rt rt

US O rH »O 4J 4J oo oo o oo oo o ai rt c5 rt 8 r o - o II M W

<&£ CD < CD >§ TABLES FOR DETERMINATION OF MINERALS 143

2 f III . .g!J 3§l II J s T3 flu'®'"! M §> § « --^- "9V "S O ' . -2 O .oil jB-g ^§SS's;:^-§ *?^2' 1 55 nn^w c3 o * ^P 1 . 3 g W 03 i"ii! fl«-5 .S*S >a ««, "3 « -S 5s"S «* 2§ ^gis -S.g. ' a-w "3 fill! «M+3 «&2H -^S"40 a M W O O fc ra £ ra 0

o «a

II II co II II II II H II II II II IIII % « II II II II II II II II II WO CH WO WOfc rafe WOfc WOP* WOPt

.JL, , ijd C ,c 1 I a c +- S K» fe o ^'S 2 *d a .ic £ 2 «' 1 i X & ^ S b § "3 T: «s " - . B C feE i^2 M "3t> i TO Q U 5 B[fo .? O >^ ^ _ ,£ £ d jg S "o . £ ki^ 2 *Q fO T ^H O«2 - £ 5 "3 o o 0 IH > 0 P jS 0 >-

0 i W CO .0 S fc v. <-* (M, Ih-r ^ ( _^_ S S te c a . S. 8^O Q. O« ^ & c 23 ! I" c ~*~ 8 -v- O C c a | ft -!. r^ E 0 0 =S c*. '*! s 8 : a II # ~ 1 03 W & . 03 cO 2 e^eo toS i s PS £5 "3 55 "dl" a-o a) a J3 C £ f A 1 s|«* " ^§ >. §" &> * s"5 O £! o s 0 ^ C O S 3 tub i X o « o O ' t»Q | H H | o-H | . o V § « &** SS II rt « te « kJ ^* ^H QJ *J if v : 1 1 (H^ II N 1 PN ftp* Di,!1! 1 N II o . M X N O .^ K

bi | bi i U °2u ^ ° *o * *"* o M 2 7 ® bi 1 * bi £ o °3aog =>§ is % ^ o o H 7 to ;« *3 13 *^ 1 0 E x 2 11 * II & £3 '» qj c H e£ oo i3 D 0 n lp a WA «v a v fcv 1 11 WA" I/S,-" | T V -c A ^jSsSQ CQ H !> H IN H) >J N A (N

] j o : O |O W i . o o2 jo^ ,0 ili >o^H SSS^-'^*OS Io^ '^ 2« b S p. w a W « p «J O

S t--. S 0> 4 . ' S « c i c^ S

o> 8 3 § S o rt rH S

c: c: 144 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

P » l| u p-0 x d>-i "o" : "° n § Z M>lo| 5 -§N f £ l *'-s» 1 ^ u w llx £ . *j "is ill aca

« 0 R>> P *O . IO IT. ^

£'i£l (N Sl3n 3>22 roi^i S5S =^S . ^SA 5^ M-3 25 W"2-5g n> to II u 7 « ii ii 7 nil j? ii ii ii ii ii § ii ii 7 ii ii ii ii u ii ft OP=< HOf^ WOfe KO(=H WOfe WOP^- . OP^ WO rtO -% ' 1 ja £ ^ "* ! 1 W W 'fl i :§ 1 . S 1 o y 1 !<= ii ^ | 3 ~I 1 . i ) ot> S -i^ "v- t> o ^ "^ ^ O c " t> .-, t, "c 3 O 43 a "3 e£ "3 S, 13 * * . o C CQ~ ^ pg 0 P Q « P i a 4- 1 i Itii 03 ! "^ 4J ' >» D*«2 ^ 1 s ^ C | 73 >S3" o i i 2~.H °-H S^°O^^ 5O E 1 i EH S. ^. ^. £

73 ^ Sw :i ^-. aoj 0bo' ' a a *+a a oo" 'C w ^,0 B oj £ as I 'og " & W °i |5 .9 >> O c 3*S £ §.S 3§ ' CO y ^ PH < a O ^ ^ a « i bb 5-2 c? *"* ?- ^ w* ® o *^e bit. LI'S ^ O **s.I. tc be s, *a-- 7 s . jj ?> a£2 'aioo" So"o6» S»*»2 »00.2 w*3 « 1 wv" bv 1 V w II V II V gV w HQ w £|3 "^ Q (N t. S »- > *- > > > * S K > ? 03 N CS CO CS H O | oil 73 0 a W ' CB CQ Cs i . C«7 1 1 M ^r^ ® 5 iO ' « ~ : o as Q C3 r/i ^ . §£> .-§^ ' i ^ o .-§0 o Mineraln compoi Senarmont 6 t!Q -?°' S §O -r^ "P®-- j=C oo §O^ V. jg.S £fg< §- _|§. §£." §,£ ~.£ 1 Scs M 5co " Sco . 2« "3^ ® ro" 'C'f S1^ ^"'2 ^ OS EH-'MEHr^ r5

^ J VC CS CS CS CS CS c*i cscs C^CS'CSCN cs

oo oo ^ S ~* » ^ rH i-t CO C^ CO CO U3 cs' cs' cs' c« c^' c<< c^

g 3 J; S 8 2 3 S ® 8 | - cl cs- |

'*-<.21? ~ TABLES FOR DETERMINATION OF MINERALS 145

blood-red.XAbs.: 03 O , d Nearlyinsol.acid.in Stronglypleoc.:X= paleZ=red,very 3.95,^ w §-. - HCDecpd.by XandY>Z.

2 ii H ii ll ii li ll« ll II ll ii ii a WOfi Bol woa

0 03 reddish o .2 t* id t || IS . wn. "r fe 1 '3 'a . a

83,0,0 J3X2XJ 30 Ja fi O

V. ' 388 * s 1 gi. C«''"C _ > >>o> j ^ -tf-v- 0 w l- Jr o, >- 1 as °do 2 <| ii c . OT Qi t , c ! p ^ *^*.| i -^ -a C a o" o"sos s "w *"* S O O *H M4-V- P< C"s^ i I 1 c ~*~ c *-

e £ « e i . J 1 ^ 05 OT . j§-0 5 c H )~^" bib o c ' - el's ° c A . C I £ X *» 0 £ & 5^*3 £ t 0 § """ . o o S o c

i 1 ! aj ' ; S 1 ii 1 N « ;' a i " ! o ' j if o if e if c II « II -o^- o " °K ii N t N II N , II N UN ll M || M Kj S) X ^ * M N N

1 Ej bib is i is? bib a o w g ( k. b o "fl 2 o _u "Ho g £§ to a » p S o o 8 "ci a -fe a J "ii A w £>V ' fc y ii A M ii ii y I 1 £ «- « »- . 5 5 ! PI N CO !> N N M ^ ^ ; a 0 ; | ; a J 2? iO ! ! S ! o 1 a O !"J ! ],~ 'a o 6 (Fe.Mn)O. (Ta,Cb)z w | £ C- a* * O « O := s mtr* S?s? '"SO "S'ja b 1 1 S | r?* oP-ii*' Oi^ gS: c !?' I 1 '] s 1

pi pi

N N

c> 146 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

Isomor.hueb-with neriteferberite.and Pleoc.weak: X=lightgray-green, HCI.Sol.inTw.pi. Nearlyopaque. Pleoc.strong:very colorless,X=nearly cloudedY=reddish brown,Z=clear Sol.inH2SO«.conct. StronglyAbs.:pleoc. Z=darkgray-green. ^crosses\about010at Sol.inH2SO«.conct. HCI.Sol.inSameas BQ « Abs.:X>Y>Z. Remarks reddishbrown. s's^ X>Y>Z. ? 90°. ^||N §3.5 A fl M

, "O "? O e~ CN Oio COOuj J. I'M 'li'li'V coS § ii ii 7 ii T| ii 7? II II II II fls

brown-yel­ a Brownish Hyacinth-red. hyacinth Yellow,black, Iron-black.... Smokybrown, Brownish Cochinealto "3O black. low. black. O 4 . red. etc. 03 «« o s Q t~t ! 6 CD CD i Cleavage ^{perf-010very gS3 ft B 2| § CD ft 3 fe P ft 8 aCD 8 O O 8 . u O m J2 6 Systemand tn CD 03 .M 83 .2

Opticalorienta­ '"' " ci tion

J " e if e ]f UN II ^ !S3 S3 N 3 large..Very.. 1 IH Axialangle dispersion and r>»strong. r>»strong. -tj I ji & CD c a A" ?A" 1 n n CN CN

)O.7(Ca,Ce,Fe,Na3 Wolframite-.-... Nadorite----- PbO.SbaOs.PbClz Crocoite. .__ Perofskite-_...... Pseudobrooklte .. andMineralname Wolframite.. . Dysanalite.--. 9 3(Pb,Mn,Fe)O. composition (Fe,Mn)O.W03 6TiOs.Cb2O5 (Fe,Mn)O.WO3 4. .H»0(?)0V25 . 1 PbO.CrOa 3PbO.2Cr03 CaO.TiOa FezOs.TiOj

1(S p.

