Carbonation of Borehole Seals: Comparing Evidence from Short-Term Laboratory Experiments and Long-Term Natural Analogues Christopher A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crystal Structure of Hillebrandite: a Natural Analogue of Calcium Silicate Hydrate (CSH) Phases in Portland Cement
American Mineralogist, Volume 80, pages 841-844, 1995 Crystal structure of hillebrandite: A natural analogue of calcium silicate hydrate (CSH) phases in Portland cement YONGSHAN DAI Garber Research Center, Harbison-Walker Refractories, 1001 Pittsburgh-McKeesport Boulevard, West Miffilin, Pennsylvania 15122, U.S.A. JEFFREY E. POST Departmentof MineralSciences,SmithsonianInstitution,Washington,DC 20560,U.S.A. ABSTRACT The crystal structure of hillebrandite, Ca2Si03(OH)2, was solved and refined in space group Cmc21, a = 3.6389, b = 16.311, c = 11.829 A, to R = 0.041 using single-crystal X-ray data. The structure consists of a three-dimensional network of Ca-O polyhedra that accommodates wollastonite-type Si-O tetrahedral chains. Each of the wollastonite-type chains is an average of two symmetrically equivalent chains related by the mirror plane perpen- dicular to a. In a given structural channel of the Ca-O polyhedral network, only one chain orientation can be occupied to give reasonable Si-O distances. The 03 and 04 sites cor- responding to each vacant Si2 site are occupied by OH groups to achieve charge balance. The wollastonite-type Si-O tetrahedral chains in the hillebrandite structure resemble those reported for many calcium silicate hydrate (CSH) phases. INTRODUCTION brandite and comment upon the structural relationships Hillebrandite, Ca2Si03(OH)2, is one natural member of hillebrandite with other CSH phases. of the CaO-Si02-H20 ternary system, which includes nu- merous natural and synthetic calcium silicate hydrate EXPERIMENTAL METHODS (CSH) phases, most with a common unit-cell axis of about After an exhaustive examination of many hillebrandite 3.64 or 2 x 3.64 A and a fibrous crystal habit along this samples, a fragment ofa specimen (NMNH 95767-7) from axis. -
Raman Spectroscopy and Single-Crystal High-Temperature Investigations of Bentorite, Ca6cr2(SO4)3(OH)12·26H2O
minerals Article Raman Spectroscopy and Single-Crystal High-Temperature Investigations of Bentorite, Ca6Cr2(SO4)3(OH)12·26H2O Rafał Juroszek 1,* , Biljana Krüger 2 , Irina Galuskina 1 , Hannes Krüger 2 , Martina Tribus 2 and Christian Kürsten 2 1 Institute of Earth Sciences, Faculty of Natural Sciences, University of Silesia, B˛edzi´nska60, 41-205 Sosnowiec, Poland; [email protected] 2 Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria; [email protected] (B.K.); [email protected] (H.K.); [email protected] (M.T.); [email protected] (C.K.) * Correspondence: [email protected]; Tel.: +48-516-491-438 Received: 28 November 2019; Accepted: 27 December 2019; Published: 30 December 2019 Abstract: The crystal structure of bentorite, ideally Ca Cr (SO ) (OH) 26H O, a Cr3+ analogue of 6 2 4 3 12· 2 ettringite, is for the first time investigated using X-ray single crystal diffraction. Bentorite crystals of suitable quality were found in the Arad Stone Quarry within the pyrometamorphic rock of the Hatrurim Complex (Mottled Zone). The preliminary semi-quantitative data on the bentorite composition obtained by SEM-EDS show that the average Cr/(Cr + Al) ratio of this sample is >0.8. Bentorite crystallizes in space group P31c, with a = b = 11.1927(5) Å, c =21.7121(10) Å, V = 2355.60(18) Å3, and Z = 2. The crystal structure is refined, including the hydrogen atom positions, to an agreement index R1 = 3.88%. The bentorite crystal chemical formula is Ca (Cr Al ) [(SO ) (CO ) ] (OH) ~25.75H O. -
BREDIGITE, LARNITE and ? DICALCIUM SILICATES from MARBLE CANYON Tnolras E
