METZTLI Report, Would Like to Express Our Sincere Thanks to Those Individuals and Organisations That Supported Us, in Particular

Total Page:16

File Type:pdf, Size:1020Kb

METZTLI Report, Would Like to Express Our Sincere Thanks to Those Individuals and Organisations That Supported Us, in Particular i The International Space University (ISU), France Host of the 2003 Summer Session Programme 7th July – 6th September 2003 Front Cover: ‘… the Clavius Crater, Tycho, and the surface of the Moon’ Inside Front Cover: Adapted from Apollo 11 image of the Moon Back Cover: ‘… the ISS approaching an orbital sunset’ Source of all Images: NASA Archives International Space University Strasbourg Central Campus Parc d'Innovation 1 rue Jean-Dominique Cassini 67400 Illkirch-Graffenstaden France Tel: +33 (0)3 88 65 54 30 Fax: +33 (0)3 88 65 54 47 www.isunet.edu The International Space University, Copyright 2003 ii Dedication For all past, present, and future explorers iii List of Authors Surname Name Country of Origin Current Occupation Abiko Satoko Japan Ph.D. Student in Space Robotics Tohoku University, Japan Amaldi Andrea Italy Project Controller, ESA Human Spaceflight Dir. The Netherlands Barr Yael Israel Medical Doctor Israeli Aerospace Medicine Institute, Israel Belin de Eric France Ph.D. Student Space Cardiovascular Physiology Chantemèle Université Claude Bernard Lyon 1, France Bonnewijn Sabrina Belgium Mechanical Engineer (Aerospace and Aeronautics) Vrije Universiteit Brussel, Belgium Chen Diane Canada Software Product Assurance Engineer MD Robotics, Canada Dewhurst Brian USA Staff Officer, Board on Physics and Astronomy National Research Council, USA Eley Serena USA B.Sc. in Physics California Institute of Technology, USA Englund Dirk Germany/USA Ph.D. Student in Applied Physics Stanford University, USA Faiyetole Ayodele Nigeria Student, Master of Space Studies 2003-2004 International Space University, France Fontaine Sylvie France Design Engineer, Ariane 5 Solid Propellant Booster Systems, EADS Space Transportation, Bordeaux, France Gebic Kemal Turkey Master’s Space Technologies Application, France; Graduate Physics, France; Graduate Astronomy, Turkey Grafe Mathias Germany M.Sc. Mechanical and Aerospace Engineering Technical University of Dresden, Germany Hales Jan Harry Denmark M.Sc. Student in Electrical Engineering Technical University of Denmark, Denmark Hanratty C. David Ireland MEngSc (Research), B.E. (Mechanical) University College Dublin, Ireland Jones Brandon USA Engineer Titan Corporation, Houston, USA Jones Edward USA Developmental Space Systems Engineer Los Angeles Air Force Base, California, USA Jones Amanda USA GPS Project Engineer Los Angeles Air Force Base, California, USA Klaus Kurt USA M.S. in Planetary Science Adv. Computing, The Boeing Company, USA Laufer René Germany Aerospace Engineer, Institute of Space Systems University of Stuttgart, Germany Li Bin China Propulsion Systems Engineer, China Aerospace Science and Technology Corporation, China Lim Dawn Canada Medical Student University of Toronto, Canada Matsumoto Kunihiro Japan ISS Payload Engineer, NASDA, Japan Mayrhofer Florian Austria Student of Molecular Biology University of Vienna, Vienna, Austria Müller Francisco Mexico Master Student in Satellite Engineering Sánchez Universität Karlsruhe, Karlsruhe, Germany Nangalia Vishal UK Medical Doctor United Kingdom iv Nguyen Hugo Sweden Researcher, The Ångstrom Space Technology Centre Uppsala University, Sweden Nicolini Marco Italy Calculus, Physics, and Astronomy Teacher Science and Technology Reporter, Italy Ó Cuilleanáin Cian Ireland Student Master of Space Studies 03/04, ISU; B.E. (Mechanical) University College Dublin, Ireland Olansen Jon USA Lead Safety Engineer, Space Shuttle Upgrades NASA/Johnson Space Center, Houston, USA Organek Alison Canada Medical Student University of Toronto, Canada O'Rourke Johanna Australia Lawyer Blake Dawson Waldron, Australia Poon Tim Canada M.Sc. Student Electrical and Computer Eng. University of Alberta, Edmonton, Canada Porfiri Katerina Greece Survey Engineer Greek Ministry of Finance, Greece Rico Julio France Master Engineer in Industrial Systems Engineering Master’s Degree in Space Tech. Apps., France Sentenai Alina Germany Master Student in Aerospace Engineering TU Munich, Germany Master Student in General Engineering, EC Paris, France Slane Kenneth USA Director, Business Practices, and