<<

Mineralogical Magazine, June 2007, Vol. 71(3), pp. 285–320

True and brittle : composition and solid-solution series

1 2, 3 4 G. TISCHENDORF , H.-J. FO¨ RSTER *, B. GOTTESMANN AND M. RIEDER 1 Bautzner Strasse 16, D-02763 Zittau, Germany 2 Institute of Earth Sciences, University of Potsdam, P.O. Box 601553, D-14415 Potsdam, Germany 3 GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473 Potsdam, Germany 4 Institute of Materials Chemistry, TU Ostrava, 17. listopadu 15/2172, CZ-708 33 Ostrava-Poruba, Czech Republic [Received 8 May 2007; Accepted 11 September 2007]

ABSTRACT Micas incorporate a wide variety of elements in their crystal structures. Elements occurring in significant concentrations in micas include: Si, IVAl, IVFe3+, B and Be in the tetrahedral sheet; Ti, VIAl, VI 3+ 3+ 2+ 2+ Fe ,Mn ,Cr,V,Fe ,Mn , Mg and Li in the octahedral sheet; K, Na, Rb, Cs, NH4, Ca and Ba in the interlayer; and O, OH, F, Cl and S as anions. Extensive substitutions within these groups of elements form compositionally varied micas as members of different solid-solution series. The most common true K micas (94% of almost 6750 analyses) belong to three dominant solid-solution series (–annite, siderophylliteÀpolylithionite and muscoviteÀceladonite). Theirclassification VI VI parameters include: Mg/(Mg+Fetot) [=Mg#] formicas with R >2.5 a.p.f.u. and Al <0.5 a.p.f.u.; VI VI VI VI Fetot/(Fetot+Li) [=Fe#] formicas with R >2.5 a.p.f.u. and Al >0.5 a.p.f.u.; and Al/( Al+Fetot+Mg) [=Al#] formicas with VIR <2.5 a.p.f.u. The common true K micas plot predominantly within and between these series and have Mg6Li <0.3 a.p.f.u.. Tainiolite is a mica with Mg6Li >0.7 a.p.f.u., or, fortransitionalstages, 0.3 À0.7 a.p.f.u.. Some true K mica end-members, especially phlogopite, annite and , form binary solid solutions with non-K true micas and with brittle micas (6% of the micas studied). Graphical presentation of true K micas using the coordinates Mg minus Li (= mgli) and VI VI VI VI Fetot+Mn+Ti minus Al (= feal) depends on theirclassification accordingto R and Al, complemented with the 50/50 rule.

KEYWORDS: true micas, brittle micas, classification, solid-solution series, composition.

Introduction Following an idea and proposal of Charles { MICAS are widespread in igneous, metamorphic Guidotti , ourcolleague, friendand co-authorof a and sedimentary rocks. Their recent paper on micas (Tischendorf et al., 2004), accommodates a plethora of elements, leading to we present in this paper a survey and analysis of a large and diverse group. The composi- composition and solid solution in the mica group, tional diversity of micas has led to numerous comprising trioctahedral and dioctahedral, attempts at classification and graphical presenta- common and uncommon true K micas, other tion (Foster, 1960a,b;Tro¨ger, 1962; Rieder et al., alkali-element-bearing micas, and brittle micas. 1970, 1998; Koval et al., 1972; Gottesmann and The principles behind the subdivision, and the Tischendorf, 1978; Cˇ erny´ and Burt, 1984; Monier graphical presentation adopted, follow the recom- and Robert, 1986; Jolliff et al., 1987; Burt, 1991; mendations of the Mica Sub-committee of the Tischendorf et al., 1997, 2004; Sun Shihua and International Mineralogical Association’s Yu Jie, 1999, 2000). Commission on New , Nomenclature

* E-mail: [email protected] DOI: 10.1180/minmag.2007.071.3.285 { Died 19 May 2005

# 2007 The Mineralogical Society TISCHENDORF ET AL.

and Classification (IMA-CNMNC) (Rieder et al., (2) uncommon brittle micas (0.4%): contain V, 1998) and the IMA principles of mineral Be, Fe3+, Ti orS and O as majorelements, in classification. This papertreatsthe micas only in addition to Ca orBa [in anandite, , terms of their compositions, an approach that chernykhite, oxykinoshitalite]. permits a quick and easy classification of any mica. Common true K micas Principles of classif|cation Methods Ourclassification scheme uses fourmajor, This study is based on mica analyses obtained by octahedrally-coordinated cations (Mg, Fetot, different analytical methods (wet chemical, X-ray VIAl, Li) togetherwith the existence of solid fluorescence, electron- and -microprobe solutions. It considers only IMA-approved end- analysis). Data sources not listed in the member names and strictly applies the 50/50 rule References are given in previous publications (e.g. Nickel, 1992). (e.g. Tischendorf et al., 1997, 1999, 2001a,b, The main parameters in this classification are 2004) orarenoted in Deer et al. (2003). VIR, VIAl and the product Mg6Li (all in a.p.f.u.). The crystallo-chemical formulae were calcu- The value of VIR = 2.5 differentiates trioctahedral lated on the basis of 22 cation charges, except for from dioctahedral micas. The limiting value oxy-micas with 24 cation charges. The concentra- between micas of the phlogopite–annite and VI tion of Li2O, if essential but not known, was siderophyllite–polylithionite series ( Al = 0.5) estimated using the empirical equations published results from the application of the 50/50 rule. The by Tischendorf et al. (2004, theirAppendix). same is valid forthe parameterMg 6Li, which separates tainiolite micas (Mg6Li >0.3) from all other trioctahedral micas (Mg6Li <0.3). Results Compositionally, micas are subdivided into true (1) Phlogopite–annite series micas, with monovalent cations in the interlayer, trioctahedral (VIR >2.5); VIAl <0.5; Mg6Li <0.3 and brittle micas containing divalent cations in the end-members: phlogopite KMg3[AlSi3O10](OH)2, 2+ interlayer. Our evaluation of mica analyses yielded annite KFe3 [AlSi3O10](OH)2 the following quantitative subdivisions (in percen- classification according to the ratio Mg/ tages of the total population of ~6750 analyses). (Mg+Fetot) [= Mg#] True micas (96.8% of all analyses) comprise: phlogopite: Mg# >0.5 (1) common true K micas (93.1%): [annite, annite: Mg# <0.5 celadonite, muscovite, phlogopite, polylithionite, (2) SiderophylliteÀpolylithionite series siderophyllite, tainiolite]; trioctahedral (VIR >2.5); VIAl >0.5; Mg6Li <0.3 2+ (2) uncommon true K micas (1.6%): contain a end-members: siderophyllite KFe2 Al 2+ 3+ minorelement (Mn ,Fe orF) in an above- [Al2 Si2 O 10](OH)2 , polylithionite average concentration [fluorannite, masutomilite, KLi2Al[Si4O10]F2; montdorite, shirozulite, tetra-ferriannite, tetra- classification according to the ratio Fetot/ ferriphlogopite], an uncommon element (Zn, V, (Fetot+Li) [= Fe#] Cr, Mn3+ orB) as majorelement [in boromusco- siderophyllite: Fe# >0.5 vite, chromphyllite, hendricksite, roscoelite, polylithionite: Fe# <0.5 norrishite] or a common element in an uncommon (3) Tainiolite group coordination (e.g. Na+ in shirokshinite); trioctahedral (VIR >2.5); Mg6Li fortainiolite (3) uncommon true non-K micas (2.1%): sensustricto >0.7, fortainiolitic micas 0.3 À0.7 contain the monovalent cations Na, Rb, Cs or end-member: tainiolite KLiMg2[Si4O10]F2 NH4 as majorelement substituting forK [in (4) MuscoviteÀceladonite series , ephesite, nanpingite, , preis- dioctahedral (VIR <2.5); Mg6Li <0.3 werkite, sokolovaite, tobelite]. end-members: muscovite KAl2&[AlSi3O10] 3+ Brittle micas (3.2% of all analyses) comprise: (OH)2, celadonite: KMgFe &[Si4O10](OH)2; VI VI (1) common brittle micas (2.8%): contain Ca or classification according to Al/( Al+Fetot+Mg) Ba as majorcations proxyingforK [in clintonite, [= Al#] ferrokinoshitalite, ganterite, kinoshitalite, muscovite: Al# >0.5 ]; celadonite: Al# <0.5

286 CLASSIFICATION OF MICAS

Celadonites are further subdivided according to Li maximum in the frequency distribution of natural et al. (1997) as confirmed by Rieder et al. (1998). muscovite compositions is close to the end- membercomposition. Two frequency peaks Distribution of natural compositions in the mgliÀfeal occurin the phlogopite–annite series, and one plot occurs in the siderophyllite–polylithionite join. Mica compositions may be described in two- Very few compositions plot in the relatively large dimensional triangular or three-dimensional plots areas in the Mg-Al sector (lower right) and in (cf. Tischendorf et al., 2004, fora compilation). smallerareas in the Fe-Li sector(upperleft) of the We have proposed a simple two-dimensional plot. Figure 2 shows the numbers of cations per presentation according to the occupancy of the formula unit for compositions in the phlogopite– octahedral sheet, using the parameters Mg minus annite, siderophyllite–polylithionite and VI VI Li (= mgli) and Fetot+Mn+Ti minus Al (= muscovite–celadonite series. Figure 3 shows feal) a.p.f.u. (Tischendorf et al., 1997, 2004). species resulting from the application of the Figure 1 shows common true K micas, 50/50 rule. Joins combining related end-members excluding only tainiolite and celadonite. The are displayed and so are the half-way divides.

FIG.1.mgli/feal plot of ~6100 common true K-mica compositions (excluding tainiolite and celadonites). Mica end- members, ideal members, and one theoretical component are indicated. Isolines show relative densities of composition points (1, 5, 10, 20, 30%) normalized to the density maximum at mgli = 0.05 and feal = À1.70 (the most frequent muscovite composition), which is taken as 100%. Abbreviations: ann À annite, eas À eastonite, hyp-mus À hyper-muscovite, mus À muscovite, phl À phlogopite, pol À polylithionite, sid À siderophyllite, trans-mus À transitional muscovite, tri À trilithionite.

287 TISCHENDORF ET AL.

FIG. 2. PhlogopiteÀannite and siderophylliteÀpolylithionite series, and the muscovite portion of the muscov- iteÀceladonite series plotted in the mgli/feal diagram. Mica end-members, ideal members, and one theoretical component are indicated. The boundary between the first two series (VIAl = 0.5) and theirboundarywith muscovite (VIR = 2.5) is marked by dashed lines. Note that two boundaries are shown in the transitional area between annite and siderophyllite (both for VIAl = 0.5), one at VIR = 3.0, and anotherat VIR = 2.75. See Fig. 1 forabbreviations.

Compositional characteristics , 12% Ti-Fe-rich phlogopites, 5% Al- In the following, we point out important Fe-rich phlogopites, 4% Ti-rich phlogopites (up to compositional features of common true K micas 0.75 a.p.f.u. Ti), and 1% Al-rich phlogopites (up in Fig. 4, some of which shed new light on the to 0.5 a.p.f.u. VIAl; forexample Ferry,1981) relationships between common true K micas, (Appendices 1a and b). Few phlogopites have uncommon true micas and brittle micas. Because larger Mn contents, but some (4%) contain of the wide compositional variation of common considerable fluorine (>1 a.p.f.u.; Stoppa et al., true K mica species, we characterize varieties 1997, Motoyoshi and Hensen, 2001); the latter according to their compositions (Appendices 1À5). should be termed F-rich phlogopite. Phlogopite Phlogopite (1814 analyses): Many composi- enriched in Zn or V (up to 0.6 a.p.f.u.) is tions (43%) have insufficient IVAl, suggesting that uncommon. The maximum contents (in a.p.f.u.) Fe3+ and/orTi 4+ may be present in the tetrahedral are 0.20 for Cr, 0.12 for Cs, 0.04 for Ni and 0.07 sheet. Of these compositions, 28% are so close to for Rb. Barium behaves differently, because a the end-member formula that they may be referred solid-solution series exists from phlogopite– to as phlogopite sensustricto ; 50% are Fe-rich kinoshitalite (cf. Figs 11a and 12).

288 CLASSIFICATION OF MICAS

FIG. 3. Mica species in three dominant solid-solution series among common true K micas plotted in the mgli/feal diagram. Mica end-members, ideal members, and one theoretical component are indicated. Boundaries between the series are dashed, and between species are shown by dash-and-dot lines. Between annite and siderophyllite, for VIAl = 0.5, only the boundary at VIR = 2.75 is shown. Also inserted are lines joining mica end-members (dotted), with 50/50 divides indicated. The arrow marks the direction towards celadonite (cel). Areas devoid of mica compositions are not labelled. See Fig. 1 for abbreviations.

Annite (1376 analyses): in this group, 15% of (0.3À0.6 a.p.f.u.). Large concentrations of Ba the samples analysed appearto have no VIAl. (0.3À0.5 a.p.f.u.) may be an indication of a Only 7% refer to annite sensustricto . Most solid-solution series between annite and ferroki- annites (50%) are classified as Mg-rich annite, noshitalite (cf. Figs 11a and 12). 33% as Al-Mg-rich annite, 5% as Ti-Mg-rich Siderophyllite (748 analyses): most micas annite (up to 0.65 a.p.f.u. Ti), and 3% as Al-rich (58%) classified in this group are Li-rich side- annite. About 2% of the annite micas contain rophyllites (with F up to 1.8 a.p.f.u.), followed by >0.3 a.p.f.u. Li and, therefore, represent Li- or Li- Mg-rich siderophyllite (25%), and siderophyllite Al-rich annite (Appendices 2a and 2b). Li-rich sensustricto (17%) (Appendices 3a and 3b). annite is usually also enriched in F (up to However, compositions corresponding to ideal 2+ 1.4 a.p.f.u.; e.g. Kile and Foord, 1998). A few KFe2 Al[Al2Si2O10](OH)2 do not occurin nature annites are Cl-rich (in the range 0.3À0.9 a.p.f.u.; (Fig. 24). Because Si4+ does not occurbelow Oen and Lustenhouwer, 1992). Also uncommon 2.5 a.p.f.u. (except formicas with Ba 2+ and/or are annites containing large concentrations of Zn Ca2+ and/orFe 3+ >0.5 a.p.f.u. and/orTi 4+ (0.3À0.6 a.p.f.u.; Tracy, 1991) or Mn >0.25 a.p.f.u.), the octahedral sheet must accom-

289 TISCHENDORF ET AL.

FIG. 4. Average values and 1s standard deviations (open squares and error bars) of common true K mica varieties in the mgli/feal diagram (Appendices 1À4). The boundary between annite and siderophyllite is given for VIAl = 0.5 at VIR = 2.75. Boundaries between the series are dashed; boundaries between species are marked by dash-and-dot lines. Mica end-members, ideal members, and one theoretical component are indicated. tai À tainiolite. See Fig. 1 for further abbreviations. Mica varieties are characterized by element prefixes, e.g. Ti-Fe means Ti-Fe-rich phlogopite.

modate more divalent (Mg2+) and univalent (Li+) Polylithionite (648 analyses): half of all cations to balance charges. Therefore, a more polylithionites are polylithionite sensustricto , 2+ realistic composition would be KFe1.75Al0.75 the rest being Fe-rich polylithionite. About 80% VI Li0.25Mg0.25[Si2.5Al1.5O10](OH)2 (for R = 3.0) of the compositions contain 1.0À2.0 a.p.f.u. F 2+ orKFe 1.75Al0.75&0.25Li0.125Mg0.125[Si2.875 (Appendices 3a and 3b). The Rb concentration VI Al1.125O10](OH)2 (for R = 2.75), respectively seldom exceeds 0.3 a.p.f.u., but one Rb-rich (Appendix 3b, and Tischendorf et al., 2004). polylithionite (unnamed) contains 0.82 a.p.f.u. Compositionally, siderophyllite is an atypical end- Rb (Cˇ erny´ et al., 2003). Concentrations of Cs in membermica, because it plots in the centreof all polylithionite are usually large, and Cs-rich K-mica compositions. It contains all the principal varieties (up to 0.88 a.p.f.u., Wang et al., 2004) elements of the octahedral sheet, Fe, VIAl, Mg and do exist. Sokolovaite, a Cs analogue of poly- Li. A few siderophyllites contain Mn lithionite, was proposed by Pautov et al. (IMA (0.30À0.35 a.p.f.u., Abdalla et al., 1994; 2004-012; Burke and Ferraris, 2005). Mohamed et al., 1999), with Cs and Rb contents Tainiolite (28 analyses) and tainiolitic micas of up to 0.20 and 0.15 a.p.f.u., respectively. (31 analyses): in contrast to common true K micas,