THE AMERICAN MINERALOGIST, VOL. 51, NOVEMBER_DECEMBER, 1966 BREDIGITE, LARNITE AND ? DICALCIUM SILICATES FROM MARBLE CANYON Tnolras E. Bnrocn, DepartmentoJ Geosciences,Texas T echnological College, Lubbo ck, T enas.r Alstnact The a' (bredigite), p (larnite) and 7 (unnamed) forms of dicalcium silicate (CarSiOr) occur together in the contact zone around a syenite-monzonite intrusion in Marble Canyon. Bredigite, larnite and 7 have consistant crystallographic orientations when they occur together. These relationships reflect the crystallographic direction in which the reorganiza- tion occurs when transformation from one form to another takes place. INrnooucrroN Two polymorphic forms of dicalcium silicate (CazSiOD have been de- scribed as naturally occurring minerals by Tilley (1929) and Tilley and Vincent (1948).The mineralswere found in a contact zonein Larne, Ire- Iand and given the names larnite and bredigite. Until 1964,no natural occurrencesof theseminerals had been reported from any locality in the United States. In 1963, three polymorphic forms of CazSiOawere found in the contact zone around a syenite-monzonite intrusion in 1\4arbleCavon. LocarroN AND SETTTNG Marble Canyon is in the east rim of the Diablo Plateau in Culberson County, Trans-PecosTexas, 30 miles north of the town of Van Horn and 2 miles west of State Highway 54. The canyon is about a mile long and terminates upstream in an elongate amphitheater roughly a mile and a half Iong and half a mile wide. In the center of this elongate amphitheater is an elliptical outcrop of five different types of igneous rock that are arranged in a concentric pattern. From the center out they are: (1) a coarse-grained syenite; (2) a coarse-grained green monzonitel (3) a medium-grained gray monzonite; (4) a discontinuous narrow border of olivine gabbro; and (5) small rhyolite dikes which cut the other rock types. -
Grossite and Hibonite Bearing Refractory Inclusions in the CO3.1 Chondrite Miller Range 090019. D. K. Ross1 and J. I. Simon2, 1U
49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 2559.pdf Grossite and Hibonite Bearing Refractory Inclusions in the CO3.1 Chondrite Miller Range 090019. D. K. Ross1 and J. I. Simon2, 1University of Texas El Paso/Jacobs Technology/NASA-JSC-ARES (2224 Bay Area Blvd. Houston TX 77058, USA ([email protected]), 2NASA-Johnson Space Center-ARES ([email protected]). Introduction: We have characterized 142 refract- finer grained particles with substantial porosity. Ongo- ory objects by EDS hyperspectral X-ray mapping in the ing reaction with nebular gases produces down-temper- CO3.1 chondrite MIL 090019-13. These include 127 ature phases partially replacing earlier formed phases Ca-Al rich inclusions (CAIs), 14 amoeboidal olivine ag- and infilling porosity, leading to densified objects. gregates (AOAs) and one Al-rich chondrule. These data Most CAIs are not fully equilibrated, but exhibit miner- are being used to reveal the mineralogy, texture and alogy reflecting a considerable range of temperature, bulk composition of these inclusions, and to identify ob- with relict phases. Hibonite is typically intergrown with, jects that represent endmembers within cogenetic popu- and partially replaced by spinel, violating the predicted lations of primitive inclusions, which will be further in- crystallization order from thermodynamic calcula- vestigated by future isotopic studies. Previous work re- tions[3], in which melilite should precede spinel crystal- lated to these refractory inclusions in this chondrite also lization. appear in [1] and [2]. Twenty six inclusions are hibonite-bearing, 18 are grossite-bearing and one inclusion is corundum-rich. In seven of these inclusions, grossite and hibonite coexist. -
Mayenite Ca12al14o33 C 2001-2005 Mineral Data Publishing, Version 1