CN "3 00 oo a> CO CO CO CO CO « (N CN CN s

J CN to c| 1 to - oi tN M CN CN |

ij J O OO CO co CO ^ CO i CN' CO CD S 8 i CN CN CN oi «n '§s.eb [>, 0 CD 0. C3 TABLES FOR DETERMINATION OF MINERALS 147 o-~ %& w* H 0*. a . .- §1 1 i! 3£oa.swa n II h & * T&'Z-3| 3 03

i^Tii a. N II II It ll | II WOfl W ' t* -0*0* -g a J M » M S b & "S « 0 JC a i- » Bri * 1 i '§>» ? a-g ®*2 ^ *S b " K a i <°o^ 2 3 5 o W££. C" 5 P « a £ ff i % | , t & ' i * e ec 1 I a £ 0 0 8 | 8 | 5- £ rH C ^H C

§ 8 ' 1 i/ 'Cw ^ 4 £. ^" I PH fi ^g iS x f»-i . ^. 3 f *** j: 0 C s t -^ >. kl kl o = > c c o o o"*" 6 S ? : u 5t? U i S < « -i- u u «"3 |] |« > W

M ils1 § 9 i O f ®Q ii aj-is O ' .£3 2 » o. ^ri" " is S^ £ " M to ^^ S w t-* |j e> jg .5 V j; y i !' ^ fell IQ s 'A | 3 M iz H & W K M 15

6 o O i ^2J x~s Lj 1 X) « S ! ** 0 | M 09 - -S 1 O 9? «8, .0 IS b 1 1 I M t» a w 5 1 0 ^,0 |Q J 1 . | 2 Is 1 °13 a ^ S £ ^ |" |

a rt IM ? 5 § CO t- S S cs

O: i f 2 ¥ ' » ? i c. e- d e- ci "1 n

His 148 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

S 03. pi g II -^ B ^1 <^- % °''3'.0- >. W^ go.

K, 'g V . § at* o2 !>, "~ S £ B W 4jo ^ ^^ ^_: B& -°.2 _;7.« '9 o> « SSa B . W 9 03 §* . ? H "^ 0. S % is S . "3.3 _a w" '° !>HO H" 03 P > 03

.. "O t~ rH 0 rH 00 00 CO f$ C1 .^H J>T« ^55 w 4J ,Q CS 10 _j '« il li ii n n ll ii ii n ii ii n ii ii n ii ii ii B M **" O BOfe BOPn BCfe Bfe

'O T3 2 I "j "o! J3 ) "o_O a> -g .ajj® « _ | O .9 -9 3 CJ ^ "3 £s * "c J" "c 6 B t* P O ^ O 3 [a1 3 +3 d "E i i ^w CQ 0) a 1 2 «> a .«& 03 3 S S _&TH" 5;°" Js°" ^ i a O '3CJ §"§. i"3 S3- ' S tH 5 1-1 ^ I I J> D o S D § ^S? S2 o s «. a i i a Sl-s I s 1 £' i" I o -2.0 o . O P-i a| '3 r-( CO *3 o> o: i * CO a o § a J3 ® *S {3 ^>d fl C -C S o o o o ° CO & X3 5 % t^ O § S (i O » * ?1 o h. X 4J J3 03 ."a =! % \ »l op A f I 1 "cbl « 'Si . oo o S 2 S^ alo- e T5 s '-5 _O j? OOrH o o a ii « 3 ' § U J3X.2 u || 0 3 55 2 3 5;!* t S- II II NP S .2 'tl'w : &i 2 g « < a . ! o * I.*^ o'cj S* p oS 12 .2 6) I* !co* 2« o>ua° «o "*>3 S II e> S II o ^ II o i2 L?A ^ II WV II WV II WV II WV s 03 >- "3 ~> 13 ! * CN CM IN CN » ^ 1 s U 1 1 3 a S :o :« o Mineralandname 0) 2- :W :'~ g 5 OT f, PM tj^ St/^ ^^ of* >. > PH G^4 &£* cS& o> VwX

"O - 0} CN g IN CR i * CM *O oi CM' * " " ^ ^ rt- A £

T$J h-. W5 O CO o> g II £ ~' ' " " "" ' "*

IN S3 O5 O O -^ CO CO * * ^t 8 A

03 ***

£> t~l TABLES FOR DETERMINATION OF MINERALS 149

62 aW^ -a 3 o . M ft'R . 01 ^ (3 30) M a 333 2 Ofe Ma gS 3a a . WO,0 O* * iI . 3 a XI O |w W CO

"77^88 ii ii ii ii ii ii ii ii u u 'WOfc Ol wofc WOfa WO WOfa

, > [ t- "3At 03 "3 ' "3 S . £ <=i. "§ ! o oT o> o> 'a o aT oj a, c c .12 J3 .-§1 "c 2 1 1 1 1

1 01 "C i n 1 CP CD "c i E "d $'^ ° £ ! >^T a _a -^a^ S aOP -^o-,-r* -*e o 8 j 2° S 8^- ot 'c o o S 5 j- Si £ ^ JU 3. S+ £ 1 i Q> § E «l 1 a a - a £ .& O-id « o o \ §1 § § W IH % ^ ^ 2 2 § o° £ S! ^ ^« A S P- H '§« So i^^? i S ' O ' 1 "*"* ' ^ if 0

c § «« c ' <> <[ "3 « <*^ _,' << M II * II N II ^ II UNO u X >< X 1 M M X N

.£? cs'w ^ 'o ' 'S3 'o* O 'CO CO ** "Ho a CO i|^ W >0» I* IT t- 0 W P 0 II CM OO tl ^ OC i! °7 1 ti §3°° Q, 0)'°'w O""1 " OT CO " < ^ " « " u * ?. a "jIlS1 co II s> oo II a W?J II W "O II «y " S || HQ a II W A II W A « CNH £ww g >.'M'- >«^- £ N S (N IN > W tt W M' tf. - i » o i° io ; ri 6 o o ;o tt ; S ; W ;9 «> |{3 io O -2 " <»^ S 1"* o 6 jo s<5 ;° 19. low 6 g |qo l^o |«q iS |S a§| ^§ 1| flo 1^ -t x. t | 1 <5 11s |aa 11 as Ii i|5 iW ®S |o ^ll'* g S « S^: j>z 2^ s^; SS; gg. 1 W O P W cc S S ' PH PP W O d CO r>- 1-1 O O O "^ >o «5 35 S S S 9- to i^- h- r-- h- -«< « ^ ** ^ ^ ^ -^ *

tO Oi O) >O IO S ! ! ! § 3

CO o o 01 i*» ^** CO CM CO -ro 1 5 CO T* 1 f_- i ^ f-J F-i i-«" ^ r-! 1-4* i-J r-J i-J o 0 II o pa 150 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

. h -a - «

!il!.SosjqS§P If!-dSeoo -I

" 5 ° -2 o£ O O U

- .2i 1»" 1O

II "eS a 8 II N UN I tf M a "3>S «« O 00 £ n « ll »' 2 II W USA ?JV II WA II W

d<5 '-W §.§ jwi il 0 e7 . ft il9§ g M

en c: en TABLES FOR DETERMINATION OF MINERALS 151

. a &!°*n G>& _T3 Sa a 2

o^-x co <° **> g§ ""^"S * "j! °* S " M 77 77S5 77* 777 "7* T77 77 « 7 I7§ 775 77 777 OfM -WO 5 WOfa WOfa WOfa WOfa WO fa WOfa WO»S WO WOfa

a "S i If i OJ *J* ?** a; j2 2 am ® a ^ m bA * fl a c C C c 3? 2 «" -3 ^ o -a &S f % -s S 3 *c a® 4f r r £ O O < ^ # ?