290 CLASSIFICATION OF MICAS

characterized either by high Mg or high Li, (2) Fe-rich tainiolitic micas; characterized by tainiolite has high Mg (0.5À2.3 a.p.f.u.) and high Mg6Li = 0.3À0.7; Fetot >0.9; Si = 2.6À3.1; in Li (0.4À1.0 a.p.f.u.) (Appendix 4). Such composi- Red Cross/Tanco (Morgan and London, tions have a unique position within the mica 1987; Hawthorne et al., 1999); transitional to Mg- group. By containing some Al and Fe, tainolite rich annite, but unusually enriched in Li; deviates slightly from ideal KLiMg2[Si4O10]F2. (3) Al-rich tainiolitic micas; characterized by Also, it has moderate concentrations of Rb and Cs. Mg6Li = 0.3À0.7; VIAl >0.6; Si = 2.6À3.1; in Tainiolite can, of course, be plotted in terms of spodumene pegmatites (Kuznetsova and mgli/feal, but because of possible coincidence with Zagorskiy, 1984; Semenov and Shmakin, 1988: unrelated mica compositions, it should be treated ‘magnesian ’, Pesquera et al., 1999); as a separate subsystem (Fig. 5). Tainiolites are transitional to Li-rich siderophyllite, but theoretically characterized by Mg6Li >0.5 unusually enriched in Mg. a.p.f.u. In addition to tainiolite sensustricto , The positive correlation of Mg and Li applies othermicas with largeMg and largeLi contents only to tainiolite sensustricto . In Fe-rich and Al- occur that are intermediate between tainiolite and rich tainiolitic micas, MgO and Li2O correlate othercommon true K micas. Such micas may be negatively, as in all othermicas. We stressthat, in termed tainiolitic micas. These micas are typically the mgli/feal plot, the area of tainiolite sensu enriched in Cs. Accordingly, we may distinguish stricto showsnooverlapwiththeareaof three groups of tainiolites (Appendix 4): siderophyllite (Fig. 4). (1) Tainiolite sensustricto ; characterized by Muscovite (1574 analyses): most Mg6Li >0.7 a.p.f.u.; Mg >1.9 a.p.f.u.; Si = (55%) have compositions close to the ideal 3.1À4.0 a.p.f.u.; in carbonatites (Le Bas et al., formula and exhibit very limited chemical 1992; Cooper et al., 1995); transitional to variation. The next most common compositions phlogopite, but unusually enriched in Li; are Fe-rich muscovite and Mg-rich muscovite

FIG.5.mgli/feal plot forthe end-membertainiolite sensustricto and other pertinent end-members connected by tie lines. Also shown are the 50/50 divides, which outline the field of micas belonging to tainiolite sensustricto . See Figs 1 and 4 forabbreviations.

291 TISCHENDORF ET AL.

(16% each). Li-Fe-rich muscovite (6%), Li-rich Mg, Fe2+, Li and VIAl, or micas with tetrahedral muscovite (5%), and Mg-Fe-rich muscovite (2%) cations that are different from Si and IVAl. are comparatively rare (Appendices 5a and b). Generally, the concentration of other elements in Interlayer muscovite is small. Related dioctahedral mica Instead of K, the following elements may be end-members (e.g. roscoelite, chromphyllite, the dominant cation in the mica interlayer: Na, ganterite), which form solid-solution series with Cs, Rb, NH4, Ca and Ba. muscovite, explain large concentrations of V, Cr K–Na substitution. The substitution of Na in the and Ba in the latter (Morand, 1990; Breit, 1995; interlayer of common trioctahedral K micas Treolar, 1987; Hetherington et al., 2003). (Fig. 7a) generally ranges up to 0.4 a.p.f.u., and Concentrations of F, up to ~2 a.p.f.u., may only rarely beyond 0.45. Full replacement of K by occur in Li-rich muscovite. Concentrations of Na in phlogopite and eastonite leads to aspidolite Rb do not exceed 0.2 a.p.f.u. (Zagorskiy and Makrygin, 1976; Lagache and Que´me´neur, 1997). Celadonite micas (61 analyses): only limited information is available about the presence of trace orminorelements (Appendix 4). End-member compositions of celadonites are given by Li et al. (1997) and are confirmed by Rieder et al. (1998). The general formula is: K(Mg,Fe2+)(Fe3+,Al) &[Si4O10](OH)2. The mode of graphical presenta- tion proposed by Li et al. (1997) is equivalent to mgli/feal. However, because of their Fe3+ concen- trations, celadonites must be presented either jointly with muscovite (Tischendorf et al., 2004) orin a separate plot (Fig. 6).

Uncommon true K micas, other alkali and brittle micas, and their relation to common true K micas Uncommon true and brittle micas are similar to common true K micas because they exhibit the same kinds of cation substitutions in octahedral and tetrahedral coordination. These substitutions follow from (1) the requirement of charge balance and (2) ion-size constraints of cation coordina- tions. In practice, the same ‘unusual’ elements, known to enter uncommon true and brittle micas (Ba, Ca, Na, Rb, Cs, Mn, Zn, Cr, V), also enter common true K micas and are normally analysed for. Exceptions are the highly unusual NH4, B and Be. Occupancy of the octahedral sheet is the basis forthe classification of common trueK micas, and it can equally well serve the same purpose for the uncommon true and brittle micas. These latter mica also can be plotted in terms of mgli and feal coordinates; however, most of them tend to cluster along the periphery of the diagram. Common true K micas, in particular phlogopite, annite and muscovite, act as end-members of solid-solution series with uncommon true or brittle micas. Examples of such series may be FIG. 6. Classification of the celadonite family in the mgli/ micas with the interlayer occupied by atoms other feal diagram.according to the principles of Li et al. than K, micas with octahedral cations other than (1997).

292 CLASSIFICATION OF MICAS

(19 analyses) and preiswerkite (26 analyses), dominant interlayer cation has yet been observed respectively. The Na mica ephesite (9 analyses) in nature. The substitution of Rb in the interlayer has no K counterpart. Likewise, the substitution of common true K micas rarely exceeds of Na in common dioctahedral K micas is 0.20 a.p.f.u. (Fig. 8). Exceptions are Rb-rich <0.4 a.p.f.u. (Fig. 7b). The mica with a complete annite (0.45 a.p.f.u. Rb) and a still unnamed Rb substitution of K by Na is paragonite analogue of ‘zinnwaldite’ (0.82 a.p.f.u. Rb; Cˇ erny´ (72 analyses). There also exists a Sr-enriched et al., 2003). variety of paragonite containing up to 0.23 a.p.f.u. KÀCs substitution. Common trioctahedral Sr(Bryanchaninova et al., 2004). The large micas may substitute up to ~0.20 a.p.f.u. Cs difference in between Na+ and K+ (Fig. 9). Cˇ erny´ et al. (2003) reported enrichment makes likely the existence of a miscibility gap in of Cs in some phlogopite, annite and sidero- all such binaries, manifest by a significantly phyllite micas. Also, there is a Cs-rich mica increased number of compositions in which K or described as Cs polylithionite by Cˇ erny´ et al. Na dominate relative to intermediate composi- (2003, one analysis) and Wang et al. (2004, 13 tions. Guidotti et al. (1994) examined the extent analyses). Sokolovaite is the Cs analogue of of KÀNa substitution and associated other polylithionite (Pautov, IMA 2004-012; Burke and chemical changes. Ferraris, 2005). Complete substitution of K by Cs KÀRb substitution. Although Voncken et al. in dioctahedral micas leads to nanpingite (3 (1987) synthesized the Rb analogue of muscovite, analyses, Yang et al., 1988; Ni and Hughes, 1996; and Beswick (1973) experimentally demonstrated Peretyazhko et al., 2004). Data indicate a complete miscibility between K and Rb in miscibility gap in the interval 0.20À0.60 a.p.f.u. phlogopite, no end-memberwith Rb as the Cs, rather than complete substitution between K

XII FIG.7.(a) Proportion of Na in R for the series phlogopite (phl)–aspidolite (asp). Data for preiswerkite (prei) and ephesite (eph) are given for comparison. (>0.1 a.p.f.u.) in phlogopite is shown as averages (n = numberof analyses) at 0.1 a.p.f.u. intervals. Numbers of analyses are given in parantheses; standard deviations are shown in pale grey. Data sources: Schaller et al. (1967), Keusen and Peters (1980), Schreyer et al. (1980), Oberti et al. (1993), Godard and Smith (1999), Visser et al. (1999), Costa et al. (2001), Ruiz Cruz (2004), Banno et al. (2005), Bucher et al. (2005), Konzett et al. (2005). (b) Proportion of Na in XIIR for the series muscovite (mus)–paragonite (par). Sodium (>0.1 a.p.f.u.) in muscovite is given as averages (n = number of analyses) at 0.1 a.p.f.u. intervals. Numbers of analyses are given in parentheses; standard deviations are shown in pale grey. Data sources: Ackermand and Morteani (1973), Ho¨ck (1974), Baltatzis and Wood (1977), Hoffer(1978), Katagas and Baltatzis (1980), Grambling (1984), Harlow (1994, 1995), Bucher et al. (2005), Escuder-Viruete and Pe´rez-Estau´n (2006). Sr-bearing paragonites are from Bryanchaninova et al. (2004).

293 TISCHENDORF ET AL.

and Cs in both trioctahedral and dioctahedral micas, which is attributed to the large difference in ionic radius (Shannon and Prewitt, 1969; Shannon, 1976). KÀNH4 substitution. Among trioctahedral micas, apparently only phlogopite rich in Fe contains significant concentrations of NH4 (~0.30À0.40 a.p.f.u.; D.E. Harlov, pers. comm., 2005), in accordance with the hydrothermal synthesis of end-memberammonium phlogopite (Eugsterand Munoz, 1966). Complete solid solution between muscovite and tobelite has been confirmed experimentally at T >400ºC (Po¨ter et al., 2007). However, the analysed natural dioctahedral micas show a gap in composition around 0.50 (e.g. XII Nieto, 2002). In the NH4À R–NH4 diagram (Fig. 10), natural compositions display a large scatter, possibly resulting from uncertainties in the XII analysis of N and the inability to analyse H by FIG. 8. Proportion of Rb in R forannite (ann), siderophyllite (sid), polylithionite (pol), tainiolite (tai) electron microprobe. and muscovite (mus). Rubidium (>0.1 a.p.f.u.) in KÀCa substitution. The Ca concentration of muscovite and polylithionite is given as averages (n = trioctahedral common true K micas does not number of analyses) at 0.1 a.p.f.u. intervals. Numbers of exceed ~0.30 a.p.f.u. Larger Ca concentrations, analyses are given in parentheses. Most data for Rb-rich corresponding to 0.9À1.0 a.p.f.u., are character- micas come from Skosyreva and Vlasova (1983) and istic for clintonite (48 analyses), a brittle mica Cˇ erny´ et al. (2003). violating the Lo¨wenstein rule. Clintonite does not appearto be the end-memberof any solid-solution series. High Ca, coupled with high Li and Be, leads to the formation of the unusual brittle mica bityite (13 analyses, Fig. 11a). Margarite (68

XII FIG. 9. Proportion of Cs (>0.1 a.p.f.u.) in R for phlogopite (phl), annite (ann), siderophyllite (sid), XII polylithionite (pol), muscovite (mus), sokolovaite (sok) FIG. 10. Proportion of NH4 in R forphlogopite (phl), and nanpingite (nan). Data for Cs rich micas were taken muscovite (mus) and tobelite (tob). Data are taken from from Yang et al. (1988), Hawthorne et al. (1999), Cˇ erny´ Higashi (1978, 1982, 2000) [Japan], Wilson et al. (1992) et al. (2003), Peretyazhko et al. (2004) and Wang et al. [Utah, USA] and D.E.Harlov (2005, pers. comm.) (2004). [Maine, USA; Erzgebirge, Germany].

294 CLASSIFICATION OF MICAS

analyses) is a dioctahedral brittle mica with Ca al., 2003; Hetherington et al., 2003; Ma and concentrations in the range 0.5À1.0 a.p.f.u.. Rossman, 2006) or chernykhite (2 analyses), if However, the Ca concentration in muscovite VIV simultaneously substitutes for VIAl. reported to date is small, indicating the absence Phlogopite, kinoshitalite, annite and ferro- of a solid-solution series between muscovite and kinoshitalite form complete solid solutions margarite (Fig. 11b). (Figs 12a, 13). All fourof these end-members KÀBa substitution. Unlike the substitutions participate in the series (see also Frimmel et al., above, the KÀBa replacement in trioctahedral 1995, theirFig. 2). The K ÀBa substitution in the micas of the phlogopite–annite series is almost interlayer is coupled with the tetrahedral substitu- complete (cf. Greenwood, 1998). If the Ba-for-K tion XIIBa + IVAl > XII(K,Na) + IVSi (Brigatti and substitution exceeds 0.5 a.p.f.u., the mica is Poppi, 1993). The concentration of Ba in kinoshitalite (57 analyses) or oxykinoshitalite muscovite is usually <0.4 a.p.f.u., and ganterite (2 analyses), an exotic, Ti-enriched mica known is characterized by Ba ~0.5 a.p.f.u. (Fig. 12b). A only from an olivine nephelinite (Kogarko et al., composition corresponding to the ideal end- 2005). Ferrokinoshitalite (4 analyses) is a brittle memberBaAl 2&[Al2Si2O10](OH)2 has not yet mica with an octahedral sheet resembling that of been reported from nature. The Ba-V-rich mica annite (Guggenheim and Frimmel, 1999), whereas chernykhite described by Ankinovich et al. (1973) anandite (5 analyses, Pattiaratchi et al., 1967) has contains only ~0.3 a.p.f.u. Ba and thus does not an additional condition, namely that IVAl be reach beyond the required 50%. replaced by IVFe3+ and that S be incorporated instead of one (OH). In dioctahedral micas, a Octahedral sheet partial replacement of K by Ba results in the Octahedral substitutions are responsible for the formation of ganterite (13 analyses, Graeser et formation of uncommon true micas by: (1) the

XII IV XII IV FIG. 11. (a) Sum Ca+ Al as a function of (K,Na)+ (Si,Be) forphlogopite (phl), annite (ann), siderophyllite (sid), polylithionite (pol), clintonite (cli) and bityite (bit) (including Be-rich margarite). (>0.1 a.p.f.u.) in common true K micas is shown as averages in 0.1 a.p.f.u. intervals. Numbers of analyses are given in parentheses, and Ca contents (in a.p.f.u.) are indicated. Data for uncommon micas come mostly from Bucher-Nurminen (1976), Guggenheim et al. (1983), Lahti and Saikkonen (1985), Ackermand et al. (1986), MacKinney et al. (1988), Alietti et al. (1997) and Grew et al. (1999). (b) The sum XIICa+IVAl as a function of XII(K,Na)+IVSi formuscovite (mus) (Ca>0.05 a.p.f.u.) and margarite (mar). Numbers of analyses are given in parentheses, and Ca contents (in a.p.f.u.) are indicated. Data for margarite come mainly from Ackermand and Morteani (1973), Ho¨ck (1974), Gibson (1979), Guidotti et al. (1979), Frey et al. (1982), Guggenheim et al. (1983), Lahti (1988), Morand (1990) and Godard and Smith (1999).