Ethics Advisor Rocketdyne Propulsion and Power, USA Smith Leissa Canada Systems Engineer MD Robotics, Brampton, Canada Smith Heather USA Research Assistant SETI Institute/ NASA Ames, USA Takahashi Yuki USA/Japan Ph.D. Student in Astrophysics University of California, Berkeley, USA Tanaka Kentaro Japan International Marketing Section JSAT Corporation, Tokyo, Japan Tripp Timothy USA Senior Manager, Product Engineering The Boeing Company, Huntsville, Alabama, USA Van der List Marco The Netherlands Technical Project Manager Bradford Engineering B.V., The Netherlands Weik Johannes Germany/Bolivia Architect Stuttgart, Germany Zhu Beiyuan China Engineer, China Aerospace Science and Technology Corporation, China Zhu Zhichun China Engineer, China Aerospace Science and Technology Corporation, China v Authors’ Signatures vi Acknowledgements We, the authors of the METZTLI report, would like to express our sincere thanks to those individuals and organisations that supported us, in particular: Team Project Co-Chairs Dr. Angie Bukley The Aerospace Corporation, USA Dr. Chris Welch Kingston University, UK Team Project Faculty Jim Burke Jet Propulsion Laboratory (ret.), USA Prof. Ignasi Casanova Universitat Politecnica de Catalunya, Spain Prof. Ichiro Nakatani Institute of Space and Astronautical Science, Japan Kathy Daues NASA Johnson Space Center, USA Larry Toups NASA Johnson Space Center, USA Team Project Teaching Associate Hermen Rehorst Geneva, Switzerland The ISU SSP03 Team, in particular: John Connolly NASA Johnson Space Center, USA Marie Diop ESA-ESTEC, the Netherlands Prof. Nikolai Tolyarenko ISU, France Dr. Walter Peeters ISU, France BGen Pete Worden USAF, USA Dr. Francois Spiero CNES, France Lin Burke ISU, France Philippe Achilleas University of Paris-Sud XI, France Eric Choi MD Robotics, Canada David Wong University of Bath, UK Felipe Hernandez Santiago, Chile External Advisors and Consultants, in particular: George Scoon ESA-ESTEC, the Netherlands Norbert Frischauf ESA-ESTEC, the Netherlands Eric Dahlstrom InternationalSpace.com, USA John Carrico Analytical Graphics Inc., USA Fernando Abilleira Analytical Graphics Inc., USA Heinz-Hermann Koelle Technical University of Berlin, Germany Rob Alexander NASA Johnson Space Center, USA William Atwell The Boeing Company, USA Jeff Jones NASA Johnson Space Center, USA Bill Cooke NASA Marshall Space Flight Center, USA James Dunn NASA Johnson Space Center, USA Dr. Roman Forster ISMB Forster GmbH, Germany Yihua Tang China Aerospace Corporation, China Gajus Pagel Technical University of Berlin, Germany Klaus Legner ESA European Astronaut Centre, Germany Jian Luo China Aerospace Corporation, China The following Organisations are specifically thanked for their support of this Team Project: vii Student Preface The International Space University (ISU) was founded in 1987 with the vision of developing the world’s future space leaders by fostering creative and professional talent for the advancement of human activities in space. Every year since its foundation, ISU has run an intensive Summer Session Programme (SSP) that facilitates an interdisciplinary and intercultural learning environment. Via a series of core lectures and workshops the realm of space is examined from a range of professional perspectives. The Team Project (TP) is an integral part of the SSP curriculum. By producing a document that aims to be useful to the wider space community, it enables an international contingent of students to develop an invaluable appreciation for stress, sleep-deprivation, and cultural misunderstandings. Limited only by time, and founded on freshly acquired group dynamic and professional skills, the TP teams are actively encouraged to be innovative and thought provoking. This year’s SSP (2003) was located in the newly-built ISU central campus, within a bleary-eyed stroll of the historical French city of Strasbourg. The title of our project, METZTLI, reminds us of the ancient influence of the Moon on the human condition, and inspires us towards further exploration of the lunar environment. We the students, being forty-six in number and from twenty diverse nations, therefore proudly recognise the importance of our project in augmenting international focus on a fresh lunar programme. Looking forward to the full, ‘assembly complete’, configuration of the International Space Station (ISS), our approach was to