1- [1 I i ** .17 o *" 1 s _O; 5."C "> Jc I so 0 I S 0 "" S 1 * u J 2s* i « M ** os n as J3 r 0 £ r ' *-J -S 8 _og ,0 . O* a ° m ~ ® § ^ c^ *< ^ r£ " . N "^7 w |C '. Si n c dgS c 2-a c C xi ^ O C o c o °,2 c E- c c u t 0 C i- IT- s £ s is ^ s 0 0 ^ ^ ; »; "3 i ; |0 Tf p ,co IJ '§5 CO 1 ,00 7 i n 1! « . ; II CO .Q c ; o < ?'< ' * ~ < ^ i n o' if v. N UN i n X I N UN ii N II N !* IN *- > N M M X

bi 73 A S M .S? c' ' . O o' ^?, L-l' -o i W V || W A II wv 7wv T S^ CN. « a 5 J, CN I. K, *~ >? 1 > CM K. > ^0~ > CN V. ^, CN ^ j4 r** ^- CN t> rt CN CN CN CM CN

| ; « io O ^ O i O <» ; o O !f£[ o CO 0 6 CN CO ra !^ CO W CN s 1 . o itd CO S ^ 1^ 6 '^ ;O bfl 6 O 0 6 M ^_ 3^0 g'* .-56 ^-o !^i a^O 3°^ '«O-H 'Hx . SOM * §9 ^ J-asW a QCN gO -3 «H - 9w So 9 5« go 'SoW * s -odS JtyCN OJ3tN oo S CO * C 9,2 S CO CM OCU 5^ "StZ 1-'^ "HCC*^ ^12 OOJ^H 3=0 "SS .20 o^ c M" 1 S5 'cafa §ro 5J2! ]«O £co .2^ ^ S co tH PP

' CM to to r- t- 00 CO 0) CM CN Tf 5 oo oo oo oo a M M 00 C» .CT> C3> M <»< f ^ fr t H ^4 r-* *-.' ^ ^

3 CN OS t^. O f5 -V00 00 * *?00 *0> 1 1 i « S « 152 MICEOSCOPIC .DETERMINATION OF NONOPAQUE MINERALS

>> 2 03 "C 0 rl'n C-i ^ 9 3 C SL ^ a 8 « y -c c^ w o ^H t 1 1 3 -gS O is t «^§ OP cc3 o C eCB 9 6

^ i j >> i (S w "3 IM CO 3 W) OP O S s £ j <: .9 ^ 1 0 . +3 g 2 03 "o £ a o o o p 1 fi 0 O O U .bj i (- o" . « 0 ; j S 51 2 !& tT~ti t t^it: &| 03 Is* 2 1 § lit o^ *^ *-O *- O § 2° 3 "o o" oo o e s' §' § 1 ~^ o r^"'" O ^H u O . i O bib S . 'xi a w .2 ! 1° u C 'o § £ ErM ^ fl <. toa| cs *"* 5 ^ W § _^_ [ ' . .U T to a x c xi x: J3 C3 O J>, £ 0 jXo +~^ o * * -^ *° 0 ®S- CO a w . ti >- tc CO o S : o P t- ' u ' l!« _o * ! e i " 11 i _u "o ^ <. ' J< II o< C3 || j. 1 ^ J5l H II X u M ii r» II M II SI || X II S3 II X O a, kJ k. K< Iv, O a ' *» ' 1 ; 1 too ! X3 I j be ] o S : . ' J>i K> ' ^ bjD m 1- |o o [ _ * C3 o' 03 , g P o '00 "" 4JO "T CO 'CO 0 t- TliO 0 r-t O rH O 2fc o'g 0 II "O '3"° S II & S? II S II K II a § iiIt o("~ iiII a ^to IIif a Q r^ II ii oo a ii wg ii w u W II WA II W || WA II WV £J II WV II A ^ P K^iNH »>. N K^iNu^Wt. q K,IN t. £ W 03 IN IN IN >fi O1 "1 ~ < ,0 2S S§ c H fi ^ <1 g M i « III iO u" *o to c

CO l> 00 CO r- TJ* CO CO C O C^ i - ! ! ! -O u"

O f C^ ^ oo a O5 - < O CO OS | | § CO ^* « i-i i-.' r- i J * -

.2 ^* CD CD 2 c 3 ^ >» TABLES FOR DETERMINATION OF MINERALS 153

"o -.0 {fit* 3?-

SgS§s& -309 N O

II II II II II II WO WOfn fc MO WOCn MO Ft

* "o_< ;i C i, Jx c i j V 4- c. % '££ V C 0. c a 5 C i T § *. "cc *£i Q 1 "5 z "3 "c 1 Mg IE 5 J. 0 £ C pj O > IS O

'S IS- a g O ='.§ og v. ,o" 6JD T _^_o" 1 o"SOil- 1 s c rH ^~ E"" 8 E o -v§ fl' tfl -4-d fj Q 4! * B 8 bi "o a ^~ £ a « i- f. to §! s O CO g 05 *^. £ - . P- £ 5_ W £' Q s _C d E d g.2§ £ 8 4- CQ 4- 4- X o o £ h. o S C C ? f l=iS FH!^ " c C s o ] 1 " . ; 3 o < 1.5* | ^7 i°' oil 1 1 i <^ t 1 '? 2 oa O t j 0 0 "3 C t O c O ^ C/ «o ^.£2 -o -3 C ii 11 ¥ 5 V II X II N if if UN II SI II II || f^p > V N X (* M M W N K u" i t P c 8 ! 60 JO ,Cl M < a fe c1 o' O v. 00 io' £ tCS--? °o7» & 7°- o h- 0 E l~ II C. Tt \\ S, U3 II 5 .Ec x °f!t.J 1 7 a ||J ii H y ii KV II WV II II W N V. ^

tO iO IO 'O

CD CD c: 154 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

> c. , ! < *! i III1 S1 1 s1 1 I s 12,§ ~ -ai" i<> I '£ ;, P 1 ^ '* . i « 0 -3 "-ij O^L a "S-" »« 2 "3^ ~ "1 03 * r ^ <0 ^ W W [Q 03 3 W *Q. ° o_. tr 03 ^>9 - * fc ^'S § « a "3 "5 j 3 > O.S ^ 'sa § fe P 41 '^lo ^ 1 H5 £ & & W> -4 3 as go. S PH < ^ 1 1 a

ifl il!t *? «82 CO OC S; 5 s 'O Sj -4-^rjQ i*j i^ 't U) C4 0s! i

O> i O "3o of i V (A g to O 3 | S i ic1 ^ 1 S c ^ ta o O & P C c 8 O \ | §en J | || .2 8 o>C8 1 5c j §tii o 5" °" 8 £ ! £ f*~ 1 i C

CO bi g" bi « bb 39 a 08,2 'S-s. _o i . C "^^ E3 s S 203 bfl c jj§ fi *O fl "^ £. CO gl . c CJ.3 ° ,£ c a f~" 1 a t *tZ o DD 0 C E- |o' C8 ! A o; ;o a 'cj 10* a 2 i 1 O i PH «3 i M . ". is o ^ II > I' !« M , y -0 g& i^o- 1** £ t c tfx 11 N t" 1 II N UN S N > « pH S "3 O N r* N fe 1 i g "bJo'[2«! ' P J s ' . 0 0 o 10* 'O'r?&{> ' oj p, 1 C< 1 rH 0) M C C-HS^ O C4 O Tjl r> O C 0 iO O CO W "3-S '% Jf || ?5 II ei> SD R «» II 8 II o ill i§yM i n wy N nwy 03 CN IM <

! c, ; o^ O '0 O 1 m 0 JO "^ i W t 0 o S^O |§ W i« 0 -. a tn C3 n O 03 KCl.Ca 2MgO.3 3a 2OO "Oo «J e»^O * Seniolite. Cftrnp.ffieil §8 "S^S S~W -2 'i |?S 8s, 0^4 '" 1 ^§^ 1 JH s I 1 S OQ C ra H 0 rl

to t^ « OS c< (N c> (N to to tf. to IO O

94.