Mayenite Ca12Al14O33 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Cubic. Point Group: 43m (synthetic). In rounded anhedral grains, to 60 µm. Physical Properties: Hardness = n.d. D(meas.) = 2.85 D(calc.) = [2.67] Alters immediately to hydrated calcium aluminates on exposure to H2O. Optical Properties: Transparent. Color: Colorless. Optical Class: Isotropic. n = 1.614–1.643 Cell Data: Space Group: I43d (synthetic). a = 11.97–12.02 Z = 2 X-ray Powder Pattern: Near Mayen, Germany. 2.69 (vs), 4.91 (s), 2.45 (ms), 3.00 (m), 2.19 (m), 1.95 (m), 1.66 (m) Chemistry: (1) (2) (3) SiO2 0.4 Al2O3 45.2 49.5 51.47 Fe2O3 2.0 1.5 MnO 1.4 CaO 45.7 47.0 48.53 LOI 2.2 Total 95.1 99.8 100.00 (1) Near Mayen, Germany; by semiquantitative spectroscopy. (2) Hatrurim Formation, Israel; by electron microprobe, corresponding to (Ca11.7Mg0.5)Σ=12.2(Al13.5Fe0.25Si0.10)Σ=13.85O33. (3) Ca12Al14O33. Occurrence: In thermally metamorphosed limestone blocks included in volcanic rocks (near Mayen, Germany); common in high-temperature, thermally metamorphosed, impure limestones (Hatrurim Formation, Israel). Association: Calcite, ettringite, wollastonite, larnite, brownmillerite, gehlenite, diopside, pyrrhotite, grossular, spinel, afwillite, jennite, portlandite, jasmundite (near Mayen, Germany); melilite, wollastonite, kalsilite, brownmillerite, corundum (Kl¨och, Austria); spurrite, larnite, grossite, brownmillerite (Hatrurim Formation, Israel). Distribution: From the Ettringer-Bellerberg volcano, near Mayen, Eifel district, Germany. Found at Kl¨och, Styria, Austria. In the Hatrurim Formation, Israel. From Kopeysk, Chelyabinsk coal basin, Southern Ural Mountains, Russia. Name: For Mayen, Germany, near where the mineral was first described. -
Calcium-Aluminum-Silicate-Hydrate “
Cent. Eur. J. Geosci. • 2(2) • 2010 • 175-187 DOI: 10.2478/v10085-010-0007-6 Central European Journal of Geosciences Calcium-aluminum-silicate-hydrate “cement” phases and rare Ca-zeolite association at Colle Fabbri, Central Italy Research Article F. Stoppa1∗, F. Scordari2,E.Mesto2, V.V. Sharygin3, G. Bortolozzi4 1 Dipartimento di Scienze della Terra, Università G. d’Annunzio, Chieti, Italy 2 Dipartimento Geomineralogico, Università di Bari, Bari, Italy 3 Sobolev V.S. Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia 4 Via Dogali, 20, 31100-Treviso Received 26 January 2010; accepted 8 April 2010 Abstract: Very high temperature, Ca-rich alkaline magma intruded an argillite formation at Colle Fabbri, Central Italy, producing cordierite-tridymite metamorphism in the country rocks. An intense Ba-rich sulphate-carbonate- alkaline hydrothermal plume produced a zone of mineralization several meters thick around the igneous body. Reaction of hydrothermal fluids with country rocks formed calcium-silicate-hydrate (CSH), i.e., tobermorite- afwillite-jennite; calcium-aluminum-silicate-hydrate (CASH) – “cement” phases – i.e., thaumasite, strätlingite and an ettringite-like phase and several different species of zeolites: chabazite-Ca, willhendersonite, gismon- dine, three phases bearing Ca with the same or perhaps lower symmetry of phillipsite-Ca, levyne-Ca and the Ca-rich analogue of merlinoite. In addition, apophyllite-(KF) and/or apophyllite-(KOH), Ca-Ba-carbonates, portlandite and sulphates were present. A new polymorph from the pyrrhotite group, containing three layers of sphalerite-type structure in the unit cell, is reported for the first time. Such a complex association is unique. -
A Case Study from Fuka Contact Aureole, Okayama, Japan
328 Journal of Mineralogical andM. PetrologicalSatish-Kumar, Sciences, Y. Yoshida Volume and 99I. ,Kusachi page 328─ 338, 2004 Special Issue High temperature contact metamorphism from Fuka contact aureole, Okayama, Japan 329 The role of aqueous silica concentration in controlling the mineralogy during high temperature contact metamorphism: A case study from Fuka contact aureole, Okayama, Japan * * ** Madhusoodhan SATISH-KUMAR , Yasuhito YOSHIDA and Isao KUSACHI *Department of Biology and Geosciences, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan **Department of Earth Sciences, Faculty of Education, Okayama University, Okayama 700-8530, Japan The contact aureole at Fuka, Okayama, Japan is peculiar for the occurrence of extensive high-temperature skarn resulting from the intrusion of Mesozoic monzodiorite into Paleozoic marine limestone. The occurrence is also notable for the finding of ten new