consider the many ways in which the ISS platform reopens the path to exploration of the lunar surface by humans. In the early stages, our project veered off in a ‘think outside the box’ direction. However, via a process of internal reviews, ballot boxes, and secretly filmed meetings, the team restructured and quickly refocused, despite the increasing pressure of time. The product is a broadly focused document that retains a healthy dose of innovation and detailed technical analysis. For this success, we would like to thank our faculty and internal and external supporters, not to mention ourselves. We hope that our report will reawaken old scientific passions, and generate new interest in the exploration of everybody’s favourite satellite… the Moon! Sincerely, The Authors of Team Project Moon SSP’03, ISU viii Faculty Preface The 2003 International Space University (ISU) Summer Session Programme (SSP) was held at ISU’s new central campus building in Strasbourg, France. A key component of every SSP is the Team Project in which students produce a space project or topic
Recommended publications
  • Rocket Propulsion Fundamentals 2
    https://ntrs.nasa.gov/search.jsp?R=20140002716 2019-08-29T14:36:45+00:00Z Liquid Propulsion Systems – Evolution & Advancements Launch Vehicle Propulsion & Systems LPTC Liquid Propulsion Technical Committee Rick Ballard Liquid Engine Systems Lead SLS Liquid Engines Office NASA / MSFC All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation and to a paid course student, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of AIAA and/or course instructor. Contact the American Institute of Aeronautics and Astronautics, Professional Development Program, Suite 500, 1801 Alexander Bell Drive, Reston, VA 20191-4344 Modules 1. Rocket Propulsion Fundamentals 2. LRE Applications 3. Liquid Propellants 4. Engine Power Cycles 5. Engine Components Module 1: Rocket Propulsion TOPICS Fundamentals • Thrust • Specific Impulse • Mixture Ratio • Isp vs. MR • Density vs. Isp • Propellant Mass vs. Volume Warning: Contents deal with math, • Area Ratio physics and thermodynamics. Be afraid…be very afraid… Terms A Area a Acceleration F Force (thrust) g Gravity constant (32.2 ft/sec2) I Impulse m Mass P Pressure Subscripts t Time a Ambient T Temperature c Chamber e Exit V Velocity o Initial state r Reaction ∆ Delta / Difference s Stagnation sp Specific ε Area Ratio t Throat or Total γ Ratio of specific heats Thrust (1/3) Rocket thrust can be explained using Newton’s 2nd and 3rd laws of motion. 2nd Law: a force applied to a body is equal to the mass of the body and its acceleration in the direction of the force.
    [Show full text]
  • Exploration of the Moon
    Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms.
    [Show full text]
  • The International Space Station and the Space Shuttle
    Order Code RL33568 The International Space Station and the Space Shuttle Updated November 9, 2007 Carl E. Behrens Specialist in Energy Policy Resources, Science, and Industry Division The International Space Station and the Space Shuttle Summary The International Space Station (ISS) program began in 1993, with Russia joining the United States, Europe, Japan, and Canada. Crews have occupied ISS on a 4-6 month rotating basis since November 2000. The U.S. Space Shuttle, which first flew in April 1981, has been the major vehicle taking crews and cargo back and forth to ISS, but the shuttle system has encountered difficulties since the Columbia disaster in 2003. Russian Soyuz spacecraft are also used to take crews to and from ISS, and Russian Progress spacecraft deliver cargo, but cannot return anything to Earth, since they are not designed to survive reentry into the Earth’s atmosphere. A Soyuz is always attached to the station as a lifeboat in case of an emergency. President Bush, prompted in part by the Columbia tragedy, made a major space policy address on January 14, 2004, directing NASA to focus its activities on returning humans to the Moon and someday sending them to Mars. Included in this “Vision for Space Exploration” is a plan to retire the space shuttle in 2010. The President said the United States would fulfill its commitments to its space station partners, but the details of how to accomplish that without the shuttle were not announced. The shuttle Discovery was launched on July 4, 2006, and returned safely to Earth on July 17.