O3 CO 2 281 H S - >O io if, to 1C § 1 §

! § ? s s f E «! to II

cd t>i <> " o TABLES FOR DETERMINATION OF MINERALS 155 fc'Si 5' ;:: EH a| ME colorlessinsection. I l.inH2O.Nearl Nearchalcanthite. !§5g§sl| I&: 9 S-al |- ^4 . O to eg - i

a . 771 ii H ii II II II II II II II wofl wofi WOfc WOfc WO WO iu- ! . « CO 11 o t H 0) % o £ <» - . S ' ® X Ill 3 i P I s IB s ' P ^ s ^ O 5 2PH ^ 1PH

1 1 8 c 1 I o~ T 1o" i o I I o § i & u | t ^^ PC, 1 K c/ C a e "oe d a _t o *U| *IHt oa o -g o 2* CO £ § 0 £ §

Jl_ Jl_ 1 II bb iSi *I 8 1 1 it 0 a o ^ 3-2 c -g . § ' a °' §o.Is :« li « | § Srot?'« In c. °x Xji-l X«5 HH IN 1 H w w w w K M t\ X {« o 1^ i o01:8l8 [J o' 53 j .-4 ® 1 0 x o^S^ 0 ' fe .§"3g^_J j O-> i o II & "il'gA S8 » a> "5 ^B » "5 II A §* 8 J«S E «§ £ I s IN N a CM 2 H) cc H? Hj 2 i n ] 1 ; O | , Orthoclase.-.___ MgO.AlO3.4SiOs2 KjO.4CaO.4BeO. (Na,K)O.AlO3.2 6SiOAbajOr2. Montmorillonite Minasragrite--... AlO3.24SiO.Hs2 NaO.BO3.4SiO2 -copperchalcar ZnO.CuO.2SOs. K2O.AlO3.6SiO2 Anorthoclase.__ KO.AlO3.6SiO2 VO4.3SO.16HjO23 2MgO.COz.4H2O AlO.9MgO.23'10SiO O.15H2 ...-____ Microcline____ Searlesite-.____ OnH2 Saponite______10HO2 +.a 2HO2 thite | i

CD c: 163287 34 11 156 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

c ig=H 1 * |l 9 4 1 3« 1 c-fojS _£ s <8 OJ m Q a> £ J2 -' f, ^ ^D .9 « N t-i a ^-< 5 ^ « ^_ 0 fe "'31 ^ tl qj *jl3 w W 5 C m'g O .+* v 5O *c 5 W > ° L^ IO 'q O ^> I* O gj p| W >> m of S > .S ® g 8 £ § w s ^ w ° 5 a £ X .-- fl -^ 5O *f° ^""c3 "^§ y*S '"(; 'cSr13 § a««- "h "3 83 £ 5 "^ r CO -3 a 't^I-l C3M ^*Q M a 0 g 03 CO ^ a

, I fvi -J _J ^ ' C^ * 1 t i ^ lO ., « S S II II * II 77 "if 7 7 || II II II ^ II ^ 5 n n 7 So W O WO fr 03 OP* a ." S 0 3 o 6 3 . j 'o C ^ - % o S £ O 1 _o "0 (- -^ ' i t ^ C G "3 j~ "oa 0) ^ 03 p: "o ^j & O ^ PH ^ O pi. 5 ; >. ' o ®o . f»00 5 VH o ffl03 3 ui ;. 2 2 03 4 c g S 1 o o O O i i 0 o S 8 EP- i - i 1 J _t 3 O , *- 0 as" ^ ? -g a**» ^ S s| £§ H^i '^5. j^ * 1 8.13 6« C 8 »(? _c X £ _Cj o O "" H *u - o CO g B 1 E^ O O EH S 1 s & 03 ] aM 10IS" 5- 1 O' O « i-H .1 g^Sg? S g o S rH || 5^ II 7 w a §

ilnegatn o J,H II a . o v W W N N M M " .S S * a S .2 i bb 1 § « ° o> °^l 03 || ISfe o 3 .a S s7» ?, 7» f 5)^1 ^ «J 'S c e A 7wX T W A ^ "* N H v "° '.» k C CN V. C c 3 > t » 03 CM IN > 5 2 c-i ra 5 3 O

§ Meyerhofferite.- <5' § Mineralandname 2CaO.3BO3.7HO2 CQ iLu .3SiO2.7iHAlO23 Trnn-f>nnnp.rr.halnan- o s<5 O.3SiO2.7iH2OAl23 composition

1C U- cc CD l^- CO e*1 co o- CO C-* »O TJ »O iT ff iO U" 5 Da. t-H r- i i-H r- T 1-1 *~

O cc ) Cf »O C*"t>- f » o- ) T T 113 IT »O u") u- S ir IT - i \ -

r^ w c S 1 i r IT a 1 ! V-

A £ CD <'> <:> < A 1.514 1. 543 1.537 2V = 56°.. . ..--do ...... H=2.5 Sol. in H2O. Nearly V CuO.SOs.SHzO 2E=92°. sky-blue. G=2.2 colorless in section. rdist_----- H = 7 Partly decpd. by acid. V 4(Mg,Fe)O.4Al2O3 2E = 151°. Z=6. blue.r G = 2.58i P 1 e o c. sometimes 10Si02.H20 rv. F = dif. acids. Tw. axis c and composition pi. {010^; and other laws. 1.533 1.547 1.545 2V-50°±..... X-6-...... H=3 Easily sol. in acid. 8(Mg,Mn,Zn)0. 2E=82°. ZAc=44°. ^010}. less. G = 2.470 MgO:MnO:ZnO = S03.11H2O r>p perc. 4:1": 2. Crr 158 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

0*5 bill ®g> 6

73 *S £ £ a O S 3 .S *» o * p; '^ a> S s 03-" O O.g tS O S °2« ~ MS 'SrH1 §° c3 s >>« 9, 1?" >.s .£ "3m o> 1=1 " y <8 H J" -0 oj 2 II ^ a P5 _g '53 * ±J O .5 u 1 "ft S °il § M J "->

co* as 3 P u £ O

8«1^ o- «J> CM "3 rH io *o "^ 52 »O 10 W Tt< ^ O* t*; ^j O §l£l oioieo cT}i tornSS r» oicxi'S oi NNCO ^*oiio -5 oi II II || II II || II II rH- II II II II II £ II II II II n II || £ || II M"«s3 MOrt< EOh MO PH n PdOfe coO WOfe MOP* raf^ O

w "3 ! Ui a) >> > "oO rH jj ' O e a O ®1 5fe -2 *- 43 « r-^ S Q, tS* Q> .r-l ^ I .t 1 .1 op, -go g a g c f *e f PI O OD r» B r» W P* O r> O O

05 O .2 sCO J"S i * kl e § 03 OJ o _no" CP 3 o'co g" s" 2 H 0^~ S 5 0 O

o ' ^1 "to " _£ « * 03° 03-2 o-^ .s 03 ^~* O EH y 'S S . ^ ^ PH^ CO ^J-H 2 a| O -^S "^ PH -3 - . OJ .rH M ..O a 8 -cSS & & -o o> bib o^ tj2.c3 -£^ " 5-S |tl "3 oa S o o c e 0 co S

"p |NJ< '"'be '§g ! be 12 ! « cfl iiS *3 O3 H 1 II 1 OT ^3 1 5o O ; e '^3 e | S 0 "fl C 1 « 8*® b ; ! ^ ' " o N II i § « II " II c I?>H UN ii >H I N i UN HN £ X O N K xi k X M ^ a 1 1 a bi 1 . « S3 'S O> "3 a M c ns l bo 41 £ ^ 2 lo-g S <» f ft Ul rt C3 n *"* *"* O QD te -H.« rS « 0 H 0 II s>' o> » > -C £ II V iSlL £ Sfci C 8 IIWV »S ^ fl> h^ ** ^ ( (NK. S £j K^ r** »*** 05 »»* N C^ t OB > r? 01

f- ! 2 ! 1 ! ! ! ! s

CON CO ^| COWCOCOCOCO »OiO ^ »O iCiO»OiCO»O 8 1 .2-w" CD CD > < < O TABLES FOR DETERMINATION OF MINERALS 159

Fe2OsMicagroup. 3Ss 3 ^ll'a* 8 ft s2 ofw*^ 's'EH-^.aS3 o^ en x> « Dawsonitegroup. with inacidSol. «M S.Hh S W^ -u«.2>3ae« Ehrensfriedensdorf. I? M«Sa ^>. _« . ^Os-S^xi -; d m °Ort *n a *~ % .2*8 effervescence. .!2 o o OfR'S """S osW^a^ 1.30cent.per 111 1C 1 1 P -itf li,0'i« ais L§'§1 aE »sg llS. »3 3 §§0- 3.-§ n S35 fl 3o& 9 o >,§ S 0 n a.9» °a.a-D45 ~ § SPM5 g^xi°t>o5 S >o

i 3 S . -3 go lj ^* 0 ^ . <0 QJ P^QJ W'^'O^a ^rl*

®2 ®5 *§! §£ --2 I 2 1 "3-° "3-° "3 >> 5° r^

^" s> 2 T3 u 2 .£ 2 So, *° .2 M | -§- 8 ^.'cgs' ^ ^ -§ 82 o i-nO O S tj ' 8 B** o

1 X \ s <0 OS 'Q 2 C -o" \ £ £: w| ^ if §1 a d c ?^O^ja '^'C'S ci{2 t O 0 C g p, |^« 5 ft" g §

!<=> i^ * tH c t | M N o" uftOWMS!0 -«- M MX EC

So? bo »^' ! !