295 TISCHENDORF ET AL.

XII IV XII IV FIG. 12. (a) Plot of Ba+ Al vs. (K,Na)+ Si forphlogopite (phl) and annite (ann) (Ba >0.1 a.p.f.u.) as well as for kinoshitalite (kino), ferrokinoshitalite (Fekino) and anandite (ana). Numbers of analyses are given in parantheses, and the Ba content (in a.p.f.u.) is indicated. Data sources for uncommon micas: Pattiaratchi et al. (1967); Lovering and Widdowson (1968); Mansker et al. (1979); Filut et al. (1985); Solie and Su (1987); Bol et al. (1989); Dasgupta et al. (1989); Tracy (1991); Edgar (1992); Bigi et al. (1993); Brigatti and Poppi (1993); Frimmel et al. (1995); Henderson and Foland (1996); Jiang et al. (1996); Shaw and Penczak (1996); Guggenheim and Frimmel (1999); Gnos and Armbruster (2000); Tracy and Beard (2003); Dolezˇalova´ et al. (2005, 2006). (b). The plot of XIIBa+IVAl vs. XII(K,Na)+IVSi for muscovite (mus) (Ba >0.05 a.p.f.u.) as well as for ganterite (gan) and chernykhite (cher). Numbers of analyses are given in parantheses, and the Ba content (in a.p.f.u.) is indicated. Data for uncommon micas were taken from Ankinovich et al. (1973), Graeser et al. (2003), Hetherington et al. (2003) and Ma and Rossman (2006).

occurrence of common elements in unusually (Yoshii et al., 1973) and forannite up to 0.57 large concentrations (Mn2+,Fe3+, Ti); (2) the Mn a.p.f.u. (Chen and Wu, 1987). Norrishite (8 incorporation of unusual elements in significant analyses) is a rare Li-bearing mica with trivalent concentrations (Zn, V, Cr); and (3) the incorpora- Mn. All these micas have high Mn, but they never tion of an element in a valence state uncommon in reach the ideal Mn mica end-member (Eggleton micas (Mn3+). and Ashley, 1989; Gnos et al., 2003). Montdorite Incorporation of high Mn. Even though the Mn is an uncommon Mn-bearing, tetrasilicic transi- concentrations of dioctahedral micas are tional mica that has yet been found at only one <0.2 a.p.f.u., several trioctahedral Mn-bearing locality and forwhich only one single analysis is micas exist, including shirozulite, the Mn available (Robert and Maury, 1979). analogue of annite, produced by the substitution Hendricksite (3 analyses) may contain up to of Mn2+ forFe 2+. No compositions close to the 1.1 a.p.f.u. Mn2+ (Frondel and Ito, 1966; end-memberhave been found. The composition Guggenheim et al., 1983) (Fig. 14). reported in the original description (Ishida et al., Incorporation of high Zn. Hendricksite is the 2004) has only 1.53 a.p.f.u. Mn2+. Masutomilite, only uncommon trioctahedral mica in which the the Mn-analogue of what used to be termed Zn concentration may reach 1.45 a.p.f.u. No ‘zinnwaldite’, owes its existence to the same Fe2+ doubt exists about the coordination of Zn > Mn2+ substitution. However, the ideal Mn = because there is insufficient Mg (1À2.5 a.p.f.u.) 1.0 a.p.f.u. of the masutomilite lies beyond the and Fe2+ is low (<1 a.p.f.u.) (Frondel and Ito, range of natural compositions (Harada et al., 1966; Frondel and Einaudi, 1968; Guggenheim et 1976). The most Mn-rich polylithionite al., 1983). Otherphlogopites and annites may (0.59 a.p.f.u.) was reported by Boggs (1992). have Zn concentrations up to 0.6 a.p.f.u. (Craig et The most Mn-rich phlogopite has 1.1 a.p.f.u al., 1985; Tracy, 1991). Zinc concentrations in

296 CLASSIFICATION OF MICAS

siderophyllite, polylithionite and the dioctahedral micas are comparatively small, mostly <0.03 a.p.f.u. (Fig. 15). Incorporation of high V. Enhancement in V3+ is rare in trioctahedral micas (Pan and Fleet, 1991; Deer et al., 2003, theirTable 42, analysis 44). Largerconcentrationsoccurin dioctahedral micas, forwhich the V content variescontinu- ously from V-rich muscovite to either roscoelite (20 analyses) orthe brittlemica chernykhite (2 analyses). In roscoelite and chernykhite, V replaces VIAl up to 1.7 a.p.f.u. (Ankinovich et al., 1973; Hofmann, 1990; Meunier, 1994). Reznitskiy et al. (1997) reported significant V in chromphyllite (Fig. 16). Incorporation of high Cr. Chromium behaves much as V does. The Cr3+ contents of trioctahe- dral micas are <0.2 a.p.f.u. (Fig. 17). However, XII FIG.13. Ba (>0.3 a.p.f.u.) as a function of Cr is concentrated in dioctahedral micas, for Mg/(Mg+Fetot) [=Mg#] forphlogopite(phl)/kinoshitalite which there is a continuous series from muscovite (kino-phl) [Mg#>0.5] and annite(ann)/kinoshitalite through Cr-rich muscovite (Treloar, 1987) to (kino-ann) as well as ferrokinoshitalite(Fekino) chromphyllite (21 analyses). Chromphyllite [Mg#<0.5]. The distribution of points for phlogopite- may also display enrichment in Ba (up to type and annite-type kinoshitalites may indicate the 0.2 a.p.f.u.; Reznitskiy et al., 1997). existence of a solid-solution series across the whole Incorporation of high Fe3+. The nature of entry system. of Fe3+ in the octahedral sheet has not been sufficiently studied, but the deficiency of IVAl is

FIG. 14. Mn vs. the remaining octahedral cations in phlogopite (phl), annite (ann), siderophyllite (sid), polylithionite (pol) (Mn >0.3 a.p.f.u.) and muscovite (mus) (Mn >0.15 a.p.f.u.) as well as formontdorite FIG. 15. Zn vs. the remaining octahedral cations for (mon), norrishite (nor), shirozulite (shi) and hendricksite phlogopite (phl), annite (ann) (Zn >0.3 a.p.f.u.), sidero- (hen). Numbers of analyses appear in parentheses. Data phyllite (sid), and muscovite (mus) (Zn >0.05 a.p.f.u.) as sources for uncommon micas: Frondel and Ito (1966), well as for hendricksite (hen). Numbers of analyses Robert and Maury (1979), Guggenheim et al. (1983), appear in parentheses. Most data were taken from Eggleton and Ashley (1989), Gnos et al. (2003) and Frondel and Ito (1966), Guggenheim et al. (1983), Craig Ishida et al. (2004). et al. (1985) and Tracy (1991).

297 TISCHENDORF ET AL.

probably made up by IVFe3+ (Brigatti et al., 1996; Tombolini et al., 2002). Indeed, a theoretically possible tetrahedral composition [Si2.5Al1.5] might give rise to a trioctahedral occupancy of 2+ 3+ 3+ 2+ VI [R2.5Fe0.5] (or[Fe 1.5R ] for R = 2.5). In rare casesupto1.5a.p.f.u.Fe3+ may enterthe octahedral coordination. At greater Fe3+ concen- trations (>0.4 a.p.f.u.), a good correlation corre- sponds to the substitution: VIFe3+ + IVAl > VIR2+ + IVSi (see also Dymek, 1983) (Fig. 18). Incorporation of high Ti. As in the case of Fe3+, large concentrations of Ti4+ in octahedral coordination are subject to structural limitations. For example, given a tetrahedral composition VI [Al1.5Si2.5], the trioctahedral sheet with R =3 can accommodate a maximum of 0.25 a.p.f.u. Ti4+. For VIR = 2.5, the corresponding maximum rises to 0.75 a.p.f.u. Ti4+. Formicas with Ti 4+ FIG. 16. Contents of V vs. the remaining octahedral concentrations >0.4À0.8 a.p.f.u. (Mansker et al., cations forphlogopite (phl) (V >0.3 a.p.f.u.), and 1979; Henderson and Foland, 1996; Zhang et al., muscovite (mus) (V >0.2 a.p.f.u.) as well as for 1993), the assumption is that some of the Ti fills roscoelite (ros), chromphyllite (crph) and chernykhite the tetrahedral site to a sum of 4.0. Good (cher). Numbers of analyses are given in parentheses. elemental correlations support the substitution Data sources for uncommon micas: Ankinovich et al. scheme VITi4+ +2IVAl > VIR2+ +2IVSi (1973), Treolar (1987), Hofmann (1990), Meunier (Tschermak-type substitution, see also Mesto et (1994), Breit (1995) and Reznitskiy et al. (1997). al., 2006) that functions at high Ti4+ concentra- tions (0.40À0.75 a.p.f.u.) (Fig. 19). A comparison of the Ti4+ contents among micas of the phlogopite–annite series shows that the greatest concentrations (up to 0.75 a.p.f.u.) are limited to phlogopite with a Mg# = 0.8À0.9, whereas

FIG. 17. Contents of Cr(>0.1 a.p.f.u.) vs. the remaining octahedral cations for phlogopite (phl) and muscovite VI 3+ IV VI 2+ IV (mus) as well as for chromphyllite (crph). Numbers of FIG. 18. Plot of Fe + Al vs. R +2 Si for analyses are given in parentheses. Data for chromphyl- phlogopite (phl) and annite (ann) micas whose Fe3+ lite were taken predominantly from Treolar (1987) and content was determined analytically. Shown are a.p.f.u. Reznitskiy et al. (1997). intervals of Fe3+ of the respective species.

298 CLASSIFICATION OF MICAS

(Weiss et al., 1985; Pekov et al., 2003). Armbruster et al. (2007) demonstrated extended solid solution between tainiolite and shirokshinite.

Te t rah e dral s h e et In the tetrahedral sheet, Si ranges from 4 to 2 a.p.f.u., and IVAl from 0 to 2 a.p.f.u., accordingly. The ratio Si/IVAl = 1/3, known in clintonite, is in violation of the Lo¨wenstein rule and seems to be an exception. Lack of IVAl requires incorporation of some IVFe3+ or IVTi4+ to avoid a cation excess in the octahedral sheet. A clarification of the role of Ti in the tetrahedral sheet is desirable. In addition to Fe3+ and Ti, B and Be also play a rare role, although under-reported in analytical routines. Incorporation of Fe3+. Tetra-ferri-annite (2 analyses; Wones, 1963) and tetra-ferriphlo- VI IV VI 2+ IV IG gopite (19 analyses; Brigatti et al., 1996) are F . 19. Plot of Ti+2 Al against R +2 Si for IV 3+ phlogopite containing between 0.40 and 0.75 a.p.f.u. Ti. analogues of annite and phlogopite, with Fe replacing IVAl. Tetra-ferriphlogopite seems to have a pronounced miscibility with phlogopite smaller concentrations accompany progressively (Fig. 21, also Brod et al., 2001; Tombolini et al., more ferruginous compositions. In annite with 2002). Anandite (5 analyses) is an enigmatic Mg# <0.4, the Ti concentration does not exceed S-bearing brittle mica, also related to annite. 0.4 a.p.f.u. (Fig. 20). Incorporation of B. Trioctahedral micas invari- Incorporation of Na. The existence of the ably contain <0.15 a.p.f.u. B, most commonly trioctahedral mica shirokshinite (4 analyses), a <0.05 a.p.f.u. (Cˇ erny´ et al., 1995; Badanina et al., Na analogue of tainiolite, indicates that other 2004). The bulk of the dioctahedral micas also micas, particularly those from Na-rich assem- contain <0.15 a.p.f.u. B. Generally, no correlation blages, may have Na in octahedral coordination exists between B and IVAl (Fig. 22). However,

IV 3+ IV FIG. 20. Contents of Ti (>0.25 a.p.f.u.) as a function of FIG. 21. Relation of Fe to Al in phlogopite (phl) Mg/(Mg+Fetot) [=Mg#] in Ti-rich phlogopite (Ti phl) and tetra-ferriphlogopite (tetra-ferriphl). Data are taken and Ti-Fe-rich phlogopite (Ti-Fe phl) [Mg# >0.5] as from Brod et al. (2001; Table 4 and 7) and Tombolini et well as in Ti-Mg-rich annite (Ti-Mg ann) [Mg# <0.5]. al. (2002; Table 1).

299 TISCHENDORF ET AL.

such a replacement relationship appears if boron Stoppa et al., 1997) in mafic to ultramafic rocks. is >0.5 a.p.f.u., leading in some cases to Fluorannite is an F-rich annite present in only boromuscovite (10 analyses; Foord et al., 1991; some evolved A-type (Shen et al., 2000, Nova´k et al., 1999; Thomas et al., 2003). but also Charoy and Raimbault, 1994). Large Cl Incorporation of Be. The brittle mica bityite concentrations appear restricted to some of the (13 analyses) is a geochemical paradox, allowing annites, hendricksitic phlogopites to annites, and (as in tainiolite) a simultaneous presence of ferrokinoshitalites. Highest Cl concentration is substantial concentrations of incompatible reported in ferrokinoshitalite from skarns (Tracy, elements (Be, Li) and a compatible element (Ca) 1991), with an OH/F/Cl ratio of 0.47/0.27/1.26 (Lin and Guggenheim, 1983; Lahti and (a.p.f.u.). In rare cases, O or S is incorporated in Saikkonen, 1985). In compositions with IVAl trioctahedral micas such as the Ti-rich brittle mica ranging from 2 to 1 a.p.f.u. (and Be from 0 to oxykinoshitalite (2 analyses), in which Fe is 1 a.p.f.u.), a continuous replacement of IVAl by completely replaced by Ti (Kogarko et al., 2005), Be, according to the coupled substitution Ca2+ + norrishite (2 analyses; Eggleton and Ashley, Be2+ > (K,Na)+ + IVAl3+, appears to operate 1989), and anandite (5 analyses; Pattiaratchi et (Fig. 23). al., 1967).

Anions The anion positions are occupied mainly by Discussion and conclusions (OH) and F and, more rarely, by Cl, S or O. Most Charge balance Mg-Fe micas (phlogopite, annite, Mg-rich side- By definition, trioctahedral micas should contain rophyllite), and Al micas (muscovite, celadonite), three cations, and dioctahedral micas two cations, are OH-rich; Li micas (polylithionite, tainiolite) in octahedral coordination. If the sum of cation are typically F-rich. Li-rich annite, Li-rich side- charges is constant (= 22, including K), the rophyllite and Li-rich muscovite are transitional. occupancy of the tetrahedral sheet is fixed. For K Fluorine supplied by mantle degassing may give micas and othermicas with a univalent cation in rise to F-rich phlogopite (up to 1.65 a.p.f.u.; e.g. the interlayer it follows that: five octahedral charges (e.g. polylithionite: 2Li+ +Al3+, tainiolite: 2Mg2+ +Li+, celadonite: Fe3+ + 2+ Mg ) require [Si4];

IV IV FIG. 22. Quantity of B in relation to Al for siderophyllite (sid), polylithionite (pol), muscovite (mus) and boromuscovite (bmus). Numbers of analyses XII IV XII are given in parentheses. Data for the common true K FIG. 23. Plot of Ca + Be as a function of (K,Na) + micas were taken predominantly from Cˇ erny´ et al. IVAl for bityite and Be(Li)-rich margarite (mar). Be (1995) and Badanina et al. (2004); data forboromusco- contents (in a.p.f.u.) are indicated. Numbers of analyses vite are from Foord et al. (1991), Nova´k et al. (1999) are given in parentheses. Data were taken from Lahti and Thomas et al. (2003). and Saikkonen (1985).