    [Show full text]
  • Thesisbook.Fm(Appendix
    Appendix D THE INTERNATIONAL SPACE STATION This appendix presents an review of the International Space Station Program and the facil- ities that are or will be available for research. First, the appendix reviews the objectives of the ISS and the identified research directions for the station. Next, it presents an overview of all the ISS components. That is followed by a more in depth review of the components which directly support research aboard the ISS. The appendix ends with a presentation of the identified challenges of the ISS and expected upgrades to the program to overcome these challenges. Chapter 2 utilizes this review to identify the most important resources provided by the ISS. D.1 Objectives and Research Directions The objectives of the ISS as stated in the ISS Familiarization Manual developed by NASA are: "The purpose of the ISS is to provide an “Earth orbiting facility that houses experiment payloads, distributes resource utilities, and supports permanent human habitation for conducting research and science experiments in a microgravity environment.” (ISSA IDR no. 1, Reference Guide, March 29, 1995) "This overall purpose leads directly into the following specific objectives of the ISS program: • Develop a world-class orbiting laboratory for conducting high-value sci- entific research 391 392 APPENDIX D • Provide access to microgravity resources as early as possible in the assembly sequence • Develop ability to live and work in space for extended periods • Develop effective international cooperation • Provide a testbed for developing 21st Century technology." [NASA, 1998] After creating these objectives, NASA worked to further detail the research objectives of the ISS.
    [Show full text]
  • Actual Problems Актуальные Проблемы
    АКАДЕМИЯ НАУК АВИАЦИИ И ВОЗДУХОПЛАВАНИЯ РОССИЙСКАЯ АКАДЕМИЯ КОСМОНАВТИКИ ИМ. К.Э.ЦИОЛКОВСКОГО RUSSIAN ASTRONAUTICS ACADEMY OF K.E.TSIOLKOVSKY'S NAME ACADEMY OF AVIATION AND AERONAUTICS SCIENCES СССР 7 195 ISSN 1727-6853 12.04.1961 АКТУАЛЬНЫЕ ПРОБЛЕМЫ АВИАЦИОННЫХ И АЭРОКОСМИЧЕСКИХ СИСТЕМ процессы, модели, эксперимент 1(42), т.21, 2016 RUSSIAN-AMERICAN SCIENTIFIC JOURNAL ACTUAL PROBLEMS OF AVIATION AND AEROSPACE SYSTEMS processes, models, experiment УРНАЛ 1(42), v.21, 2016 УЧНЫЙ Ж О-АМЕРИКАНСКИЙ НА ОССИЙСК Р Казань Daytona Beach А К Т УА Л Ь Н Ы Е П Р О Б Л Е М Ы А В И А Ц И О Н Н Ы Х И А Э Р О К О С М И Ч Е С К И Х С И С Т Е М Казань, Дайтона Бич Вып. 1 (42), том 21, 1-210, 2016 СОДЕРЖАНИЕ CONTENTS С.К.Крикалёв, О.А.Сапрыкин 1 S.K.Krikalev, O.A.Saprykin Пилотируемые Лунные миссии: Manned Moon missions: problems and задачи и перспективы prospects В.Е.Бугров 28 V.E.Bugrov О государственном управлении About government management of программами пилотируемых manned space flights programs космических полетов (критический (critical analysis of problems in анализ проблем отечественной Russian astronautics of the past and космонавтики прошлого и present) настоящего) А.В.Даниленко, К.С.Ёлкин, 90 A.V.Danilenko, K.S.Elkin, С.Ц.Лягушина S.C.Lyagushina Проект программы развития в Project of Russian program on России перспективной космической technology development of prospective технологии – космических тросовых space tethers applications систем Г.Р.Успенский 102 G.R.Uspenskii Прогнозирование космической Forecasting of space activity on деятельности по пилотируемой manned astronautics космонавтике А.В.Шевяков 114 A.V.Shevyakov Математические методы обработки Mathematical methods of images изображений в аэрокосмических processing in aerospace information информационных системах systems Р.С.Зарипов 140 R.S.Zaripov Роль и место военно-транспортных Russian native military transport самолетов в истории авиации aircrafts: history and experience of life России, опыт их боевого применения (part II) (ч.