O 00 O t-» C>«;- 9- o-nteor-i "H g D § II c g1 o S S II a o II o 11 8 " S ' ;g ii u ii wV u w ii IN N IN

$ O oi .0 i 3 o H ° 6 o ;o -25 |o g g ig0 .<2(g M d « N-tS « O lOj; O-TfS ISl J|i , o 0-^ .08 ,o s « >W ^^ ib| |3o |gg «g ig^ |^-o 128Saw iSiig sW T" m 1£ |»5 2°S §3-8 £s ^«S |S»S 50 g-8 I|S 8« 5^ fe^ |g «§5? 1 w ^i PP PM * ?

<> 0 c> 160 MICROSCOPIC DETERMINATION OF NONOPAQTJE MINERALS

> a? II II 1! Q "3 > .2 ^ nontronite.Decpd. tebras.Thetype jezekitehas0=1.561 andotherwiseis I- robablymemberka- etweenkaoliniteand isol.inMon-acid. o o olinite-anauxitese­ ries.Slightlypleoc. morinite,below.Be n. .a0> Remarks lifii HCI.by similar. ss'aigi a S'-S'o'a'o 5"l^llfe « CO ^ Ph M fr .. -a i _ o> w CO 11.11 cti§ I'll 17 " t^SUi J as ft:* « ^ II II II II II [ § III coOh BO ] coOfc to ' O ! £ I fe a) i 03 c * "c0 ^"3 a d a . a> ^> o »"li S& O | a a) C '""§ "5 "o B £ ^" II'£ 03 O PH O 5 & ft O "5 ; ! : i b£ a i i i C8 -1 t> t 9 *j o CD fe C5 C. C £ -&0 5. C _£_ O 1° p 8 o 8 8 ' £o^' a ^s ti) ; S-o c ^ CO _0 03 II 1 5 I^J II s| CD I I +3 1* P^ d e a (3 cC ! o c £ o O Kj.'p fl O CO 6 u s^~ ^ S S 03 | i ^d^ "c ""fl OSc i-fi is " 3^ ! is o >,^ «-2 i a ] . i ii, °S § II If 0 1" ^ MS >w " "c « II _ 1^2 or^N - a tx Tw ll X O M N X X a J s 1 | ] 0 - o! 1 i , i o'5« "bij'i" ° §« ! -^ CO |_, H^l § fla Qife O) S a o si« 0 g> £ o CN -^5 C3 *"* ^ « II a fe o . CO n _ S -a | Cd V'"'' "5 "3 V Igv IX II W A «tj"O OJ k. tj^lN k h^

e T3 [ !0 'o io . 6 Q 5HaO.2AhO3.6Si (Al,Fe)O.5Si32 Mineralnamean Faratsihite- - - O3.2SiO(Al,Fe)2; Jezekite..------Morinite__---- O5.6CaF4P2. 4(Mg,Fe)O.4Al2 .------Anauxite.------OO.A12Hor23 4(Mg,Fe,Ca)O. composition 2(Na,Li)F. 2(Na,Li)(OH) .2NaO.O3Al23 Corclierite------.2SiO.2HOAl23 Griffithite------CaO.AbOs. .HO10SiO2 2HO2 P025 O18H2 3SiO2 7HO2

IN S S i 1C i » : ? i-H

o CO "O i § i - 1

-6 r_t IN f~ 01 0 o S s O g to $ e S r' " il *

c: CD <> <> 11 t > TABLES FOR DETERMINATION OF MINERALS 161

1 jq 1 2 SS^'o * £ 2coO.S2'5:5 > 3 § erpentine.Easily S'C^S^O 3 a £'30'O'>'o w 8*° ticaKan-group. HCI.sol.inPleoc.: andY=greenXor Z=yellow,greenor erpentine.Decpd. HCISO4.Hbyor2 acidol.inafterigni­ universal.Othertw. |«^ £ -CMS E.I^'S-Ss 'eldsparAbsogroup. Oelat.Anso.Tw. poly.,{010}-.almost t~t 03 o red-yellow.dark _-* 'Oj^1 ^ ^^ .cft > §" II a >. lawscommon. O Faintlypleoc. a gerdluarsuk. '5 ^uSScn-jg-^o^oo;S§ X flo:^^'!g t^"ll a 4iC rH StfE 4J ' 'S2S.. -N .0 J=£»=i | OT ij B§£°d| .g Bc9S&p| ng§ §-2 fe | tion. 5'CW ft a -§£?j£3.. 3§.s.eE^J= < M CO w <5 CO CO w

O^.r. t/i 0)

] i ^ i C a « 5 e ' i i i 1I* 1 ) Q d c'f "g o a .cs o 1 " S ® "o "5 £ "3 -c £ "3 "o o P- ^ O a o o t- O ;' j' J - - o ' '; i i § -3 0 » i 3CX <3_: d c 6 & j o-^- § M. | 1 ! I I ! 1

P 0 Is g t. | .si C3^ E-1 .2 E-i O a 5. u PL, ^~. 5 Q? c/i ^ .X S^ CO g £ J5 c C ^S £8 5 d'C-S c. "tf c MOr* ~*~ A is 'C ftP"< °C o ^ (^ o"" o ^~" CD H h 1 HII ] ft£- B o"ll ft i £2>k < .< . 1 *5 i , * o ~P ® *^ ^ 52 ' "2 C3 W * O ' - O ' 1 ^ V. cC § ^^-\Q ' *~ r^H '1 ^ CO f' CS u W -^eg ^ N bi ^ 3 ° ti cT u ^ || t. j -^r "^ _. rr c 0 ' 0 O ^ (js 4-5 ^" ^ 'O o cuE^o 3^8 o" c. c K n *" "3 "^"S^"*"* o> s§^ c II -o II ^-.- fl ^Svjco'S ^ a 1 IS! H N M K t* M K 0 ^ "" N M IH O O j e i| '; u a bc ..5? o »o o o' no' o * O oj '"' 2 °0> -H?^' 4I O | to 0 CO CO 0 < S o11 ? U On* ^ *? « 2 3 a 1 I" T-H II C) yc II (N II "5 »o II a h -S £j II W II W || (B A II W || W IIWA WO "gA II WQ II C^ ^ ^ ^ E J> ^ *~ U *- cs (M (N (N IN M (N S (N C^»

...-'eidellite. otashclay-.------(Mg,Ca)O.Al023. (Na,K)Li.AlSis32 Bolinite.------SilicateFe,Mg,of ntigorite------S ^ io SSiOs.nHzO. O3.2SiOAl.2HO2 3MgO.2SiOO.2H2 9,0 RichK.Oin ! i $ olvlithionite_ 2 6 :6 gi '5 Al,H.O w 3 SO Ifc C>X *". d OP22: -s 'fc- ^ W 3 p. "S 9 §d^ '§9 o *! o^ «< PH f^ M B K > B W^

c: O TABLE 4. Data for the determination of the nonopaque minerals Continued Oi Biaxial negative group Continued to

Hardness, Varia­ Mineral name and Axial angle Optical orienta­ System and Cleavage Color specific Remarks a 7 composition and dispersion tion habit gravity, and bility fusibility