300 CLASSIFICATION OF MICAS

six charges as in phlogopite (3Mg2+)or analyses. The Mg-Fe mica group [Si = 2.5À2.9], 3+ muscovite (2Al ) require [Si3Al]; the Al mica group [Si = 2.9À3.3] as well as the six-and-a-half charges as in Fe-rich phlogopite Li-Al mica group, including tainiolite, montdorite (1.5Mg2+ +Fe2+ + 0.5Al3+) orannite (2.5Fe 2+ + and celadonite (= tetra-silicic micas) [Si = 3+ 0.5Fe ) require [Si2.5Al1.5]; 3.3À4.0], form separate clusters along the line seven charges (siderophyllite: 2Fe2+ +Al3+, VIR =9À IVSi. eastonite: 2Mg2+ +Al3+)wouldrequirea tetrahedral sheet of [Al Si ]. 2 2 Substitution of elements, solid-solution series, and Surprisingly, natural common true K micas with miscibility gaps tetrahedral composition [Al2Si2] are not known. Theirminimum concentration of IVSi is 2.5. A significant property of the micas is that, almost In contrast, brittle micas (with a divalent cation without exception, they form solid solutions. In such as Ca and Ba in the interlayer) with this study, we have not examined whethera six octahedral cation charges (e.g. kinoshitalite particular mica is a member of a complete solid- [3Mg2+] ormargarite [2Al 3+]) would require solution series with well defined end-members, or [Al2Si2] in the tetrahedra; whetherit is a resultof only a partial element- seven octahedral cation charges (e.g. clintonite exchange. We have dealt with real analytical [2Mg2+ +Al3+]) would require an absolute determinations of elements and tried to establish minimum of tetrahedral Si [Al3Si]. theirmutual relationships.In such a case, all In practice, clintonite has Si1.1À1.3 statements about substitutions of elements in (48 analyses). Therefore, an increasing proportion minerals should be normalized to the scale of of divalent cations (Ca2+,Ba2+) in the interlayer examination. Accordingly, microprobe analyses of true micas, as well as an increase of trivalent can avoid problems (multiple generations of a (Fe3+, also VIAl3+) and quadrivalent cations (Ti4+) mica, the presence of heterogeneous phases, etc.) in the octahedral sheet (normally occupied in the and will yield results different from wet-chemical phlogopite–annite series by divalent cations such analyses. The future application of new and more as Mg2+,Fe2+), brings about a minimization of Si sophisticated analytical techniques will certainly in tetrahedral coordination. On the contrary, offer a more detailed view of the phase chemistry. incorporation of monovalent Li in the octahedral Because of the multicomponent nature of the sheet (except the uncommon ephesite and bityite) mica chemical system, and the wide possibilities may increase tetrahedral Si up to 4.0. of mutual replacement of elements in micas, Figure 24 gives an overview of charge-balance complex relationships govern the occupancy of as a function of Si. The plot shows mean values individual coordinations and the conditions for a foranalyses of all mica species. Truemicas obey necessary charge-balance. Guidotti and Sassi the following relation for cation charge sums: VIR (1998) used theirdetailed study of metamorphic =9À IVSi. The equation forbrittlemicas is VIR = Na/K white micas as an example of the 8 À IVSi. Micas deviating from these relationships miscellaneous isomorphic substitutions. Element (kinoshitalite, margarite, anandite) have a smaller substitutions in common true K micas are not proportion of divalent cations in the interlayer restricted to schemes operating within a particular (0.69 a.p.f.u. Ba, 0.74 a.p.f.u. Ca, 0.88 a.p.f.u. solid-solution series, but deviate into composi- Ba, respectively). According to its formula, tional space between such series. We may ganterite (Ba ~0.50 a.p.f.u.) is intermediate distinguish five magmatic evolutionary pathways between true and brittle micas. Bityite plots in a (Fig. 25): special position because of its concentration of (I) Phlogopite sensustricto –Ti-rich phlogopite– IVBe2+. Oxykinoshitalite and norrishite are distin- Ti-Fe-rich phlogopite–Fe-rich phlogopite–Mg-Ti- guished by a different fundamental condition of rich annite–annite sensustricto –Li-rich annite 24 cation charges; besides, the latter has the (corresponding with a branch of the complete unique concentration of trivalent manganese. trioctahedral system phlogopite//sidero- Ephesite (like eastonite) is a mica that plots at phyllite-lepidomelane according to Foster, the outerborderofthe mgli/feal diagram (Figs 2 1960a, representing the Al-deficient path devel- and 3), indicating a trioctahedral, but abnormal oped during the evolution of mantle-derived status. Note that the theoretical end-member magmatic rocks); compositions of siderophyllite and eastonite in (II) Al-rich phlogopite–Al-Fe-rich phlogopite– Fig. 24 lie well outside the bulk of the mica Al-Mg-rich annite–Al-rich annite–Al-Li-rich

301 TISCHENDORF ET AL.

VI IV FIG. 24. Sum of charges of R related to Si for averages of selected natural mica species. Shown are brittle micas: anandite, bityite, clintonite, kinoshitalite, margarite; trioctahedral true micas: annite, eastonite, ephesite, hendricksite, montdorite, phlogopite, polylithionite, preiswerkite, shirokshinite, siderophyllite, tainiolite sensu stricto; dioctahedral true micas: boromuscovite, celadonite(cel), chromphyllite, ganterite, margarite, muscovite, nanpingite, paragonite, roscoelite, tobelite; and some theoretical mica end-members: annite, celadonite, clintonite, eastonite, kinoshitalite, margarite, muscovite, phlogopite, polylithionite, siderophyllite, tainiolite, norrishite, and oxykinoshitalite (oxy-kino); (a) clusterof Mg-Fe mica group[Si = 2.6 to 2.9], (b) clusterof Al mica group[Si = 2.9 to 3.3], (c) cluster of Li-Al mica group including tainiolite, montdorite, and celadonite (= tetra-silicic micas) [Si = 3.3 to 4.0]; white grey = range of transitional micas between true and brittle micas. For common true K micas holds: Sum of charges of VIR =9À IVSi (in a.p.f.u.); for brittle micas: Sum of charges of VIR =8À IVSi (in a.p.f.u.). Abbreviations as in preceding figures.

annite (branch of the complete trioctahedral mica series according to Monier and system phlogopite/biotite/siderophyllite–lepido- Robert, 1986, zinnwaldite–muscovite subsolidus melane according to Foster, 1960a; Al-enriched ‘autometasomatic’ trend of Henderson et al., path developed during the evolution of mantle- 1989; path developed during late-magmatic derived magmatic rocks); evolution of granites); and (III) Al-Mg-rich annite–Mg-rich siderophyllite- (V) Polylithionite–Li-rich muscovite–musco- siderophyllite sensustricto –Li-rich siderophyl- vite sensustricto (–lithium micas lite–Fe-rich polylithionite–polylithionite sensu according to Foster, 1960b; path developed stricto (ferrous lithium-mica series according to during evolution of pegmatites). Foster, 1960b, lithium– micas according to In addition, muscovite, Mg-rich muscovite, Fe- Rieder et al., 1970; path developed during the rich muscovite and Mg-Fe-rich muscovite are formation of crust-derived magmatic rocks, components of metamorphic rocks wherein the including theirpegmatitic and aplitic derivates); mica composition varies as a function of the (IV) Fe-rich polylithionite–Li-Fe-rich musco- conditions of formation. Tainiolite sensustricto , vite–Fe-rich muscovite (ferrous aluminium– Fe-rich and Al-rich tainiolitic micas, however, are

302 CLASSIFICATION OF MICAS

mostly hybrid products, if evolved solutions react series phlogopite–Ti-Fe-rich phlogopite–Ti-Mg- with mafic rocks. rich annite–annite–Li-rich annite (I), Al-rich The best-documented solid-solution series phlogopite–Al-Fe-rich phlogopite–Al-Mg-rich between true and brittle micas is that between annite–Li-Al-rich annite (II), Al-Mg-rich annite– phlogopite and kinoshitalite (Fig. 12a). Larger Ba siderophyllite–Li-rich siderophyllite–Fe-rich concentrations apparently occur in the whole polylithionite–polylithionite (III), Fe-rich poly- phlogopite–annite series; however, whether a lithionite–Li-Fe-rich muscovite–Fe-rich musco- complete miscibility occurs between annite and vite–Mg-Fe-rich muscovite (IV), and ferrokinoshitalite remains an open question polylithionite–Li-rich muscovite–muscovite– (Fig. 13). Complete element substitution is also Mg-rich muscovite (V) form the framework of present in the series muscovite–roscoelite the common true K micas (Fig. 25). These series (Fig. 16), muscovite–chromphyllite (Fig. 17) and constitute the main substitution patterns present in phlogopite–tetra-ferriphlogopite (Fig. 21). A natural micas. Most of the main composition substitution relation probably exists for musco- maxima coincide with the mica species (such as vite–tobelite (Fig. 10), and may also exist between muscovite, phlogopite and polylithionite). An common true K micas and Na micas, namely exception is the relative frequency maximum phlogopite–aspidolite (Fig. 7a) and muscovite– close to mgli = 1.25 and feal = 1.25, which paragonite (Fig. 7b), although the latterappears encompasses micas formerly termed ‘biotite’ more limited. In contrast, miscibility gaps (Fig. 1). Most of this maximum occurs within probably exist between common true K micas the Mg-rich part of the annite field, but it also and Ca-bearing brittle micas (Fig. 11a,b), and straddles the fields of phlogopite and sidero- between muscovite and boromuscovite (Fig. 22). phyllite. Most of the former ‘’ are Experiments have shown a complete miscibility intermediate annite–phlogopite solid solutions. between K and Rb in phlogopite, but a possible Another, less problematic exception is the relative miscibility with natural common true K micas maximum close to mgli = À1 and feal = 0, which remains to be studied (Fig. 8). On the contrary, the is cut by the siderophyllite/polylithionite discri- Cs-rich part in the KÀCs system is occupied mination divide and lies precisely where the (Fig. 9), indicating a complete element exchange. micas formerly termed ‘zinnwaldite’ would have Although only a few analyses are available in the plotted. Consequently, most ‘zinnwaldites’ corre- system muscovite–bityite, the data indicate a spond to intermediate polylithionite–siderophyl- nearly complete replacement of IVAl by IVBe lite solid solutions. (Fig. 23). Manganese and Zn are enriched in some Incompletely investigated micas can be desig- micas (masutomilite, montdorite, norrishite, shir- nated with series names such as biotite, phengite, ozulite, hendricksite) that will form only under orzinnwaldite (Rieder et al., 1998) but, after special physicochemical conditions and must be detailed investigation, such series names ought to considered separately (Figs 14, 15). The concen- be abandoned in favour of more precise terms trations of Ti as well as Fe3+ are limited because of such as Fe-rich phlogopite, Li-Fe-rich muscovite theirlargevalence (Figs 18 À20). To date, no or Li-rich siderophyllite. These names apply from known mica (apart from oxykinoshitalite) has an end-memberout to the 50/50 divide, which is a predominant Ti in the octahedral position. Finally, universally accepted border that may run, counter- OH and F are apparently miscible in almost any intuitively, through frequency maxima in compo- mica. sition plots. The Fetot/(Fetot+Li) ratio [=Fe#] can be used, togetherwith VIAl, to describe compositions at or Principles of classif|cation nearthe siderophyllite–polylithioniteseries. Micas constitute a group of minerals character- Alternatively, it can be used alone to sort all ized by a predominant substitution of elements. trioctahedral micas, because Fe# = 1.0 holds for Theirclassification restson the existence of end- Fe-bearing phlogopite and end-member annite. members and their interconnection by solid- Several end-members of the common true K solution series. micas are starting points for solid-solution series Common true K micas can be classified using with end-members of uncommon true K micas, VIR, VIAl, Mg6Li, accompanied by fractions other alkali element true micas, and brittle micas. Mg/(Mg+Fetot) [=Mg#], Fetot/(Fetot+Li) [=Fe#], Figure 25 presents the whole mica system. and Al/(Al+Fetot+Mg) [=Al#], all in a.p.f.u.. The Tainiolites form a special sub-system (Fig. 5).

303 TISCHENDORF ET AL.

Concerning the classification of celadonites Relationships of classif|ed micas to the mgli/feal system (Fig. 6), we follow Li et al. (1997). Natural compositions of common true K micas The application of the mgli/feal variables offers represent complex multi-element substitutions an overall view of the whole mica family and involving Fe2+,Mg,VIAl,Li,Ti,Fe3+ and allows the userto inspect all main compositions. Mn2+. However, solid-solution series between Mica end-members plot in the mgli/feal diagram common true K micas and uncommon true at vertices with angles between 90º and 125º 2+ K micas, otheralkali-element truemicas, and (KMg3[AlSi3O10](OH)2, phlogopite; KFe3 brittle micas are characterized by simpler, [AlSi3O10](OH)2, annite; KLi2Al[Si4O10]F2,poly- element-for-element, binary substitutions (e.g. lithionite; KAl2&[AlSi3O10](OH)2, muscovite; K > Na orK > Ba or VIAl > Cr). Figs 2 and 3). Vertices with angles between 155º

FIG. 25. The system of trioctahedral and dioctahedral true and brittle micas (without celadonites) plotted in terms of mgli and feal variables. Common true K mica species are assigned their areas within the diagram. Evolutionary pathways of igneous micas are indicated (I to V), documented by compositional averages of mica varieties. Uncommon true K micas, other alkali element micas, brittle micas, and some further ideal mica members are listed in the boxes outside of the diagram. The position of the Zn-rich mica hendricksite corresponds to its average composition in nature. In the mica formulae, the order of elements in the individual sheets conforms to the recommendations of the Mica sub committee of the CNMNC (Rieder et al., 1998).

304 CLASSIFICATION OF MICAS and 165º represent micas with the ideal composi- (3) The mgli/feal variables are based on the tions KMg2.5Al0.5[Al1.5Si2.5O10](OH)2 (Al-rich main, octahedrally coordinated cations in the 2+ phlogopite), KLiFe2 [Si4O10](OH)2 (Li-rich mica structure. annite) and KLi1.25Al1.75[Al1.5Si2.5O10]F2 (Al-rich (4) The plotting of all theoretical formulae is trilithionite). Other essential ideal components, straightforward. such as KLi1.5Al1.5[AlSi3O10]F2 (trilithionite), (5) The grids for accompanying variables such 2+ VI IV VI KMg2Fe [AlSi3O10](OH)2 (Fe-rich phlogopite), as R, Si, as well as Al, Mg, Fetot (including 2+ KFe2 Mg[AlSi3O10](OH)2 (Mg-rich annite) plot Ti + Mn), and Li can be shown in the diagram along the outerboundaryof the polygon. End- (Tischendorf et al., 2004, theirFigs 2 and 3). 2+ membersiderophyllite À KFe2 Al (6) The mgli and feal variables correspond well 2+ [Al2Si2O10](OH)2 orKLi 0.25Fe1.75Mg0.25Al0.75 with the substitution vectors according to [Al1.5Si2.5O10](OH)2 À plots at a pivotal point of Tschermak (Burt, 1991): mgli represents a the mica system. The position of tainiolite condensed form of 3MgIVAl[2LiVIAlSi]À1 and 2+ 2+ 2+ (KLiMg2[Si4O10]F2) is unique and isolated feal is approximately 3(Fe Mn Ti0.5) (Fig. 5). Likewise, the celadonites, which defini- [2VIAl]À1, neglecting Fe3+. tively contain Fe3+, must be treated separately from (7) The plot offers the possibility to display the mainstream micas (Fig. 6). The course of VIR fractionation tendencies in magmatic rocks as and VIAl in the diagram, as well as points for micas evolution series including all mica species and lying half-way along the joins of end-members, varieties. delineate the fields of mica species. (8) The graphical mica presentation applying The boundaries of mica species in the mgli/feal mgli/feal is highly compatible with the chemical diagram are theoretical and may not coincide mica classification according to VIAl, VIR, Mg#, completely with those based on the relevant Fe# and Al#. elemental ratios used for classification. Such discrepancies may be caused by two important Acknowledgements factors: (1) Ideal mica members are related to VIR = 3.0 K. Breiter (Prague), R. Thomas, and D.E. Harlov or2.0, which is the basis underlyingthe (both Potsdam) contributed unpublished mica construction of the diagram; however, occupan- analyses. F. Pietschmann (Zittau) helped with cies of natural micas may differ from these the mathematical procedures. The authors wish to values; acknowledge the thorough work of A. Hendrich (2) Forplotting, the theoreticalcompositions and M. Dziggel (Potsdam) who carefully are reduced to main constituents of the octahedral constructed the figures. The paper benefited VI sheet (Fetot, Al, Ti, Mn, Mg, Li), but in reality, from constructive reviews by three anonymous they may contain additional elements such as Zn, referees and editorial comments by C. Geiger Crand V. (Kiel) and M. Welch (London). B. Clarke Overlaps may affect the boundary between (Halifax) read the final version to check for annite and siderophyllite in particular. Therefore, language correctness. We also acknowledge Fig. 2 shows two sets of isolines for VIAl = 0.5, valuable discussions with E.A.J. Burke one for VIR = 3.0 and the otherfor VIR = 2.75. We (Amsterdam) and E.H. Nickel (Wembley, recommend use of the VIAl = 0.5 isoline for VIR = Australia). 2.75 fordiscriminationbetween these two species (Figs 3 and 4). References The advantages of the application of mgli/feal variables for classification are: Abdalla, H., Matsueda, H., Ishihara, S. and Miura, H. (1) A graphical presentation of all common true (1994) Mineral chemistry of -enriched grani- K micas, trioctahedral and dioctahedral, Li- toids at Um Ara, Southeastern Desert, Egypt. bearing and non-Li-bearing, is possible in a International Geological Review, 36, 1067À1077. single diagram in two dimensions. Separate Ackermand, D. and Morteani, G. (1973) Occurrence and plots should be used only fortainiolites and breakdown of paragonite and margarite in the Greiner celadonites. Schieferseries (Zillerthal Alps, Tyrol). Contributions (2) The a.p.f.u. values from the crystallochem- to Mineralogy and Petrology, 40,293À304. ical formulae are easy to convert into the mgli/feal Ackermand, D., Herd, R. K. and Windley, B.F. (1986) variables. Clintonite of regional metamorphic origin, along the