    [Show full text]
  • The Effect of Time and Volume Stater of Bioethanol Content from Coconut Fiber Waste and Mengkudu Nutrient Content Compositions 8 in 100 Gr Mengkudu [8]
    Copyright © 2019 American Scientific Publishers Journal of All rights reserved Computational and Theoretical Nanoscience Printed in the United States of America Vol. 16, 5224–5227, 2019 The Effect of Time and Volume Stater of Bioethanol Content from Coconut Fiber Waste and Mengkudu Netty Herawati∗, Muh A. P. Muplih, M. Iqbal Satriansyah, and Kiagus A. Roni Chemical Engineering Study Program, Faculty of Engineering, Muhammadiyah University of Palembang, Jalan Jendral Ahmad Yani 13 Ulu, Plaju, Palembang, 3011, Indonesia Mengkudu and coconut fiber are a plant which frequently find in Indonesia. Mengkudu is a plant that has many advantages and carbohydrate content as 51,67%. Coconut fiber has high enough cellulose content as 43,44%, with high carbohydrate content and high cellulose content they can be utilized as basic ingredient in the making of bioethanol. The purpose of this research is to determine the best condition in the process of making bioethanol from them. Bioethanol was made by fermentation which was helped by bactery, that was Saccaromyches cerevisae or often known as bread yeast. The results of this research were obtained fermentation time and volume of the stater used in making bioethanol from mengkudui fruit in order to get the best content bioetanol is in 60 hours using a stater volume of 10% which produces 6.26% bioethanol, while for the manufacture of bioethanol from waste Coconut coir is at 72 hours using a 6 gr volume of starch which produces bioethanol 13.80%. RESEARCH ARTICLE Keywords: Mengkudu, Coconut Fiber, Bioethanol, Time Variety, Stater Volume, Saccaromy chescerevisae. 1. INTRODUCTION as FGE [6]. Bioethanol is an alcohol compound with a The increase of human population and the develop of hydroxyl group (OH), 2 carbon atoms C, with the chem- industry are directly proportional with the increase of ical formula C2H5OH, which is made by sugar fermen- dependency number with oil fuel.
    [Show full text]
  • Unique Scientific Laboratory Instrument for Sky Monitoring (MVN) Bi-Axial Pointing Platform with Hyper-Spectrometer
    Research Exploration Utilization Unique scientific laboratory Instrument for sky monitoring (MVN) Bi-axial pointing platform with hyper-spectrometer «Photon-Gamma» apparatus Radiometric sounder РК-21-8 Plasma-wave apparatus «Obstanovka» Plasma-wave apparatus «Obstanovka» Plasma-wave diagnostic device «Seysmoprognoz» High-speed data transmitter Multilayer scintillation spectrometer «Alpha-electron» MLM Mini Research Module (MRM1) • Universal workstations inside (16) and outside (13) will be mounted • Payload pressurized volume about 6 м3, power capability of 2,5 kW (enabling of experiments with electric furnaces) • ERA arm and automated airlock • New universal facilities and tools (multizone furnace, spectrophotometers, vibro-protecting and pointing platforms, glove box, thermostats etc.) Mini Research Module (MRM2) MLM PAYLOADS • MLM will support approximately 40% of the “Soyuz” spacecraft total amount of experiment planned for the ISS Mini Research Module (MRM2) RS “Zvezda“ service module (SM) Mini Research Module (MRM1) “Zarya” • Two scientific and power supply modules of “Progress” resupply vehicle about 15 kW each by 2015. This provides fully independent power supply of RS ISS • Data relay system based on «Luch» relay satellites (up to 300 Mbps). Multipurpose Laboratory • Starting from 2016 Russia plans also to use Module (MLM) АСUSOS МКС for experiments automatic spacecraft “OKA-T” maintained at the periodical docking with ISS. “Soyuz” spacecraft • In total, the plans call for 8 modules of the ISS RS by 2015, with total power capability of 30 kW Science Power Platform (SPP-2) and the payload pressurized volume about 40 “Soyuz” spacecraft Science Power Platform (SPP-1) cubic meters. Nodal module (NM) 102 “Soyuz” spacecraft >170 1998 ------ 2000 2001 --- 2003 --- 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 RS ISS assembling 1 stage 2 stage Pirs Zarya Zvezda MRM2 MRM1 MLM NM SPP-1 SPP-2 Russian crew quota – 3 5 6 16 18 8 45 About 130 unites of scientific 38 equipment of about ton total mass are housed on the ISS RS.