minerals, of which five are calcium-boron-bearing minerals, and scores of other rare minerals. Skarn formation at Fuka can be classified into three major types 1. Grossular-vesuvianite- wollastonite endoskarn, 2. Gehlenite-exoskarns, and 3. Spurrite-exoskarns. Grossular-vesuvianite-wollas- tonite endoskarn forms a narrow zone (few centimeter width) separating the exoskarn and the igneous intrusion. It is also found, developed independently, along contacts of the younger basic intrusive dykes and limestone in the region. The gehlenite -exoskarns, in most cases, are spatially associated with igneous intrusion and are extensive (decimeter to meter thick). However, exceptions of independent gehlenite dikes are also observed. Retrogression of the gehlenite endoskarns results in the formation of hydrogrossular and/or vesuvianite. Accessory phases include schrolomite and perovskite. The predominantly monomineralic spurrite -exoskarn was formed in the outer zone of the gehlenite-skarn parallel to the contact as well as independent veins, dikes and tongues. -
Alphabetical List
LIST L - MINERALS - ALPHABETICAL LIST Specific mineral Group name Specific mineral Group name acanthite sulfides asbolite oxides accessory minerals astrophyllite chain silicates actinolite clinoamphibole atacamite chlorides adamite arsenates augite clinopyroxene adularia alkali feldspar austinite arsenates aegirine clinopyroxene autunite phosphates aegirine-augite clinopyroxene awaruite alloys aenigmatite aenigmatite group axinite group sorosilicates aeschynite niobates azurite carbonates agate silica minerals babingtonite rhodonite group aikinite sulfides baddeleyite oxides akaganeite oxides barbosalite phosphates akermanite melilite group barite sulfates alabandite sulfides barium feldspar feldspar group alabaster barium silicates silicates albite plagioclase barylite sorosilicates alexandrite oxides bassanite sulfates allanite epidote group bastnaesite carbonates and fluorides alloclasite sulfides bavenite chain silicates allophane clay minerals bayerite oxides almandine garnet group beidellite clay minerals alpha quartz silica minerals beraunite phosphates alstonite carbonates berndtite sulfides altaite tellurides berryite sulfosalts alum sulfates berthierine serpentine group aluminum hydroxides oxides bertrandite sorosilicates aluminum oxides oxides beryl ring silicates alumohydrocalcite carbonates betafite niobates and tantalates alunite sulfates betekhtinite sulfides amazonite alkali feldspar beudantite arsenates and sulfates amber organic minerals bideauxite chlorides and fluorides amblygonite phosphates biotite mica group amethyst -
Tobermorite and Tobermorite-Like Calcium Silicate Hydrates: Their
TOBERMORITE AND TOBERMORITE-L/KE CALCIUM SILICATE HYDRATES: \ THEIR PROPERTIES AND RELATIONSHIPS TO CLAY MINERALS AUG. 1963 NO. 24 DIAMOND PURDUE UNIVERSITY LAFAYETTE INDIANA Final Report TOBERMDRITE AND TOBERMORITE-LIKE CALCIUM SILICATE HYDRATES: THEIR PROPERTIES AND RELATIONSHIPS TO CIAY MINERALS TO: K. B. Woods, Director Joint Highway Research Project August 2, 1963 PROM: H. L. Michael, Associate Director File: 4-6-9 Joint High-way Research Project Project: C=36-^7I Attached is a Final Report "by Mr. Sidney Diamond, Graduate Assistant on our staff, entitled "Tobermorite and Tobermorite-Like Calcium Silicate Hydrates: Their Properties and Relationships to Clay Minerals"., This research has been performed under the direction of Professors J. L. White of the Purdue University Agronomy Department and Professor W. L. Dolch of our staff. Mr. Diamond also used the report as his disertation for the Ph.D. Degree. The Plan of Study for this research was approved by the Board on May 22, 1962, and it subsequently was approved by the Indiana State Highway Commission and the Bureau of Public Roads as an HPS research project. This is the final report on this project and it will be submitted to the sponsoring organization for review. Several papers from the research are anticipated and each will be submitted to the Board and the sponsors for review and approval prior to publication. The report is submitted to the Board for information and for the record. Respectfully submitted, Harold L. Michael, Secretary HLM:bc Attachment Copies: F. L. Ashbaucher J. F. McLaughlin J. R. Cooper R. D. Miles W. L. -