305 TISCHENDORF ET AL.

margin of the Fiskenaesset complex, West of Fe3+-rich phlogopite from the Tapira carbonatite Greenland. Neues Jahrbuch fu¨r Mineralogie, complex, Brazil. American Mineralogist, 81, Abhandlungen, 155,39À51. 913À927. Alietti, E., Brigatti, M.F. and Poppi, L. (1997) Brod, J.A., Gaspar, J.C., de Arau´jo, D.P., Gibson, S.A., Clintonite-1M: Crystal chemistry and its relation- Thompson, R.N. and Junqueira-Brod, T.C. (2001) ships to closely associated Al-rich phlogopite. Phlogopite and tetra-ferriphlogopite from Brazilian American Mineralogist, 82, 936À945. carbonatite complexes: petrogenetic constraints and Ankinovich, S.G., Ankinovich, Ye.A., implications for mineral-chemistry systematics. Rozhdestvenskaya, I.V. and Frank-Kamenetskiy, Journal of Asian Earth Sciences, 19, 265À296. V.A. (1973) Chernykhite, a new barium-vanadium Bryanchaninova, N.I., Makejev, A.B., Zubkova, N.B. mica from northwestern Karatau. International and Filippov, V.N. (2004) Sodium-strontium mica. Geological Review, 15, 641À647. Na0.50Sr0.25Al2(Na0.25&0.75)Al1.25Si2.75O10(OH)2 Armbruster, T., Richards, R.T., Gnos, E., Pettke, T. and from the Rubin field. Doklady Akademii Nauk, 395, Herwegh, M. (2007) Unusual fibrous sodian 101À107 (in Russian). tainiolite epitactic on phlogopite from marble Bucher, H., Fazis, Y., de Capitani, Chr. and Grapes, R. xenoliths of Mont Saint-Hilaire, Quebec, Canada. (2005) Blueschists, eclogites, and decompression The Canadian Mineralogist, 45, 541À549. assemblages of the Zermatt-Saas ophiolite: High- Badanina, E.V., Veksler, I.V., Thomas, R., Syritso, L.F. pressure metamorphism of subducted Thetys litho- and Trumbull, R.B. (2004) Magmatic evolution of sphere. American Mineralogist, 90, 821À835. Li-F, rare-metal granites: a case study of melt Bucher-Nurminen, K. (1976) Occurrence and chemistry inclusions in the Khangilay complex, Eastern of xanthophyllite in roof pendants of the Bergell Transbaikalia (Russia). Chemical Geology, 210, , Sondrio, northern Italy. Schweizerische 113À133. Mineralogische und Petrographische Mitteilungen, Baltatzis, E. and Wood, B.J. (1977) The occurrence of 56, 413À426. paragonite in chloritoid schists from Stonehaven, Burke, E.A.J. and Ferraris, G. (2005) New minerals and Scotland. Mineralogical Magazine, 41, 211À216. nomenclature modifications approved in 2004 by the Banno, Y., Miyawaki, R., Kogure, T., Matsubara, S., Commission on New Minerals and Mineral Names, Kamiya, T. and Yamada, S. (2005) Aspidolite, the International Mineralogical Association: IMA No. Na analogue of phlogopite, from Kasuga-mura, Gifu 2004-012. The Canadian Mineralogist, 43, 830. Prefecture, central Japan: description and structural Burt, D.M. (1991) Vector representation of lithium and data. Mineralogical Magazine, 69, 1047À1057. othermica compositions. Pp. 113 À129 in: Progress Beswick, A.E. (1973) An experimental study of alkali in Metamorphic and Magmatic Petrology (L.L. metal distribution in feldspars and micas. Perchuk, editor), Cambridge University Press, Geochimica et Cosmochimica Acta, 37, 183À208. Cambridge, UK. Bigi, S., Brigatti, M.F., Mazzucchelli, M. and Rivalenti, Cˇ erny´, P. and Burt, D. M. (1984) Paragenesis, crystal- G. (1993) Crystal chemical variations in Ba-rich lochemical characteristics, and geochemical evolu- biotites. Contributions to Mineralogy and Petrology, tion of micas in granite pegmatites. Pp. 257À297 in: 113,87À99. Micas (S.W. Bailey, editor) Reviews in Mineralogy, Boggs, R.C. (1992) A manganese-rich miarolitic granite 13, Mineralogical Society of America, Washington, assemblage from the Sawtooth batholith, D.C. South central Idaho, U.S.A. Abstracts: International Cˇ erny´, P., Staneˇk, J., Nova´k, M., Baadsgaard, H., Symposium ‘‘ 200’’, Nove`Meˇsto na Rieder, M., Ottolini, L., Kavalova´, M. and Moraveˇ/Czechoslovakia, 29.8.À3.9.1992, 15À16. Chapman, R. (1995) Geochemical and structural Bol, L.C.G.M., Bos, A., Sauter, P.C.C. and Jansen, evolution of micas in the Rozna´ and Dobra´ Voda J.B.H. (1989) Barium--rich phlogopites in pegmatites, Czech Republic. Mineralogy and marbles from Rogaland, southwest Norway. Petrology, 55, 177À201. American Mineralogist, 74, 439À447. Cˇ erny´, P., Chapman, R., Teertstra, D. K. and Nova´k, M. Breit, G.N. (1995) Origin of clay minerals associated (2003) Rubidium- and cesium-dominant micas in with V-U deposits in the Entrada Sandstone granite pegmatites. American Mineralogist, 88, Placerville Mining District, southwestern Colorado. 1832À1835. Economic Geology, 90, 407À419. Charoy, B. and Raimbault, L. (1994) Zr-, Th-, and REE- Brigatti, M.F. and Poppi, L. (1993) Crystal chemistry of rich biotite differentiates in the A-type granite pluton Ba-rich trioctahedral micas-1M. European Journal of Suzhou (Eastern China): the key role of fluorine. of Mineralogy, 5, 857À871. Journal of Petrology, 35, 919À962. Brigatti, M.F., Medici, L., Saccani, E. and Vaccaro, C. Chen-Shurong and Wu-Gongbao (1987) Mineralogical (1996) Crystal chemistry and petrologic significance study of Mn-biotite in miarolitic granite fom Kuiqi,

306 CLASSIFICATION OF MICAS

Fujian. Dizhi Lun ping (Geol. Rev.), 33, 222À228 (in schists from south-central Maine: an example of Chinese). desulfidisation during prograde regional metamorph- Cooper, A.F., Paterson, L.A. and Reid, D.L. (1995) ism. American Mineralogist, 66, 908À930. Lithium in carbonatites À consequence of an Filut, M.A., Rule, A.C. and Bailey, S.W. (1985) Crystal enriched mantle source. Mineralogical Magazine, structure refinement of anandite-2Or, a barium- and 59, 401À408. sulfur-bearing trioctahedral mica. American Costa, F., Dungan, M.A. and Singer, B.S. (2001) Mineralogist, 70, 1298À1308. Magmatic Na-rich phlogopite in a suite of gabbroic Foord, E.E., Martin, R.F., Fitzpatrick, J.J., Taggert, Jr., J crustal xenoliths from Volca´n San Pedro, Chilean E. and Crock, J.G. (1991) Boromuscovite, a new Andes: Evidence fora solvus relation between member of the mica group, from the Little Three phlogopite and aspidolite. American Mineralogist, mine pegmatite, Ramona district, San Diego County, 86,29À35. California. American Mineralogist, 76, 1998À2001. Craig, J.R., Sandhaus, D.J. and Guy, R.E. (1985) Foster, M.D. (1960a) Interpretation of the composition MnTiO3 from Sterling Hill, New of trioctahedral micas. U.S. Geological Survey, Jersey. The Canadian Mineralogist, 23, 491À494. Professional Paper, 354-B, 11À49. Dasgupta, S., Chakraborti, S., Sengupta, P., Foster, M.D. (1960b) Interpretation of the composition Bhattacharya, P.K. and Banerjee, H. (1989) of lithium micas. U.S. Geological Survey, Compositional characteristics of kinoshitalite from Professional Paper, 354-E, 115À147. the SausarGroup,India. American Mineralogist, 74, Frey, M., Bucher, K., Frank, E. and Schwander, H. 200À202. (1982) Margarite in the Central Alps. Schweizerische Deer, W.A., Howie, R.A. and Zussman, J. (2003) Rock- Mineralogische und Petrographische Mitteilungen, forming Minerals. Sheet . Micas vol. 3A,2nd 62,21À45. edition (M.E. Fleet, editor). The Geological Society, Frimmel, H.E., Hoffmann, D., Watkins, R.T. and Moore, London, 758 pp. J.M. (1995) An Fe analogue of kinoshitalite from the Dolezˇalova´, H., Houzar, S. and Sˇkoda, R. (2005) Barium Broken Hill massive sulfide deposit in the phlogopites and kinoshitalite-bearing mineral assem- Namaqualand Metamorphic Complex, South blage of forsterite marbles from Rozˇna´ uranium Africa. American Mineralogist, 80, 833À840. deposit, Moldanubicum, western Moravia. Scientiae Frondel, C. and Einaudi, M. (1968) Zinc-rich micas Geologicae. Casopis moravskeho Muzea, 90,75À88. from Sterling Hill, New Jersey. American Dolezˇalova´, H., Houzar, S., Losos, Z. and Sˇkoda, R. Mineralogist, 53, 1752À1754. (2006) Kinoshitalite with a high magnesium content Frondel, C. and Ito, J. (1966) Hendricksite, a new in sulphide-rich marbles from the Rozˇna´ uranium species of mica. American Mineralogist, 51, deposit, Western Moravia, Czech Republic. Neues 1107À1123. Jahrbuch fu¨r Mineralogie, Abhandlungen, 182, Gibson, G.M. (1979) Margarite in kyanite- and 165À171. -bearing anorthosite, amphibolite, and Dymek, R.F. (1983) Titanium, aluminium and interlayer hornblendite from Central Fiordland, New Zealand. cation substitutions in biotite from high-grade Contributions to Mineralogy and Petrology, 68, gneisses, West Greenland. American Mineralogist, 171À179. 68, 880À899. Gnos, E. and Armbruster, Th. (2000) Kinoshitalite, Edgar, A.D. (1992) Barium-rich phlogopite and biotite Ba(Mg)3(Al2Si2)O10(OH,F)2, a brittle mica from a from some Quaternary alkali mafic lavas, West Eifel, manganese deposit in Oman: Paragenesis and crystal Germany. European Journal of Mineralogy, 4, chemistry. American Mineralogist, 85, 242À250. 321À330. Gnos, E., Armbruster, Th. and Villa, I.M. (2003) 3+ Eggleton, R.A. and Ashley, P.M. (1989) Norrishite, a Norrishite, K(Mn2 Li)Si4O10(O)2, an oxymica with 3+ new manganese mica, K(Mn2 Li)Si4O12, from the sugilite from the Wessels Mine, South Africa: Hoskins mine, New South Wales, Australia. Crystal chemistry and 40Ar-39Ardating. American American Mineralogist, 74, 1360À1367. Mineralogist, 88, 189À194. Escuder-Viruete, J. and Pe´rez-Estau´n, A. (2006) Godard, G. and Smith, D. (1999) Preiswerkite and Na- Subduction-related P-T path foreclogites and garnet (Mg,Fe)-margarite in eclogites. Contributions to glaucophanites from the Samana´ Peninsula basement Mineralogy and Petrology, 136,20À32. complex, northern Hispaniola. International Journal Gottesmann, B. and Tischendorf, G. (1978) of Earth Sciences, 95, 995À1017. Klassifikation, Chemismus und Optik trioktae- Eugster, H.P. and Munoz J. (1966) Ammonium micas: drischer Glimmer. Zeitschrift fu¨r Geologische possible sources of atmospheric ammonia and Wissenschaften, 6, 681À708. nitrogen. Science, 151, 683À686. Graeser, S., Hetherington, C.L. and Giere´, R. (2003) Ferry, J.M. (1981): Petrology of graphitic sulfide-rich Ganterite, a new barium-dominant analogue of

307 TISCHENDORF ET AL.

muscovite from the Berisal Complex, Simplon complex, Monteregian Hills, Quebec: mechanisms of Region, Switzerland. The Canadian Mineralogist, substitution. The Canadian Mineralogist, 34, 41, 1271À1280. 1241À1252. Grambling, J.A. (1984) Coexisting paragonite and Henderson, C.M.B., Martin, J.S. and Mason, R.A. in sillimanitic rocks from New Mexico. (1989) Compositional relations in Li-micas from American Mineralogist, 69,79À87. S.W. England and France: an ion- and electron- Greenwood, J.C. (1998) Barian-titanian micas from the microprobe study. Mineralogical Magazine, 53, Ilha da Trinidade, South Atlantic. Mineralogical 427À449. Magazine, 62, 687À695. Hetherington, C.J., Giere´, R. and Graeser, S. (2003) Grew, E.S., Yates, M.G., Adams, P.M., Kirkby, R. and Composition of barium-rich white micas from the Wiedenbeck, M. (1999) Harkerite and associated Berisal complex, Simplon region, Switzerland. The minerals in marble and skarn from Cresmore quarry, Canadian Mineralogist, 41, 1281À1291. Riverside County, California and Cascade Slide, Higashi, S. (1978) Dioctahedral mica minerals with Adirondack Mountains, New York. The Canadian ammonium . Mineralogical Journal, 9,16À27. Mineralogist, 37, 277À296. Higashi, S. (1982) Tobelite, a new ammonium Guggenheim, S. and Frimmel, H.E. (1999) dioctahedral mica. Mineralogical Journal, 11, Ferrokinoshitalite, a new species of brittle mica 138À146. from the Broken Hill mine, South Africa: Structural Higashi, S. (2000) Ammonium-bearing mica and mica/ and mineralogical characterization. The Canadian smectite of several pottery stone and pyrophyllite Mineralogist, 37, 1445À1452. deposits in Japan: their mineralogical properties and Guggenheim, S., Schulze, W.A., Harris, G.A. and Lin, utilization. Applied Clay Science, 16, 171À184. J.-C. (1983) Concentric layer silicates: An optical Ho¨ck, V. (1974) Coexisting phengite, paragonite and second harmonic generation, chemical and X-ray margarite in metasediments of the Mittlere Hohe study. Clays and Clay Minerals, 31, 251À260. Tauern, Austria. Contributions to Mineralogy and Guidotti, C.V. and Sassi, F.P. (1998) Miscellaneous Petrology, 43, 261À273. isomorphous substitutions in Na-K white micas: a Hoffer, E. (1978) On the ‘late’ formation of paragonite review, with special emphasis to metamorphic and its breakdown in pelitic rocks of the southern micas. Rendiconti Lincei Scienze Fisiche e Damara Orogen (Namibia). Contributions to Naturali, 9,57À78. Mineralogy and Petrology, 67, 209À219. Guidotti, C.V., Post, J.L. and Cheney, J.T. (1979) Hofmann, B.A. (1990) Reduction spheroids from Margarite pseudomorphs after chiastolite in the northern Switzerland: Mineralogy, geochemistry Georgetown area, California. American and genetic models. Chemical Geology, 81,55À81. Mineralogist, 64, 728À732. Ishida, K., Hawthorne, F.C. and Hirowatari, F. (2004) 2+ Guidotti C.V., Sassi F.P., Sassi R. and Blencoe J.G. Shirozulite, KMn3 (Si3Al)O10(OH)2, a new manga- (1994) The effects of ferromagnesian components on nese-dominant trioctahedral mica: Description and the paragonite–muscovite solvus: a semiquantitative crystal structure. American Mineralogist, 89, analysis based on chemical data fornatural 232À238. paragonite–muscovite pairs. Journal of Jiang, S.-Y., Palmer, M.R., Li, Y.-H. and Xue, C.-J. Metamorphic Geology, 12, 779À788. (1996) Ba-rich micas from the Yindongzi-Daxigou Harada, K., Honda, M., Nagashima, K. and Kanisawa, S. Pb-Zn-Ag and Fe deposits, Qinling, northwestern (1976) Masutomilite, manganese analogue of zinn- China. Mineralogical Magazine, 60, 433À445. waldite, with special reference to masutomilite- Jolliff, B.L., Papike, J.J. and Shearer, C.K. (1987) lepidolite-zinnwaldite series. Mineralogical Fractionation trends in mica and tourmaline as Journal, 8,95À109. indicatorof pegmatite internal evolution: Bob Harlow, G.E. (1994) Jadeitites, albitites and related Ingersoll pegmatite, Black Hills, South Dakota. rocks from the Motagua Fault Zone, Guatemala. Geochimica et Cosmochimica Acta, 51, 519À534. Journal of Metamorphic Geology, 12,49À68. Katagas, C. and Baltatzis, E. (1980) Coexisting Harlow, G.E. (1995) Crystal chemistry of barian celadonitic muscovite and paragonite in chlorite enrichment in micas from metasomatized inclusions zone metapelites. Neues Jahrbuch fu¨r Mineralogie, in serpentinite, Motagua Fault Zone, Guatemala. Monatshefte, No. 5, 206À214. European Journal of Mineralogy, 7, 775À789. Keusen, H.R. and Peters, Tj. (1980) Preiswerkite, an Al- Hawthorne, F.C., Teertstra, D.K. and Cˇ erny´, P. (1999) rich trioctahedral sodium mica from the Geisspfad Crystal-structure refinement of a rubidian cesian ultramafic complex (Pennic Alps). American phlogopite. American Mineralogist, 84, 778À781. Mineralogist, 65, 1134À1137. Henderson, C.M.B. and Foland, K.A. (1996) Ba- and Ti- Kile, D.E. and Foord, E.E. (1998) Micas from the Pikes rich primary biotite from the Brome alkaline igneous Peak batholith and its cogenetic granitic pegmatites,