    [Show full text]
  • The International Space Station Partners: Background and Current Status
    The Space Congress® Proceedings 1998 (35th) Horizons Unlimited Apr 28th, 2:00 PM Paper Session I-B - The International Space Station Partners: Background and Current Status Daniel V. Jacobs Manager, Russian Integration, International Partners Office, International Space Station ogrPr am, NASA, JSC Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Jacobs, Daniel V., "Paper Session I-B - The International Space Station Partners: Background and Current Status" (1998). The Space Congress® Proceedings. 18. https://commons.erau.edu/space-congress-proceedings/proceedings-1998-35th/april-28-1998/18 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. THE INTERNATIONAL SPACE STATION: BACKGROUND AND CURRENT STATUS Daniel V. Jacobs Manager, Russian Integration, International Partners Office International Space Station Program, NASA Johnson Space Center Introduction The International Space Station, as the largest international civil program in history, features unprecedented technical, managerial, and international complexity. Seven interna- tional partners and participants encompassing fifteen countries are involved in the ISS. Each partner is designing, developing and will be operating separate pieces of hardware, to be inte- grated on-orbit into a single orbital station. Mission control centers, launch vehicles, astronauts/ cosmonauts, and support services will be provided by multiple partners, but functioning in a coordinated, integrated fashion. A number of major milestones have been accomplished to date, including the construction of major elements of flight hardware, the development of opera- tions and sustaining engineering centers, astronaut training, and seven Space Shuttle/Mir docking missions.
    [Show full text]
  • International Space Station Overview
    NASA Facts National Aeronautics and Space Administration Lyndon B. Johnson Space Center IS-1999-06-ISS022 Houston, Texas 77058 International Space Station June 1999 The International Space Station: An Overview The International Space Station is the largest and most complex international scientific project in history. The station represents a move of unprecedented scale off the home planet that began in 1998 with the launch of the first two components, the Unity and Zarya modules. Led by the United States, the International Space Station draws upon the scientific and technological resources of 16 nations: Canada, Japan, Russia, 11 nations of the European Space Agency and Brazil. More than four times as large as the Russian Mir space station, the completed International Space Station will have a mass of about 1 million pounds. It will measure about 360 feet across and 290 feet long, with almost an acre of solar panels to provide electrical power to six state-of-the-art laboratories. The first two station modules, the Russian-launched Zarya control module and U.S.-launched Unity connecting module, were assembled in orbit in late 1998. The station is in an orbit with an altitude of 250 statute miles with an inclination of 51.6 degrees. This orbit allows the station to be reached by the launch vehicles of all the international partners to provide a robust capability for the delivery of crews and supplies. The orbit also provides excellent Earth observations with coverage of 85 percent of the globe and over flight Artist's concept of the completed International Space Station of 95 percent of the population.
    [Show full text]
  • George C. Marshall Space Flight Center Malshall Space Flight Center, Alabama
    NASA TECHNICAL MEMORANDUM NASA TM X-53973 SPACE FLIGHT EVOLUTION By Georg von Tiesenhausen and Terry H. Sharpe Advanced Systems Analysis Office June 30,1970 NASA George C. Marshall Space Flight Center Malshall Space Flight Center, Alabama MSFC - Form 3190 (September 1968) j NASA TM X-53973 I [. TITLE AND SUBTITLE 5. REPORT DATE June 30,1970 Space Flight Evolution 6. PERFORMlNG ORGANIZATION CODE PD-SA 7. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORT # Georg von Tiesenhausen and Terry H. Sharpe I 3. PERFORMlNG ORGANIZATION NAME AND ADDRESS lo. WORK UNIT, NO. Advanced Systems Analysis Office Program Development 1 1. CONTRACT OR GRANT NO. Marshall Space Flight Center, Alabama 35812 13. TYPE OF REPORT & PERIOD COVEREC 2. SPONSORING AGENCY NAME AND ADDRESS Technical Memorandum 14. SPONSORING AGENCY CODE I 15. SUPPLEMENTARY NOTES 16. ABSTRACT This report describes a possible comprehensive path of future, space flight evolution. The material in part originated from earlier NASA efforts to defme a space program in which earth orbital, lunar, and planetary programs are integrated. The material presented is not related to specific time schedules but provides an evolutionary sequence. The concepts of commonality of hardware and reusability of systems are introduced as keys to a low cost approach to space flight. The verbal descriptions are complemented by graphic interpretations in order to convey a more vivid impression of the concepts and ideas which make upthis program. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement Advanced Systems Analysis Office 19. SECURITY CLASSIF. (of this rePmt> (20. SECURITY CLA ;IF. (of this page) 121. NO. OF PAGES 122.