Strength and Microstructures of Hardened Cement Pastes Cured by Autoclaving S
Strength and Microstructures of Hardened Cement Pastes Cured by Autoclaving S. AKAIWA and G. SUDOH, Chichibu Cement Co., Ltd., Japan sIT IS well known that autoclave curing is suited for manufacturing secondary products of cement such as asbestos-cement pipe, precast or lightweight concrete products, and sand-lime products. In many cases, the hardening process and properties of auto- claved products differ from those of products cured at ordinary temperature. By auto- clave curing the calcium silicate hydrates are formed most prominently, and it may fairly be said that the properties of those hardened bodies are mainly dependent on the kinds and amount of calcium silicate hydrates formed. The purpose of the present paper is to identify the kinds of calcium silicate hydrates formed and to determine their effects on the mechanical strength or other properties of the autoclaved test specimens. From the results of these tests, binding capacities of several hydrate compounds, as well as suitable conditions for autoclave curing of cements, are discussed. MATERIALS The materials used in this study were three cements, ordinary portland cement (OPC), portland blast-furnace slag cement (PBC) and specially prepared cement (SMC). OPC and PBC were of plant manufacture. The content of blast-furnace slag in PBC was 45 percent by weight. SMC was prepared by mixing 60 percent OPC and 40 per- cent siliceous rock powder by weight. The properties of each cement are indicated in Tables 1, 2 and 3. The chemical composition of the siliceous rock powder is in- cluded in Table 1. METHODS Preparation of Specimen and Curing Conditions Cement pastes were made at a water-cement ratio of 0.30, mixed for 3 mm, and molded into 4-x4-x16-cm prisms. -
A Specific Gravity Index for Minerats
A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951). -
Shirey Et Al. 2019.Pdf (1.235Mb)
5 Diamonds and the Mantle Geodynamics of Carbon Deep Mantle Carbon Evolution from the Diamond Record steven b. shirey, karen v. smit, d. graham pearson, michael j. walter, sonja aulbach, frank e. brenker, he´le`ne bureau, antony d. burnham, pierre cartigny, thomas chacko, daniel j. frost, erik h. hauri, dorrit e. jacob, steven d. jacobsen, simon c. kohn, robert w. luth, sami mikhail, oded navon, fabrizio nestola, paolo nimis,medericpalot,evanm.smith, thomas stachel, vincenzo stagno, andrew steele, richard a. stern, emilie thomassot, andrew r. thomson, and yaakov weiss 5.1 Introduction The importance of diamond to carbon in Earth is due to the fact that diamond is the only mineral and especially the only carbon mineral to crystallize throughout the silicate Earth – from the crust to the lower mantle. To study diamond is to study deep carbon directly throughout Earth, allowing us to see the inaccessible part of the deep carbon cycle. By using the properties of diamond, including its ability to preserve included minerals, important questions relating to carbon and its role in planetary-scale geology can be addressed: • What is the mineralogy of phases from Earth’s mantle transition zone and lower mantle? • What are the pressures and temperatures of diamond growth? • What is the chemical speciation of recycled and deep carbon? • What are the reactions that produce reduced carbon? • What are the sources of carbon and its associated volatiles (H2O, CH4,CO2,N2,NH3, and S)? • How do these findings vary with global-scale geological processes? • How have these processes changed over billions of years of geologic history? Diamonds for scientific study are difficult to obtain and the nature of diamond presents special research challenges.