308 CLASSIFICATION OF MICAS

Colorado: Optical properties, composition, and barium mica Ba0.5K0.5Al2(Al1.5Si2.5)O10(OH)2, from correlation with pegmatite evolution. The Canadian Oreana, Nevada. American Mineralogist, 91, Mineralogist, 36, 463À482. 702À705. Kogarko, L.N., Uvarova, Y.A., Sokolova, E., MacKinney, J.A., Mora, C.I. and Bailey, S.W. (1988) Hawthorne, F.C., Ottolini, L. and Grice, J.D. Structure and crystal chemistry of clintonite. (2005) Oxykinoshitalite, a new mica from American Mineralogist, 73, 365À375. Fernando-de-Noronha island, Pernambuco, Brazil: Mansker, W.L., Ewing, R.C. and Keil, K. (1979) Barian- Occurrence and crystal structure. The Canadian titanian biotites in nephelinites from Oahu, Hawaii. Mineralogist, 43, 1501À1510. American Mineralogist, 64, 156À159. Konzett, J., Miller, Chr., Armstrong, R. and Tho¨ni, M. Meunier, J.D. (1994) The composition and origin of (2005) Metamorphic evolution of iron-rich mafic vanadium-rich clay minerals in Colorado plateau cumulates from the O¨ tztal-Stubai crystalline com- Jurassic sandstones. Clays and Clay Minerals, 42, plex, Eastern Alps, Austria. Journal of Petrology, 46, 391À401. 717À747. Mesto, E., Schingaro, E., Cordari, F. and Ottolini, L. Koval, P.V., Kovalenko, V.I., Kuz’min, M.I., (2006) An electron microprobe analysis, secondary Pisarskaya, V.A. and Yurchenko, S.A. (1972) ion mass spectrometry, and single-crystal X-ray Mineral parageneses, composition and nomenclature diffraction study of phlogopites from Mt. Vulture, of micas from rare-metal albite-bearing granitoids. Potenza, Italy: Consideration of cation partitioning. Doklady Akademii Nauk SSSR, 202, 1174À1177 (in American Mineralogist, 91, 182À190. Russian). Mohamed, F.H., Abdalla, H.M. and Helba, H. (1999) Kuznetsova, L.G. and Zagorskiy, V.E. (1984) The micas Chemistry of micas in rare-metal granitoids and of the metasomatic rocks in the rare-metal province associated rocks, Eastern Desert, Egypt. of a spodumen pegmatite. Doklady Akademii Nauk International Geological Review, 41, 932À948. SSSR, 275, 151À155 (in Russian). Monier, G. and Robert, J.-L. (1986) Evolution of the Lagache, M. and Que´me´neur, J. (1997) The Volta miscibility gap between muscovite and biotite solid Grande pegmatites, Minas Gerais, Brazil: an solutions with increasing lithium content: an example of rare-element granitic pegmatites ex- experimental study in the system K2O– ceptionally enriched in lithium and rubidium. The Li2OÀMgOÀFeO–Al2O3–SiO2–H2O–HF at 600ºC,

Canadian Mineralogist, 35, 153À165. 2 kbar PH2O: comparison with natural lithium micas. Lahti, S.I. (1988) Occurrence and mineralogy of the Mineralogical Magazine, 50, 641À651. margarite- and muscovite-bearing pseudomorphs Morand, V.J. (1990) High chromium and vanadium in after topaz in Juurako pegmatite, Orivesi, southern andalusite, phengite and retrogressive margarite in Finland. Bulletin of the Geological Society of contact metamorphosed Ba-rich black slate from the Finland, 60,27À43. Abercrombie Beds, New South Wales, Australia. Lahti, S.I. and Saikkonen, R. (1985) Bityite 2M1 from Mineralogical Magazine, 54, 381À391. Era¨ja¨rvi compared with related Li-Be brittle micas. Morgan VI, G.B. and London, D. (1987) Alteration of Bulletin of the Geological Society of Finland, 57, amphibolitic wallrocks around the Tanco rare- 207À215. element pegmatite, Bernic Lake, Manitoba. Le Bas, M.J., Keller, J., Tao, K.J., Wall, F., Williams, American Mineralogist, 72, 1097À1121. C.T. and Zhang, P.S. (1992) Carbonatite dykes at Motoyoshi, Y. and Hensen, B.J. (2001) F-rich Bayan Obo, InnerMongolia, China. Mineralogy and phlogopite stability in ultra-high-temperature meta- Petrology, 46, 195À228. pelites from the Napier Complex, East Antarctica. Li, G., Peacor, D.R., Coombs, D.S. and Kawach, Y. American Mineralogist, 86, 1404À1413. (1997) Solid solution in the celadonite family: The Ni, Y. and Hughes, J.M. (1996) The crystal structure of 2+ 3+ new minerals ferroceladonite, K2Fe2 Fe2 nanpingite-2M2, the Cs end-memberof muscovite. Si8O20(OH)4, and ferroaluminoceladonite, American Mineralogist, 81, 105À110. 2+ K2Fe2 Al2Si8O20(OH)4. American Mineralogist, 82, Nickel, E.H. (1992) Solid solutions in mineral 503À511. nomenclature. The Canadian Mineralogist, 30, Lin, J.-Ch. and Guggenheim, S. (1983) The crystal 231À234. structure of a Li, Be-rich brittle mica: a dioctahedral- Nieto, F. (2002) Characterization of coexisting NH4- trioctahedral intermediate. American Mineralogist, and K-micas in very low-grade metapelites. 68, 130À142. American Mineralogist, 87, 205À216. Lovering, F.J. and Widdowson, J.R. (1968) Electron- Nova´k, M., Cˇ erny´, P., Cooper, M., Hawthorne, F.C., microprobe analysis of anandite. Mineralogical Ottolini, L., Xu Zhi and Liang, J.J. (1999) Boron- Magazine, 36, 871À874. bearing 2M1 polylithionite and 2M1 +1M boromus- Ma Cha and Rossman, G.R. (2006) Ganterite, the covite from an elbaite pegmatite at Rˇ ecˇice, western

309 TISCHENDORF ET AL.

Moravia, Czech Republic. European Journal of Robert, J.-L. and Maury, R.C. (1979) Natural occurrence Mineralogy, 11, 669À678. of a (Fe, Mn, Mg) tetrasilicic potassium mica. Oberti, R., Ungaretti, L., Tlili, A., Smith, D.C. and Contributions to Mineralogy and Petrology, 68, Robert, J.-L. (1993) The crystal structure of 117À123. preiswerkite. American Mineralogist, 78, Ruiz Cruz, M.D. (2004) Na biotite and intermediate Na- 1290À1298. K biotite in schists from the Betic Cordilleras Oen, I.S. and Lustenhouwer, W.J. (1992) Cl-rich biotite, (Spain). Clay and Clay Minerals, 52, 603À612. Cl-K hornblende, and Cl-rich scapolite in meta- Schaller, W.T., Carron, M.K. and Fleischer, M. (1967) exhalites: Nora, Bergslagen, Sweden. Economic Ephesite, Na(LiAl2)(Al2Si2)O10(OH)2, a trioctahe- Geology, 87, 1638À1648. dral member of the margarite group, and related Pan, Y. and Fleet, M.E. (1991) Barian feldspar and brittle micas. American Mineralogist, 52, barian-chromian muscovite from the Hemlo area, 1689À1696. Ontario. The Canadian Mineralogist, 29, 481À498. Schreyer, W., Abraham, K. and Kulke, H. (1980) Pattiaratchi, D.B., Saari, E. and Sahama, Th.G. (1967) Natural sodium phlogopite coexisting with potass- Anandite, a new barium iron from sium phlogopite and sodian aluminian in a Wilagedera, North Western Province, Ceylon. metamorphic evaporite sequence from Derrag, Tell Mineralogical Magazine, 36,1À4. Atlas, Algeria. Contributions to Mineralogy and Pekov, I.V., Chukanov, N.V., Ferraris, G., Ivaldi, G., Petrology, 74, 223À233. Pushcharovsky, D.Yu. and Zadov, A.E. (2003) Semenov, E.I. and Shmakin, B.M. (1988) On the Shirokshinite, K(NaMg2)Si4O10F2, a new mica with composition of mica rocks in exocontacts of rare- octahedral Na from Khibiny massif, Kola peninsula: metal pegmatites from the Bastar area (India). descriptive data and structural disorder. European Doklady Akademii Nauk SSSR, 303, 199À202 (in Journal of Mineralogy, 15, 447À454. Russian). Peretyazhko, I.S., Zagorskiy, V.Ye., Smirnov, S.Z. and Shannon R.D. (1976) Revised effective ionic radii and Mikhailov, M.Y. (2004) Conditions of pocket systematic studies of interatomic distances in halides formation in the Oktyabrskaya tourmaline-rich gem and chalcogenides. Acta Crystallographica, A32, pegmatite (the Malkhan field, Central Transbaikalia, 751À767. Russia). Chemical Geology, 210,91À111. Shannon R.D. and Prewitt C.T. (1969) Effective ionic Pesquera, A., Torres-Ruiz, J., Gil-Crespo, P.P. and radii in oxides and fluorides. Acta Crystallographica, Velilla, N. (1999) Chemistry and genetic implica- B25, 925À946. tions of tourmaline and Li-F-Cs micas from the Shaw, C.S.J. and Penczak, R.S. (1996) Barium- and Valdeflores area (Ca´ceres, Spain). American titanium-rich biotite and phlogopite from the western Mineralogist, 84,55À69. and eastern gabbro, Coldwell alkaline complex, Po¨ter, B., Gottschalk, M. and Heinrich, W. (2007): northwestern Ontario. The Canadian Mineralogist, Crystal chemistry of synthetic K-feldspar–budding- 34, 967À975. tonite and muscovite–tobelite solid solutions. Shen, G., Lu, Q. and Xu, J. (2000) Fluorannite: A new American Mineralogist, 92, 151À165. mineral of mica group from Western suburb of Reznitskiy, L.Z., Sklyarov, Ye.V., Ushchapovskaya, Z. Suzhou City. Acta Petrologica et Mineralogica, 19, F., Nartova, N.V., Yevsyunin, V.G, Kashayev, A.A. 355À362. and Suvorova, L.F. (1997) Chromphyllite Skosyreva, M.V. and Vlasova, E.V. (1983) First KCr2[AlSi3O10](OH,F)2 À a new dioctahedral mica. occurrence of polylithionite from rare-metal granite Zapiski Vserossiyskogo Mineralogicheskogo pegmatites. Doklady Akademii Nauk SSSR, 272, Obshchestva, 126, 110À119 (in Russian). 694À697 (in Russian). Rieder, M., Huka, M., Kucˇerova, D., Minarˇ´k,ı L., Solie, D.N. and Su, S.-Ch. (1987) An occurrence of Ba- Obermajer, J. and Povondra, P. (1970) Chemical rich micas from the Alaska Range. American composition and physical properties of lithium-iron Mineralogist, 72, 995À999. micas from the Krusˇne´ hory Mts. (Erzgebirge). Part Stoppa, F., Sharygin, V.V. and Cundari, A. (1997) New A: Chemical Composition. Contributions to mineral data from the kamafugite–carbonatite Mineralogy and Petrology, 27, 131À158. association: the melilitolite from Pian di Celle, Rieder, M. and Cavazzini, G., D’yakonov, Yu.S., Frank- Italy. Mineralogy and Petrology, 61,27À45. Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Sun Shihua and Yu Jie (1999) Fe-Li micas: a new Koval’, P.V., Mu¨ ller, G., Neiva, A.M.R., approach to the substitution series. Mineralogical Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Magazine, 63, 933À945. Takeda, H., Weiss, Z. and Wones, D.R. (1998) Sun Shihua and Yu Jie (2000) Actual Fe-Li mica series Nomenclature of the micas. The Canadian as a series with &VI constant but not with AlIV or Mineralogist, 36, 905À912. AlVI. Mineralogical Magazine, 64, 755À775.

310 CLASSIFICATION OF MICAS

Thomas, R., Fo¨rster, H.-J. and Heinrich, W. (2003) The Zinnwaldit À Ein Beitrag zur Kenntnis von behaviour of boron in a peraluminous granite- Chemismus und Optik derLithiumglimmer. pegmatite system and associated hydrothermal Beitra¨ge zur Mineralogie und Petrographie, 8, solutions: a melt and fluid-inclusion study. 418À431. Contributions to Mineralogy and Petrology, 144, Visser, D., Nijland, T.G., Lieftink, D.J. and Maijer, C. 457À472. (1999) The occurrence of preiswerkite in a tourma- Tischendorf, G., Gottesmann, B., Fo¨rster, H.-J. and line–biotite–scapolite rock from Blengsvatn, Trumbull, R.B. (1997) On Li-bearing micas: Norway. American Mineralogist, 84, 977À982. estimating Li from electron microprobe analysis Voncken, J.H.L., van derEerden,A.M.J. and Jansen, and an improved diagram for graphical representa- J.B.H. (1987) Synthesis of a Rb analogue of 2M1 tion. Mineralogical Magazine, 61, 809À834. muscovite. American Mineralogist, 72, 551À554. Tischendorf, G., Fo¨rster, H.-J. and Gottesmann, B. Wang, R.C., Hu, H., Zhang, A.C., Huang, X.L. and Ni, (1999) The correlation between lithium and magne- P. (2004) Pollucite and the cesium-dominant sium in trioctahedral micas: Improved equations for analogue of polylithionite as expressions of extreme Li2O estimation from MgO data. Mineralogical Cs enrichment in the Yichun topaz–lepidolite Magazine, 63,57À74. granite, southern China. The Canadian Tischendorf, G., Fo¨rster, H.-J. and Gottesmann, B. Mineralogist, 42, 883À896. (2001a) Minor- and trace-element composition of Weiss, Z., Rieder, M., Chmelova´, M. and Krajı´cˇek, J. trioctahedral micas: a review. Mineralogical (1985) Geometry of the octahedral coordination in Magazine, 65, 249À276. micas: a review of refined structures. American Tischendorf, G., Fo¨rster, H.-J. and Gottesmann, B. Mineralogist, 70, 747À757. (2001b) Tri- und dioktaedrische Glimmer: ein Wilson, P.N., Parry, W.T. and Nash, W.P. (1992) komplexes chemisches System. Zeitschrift fu¨r Characterization of hydrothermal tobelitic veins Geologische Wissenschaften, 29, 275À298. from black shale, Oquirrh Mountains, Utah. Clays Tischendorf, G., Rieder, M., Fo¨rster, H.-J., Gottesmann, and Clay Minerals, 40, 405À420. B. and Guidotti, C.V. (2004) A new graphical Wones, D.R. (1963) Phase equilibria of ‘ferriannite’, +2 +3 presentation and subdivision of potassium micas. KFe3 Fe Si3O10(OH)2. American Journal of Mineralogical Magazine, 68, 649À667. Science, 261, 581À596. Tombolini, F., Brigatti, M.F., Marcelli, A., Cibin, G., Yang, Y., Ni, Y., Wang, L. and Wang, W. (1988) Mottana, A. and Giuli, G. (2002) Local and average Nanpingite: a new cesium mineral. Acta Petrologica Fe distribution in trioctahedral micas: Analysis of Fe et Mineralogica (China), 7,49À58. K-edge XANES spectra in the phlogopite–annite and Yoshii, M., Togashi, Y. and Maeda, K. (1973) On the phlogopite–tetraferriphlogopite joins on the basis of intensity changes of basal reflections with relation to single-crystal XRD refinements. European Journal barium content in manganoan phlogopites and of Mineralogy, 14, 1075À1085. kinoshitalite. Bulletin of the Geological Survey of Tracy, R.J. (1991) Ba-rich micas from the Franklin Japan, 24, 543À550. Marble, Lime Crest and Sterling Hill, New Jersey. Zagorskiy, V.E. and Makrygin, A.I. (1976) The American Mineralogist, 76, 1683À1693. evolution of the mica composition at the exocontacts Tracy, R.J. and Beard, J.S. (2003) Manganoan of Ta-bearing pegmatites (Russ.). Geokhimiya, 9, kinoshitalite in Mn-rich marble and skarn from 1362À1369. Virginia. American Mineralogist, 88, 740À747. Zhang, M., Suddaby, P., Thompson, R.N. and Dungan, Treolar, P.J. (1987) Chromian muscovites and epidotes M.A. (1993) Barian titanian phlogopite from potassic from Outokumpu, Finland. Mineralogical Magazine, lavas in northeast China: Chemistry, substitutions, 51, 593À599. and paragenesis. American Mineralogist, 78, Tro¨ger, W.E. (1962) U¨ berProtholithionitund 1056À1065.