*1. 570 ' .5 English! te_. _ ------Small...... X=c.- - Orth.(?) {OOl^mic - Colorless...... H=3 Lewiston, Utah. 4CaO.K2O.4Al2O3. Plates. G=2.65 4PsO5.14H2O n _____ 2V=0°-8° X near c...... Mon. Hex. { QOH pert.--. . Green __ H=l Pleoc.: X=pale V 4(Mg,Ni)0. 2E=0°-12°. plates. green, Y and Z= Al2O3.4SiOs. r>p weak. pale brownish green. 6^_>HsO NiO 11.25, MgO 18.18 per cent. H=3 A 1.574 1.574 Phlogopite ------_ . 2V2E=8°.~""~ =5° -c_,/\c=sn-ali_-_ Mon.. - {OOUmic Pale brown or Mica group. Decpd. V K2O.6MgO. Y=6. green. G=2.85 by acid. Pleoc. AlsOs.eSiOs. r>» weak. F=dif. faint. Data for min­ 2H2O ' eral with FesOs 0.9, FeO 1.7, F 3.2 per V' cent. «L . __- ' 1. 576., Jurupaite ' _ .-.-. ZAelong.=31°- Mon. Fib White . . H=4 Sol. in HC1. Contact 7CaO.MgO. G=2.75 deposit. 8SiO2.4H2O F=2 -n 2V 62° G=3.10 Pleoc.: X=pale 1.i O\Jf\fi 1.680 1.574 jt>assetit6. __._-___--. X=&... ___ Mon __ ------j 010 H 100 Mooi}' Yellow----- CaO.2UO3.PsOs. 2E = 108°r~" yellow, Y and Z = 8H2O(?) deep yellow. H=2 ' 1.577 1.575 .. __ ------2V=30°.. X=c - Orth. Thin iOOl^eminent Citron to sul­ Sol. in acid. Luster CaO.2UOs.PsOs. 2E=48°. Z=a. tablets^OOU- phur yellow. G=3.1 on { 001 ^ pearly. 8H2O r>p perc. Nearly tet- F=3 * rag. H=4 ' 1 ' 588 1. 576 Sphaerite __ . _ _ - Large. ___ .- Z=c ----- Orth. Concre­ One dist---.-- Gray to blue- 5AlsO3.2P205. tions. Fib.c. G=2.54 16H3O A 1. 576 1 1. 578 Penninite __ -. __ 2V 0°_t XAc=0°±__- Mon. Shreds- i OOi j-mic Green ...... H = 2.5 . V 5(Mg,Fe)O.AlsO3. r>t> perc. G=2.7 Decpd. by H.SO4. 3SiOj.4H2O F=dif. Abnormal blue in­ terference colors without ext. Pleoc.: X= nearly colorless, Y and Z=green. TABLES FOR DETERMINATION OF MINERALS 163

2: i I! rillH te d M" 01 tog-SSfl

t. -H§ »oo St. ^§ «5 8 S S 8 CO W W N* ,-H . CM N v) co ci CN co co co 10 10 ci to ci 10 co ci ii ii ii ii ii g II II || II II II II ^ II II || II II II II || II II MO MOfr PH WOfe KO WOfe WOfe MO WO(*4 WO III c ,21 ,i 5 | § | I ic a" ? S "S V >> J3 ° B hT d) o 23 »r *iaj x:IT *c .^H w 2 1 a ' t I "3a> 2 "c A : « «! Q «: 0 PH O U ^ 5

^T O "C rl J o O S 1 < n S« - j J~ 1 -*- 2r.2 c 1 1 rt 8-3 c 0 C i* 1 i _8 ^- !z o c

* 0 g^>i " ! 1H ass I S S O 0 C ^< ? !. lo'-a '; "H j. I o' o' 73 ! . \ t " M ?»" * ?§"a"S- a II W Q H t« ' li N II (H || M ^ N N X M M N O O'

! ' ! 6 i >-c 1 o' 1 I ! o5 I J3 lc§ o o 1 P, i.cj ^« JJO K o' a) Jf ' fe i/ O ' CO O TlO O) J to M P JJ * I O ia5 & o oo a n t^ O Tt 0 CO O fH 00 || 0 u hi o c^ 01 ® II ^ a & II & -*3 ^2 ^ II ei K II o - Ifg II V ^ A TwA II v T gy n wy | W > w ^ CM U t^ & IN « cc IN IN CS CT IN «

d ~^- o ;9, 2 0 ~ 16 g || .6 d ®Q |t» ^ 1* OJ2 <$ !«* .0 ;^ ,Mn,Zn o :<5 3^2 5 M ' "^ i.lOHjO 9, oo 6Mjfv* <) S.

S ff « oo oo ^C iO U ! S5 u5 i 35!!!

00 O 8 S i 55533

S 18

<> 0 164 MICEOSCOPIC DETEEMINATION OF NONOPAQUE MINERALS

J 5S" "^Sls^g c S>, s5 ^l-; '1 35*2 cj » ^| S CO M 08 B '35 o fe o a> t*.tJv- ^ «ft ft Ut «j3 x; jg o a"WiE' S o ^ ° b 0! S 'E39" S «a .2 ^ ,_, § >> v« -3 jj * "® 'u '" ^- 8 « > -a fe .gg ,. 'g £"3 g o'^'cf - !3 * - * i1'" § ~ " "°1«5 -5.2 fe "3!§ g> M tva O OQ

CO o> £«!$ ^S s ^ "O CB-tifi (N (N S2 CM' to CN t^ 2 - CM-S ^CN~5 tNCMtvi tOCNcO « & P II ll S -g II li lies 2 ll II ii li II ii ii II ii ii II ii BOS wO BO 5 BOfe BOfe BOfc BOPn a> >^« &^a >> a

Ui 00 o _O "o m PH & c S ? an ai O a W CD ^ .^ i ^O -J4 -t 1 a t. c3 tie "^ ^ rf ^ "^ .^ £ "r 2 o C fl £ & ^ ^ O £ O q ! SP c i CO « 2 'E .2 ^ 3 S i 6 1 ' 1 a a o 4> I ^H -H O | o E '§ § s -v

a q ^i x T3 i a a 03 4J si £ S^; liC- - N- c -SJ) .a'-w x gl3 4J c C 4J^ -1- >> c ^- C3 .PO .P "t^ CO IS o a o " 2 S . 6 "383 5 i ioo 'gga> atil >i > O ' «» '-S "ce*3 JS i* I i 11 ^ en CM CN IM N H CN

s "ri 'O O 'O I® O i ^-* i e-» CO I ©O ! hrj O q W ' . * '**^ SJ a «9 0-t* 'c O | Q ^| i Q .^ o '2 50 oB C5 ^a s -2'S1^ -S^-1 ^ cO ! -^ o **i -i-s c3-.i A . 3s r ^ 1S2 ' 13 15 io Id :s°.2 «" * 8 c: ^ H H of03 ^ ^ ^^ ! £2 S cc "3

ir r^ oo Oi O5 O O iO OO « OO CO Oi Cft s§: GO *O »O * »o

co c - CO CD CC 5 3 S

CM T3 co CN u: O5 CO »O o >o »o 10 8 8 rH r-i rt r-* ^1 iH II CP

'5'^03 P>» TO £3 c: <> CD TABLES FOR DETERMINATION OF MINERALS 165

^=5 s .ai I"-:s » . ft . a M.2 ' o . CIS goo 3 ° g " S fel a a) Va . S|30 «S ~ a 08 a & §«£> § fl .S? ®q^g g.S'w

II II II II II HOfr WO WO ; S g -ao "3 ~ ® ®m 1 >- fc. <" bo . a fi w ^"3 j- C a 1 If a -a OJ3 9 O a 2 n u 1 1 §1 kt^^ O CO O PH O O o ^ o i i d o - ; ; t; c. j Ui o t|g s . S 'e '3 ° O*-i_i _Q £ n a> _§_ T QiO "^ O '^ i 03 g f^"2o 3 g ^ § 5 | I

u QJ Q 0} -o CO ; bib n 1 a CS |ll w - * £ M 03 O . 5 ! S o| MUS « S J2 C3 "SIo g c a ""^^ a ^ .0 1-1 S^lss t| i W o'" o O ^ o PI s £ .

i | 0^|j|o» i j i sssg&i gSaSSo^ > -k .^.2" i 0 I "aIf H II c K w M X| M X M y ^

1 | 14 i _| 100 14 \ a o T3 H 0 ' 2 'o' C8 g) "o 0 O5^ 10' g o » ' C! 0) O 1C O ^ 1 O ^ IN n k. fef" o"^ S» CO H 0-" ^ SF II °0\\ o §Ta rf II a O »o a 7gy ii wv" C?A II w ii HA II WA II W A II H A K.1N S. « *- j> IN K, IN t. K CN K. K^. t> *"* ^ IN »> IN IN IN N CS