    [Show full text]
  • Acoustic Shaping, Inc: Manufacturers in Mars Orbit
    PROPOSAL AND BUSINESS PLAN SUBMITTED TO THE 1999 "NASA MEANS BUSINESS" STUDENT COMPETITION ACOUSTIC SHAPING, INC: MANUFACTURERS IN MARS ORBIT By the Georgia Tech team Sam Wanis, Don Changeau, Justin Hausaman, Ashraf Charania, Catherine Matos, Richard Ames DECEMBER 1998 I. Proposal Summary The Georgia Tech team proposes a Business Plan for a technical concept which they have demonstrated in '97 and '98 NASA Microgravity flight-tests: Acoustic Shaping as a means of non- contact manufacturing in Space. Acoustic Shaping will offer flexible manufacturing of pressure vessels and precision-formed components using raw material obtained from moons and asteroids. The customers are the space-faring construction industry, as well as bio-engineering companies of the 21st century. Material from lunar and asteroid-based mines will be shipped to manufacturing facilities in Earth and Mars orbit. Finished products will be delivered using aerodynamic decelerators to customers on planetary surfaces, or used in the construction of space station modules and vehicles for other missions. By reducing the cost of manufactured components to a fraction of the cost of Earth-built or machined components, ASI will provide an enabling resource for human exploration of the Solar system. A systematic Implementation Plan is laid out to develop ASI as the aerospace construction industry of the 21st century. From its already-demonstrated technical foundations, the Plan reaches out using the student team's projections of the evolving space industry. This Plan is used to convey a sampling of Georgia Tech's capabilities and interests in NASA's HEDS mission, across disciplines and levels. The team has won support from faculty research teams across the School of Aerospace Engineering, the Dupree College of Business and the GT-Emory School of Biomedical Engineering, each of which brings research and curricular capabilities to this mission.
    [Show full text]
  • JBIS Journal of the British Interplanetary Society
    JBIS Journal of the British Interplanetary Society VOL. 66 No. 5/6 MAY/JUNE 2013 Contents On the Possibility of Detecting Class A Stellar Engines using Exoplanet Transit Curves Duncan H. Forgan Asteroid Control and Resource Utilization Graham Paterson, Gianmarco Radice and J-Pau Sanchez Application of COTS Components for Martian Surface Exploration Matthew Cross, Christopher Nicol, Ala’ Qadi and Alex Ellery In-Orbit Construction with a Helical Seam Pipe Mill Neill Gilhooley The Effect of Probe Dynamics on Galactic Exploration Timescales Duncan H. Forgan, Semeli Papadogiannakis and Thomas Kitching Innovative Approaches to Fuel-Air Mixing and Combustion in Airbreathing Hypersonic Engines Christopher MacLeod Gravitational Assist via Near-Sun Chaotic Trajectories of Binary Objects Joseph L. Breeden jbis.org.uk ISSN 0007-084X Publication Date: 24 July 2013 Notice to Contributors JBIS welcomes the submission for publication of suitable technical articles, research contributions and reviews in space science and technology, astronautics and related fields. Text should be: Figure captions should be short and concise. Every figure 1. As concise as the scientific or technical content allows. used must be referred to in the text. Typically 5000 to 6000 words but shorter (2-3 page) papers 2. Permission should be obtained and formal acknowledgement are also accepted called Technical Notes. Papers longer made for use of a copyright illustration or material from than this would only be accepted when the content demands elsewhere. it, such as a major subject review. 3. Photos: Original photos are preferred if possible or good 2. Mathematical equations may be either handwritten or typed, quality copies.
    [Show full text]