Appendices The crystallo-chemical formulae were calculated on the basis of 22 cation charges. The content of water was calculated assuming the (OH+F+Cl) site is completely filled; av = average, s = 1-Sigma standard deviation, n = numberof determinations,Mg# = Mg/(Mg+Fe tot) (a.p.f.u.), Fe# = Fetot/(Fetot+Li) (a.p.f.u.), Al# = VI VI VI VI Al/( Al+Fetot+Mg) (a.p.f.u.), mgli = Mg minus Li (a.p.f.u.), feal = Fetot+Mn+Ti minus Al (a.p.f.u.).

311 APPENDIX 1a. Composition (wt.%) of phlogopite and its varieties.

Al-rich phlogopite Phlogopite sensustricto Ti-rich phlogopite Fe-rich phlogopite Ti-Fe-rich phlogopite Al-Fe-rich phlogopite av s n av s n av s n av s n av s n av s n

SiO2 39.0 3.3 18 40.1 2.7 512 38.4 2.8 74 37.6 2.0 903 36.9 1.9 221 36.6 1.9 86 TiO2 0.45 0.41 18 1.20 1.61 485 8.09 2.06 74 2.90 1.36 896 6.68 1.79 221 1.64 0.87 85 SnO2 0.001 1 0.004 0.007 8 0.002 0.004 38 0.001 0.001 2 0.001 1 Al2O3 19.3 1.7 18 13.3 3.8 509 11.4 2.5 74 14.6 2.7 903 14.5 2.7 221 19.1 1.4 86 Ga2O3 0.008 1 0.003 0.002 10 0.005 0.004 76 0.005 0.002 9 0.002 0.001 2 Sc2O3 0.002 1 0.002 0.001 9 0.004 0.003 58 0.010 1 0.010 0.005 8 V2O3 0.037 1 0.020 2.900 11 0.060 0.607 118 0.050 0.040 9 0.045 0.042 18 Fe2O3 0.18 0.91 4 0.68 3.94 120 2.18 1.33 3 1.10 3.28 423 0.30 3.19 49 0.45 2.14 23 Cr2O3 0.400 0.800 4 0.720 0.590 267 0.350 0.560 42 0.120 0.318 386 0.130 0.260 67 0.075 0.120 27 FeO 2.09 1.07 18 3.50 2.56 470 4.40 2.30 74 11.9 4.8 896 11.5 3.8 220 14.5 3.3 86 MnO 0.45 2.82 13 0.15 1.99 353 0.06 0.04 47 0.19 0.50 797 0.13 0.13 173 0.19 0.28 71 TISCHENDORF CoO 0.000 1 0.001 0.000 8 0.008 0.005 61 0.010 0.005 2 0.007 0.004 9 NiO 0.008 1 0.105 0.107 125 0.120 0.060 32 0.004 0.073 167 0.045 0.074 25 0.017 0.032 15 ZnO 0.050 1 0.055 0.014 12 0.060 1.896 133 0.027 0.040 15 0.064 0.043 25 312 MgO 22.0 1.6 18 24.3 2.3 512 19.7 2.4 74 16.4 4.1 903 14.5 2.4 221 13.0 2.3 86 Li2O 0.011 0.008 3 0.006 0.079 125 0.019 0.016 49 0.035 0.074 683 0.050 0.026 190 0.070 0.199 50

CaO 0.10 0.3 10 0.09 0.19 294 0.08 0.21 49 0.25 0.49 628 0.13 0.25 142 0.12 0.23 57 AL. ET SrO 0.001 0.001 2 0.013 0.011 19 0 0.03 3 0.005 0.062 96 0.010 0.015 9 0.001 0.064 14 BaO 2.50 4.62 8 0.95 2.97 339 1.10 3.28 61 0.62 2.03 533 1.25 2.78 138 0.55 1.32 35 PbO 0.002 1 0.001 0.001 9 0 0 2 0.001 0.001 40 0.002 0.004 8 Na2O 0.16 0.67 17 0.45 0.47 477 0.27 0.35 72 0.32 0.42 829 0.53 0.29 212 0.28 0.36 77 K2O 8.93 1.52 18 9.85 1.15 512 9.47 1.46 74 9.22 0.89 903 8.97 1.04 221 8.72 0.95 86 Rb2O 0.020 1 0.02 0.092 96 0.025 0.015 4 0.070 0.149 228 0.050 0.026 35 0.080 1.47 11 Cs2O 0.007 1 0.002 0.035 15 0.010 0.590 79 0.008 0.010 8 0.010 1.97 9 H2O 4.07 3.45 3.32 3.57 3.55 3.71 F 0.34 0.33 6 1.55 2.02 275 1.72 1.51 19 0.93 1.25 576 0.95 1.21 123 0.50 1.04 36 Cl 0.02 1 0.04 0.68 38 0.03 0.03 4 0.11 0.25 226 0.14 0.22 31 0.37 0.48 22 Sum 100.1 100.6 100.7 100.1 100.4 100.1 ÀO= 0.15 0.66 0.73 0.42 0.43 0.29 F+Cl Total 100.0 99.9 100.0 99.7 100.0 99.8 APPENDIX 1b. Average formulae of phlogopite and its varieties.

Al-rich phlogopite Phlogopite Ti-rich phlogopite Fe-rich phlogopite Ti-Fe-rich phlogopite Al-Fe-rich phlogopite VI VI 0.3À0.5 Al sensustricto 0.3À0.75 Ti 0.3À1.4 Fetot 0.3À0.7 Ti 0.3À0.5 Al 0.3À1.2 Fetot 0.3À1.2 Fetot Si 2.760 2.868 2.778 2.789 2.735 2.717 IV Al 1.240 1.121 0.990 1.211 1.262 1.283 IV Fe3+ 0.011 0.119 0.003 IV Ti 0.113 SIV R 4.000 4.000 4.000 4.000 4.000 4.000 VI Ti 0.024 0.065 0.440 0.162 0.372 0.091 Sn 0.0000 0.0001 0.0001 0.0000 0.0000 VI Al 0.369 0.000 0.000 0.066 0.000 0.389 Ga 0.0004 0.0001 0.0002 0.0002 0.0001 LSIIAINO MICAS OF CLASSIFICATION Sc 0.0001 0.0001 0.0003 0.0006 0.0006 V 0.0021 0.0011 0.0036 0.0030 0.0027 VI Fe3+ 0.010 0.027 0.000 0.061 0.014 0.025 Cr0.022 0.041 0.020 0.007 0.008 0.004 Fe2+ 0.124 0.209 0.266 0.738 0.713 0.900 313 Mn 0.027 0.009 0.004 0.012 0.008 0.012 Co 0.0000 0.0001 0.0005 0.0006 0.0004 Ni 0.0005 0.0060 0.0070 0.0002 0.0027 0.0010 Zn 0.0026 0.0029 0.0033 0.0015 0.0035 Mg 2.320 2.590 2.124 1.813 1.601 1.438 Li 0.003 0.002 0.006 0.010 0.015 0.021 SVI R 2.905 2.953 2.867 2.877 2.740 2.888 Ca 0.008 0.007 0.006 0.020 0.010 0.009 Ba 0.0693 0.0266 0.0312 0.0180 0.0363 0.0160 Na 0.022 0.062 0.038 0.046 0.076 0.040 K 0.806 0.899 0.874 0.872 0.848 0.826 Rb 0.0009 0.0009 0.0012 0.0033 0.0024 0.0038 Cs 0.0002 0.0001 0.0003 0.0003 0.0003 SXII R 0.906 0.996 0.950 0.960 0.973 0.895 OH 1.922 1.644 1.602 1.768 1.759 1.837 F 0.076 0.351 0.394 0.218 0.223 0.117 Cl 0.002 0.005 0.004 0.014 0.018 0.046 S 2.000 2.000 2.000 2.000 2.000 2.000 Mg# 0.945 0.916 0.889 0.694 0.688 0.609 mgli 2.32 2.59 2.12 1.80 1.59 1.42 feal À0.18 0.31 0.62 0.91 1.11 0.64 APPRENDIX 2a. Composition (wt.%) of annite and its varieties.

Ti-Mg-rich annite Mg-rich annite Al-Mg-rich annite Al-rich annite Annite sensustricto Li-rich annite Li-Al-rich annite av s n av s n av s n av s n av s n av s n av s n

SiO2 35.4 1.6 75 35.4 1.7 690 35.2 1.3 453 34.9 1.8 46 34.7 2.1 89 36.5 2.1 10 37.5 1.2 9 TiO2 5.50 1.40 75 3.27 0.85 689 2.65 0.80 450 1.97 0.84 45 3.06 1.13 87 1.85 0.92 10 1.08 0.89 9 SnO2 0.008 0.002 5 0.009 0.011 137 0.008 0.009 110 0.039 0.022 19 0.021 0.012 13 0.051 1 0.057 0.006 2 Al2O3 14.4 2.5 75 15.3 2.2 690 19.1 1.1 453 17.7 1.8 46 12.8 2.8 89 12.7 2.5 10 16.1 2.2 9 Ga2O3 0.008 1 0.01 0.01 142 0.007 0.004 68 0.021 0.014 3 0.015 0.003 4 Sc2O3 0.004 1 0.008 0.01 102 0.005 0.004 108 0.005 0.003 3 0.007 0.004 2 V2O3 0.021 0.040 10 0.034 0.020 254 0.030 0.037 162 0.006 0.012 6 0.005 0.002 6 Fe2O3 0.90 2.74 20 3.00 3.54 497 1.88 2.42 302 4.30 3.14 33 4.50 3.52 66 3.85 5.43 5 1.30 4.12 3 TISCHENDORF Cr2O3 0.027 0.046 20 0.018 0.033 338 0.018 0.021 216 0.006 0.003 7 0.004 0.001 6 FeO 21.5 4.4 75 20.7 4.2 685 20.0 2.8 452 25.2 4.3 46 29.1 6.0 89 27.7 8.2 10 26.5 5.7 9 MnO 0.18 0.15 74 0.41 0.49 680 0.32 0.30 448 0.61 0.27 46 0.61 0.68 89 1.33 2.25 10 1.02 0.48 7 CoO 0.005 0.002 6 0.006 0.002 169 0.004 0.002 118 0.001 0.001 6 0.003 0.001 4 314 NiO 0.008 0.116 10 0.008 0.017 227 0.006 0.007 171 0.001 0.000 6 0.001 0.000 5 ZnO 0.066 0.036 13 0.065 0.814 260 0.065 0.049 227 0.135 0.098 9 0.120 0.149 11

MgO 7.86 1.84 75 7.78 2.18 690 6.91 1.90 453 0.91 0.76 46 1.25 0.69 89 0.35 1.77 10 0.22 0.88 9 AL. ET Li2O 0.17 0.0605 60 0.17 0.15 639 0.20 0.19 358 0.48 0.19 45 0.40 0.20 84 1.01 0.84 10 1.35 0.57 9 CaO 0.21 0.50 49 0.37 0.44 538 0.17 0.31 320 0.26 0.32 30 0.32 0.62 70 0.27 0.30 7 0.94 0.64 5 SrO 0.001 0.001 8 0.002 0.043 206 0.001 0.006 115 0.001 0.001 5 0.002 0.000 2 BaO 0.35 2.51 46 0.15 2.36 392 0.01 0.06 250 0.02 0.02 10 0.09 4.49 12 PbO 0.002 0.001 7 0.002 0.01 122 0.002 0.001 89 0.004 0.002 3 0.002 0.00 3 Na2O 0.19 0.25 70 0.19 0.22 673 0.22 0.18 415 0.22 0.18 46 0.22 0.31 84 0.29 0.28 10 0.35 1.22 8 K2O 9.05 1.05 75 8.79 1.11 690 8.89 0.78 453 8.52 0.80 46 8.56 1.01 89 8.85 0.49 10 8.90 1.25 9 Rb2O 0.105 0.035 11 0.095 0.100 394 0.160 0.600 223 0.250 0.082 28 0.200 0.089 41 0.850 1.358 3 0.360 0.170 2 Cs2O 0.011 0.004 7 0.02 0.26 208 0.035 0.627 171 0.021 0.021 18 0.015 0.013 30 0.1 1 0.068 0.052 2 H2O 3.47 3.44 3.55 2.91 3.03 2.00 1.84 F 0.81 0.51 60 0.77 0.70 469 0.74 0.63 230 1.77 1.00 44 1.14 1.19 72 3.50 1.49 9 4.03 1.13 8 Cl 0.07 0.493 24 0.25 0.94 137 0.11 0.14 64 0.19 0.09 8 0.45 0.76 16 0.20 1 0.24 1 Total 100.3 100.3 100.3 100.4 100.6 101.4 101.9 ÀO = F+Cl 0.35 0.38 0.34 0.79 0.58 1.52 1.75 Total 100.0 99.9 99.9 99.7 100.0 99.9 100.1 APPENDIX 2b. Average formulae of annite and its varieties.

Ti-Mg-rich annite Mg-rich annite Al-Mg-rich annite Al-rich annite Annite Li-rich annite Li-Al-rich annite 0.3À0.65 Ti 0.3À1.3 Mg 0.3À0.5 VI Al 0.3À0.5 VI Al sensustricto 0.3À1.0 Li 0.3À0.8 Li 0.3À1.2 Mg 0.3À1.2 Mg 0.3À0.5 VI Al

Si 2.737 2.739 2.685 2.761 2.817 2.953 2.950 IV Al 1.263 1.261 1.315 1.239 1.183 1.047 1.050 SIV R 4.000 4.000 4.000 4.000 4.000 4.000 4.000 Ti 0.323 0.190 0.152 0.117 0.187 0.113 0.064 Sn 0.0003 0.0003 0.0002 0.0012 0.0007 0.0016 0.0018 VI Al 0.049 0.134 0.400 0.411 0.042 0.164 0.443 Ga 0.0004 0.0004 0.0003 0.0011 0.0008

Sc 0.0003 0.0006 0.0003 0.0003 0.0005 MICAS OF CLASSIFICATION V 0.0013 0.0021 0.0018 0.0004 0.0003 Fe3+ 0.052 0.175 0.108 0.256 0.275 0.234 0.077 Cr0.0020 0.0010 0.0010 0.0003 0.0003 Fe2+ 1.390 1.339 1.275 1.667 1.975 1.874 1.743 Mn 0.012 0.027 0.021 0.041 0.042 0.091 0.068 315 Co 0.0003 0.0003 0.0002 0.0001 0.0002 Ni 0.0005 0.0005 0.0004 0.0000 0.0000 Zn 0.0038 0.0037 0.0037 0.0079 0.0072 Mg 0.905 0.897 0.785 0.107 0.151 0.042 0.026 Li 0.053 0.053 0.061 0.153 0.131 0.329 0.427 SVI R 2.793 2.824 2.810 2.763 2.813 2.849 2.850 Ca 0.017 0.031 0.014 0.022 0.028 0.023 0.079 Ba 0.0106 0.0046 0.0002 0.0006 0.0029 Na 0.028 0.029 0.033 0.034 0.035 0.045 0.053 K 0.892 0.868 0.865 0.868 0.887 0.913 0.893 Rb 0.0052 0.0047 0.0078 0.0127 0.0104 0.0442 0.0182 Cs 0.0004 0.0005 0.0011 0.0007 0.0005 0.0033 0.0023 SXII R 0.953 0.938 0.921 0.938 0.964 1.028 1.046 OH 1.791 1.778 1.808 1.533 1.645 1.078 0.965 F 0.200 0.189 0.178 0.442 0.293 0.895 1.003 Cl 0.009 0.033 0.014 0.025 0.062 0.027 0.032 S 2.000 2.000 2.000 2.000 2.000 2.000 2.000 Mg# 0.386 0.372 0.362 0.053 0.063 0.020 0.014 mgli 0.85 0.84 0.72 À0.05 0.02 À0.29 À0.40 feal 1.73 1.60 1.16 1.67 2.44 2.15 1.51 APPENDIX 3a. Composition (wt.%) of siderophyllite and polylithionite and their varieties.