!O io ; 2 iw O is ri |& iw 1 ! do 1 QJ i a .O i ^ "*. PM CS i C?CQ ;o ^ 1 w C«l ' r ( ^ io »S0 5^ i9sJ i^ 2(C '"O « H* ^^ -* x x /"s ' ^^ bflO ' x~Nfa '§.0 So -29 %. ^StS §>^ &a 11 !!» f II |-sS- WS Is 3(J o^^ ^1t^.i?5c^oo -» II TT vTifl ^1S3 p,B« «^>,0 -« I P« O 05 PP *^> -542 QjP^ ""^C^O "~* rS N M r§ 1

w 0*8 >, 1O Jg«

9«£3 tNco'2 '£ IMI § ii ii ii ii ii ii ii ii ii ii n 5 ii ii ii w«|- WOM WO W WOfc WOfe WOfl W WO

ei o1 a> ! ! °~ S " c ; d I "oC> 0 "§ ° o

03 §S t> .2 i t: 0 03 _p_ca o-! c "So o" 1 4 5 ^-^^ o 1 1 1 g

-^- co^ w o § o o5-^ a? x- X . OS^j O *"* J& & r W a| c-*~3a ^-^ ^ -^ & r- «J3 s. c. ta^ og q .c ^ ^ '*" "C ^ c t-3 W O O * 8 i £ O *o. ra "" «5 £- I§ S C s "S03 bi | 'gpCD o-l S2 i « II W X! U cj .0 « D. 'O - £ ! S e a *c -^ s II C >^5 II N « II SI II S3 § ft X K H H W O M a j © o bi I P ! "08 Si'1 IP'Sp s O 10' C3 Q, i '05 0 £ o o S o S ^ 0 s£ sj CO a .2 t» C3 IN jj 05 5-3 oo a . * II co II e g II a - w II Sf II II A « II W || «A II WV « II W II W ^ ** i® ^ ^ ^ IN 03 cs Z IN IN cq a IN CM e O n ^^ < iws i . 4(Mg,Fe)O.4AljO £, |O _ Q. ^ I Mineralandname BeO*.Ca6.2SiO2. composition ii^. Q © OA 'i o * rt W i bBS aSS® i M ^ ^03 ' T co £ 10SiO.H02 S jga ^««Sg Chrvsonolla Sg5 I^Jo -f-SSo j NaF Oordifirit.fi i05 2 "' J^ § 0 S^ 05 " aM^0 PH S

to toiOtot t~-OOOO to to to tO>O '1O*O to *

*tO rH OOOS OOOO 00 CO toCOiOtQ totou? ^

r^(N to.to 00to t^C3rH N t^toIO iH 00co to totototo tototo 8

.23 1' as 0 0 O CD <> <> TABLES FOR DETERMINATION OF MINERALS 167

gg2 '»M

O ^|° w ft j O hn hft »4 * "3 O O theblys brandite. _ O 03 03 Agroup.:l;K:Na §4? ^fe 3« ° o "(U ON^ H.T 50 -SO-i l> Oi^Q_. r^! MLd 5M w"^ ®" (>> - «^ S"§J .al d fl ft o .998- &Sil «iT-a«-S9 s ii ii eTt '35 II "3 o sX^S 3H^^^ o GO

"t? 0* 49 . ^3^ fc 0 a g03 *t- c c >.o "o1 1 1 42 "3 1 Is g 2 a ? S >g o O £ £ w £ ^ ^ . .go' X «sSj§ S Jg i ~^ a"" 1 o t c ^fti|^ = oT o8^W 3 yo 1 J_ a _|sS"S'g b. Iti 5: H^S- 8 |ft § 1 o ^. C 8

& o g g^" 45 ^03 « 8 03 E^a W W§. .0 03X3 O w" PH ^ g 03 2..S S .-4-3 a'o a'S c 2 ci5 C ^ ri§ j s o a'SS § .^ 0 C orl oii o"" " §^ s1 S S S O § H ' H JL- ! j §" . H 1 d p I ^st- ? if » to' c a . !v fe a S 1 y II "^ u O 03° S II -o ft -6< 55 -1" ? " c II t?^ x"" oil -2 UN a pj II w II 1 II ° II a CD II O 8 ii *& 0 O E? ii w « w i WA £3 A ^ya 1 wv II WV 8 J (N W q * a ^ r * . c^ o 1(5 io ;o ^ !° io O 'S O io iS :w ^

-H p- S S S ! S ! 3 s S CQ

^*«O«O O>CO t** CO i-* ciopo»O23oooo oit*-> o> *Ou9tQO*Ou3 lO iO »O O kO' T-trH^HO-^^; ^J^ ,_| 1! *

<> 0 6 * "5 MicaDecpd.group. byH SO4.Pleoc.2 faint:X=yellow, Y=brownish green, Z=brownishred. Insol.inHCI.Pleoc. inthickplates:X= brownishyellowto Sol.inacid.Related i1, green-yellow,Z= Remarks Abs:X

"o fe'5 02 03 .. -a >c Oi G " * ^^*3 °°. ."d irate...; ^ 00 O *-"* o T o 'O QJ 4-3 rO co ci *T3 10 c*i 13 Wl C^ ift cc cc oi iO c*5 'O "5CO . coco 03 (VS'53 II II II II II II II II II II II II ll H II II II g II II «"fiB WOfe WCfH WO ! s <~ "*-*o - ° J3 "3 MiX) x: "O} S) 3 afcn o W ^ O ^ ^ >H O U i ! i 8 i IN o _^_ O aj "i ® u '3 ; _o 0 * 03 o CO ! _9_ 5;w o" jc lo o I3 8° 8 1 I I xj a i g- 1 . X: ttg ! 92 i ^ !' E- 3 03 .xi a ^ q ce i t o §"^g| W O ^ & % p^ as 1 . . q i i ijfi °col?^L ; . 2 -ti \^ |o ^".ss-nS ' 1^« is "ft"* Q" * S- o o o \£^> i " i II r! ; ii "B'-w ' O ^^2 So" | u O, i B ill J II S tisjfi a ii ^ ?ES"KC^ "" r ~i >> O K N N M N ! ! ; ; ; a ' '; 1 co o | 'o' "§>'£ o ' .-^ ,-lo' i . o ! ' cj 'o u< 3 « «°^ CO ^ n ! i S? 03 Q, o"* n o !ooo aco O II 1 TP V o IIn » 'x O I' » g7 "5 ii wv II W II W A to USA II W A ^ fl ^ CN fc. ^ ^ (N t. £ ^ Ol fc. ^ CN ^ 03 (N (N CN ^ OS CO CN

..!Herderite.------Phlogopite__--.--. KO.6MgO.AlO23. Hillebrandite------.- Montebrasite------Meliphanite.------2CaO.2BeO.3SiO2. Mineralandname Muscovite...... -... O.3(Al,Fe)K023. CaO.2BeO.PO25. Phosphophyllite__ composition 3(Zn,Fe,Mn)O. 2CaO.SiOO.H2 A1O.P0325. 2Li(OH,F) Ca(F,OH)2 O6SiO.2H2 6SiO0.2H2 Os.4HOP2 NaF

rt ^ CN CO TX CO CD CD CD « S S rH

(N CO CO 0 CN CO CO CO CO CO CO c~ ?

CM IO IN CN CO * « CO s s 8 s 8

ll 0 <> < c: CD TABLES FOR DETERMINATION OF MINERALS 169

« n . q) a >>.bo '®c§^c§S u' N * ^> u*J 'S^^ O£> O ifis§ 33 a? d^s § « fe O "^ Q. |"£Mi9sS « ^sfls ^1?N & 3 - * X§ 03 fe 1 i^ S fl^S^J ti &S|f So)" § II S"o 2 §5 * 5 '"g s C N S^S^'I &§^S"N .D 00011 ey-«c3fl5» S^S' S^-^. O '?K g ^^WM0 t,° i '§'~H5^ rO'fl C II ^S^SSWftM^ sSHSsSn Its!£"^ £ IX sty *" < K o ^

O Oi Ol 4J f 080 -nl S |0 «53 CC CN Tji toco 'ill CO ON II II II II II II 7 1? II 777 " WOfr WO wo tt 0 W O WOP*

a d CO £ t^ bn " to c a 1 J* . c c i . 4 a > o ' CS 2 "c a 'j^'S | u m ^ c p C o

i rt 0) 0 ! a c c| o a .2 X D.O' ^o" C C E 1 1 I^E S 8 |S ." e 8 '; » VI ! >i ,;. 2 1 W a 03 2 S i-/*! i p! 4= ^ g £ ±- a c CO . 8 , S S 3^- C >-~. a o C c c -**~ o ^ ^ O 0 c c c S e^ 5 ^ s ~~ S" H H i J 1 _>, >> e >o 5. W CN 7 i. 8 II II C §§§§ .c 11 H ^ C < CS3 II < 1 WJ k N N !H > 1" p^ - ; ai ] M 1 o' ^- "5 ^ o" I n e e 0 2 0 0 S? -H a H II S II § a s II a §= W 5 b i* o II H 1 k.» 1 WA II (N £> N > ts > CN> 1, J> *> ^ IM

59 i 5 1 9 |°" iS cSM 9 O3.5Si(Fe,Al)s (Al,Fe)2O3. 2OaO.5MgO.8S Stilpnomelane. tremolite--.Soda O.4CaO.4Na2 18(Mg,Fe)O. --... S0- jio J?bc 2(Fe,Mg)O. 32SiO2.3HjO oS cS^f !®W s|2 BaO.2SiO2 "Tj a ?SS . l^ 4^ O3HS .2 -

0 0 170 MICROSCOPIC DETERMINATION OF NONOPAQTJE MINERALS

"-a A o * O usVoo fell^pf a i?""0 -11 - <» teS " cs CD"? J-CB; °^Sfe5odS a^ 7 S sj*^. i'£ ja'^s ^| rt _^j' 2 o t-T O O *"* £. P M *-:^-I £^C^ r* J* t£ fl® OT B 7* 1a CD ill f sill ^' Hi y IP |S« P3 9'3'S cs.IsSsSs"' OflS^j; a£> JS-iiJN 'Sag -3«« slSfe ^85 .SSc^SHSOfe 8.23&||fe B^ 3i»MN5 §S3 S-icf -c^^ft ra§ S -^^ pqPQPQ

"i« 2 S «P 3 - t? fill «M MM COCO IMco'Jo M * M "OM £3 &'>°»5 II II II II II II II II || II II II II II w fc'~ MO MO MO MOfe O MO MO

O CD CO ' ei " CD 10 5 CD f^

^"3 T3 DJO ? fe W Jf 3d ?*> i CD fl p* fe O "S ® 4, e o I | || | S-2& § 2 *C3 ^ PH O H PQ O 3 ' ^ 6" o O ; ! o" o" j ! a>CD ; ; S- S« i j 03 "n "" J fl "C-3 "? _Di S ^a § _^ -5.13 5;°" 5; 5 8 i 8 i-H* ^ S^-O O§ 8

.9 .9 .S3 L M§ !§" j " -^^1 i* 1 |l I .1 .^ 1 « i" * § a'5 e I ll n * « GQ I55 (£** S !i ~~ Q 1"1 cD S PH C3 ; i ta , , $1 r~> i i 1 II ^ | CD ° g i « o 60 "3-3 i1 03kl atH | u B j? || O C ft >H t, ; ] "5'SCD O o j i !> ti 3 c^ o' 1 1 Cfl p. M 0 0 t- °od| i 2 II => o? i M II cC tj.2 ta >, M 03 O t-i " RA || CM k Js 1 1 Ja2 03 Z t> CN CX S M CN «o" o j 9 ;o I61 §, ^ a iq »-« O°*w ~- ggo ;g ;o e W §.2 -2PH ^^ ^icT * o ^ 'o i^o . § AQ" ll |<5 gS ^ a ^au. a 3x~^ js I ||0 jl j|g |^§| §8 |1 ||r§ ||£S | s"s§ lisSPQ "Scoi§§ loogs "35i|| 6-< § k-~ y"\ r Cj § PQ" o < M1 fi fe CO

CN CN CN 6 8 a s

IS -8 ?5 CN CN CN - i CO CO CD CO CO O

>».i^ M Cft 00 O ^J* a ^ ®^IO CO 1OCO Co2»O 8 > ^ rt -H ^ ^ J ..§ rt

PQ pq

!| <> <> c> TABLES FOB, DETERMINATION OF MINERALS 171

W-.a-g .V a o >>co aǤ 3 a>

MOs

* tfiliwco csN M fl i 03 0303 -g 55 I CQ

1C "3 | CO | ^J >C O3 1C ~H 3. t>- CN »o ®« s co c^ oi c^ *c oi co

' & & H 1 1 « CJ O r- a ? s cd ^ 03 ?* £> *» Ct q g *^ ofe fcJ ir .a »3,0 (- _j303 *'2 en o PH co f J W "« 42 "n o <) O "? ' 8 d 1 tH (S V. *d-~- ® k 3 ^ -9 S."^ « _s " rH*fl«~< W c "S ^ ^H~O rH~ rH O O W) O 1 Eop< £ | r- o o o .258 aco fc* & ^r ^ ts o c 0 ! *s ^[2 tS o ^ ^"3 £ 1 w"s bb . °. X'-^. -A- ""^ CB-H .O 2 J39 flS C e E c 5 oj®. -£°« c o C 5 c |S |li fi PH O JS 2 S S

o. i ' ' O ' t- 1 . ^ ^ II 0 « c y* II u o if « a. c X" t. N II UN < C II N 1 ^JH LJ kj rS X X X > KI KS '

1 1*- ii Cl 0 00 O E 0 2 -1- -ii i O 11 1-4 11 O 10 to § s1 II c °o ^' i £ » H 1 1 >">- q ij: <* >> ^ 1 CC CM h- ^ CN CN CN CQ

! . o «, ' )O j . 0 Q^O o o :o (5 £W S^ ° ' N ''3 « O.2Ah«O.LiK2 3Fe,O.6SiO3. FezOs.SSOs.GH; *0~ eDouite.._. S '"! ''il^) O o J6 o£ "** 23 a lannonite_ 4?<5 a O2H2 SO 'tr ^ob -c ^ « C <=§ -c"l !^39 -S ffl M Q ' S'S SO 2o^w sttf I?W 1 Of*W i "S - J3 H . © ( j *rt w c*i o ^ CN D

00 00 QQ O> "M O « CN 65 CN co S 2

o ^*i CO t*- CN ub c5 co co 0 to S CO CO CO CO ? !

CN U3 O 00 CO CO iO lO 1 11 s s rt r-l -1 rt -H ^H o * II m c:

163287 34 12 172 MICROSCOPIC DETERMINATION OF NONOPAQUE MINERALS

".Sg-^i*y» Swj? os ai§? fi I j oT,gstifi>2 2^s £*.& O CO q Jco toco 03 Q**> '^ II II II 1 II CN II II II II II II II 1 II II II WOft, WO WO 'WOfe WO WO WO So a to Ui 1 . "o O M O « c. C I Si 1 k 2 2.0 = b s O c o o c O f= Q 03 OSO cd to o offl t> "d "C Q C "w 1^ n 'c "E c C J5 2 p: c tv) o CS w » IS a i=i "503 ; i i i to '§§ |o ] to 4 "3 '-3 ill i . 7 2 b *" ' O ' ti < li C II N II N || II N < a O S X S a j | S-° ; i + § §, 0 0 C 2S -3 06 60 a s * ^"a g II II A ' « II f g > >* B > 8 03 a CN CN CO CN Hi

! ! . i fc § cS1^ .'2. -6 10 g'CM ca a M M i r^ i f7) i .A* . A . . ^ s, o d^W o5,o« 3§ ^0 itIO .§2 J4> 9."co^:-^ 2S 'a^o '£ "3^ bio .O |8 § 00 c3 ^" 6 5 <1

0 00 0 -- CN 3 S CO CO CO CO O «

00 O ^H O O CM ' SCO ^ to CO O to to to

"5 CO * O> CN 00

.2 *> 0 0 <^ C> 0 0 TABLES FOR DETERMINATION OF MINERALS 173

O II II ® 0.5NS'

_'J3 M" M cfl _l_ i -~ P} W a; & !8« o"? 1?.

_; II J3 M £m S ~ ' w

IN tOcO to coco II II co II II II II II II II II II WO t WOfc WOfc BOS O WO BOf* as 1 1 o , a c a *a3.^2 'fc X2 c 73 o . 0) | *"§ 01 73 £ xfftF B J H « - . * i 4) Cft O ^S ^ = w .c C fc "3 "3 !*> : 53.22 oc all P3 O O 5 0 P 5 Pi o 'd'-'O ' ' -o*-- n 'S h «!o§ i c«u: J 3 TO t>5 C3 (~^ ' O u o w,^ MiQ. O? ^fe 'i aj 0 \- & s § § G M iiiii sff 8 ' 2 * °" 1 z._ g ^ 3 r_^ bi « I « a 6^ ~Q B .2 S PH £ PH £M t/i 'Cc s 5.2 t ,£< c .e e « £ _o .C «- o °E ti u c hM I a Ui O EH 0 0 O 0 i n ! 1 i H I ". I M i *- t> i bi _ i [ II . 2 »- . ' O 43 IOO fcH O 1 M* t .2 ca ^^ i tt >ci II a & |o"£o_% 00) 0)X J3 || -c v.i-i e -c if t3 || c if UN e M UN II M < 1 N a II N S-K N 1 N K > M >H M > X K K K J \ 1 bJi J \ bi; 1 1 , a '0 ' o o' "' ! § i*O ' jj' i-,O a> Tl aj i-^ 0) 4 41 to p. o to D. o Q. 0 0 IN o « § C ii cc °o ? He 88 a C a o ~ 00 a 3 II » g7^ II II WA II V t V II A II A II W A || fV| \/ II H A II A j> j> IN fc. f> w 0 * - j> *^ J> *- i> ^ ^ IN K >N W J> *- N IN C*J ^ IN w IN (N IN IN

i 1 ; . ;O io i io