Mg-rich siderophyllite Siderophyllite sensustricto Li-rich siderophyllite Fe-rich polylithionite Polylithionite sensustricto av s n av s n av s n av s n av s n

SiO2 35.0 1.9 184 35.9 2.2 131 40.0 2.6 429 46.2 2.5 325 51.0 3.4 318 TiO2 2.18 0.89 182 1.21 0.81 126 0.67 0.56 415 0.21 0.29 286 0.09 0.42 189 SnO2 0.013 0.011 43 0.049 0.039 56 0.047 0.034 117 0.035 0.040 55 0.025 0.027 27 Al2O3 21.4 1.5 184 20.2 2.1 131 21.6 1.9 429 21.2 2.3 325 23.8 4.4 318 Ga2O3 0.009 0.003 29 0.014 0.007 20 0.016 0.010 80 0.0125 0.005 45 0.014 0.008 22 Sc2O3 0.004 0.002 47 0.006 0.006 20 0.006 0.004 68 0.006 0.004 29 0.027 0.004 11 V2O3 0.023 0.015 57 0.005 0.008 26 0.002 0.004 81 0.001 0.002 31 0.001 0.002 8 Fe2O3 1.50 1.58 77 2.25 2.65 66 1.95 2.00 209 1.12 1.76 162 0.35 0.61 159 Cr2O3 0.002 0.014 83 0.004 0.013 27 0.005 0.025 98 0.001 0.016 44 0.0003 0.004 9 FeO 19.5 4.6 184 23.7 4.1 131 17.4 4.4 429 9.78 2.61 322 0.88 1.29 273 MnO 0.41 0.51 179 0.64 0.47 130 0.61 0.65 419 0.90 1.46 312 0.72 1.16 301 TISCHENDORF CoO 0.003 0.001 25 0.002 0.001 21 0.001 0.001 77 0.001 0.001 27 0.0001 0.000 8 NiO 0.005 0.004 55 0.001 0.002 23 0.001 0.001 82 0.002 0.004 39 0.003 0.006 16 ZnO 0.007 0.055 79 0.085 0.068 36 0.090 0.110 107 0.090 0.071 58 0.037 0.049 27 316 MgO 6.00 3.34 184 1.10 0.70 131 0.41 1.05 427 0.17 0.86 315 0.12 0.56 264 Li2O 0.23 0.38 172 0.8 0.21 128 1.79 0.60 429 3.60 0.85 325 4.91 1.00 318

CaO 0.12 0.30 147 0.22 0.36 93 0.25 0.39 263 0.18 0.33 214 0.23 0.69 177 AL. ET SrO 0.001 0.001 53 0.001 0.001 18 0.003 0.012 82 0.002 0.004 49 0.005 0.007 30 BaO 0.059 0.143 108 0.014 0.022 40 0.015 0.027 139 0.009 0.021 57 0.016 0.026 48 PbO 0.002 0.001 28 0.002 0.002 18 0.001 0.004 81 0.002 0.004 28 0.001 0.001 9 Na2O 0.24 0.21 168 0.25 0.18 124 0.31 0.28 423 0.32 0.39 312 0.44 0.46 308 K2O 8.90 0.93 184 8.95 0.74 131 9.31 0.69 429 9.82 0.84 325 10.2 0.7 316 Rb2O 0.240 0.340 84 0.350 0.170 88 0.630 0.288 307 1.030 0.590 218 1.310 0.811 262 Cs2O 0.015 0.787 79 0.040 0.035 48 0.090 0.347 193 0.120 0.367 197 0.250 0.589 212 H2O 3.18 2.64 1.79 1.17 1.35 F 1.63 1.09 106 2.51 1.40 121 4.66 1.62 412 6.45 1.75 304 6.60 1.69 313 Cl 0.008 0.060 37 0.14 0.10 49 0.09 0.45 152 0.018 0.025 31 0.017 0.014 22 Total 100.7 101.1 101.7 102.4 102.4 ÀO = F+Cl 0.69 1.09 1.98 2.72 2.78 Total 100.0 100.0 99.8 99.7 99.6 APPENDIX 3b. Average formulae of siderophyllite and polylithionite and their varieties.

Mg-rich siderophyllite Siderophyllite Li-rich siderophyllite Fe-rich polylithionite Polylithionite 0.3À2.2 Mg sensustricto 0.3À1.3 Li 0.3À1.1 Fetot sensustricto Si 2.654 2.782 2.982 3.276 3.426 IV Al 1.346 1.218 1.018 0.724 0.574 SIV R 4.000 4.000 4.000 4.000 4.000 Ti 0.124 0.071 0.038 0.011 0.004 Sn 0.0004 0.0015 0.0014 0.0010 0.0007 VI Al 0.566 0.628 0.880 1.048 1.310 Ga 0.0004 0.0007 0.0008 0.0006 0.0006 Sc 0.0002 0.0004 0.0004 0.0004 0.0016

V 0.0014 0.0003 0.0001 0.0001 0.0001 MICAS OF CLASSIFICATION Fe3+ 0.086 0.131 0.109 0.060 0.018 Cr0.0012 0.0002 0.0003 0.0001 0.0000 Fe2+ 1.236 1.536 1.084 0.580 0.049 Mn 0.026 0.042 0.039 0.054 0.041 Co 0.0002 0.0001 0.0000 0.0000 0.0000 317 Ni 0.0003 0.0001 0.0001 0.0001 0.0002 Zn 0.0004 0.0049 0.0050 0.0047 0.0018 Mg 0.678 0.127 0.046 0.018 0.012 Li 0.070 0.249 0.537 1.026 1.323 SVIR 2.791 2.792 2.741 2.804 2.761 Ca 0.010 0.018 0.020 0.014 0.017 Ba 0.0017 0.0004 0.0004 0.0002 0.0004 Na 0.035 0.038 0.046 0.044 0.057 K 0.861 0.885 0.886 0.888 0.874 Rb 0.0117 0.0174 0.0302 0.0470 0.0566 Cs 0.0005 0.0013 0.0029 0.0036 0.0072 SXII R 0.920 0.960 0.986 0.997 1.012 OH 1.608 1.367 0.869 0.552 0.603 F 0.391 0.615 1.120 1.446 1.395 Cl 0.001 0.018 0.011 0.002 0.002 S 2.000 2.000 2.000 2.000 2.000 Fe# 0.950 0.870 0.690 0.384 0.048 mgli 0.61 À0.12 À0.49 À1.01 À1.31 feal 0.91 1.15 0.39 À0.34 À1.20 APPENDIX 4. Composition (wt.%) and formulae of tainiolite sensustricto , tainiolitic micas and celadonite.

Tainiolite Fe-rich Al-rich Celadonite Tainiolite Fe-rich Al-rich Celadonite sensustricto tainiolitic micas tainiolitic micas sensustricto tainiolitic micas tainiolitic micas av s n av s n av s n av s n Mg6Li = Mg6Li = 0.38 Mg6Li = 0.50 Al# = 0.134 1.58

SiO2 56.2 3.5 28 37.7 3.0 17 41.6 1.3 14 54.2 2.3 61 Si 3.863 2.854 2.995 3.848 IV TiO2 0.20 0.50 22 1.49 1.20 17 1.23 0.71 13 0.17 0.14 30 Al 0.137 1.146 1.005 0.152 IV Al2O3 1.90 2.70 26 16.0 4.3 17 20.7 1.6 14 5.05 3.17 59 S R 4.000 4.000 4.000 4.000 Fe2O3 0.25 1.24 3 1.50 3.90 7 1.00 1.20 9 16.4 4.9 58 Ti 0.010 0.085 0.067 0.009 FeO 0.97 0.16 28 17.5 5.9 17 10.4 2.3 14 4.12 3.43 48 VI Al 0.014 0.282 0.752 0.270 MnO 0.29 0.48 22 0.33 0.15 17 0.26 0.18 14 0.13 0.09 17 Fe3+ 0.013 0.085 0.054 0.876 TISCHENDORF MgO 19.6 1.90 28 9.66 3.72 17 6.46 1.88 14 5.98 1.49 61 Fe2+ 0.056 1.108 0.626 0.245 Li2O 2.85 0.69 28 1.14 0.55 17 2.51 1.00 14 Mn 0.017 0.021 0.016 0.008 CaO 0.26 0.73 9 0.09 0.12 15 0.22 0.44 11 0.43 0.77 54 Mg 2.007 1.090 0.693 0.633 318 Na2O 0.41 0.58 23 0.17 0.21 14 0.19 0.18 14 0.24 0.63 39 Li 0.788 0.347 0.727 VI K2O 10.6 0.7 28 8.54 1.80 17 8.49 1.16 14 8.93 1.52 61 S R 2.905 3.018 2.935 2.041

Rb2O 0.90 1 0.75 2.36 14 1.12 1.19 9 Ca 0.019 0.007 0.017 0.033 AL. ET Cs2O 0.13 1 0.65 2.20 12 0.99 1.21 14 Na 0.055 0.025 0.027 0.033 H2O 0.71 2.81 1.86 3.96 K 0.929 0.825 0.780 0.809 F 7.70 1.87 26 2.15 0.95 14 4.86 1.63 14 0.55 0.95 8 Rb 0.040 0.037 0.052 Cl 0.02 1 0.5 2.7 2 0.03 0.02 7 Cs 0.004 0.021 0.030 SXII R 1.047 0.915 0.906 0.875 OH 0.324 1.424 0.893 1.873 F 1.674 0.512 1.107 0.123 Cl 0.002 0.064 0.004 Total 103.0 101.0 101.9 100.2 S 2.000 2.000 2.000 2.000 ÀO = F+Cl 3.25 1.02 2.05 0.24 mgli 1.22 0.74 À0.03 0.63 Total 99.7 100.0 99.8 100.0 feal 0.08 1.02 0.01 0.87 APPENDIX 5a. Composition (wt.%) of muscovite and its varieties.

Li-rich muscovite Muscovite Fe-rich muscovite Li-Fe-rich muscovite Mg-rich muscovite Mg-Fe-rich muscovite sensustricto av s n av s n av s n av s n av s n av s n

SiO2 47.2 2.9 71 46.0 2.0 862 45.7 2.1 251 45.9 1.8 97 51.0 3.7 252 50.5 3.9 31 TiO2 0.09 0.38 53 0.36 0.44 791 0.33 0.34 231 0.22 0.29 88 0.27 0.80 214 0.19 0.31 27 SnO2 0.038 0.031 10 0.019 0.032 113 0.022 0.033 37 0.032 0.022 12 0.026 0.080 3 Al2O3 31.8 3.6 71 34.6 2.4 862 30.8 2.8 251 27.7 3.8 97 26.8 4.2 252 23.7 4.0 31 Ga2O3 0.031 0.016 5 0.018 0.014 57 0.024 0.011 24 0.046 0.021 9 0.013 0.002 3 Sc2O3 0.002 1 0.005 0.0047 125 0.002 0.001 12 0.002 0.001 4 0.001 0.001 3 V2O3 0.002 0.001 2 0.030 2.408 144 0.009 2.796 23 0.005 0.002 9 0.080 5.971 13 Fe2O3 0.40 0.91 40 0.15 0.87 207 1.50 1.48 134 1.35 2.48 48 0.70 1.17 41 2.05 1.78 12 LSIIAINO MICAS OF CLASSIFICATION Cr2O3 0.000 3 0.030 2.417 210 0.020 0.283 33 0.004 0.003 4 0.090 3.817 86 0.090 3.053 7 FeO 1.30 1.06 63 1.33 0.84 812 4.00 2.27 244 6.24 3.01 95 1.70 0.93 208 4.20 1.86 27 MnO 0.33 0.50 67 0.05 0.15 668 0.16 0.37 219 0.37 0.60 89 0.04 0.14 139 0.13 0.30 22 CoO 0.002 0.001 66 0.001 0.001 6 0.001 0.001 3 NiO 0.001 0.003 3 0.002 0.002 94 0.001 0.001 25 0.002 0.001 6 0.001 0.741 6 0.020 1 319 ZnO 0.064 0.055 7 0.010 0.125 220 0.020 0.056 27 0.090 0.155 6 0.040 0.203 20 MgO 0.26 0.74 71 1.20 0.46 844 1.07 0.76 249 0.37 0.71 96 3.85 1.60 252 3.40 0.94 31 Li2O 1.72 0.86 71 0.18 0.18 440 0.22 0.20 192 1.38 0.50 97 0.03 0.08 24 0.04 0.35 4 CaO 0.15 0.40 53 0.05 0.17 593 0.07 0.20 189 0.08 0.35 55 0.06 0.13 152 0.15 0.34 22 SrO 0.004 0.011 13 0.005 0.040 145 0.050 0.108 39 0.002 0.002 7 0.002 0.002 3 BaO 0.006 0.011 21 0.200 2.530 412 0.090 2.657 77 0.017 0.016 26 0.400 3.156 63 0.130 0.210 8 PbO 0.003 0.003 34 0.001 0.001 17 0.003 0.008 11 0.001 0.001 3 Na2O 0.49 0.30 71 0.74 0.47 846 0.40 0.33 247 0.44 0.57 93 0.38 0.29 212 0.18 0.19 29 K2O 10.0 0.8 71 9.98 1.20 862 10.5 1.2 251 10.1 0.9 97 10.0 1.2 252 10.4 1.0 31 Rb2O 1.040 0.930 47 0.190 0.334 282 0.220 0.303 127 0.570 0.377 54 0.020 0.033 3 0.030 0.210 3 Cs2O 0.120 0.238 47 0.025 0.418 187 0.020 0.199 64 0.040 0.279 39 0.003 0.003 3 0.005 0.008 3 H2O 3.32 4.28 3.96 2.93 4.37 4.25 F 2.35 1.68 61 0.45 0.57 409 0.90 1.08 174 2.94 1.43 87 0.25 0.41 45 0.31 1.24 8 Cl 0.12 0.59 10 0.05 0.41 111 0.03 0.54 50 0.10 0.77 31 0.03 0.07 15 0.04 1 Total 100.8 100.0 100.1 100.9 100.2 99.8 ÀO = F+Cl 1.02 0.20 0.39 1.26 0.11 0.14 Total 99.8 99.8 99.7 99.7 100.0 99.7 APPENDIX 5b. Average formulae of muscovite and its varieties.

Li-rich Muscovite Fe-rich Li-Fe-rich Mg-rich Mg-Fe-rich muscovite sensustricto muscovite muscovite muscovite muscovite 0.2À1.0 Li 0.2À1.0 Fetot 0.2À0.9 Li 0.2À1.0 Mg 0.2À0.7 Mg 0.2À0.9 Fetot 0.2À0.5 Fetot Si 3.168 3.074 3.123 3.180 3.398 3.441 IV Al 0.832 0.926 0.877 0.820 0.602 0.559 SIVR 4.000 4.000 4.000 4.000 4.000 4.000 Ti 0.004 0.018 0.017 0.011 0.014 0.010 Sn 0.0010 0.0005 0.0006 0.0009 0.0007 VI Al 1.683 1.800 1.604 1.441 1.503 1.345 Ga 0.0013 0.0008 0.0011 0.0002 0.0006 Sc 0.0001 0.0003 0.0001 0.0001 0.0000

V 0.0001 0.0016 0.0005 0.0003 0.0043 TISCHENDORF Fe3+ 0.020 0.008 0.077 0.070 0.035 0.105 Cr0.0016 0.0011 0.0002 0.0047 0.0048 Fe2+ 0.073 0.074 0.229 0.361 0.095 0.239

320 Mn 0.019 0.003 0.009 0.022 0.002 0.008 Co 0.0001 0.0000 0.0000 Ni 0.0001 0.0001 0.0001 0.0001 0.0001 0.0011 Zn 0.0032 0.0005 0.0010 0.0046 0.0020 AL. ET Mg 0.026 0.120 0.109 0.038 0.382 0.345 Li 0.464 0.048 0.060 0.384 0.008 0.011 SVIR 2.295 2.077 2.110 2.333 2.051 2.069 Ca 0.011 0.004 0.005 0.006 0.004 0.011 Ba 0.0002 0.0052 0.0024 0.0005 0.0105 0.0035 Na 0.064 0.096 0.053 0.059 0.049 0.024 K 0.856 0.851 0.915 0.892 0.850 0.904 Rb 0.0449 0.0081 0.0097 0.0253 0.0009 0.0013 Cs 0.0034 0.0007 0.0006 0.0012 0.0001 0.0001 SXII R 0.979 0.965 0.986 0.984 0.914 0.944 OH 1.487 1.899 1.803 1.347 1.944 1.928 F 0.499 0.095 0.194 0.642 0.053 0.067 Cl 0.014 0.006 0.003 0.011 0.003 0.005 S 2.000 2.000 2.000 2.000 2.000 2.000 Al# 0.934 0.899 0.794 0.754 0.746 0.661 mgli À0.44 0.07 0.05 À0.35 0.37 0.33 feal À1.57 À1.70 À1.27 À0.98 À1.36 À0.98