Acoustic Shaping, Inc: Manufacturers in Mars Orbit

Total Page:16

File Type:pdf, Size:1020Kb

Acoustic Shaping, Inc: Manufacturers in Mars Orbit PROPOSAL AND BUSINESS PLAN SUBMITTED TO THE 1999 "NASA MEANS BUSINESS" STUDENT COMPETITION ACOUSTIC SHAPING, INC: MANUFACTURERS IN MARS ORBIT By the Georgia Tech team Sam Wanis, Don Changeau, Justin Hausaman, Ashraf Charania, Catherine Matos, Richard Ames DECEMBER 1998 I. Proposal Summary The Georgia Tech team proposes a Business Plan for a technical concept which they have demonstrated in '97 and '98 NASA Microgravity flight-tests: Acoustic Shaping as a means of non- contact manufacturing in Space. Acoustic Shaping will offer flexible manufacturing of pressure vessels and precision-formed components using raw material obtained from moons and asteroids. The customers are the space-faring construction industry, as well as bio-engineering companies of the 21st century. Material from lunar and asteroid-based mines will be shipped to manufacturing facilities in Earth and Mars orbit. Finished products will be delivered using aerodynamic decelerators to customers on planetary surfaces, or used in the construction of space station modules and vehicles for other missions. By reducing the cost of manufactured components to a fraction of the cost of Earth-built or machined components, ASI will provide an enabling resource for human exploration of the Solar system. A systematic Implementation Plan is laid out to develop ASI as the aerospace construction industry of the 21st century. From its already-demonstrated technical foundations, the Plan reaches out using the student team's projections of the evolving space industry. This Plan is used to convey a sampling of Georgia Tech's capabilities and interests in NASA's HEDS mission, across disciplines and levels. The team has won support from faculty research teams across the School of Aerospace Engineering, the Dupree College of Business and the GT-Emory School of Biomedical Engineering, each of which brings research and curricular capabilities to this mission. The letter from the Chair of AE, and the participation of a powerful core of expertise, highlight Georgia Tech's support behind the enthusiasm of the student team. This proposal integrates the efforts of both Georgia Tech teams which submitted Letters of Intent to NASA. 1 LIST OF CONTENTS I. Proposal Summary 1 II. Business Plan 3 1. Executive Summary 3 2. Technical Proposal 7 2.1 Introduction 7 2.2 Technology Model & Assumptions 8 2.3 Acoustic Shaping Technology 8 2.4 Implementation Plan 9 2.5 Discussion 9 2.6 Implementation Plan 13 3. Market and Economic Analysis 20 III. Supplemental Information: 23 Georgia Tech capabilities & interests associated with this project 1. School of Aerospace Engineering 23 2. GT/Emory School of BioMedical Engineering 26 3. Dupree College of Business and Management 26 IV. References 28 Selection Criteria Index Issue Pages Planning Issues and Assumptions 9-13 Timeline 5 International partners/customers 4, 7 Academic Department description 23 Course Curriculum Description 23 Outreach Plan 18 Supporting Faculty, Partnerships 24-26 Supporting Faculty Citations 28-31 Team member listing 7, 26 Team Leader Information 26 Letters of Endorsement 32 2 II. BUSINESS PLAN II.1 Executive Summary Acoustic Shaping Inc. EarthBase R&D Center, 225 North Avenue Operational Locations: School of Aerospace Engineering, Solar System Manufacturing Facility: CanalView Business Georgia Institute of Technology Park, Mars Orbit Atlanta GA30332-0150 Earth Regional Manufacturing: ISS Freedom, Low Earth 404-894-9622 Orbit Payload Exchange Operations: Lunar Orbit Station Vision ASI will lead the space-based manufacturing industry of the 21st century. Objectives ASI will provide: · Custom-fabricated parts for the International Space Station. · High-precision, high-purity parts for Earth-based bioengineering industry. · Standardized components for the construction industry in Space. Business Description At $5,000 per lb. to Low Earth Orbit, the cost of shipping components and machine tools from Earth is a large obstacle to the human venture into space. ASI provides a solution to this problem: manufacturing using adaptively-controlled sound waves to form surface shapes in microgravity, from granular or liquid-state materials. ASI will offer non-contact, flexible manufacturing of sophisticated components to Mars explorers and to the construction business in the Solar System. Initial operations located on the International Space Station (ISS) in low Earth Orbit will serve near-term customers on ISS, using material shipped from Earth. As revenue and markets develop, the primary manufacturing facility will be located in lunar orbit to help build the second ISS, and start lunar mining. As this market develops the main manufacturing facility will be built and located at the Mars orbital station. Material brought from lunar and asteroid mines will be turned into precision-formed components at ASI. Products will be delivered by aerodynamic decelerators to customer sites on the planetary surface, and carried on Cycler Shuttles to customer sites in GEO / LEO / lunar orbit. From these beginnings, ASI will lead the space-faring construction business in the Solar System. Market Space-related business accounts for over $121B/yr in 1998. Currently, all items are shipped from Earth, at costs-to-orbit of over $5K per lb. The International Space Station alone is expected to grow to an Earth-weight of over 1 million lbs. by 2004. Demand for Space-based construction is projected to be $20B/yr in 2005, rising to $500B/yr by 2020 as human space exploration progresses. ASI's role in this market is both as market enabler and as supplier. ASI's customer base consists of two types of industries: Orbiting Space Station.[MarsSociety,1998 3 1) NASA and Aerospace firms contracting to NASA and ESA for construction of : § International Space Station components § Spacecraft for Solar System & Deep Space exploration § Lunar and Mars surface base facilities As Space Commercialization proceeds, these firms will transition to serve the developing commercial markets on Earth for the development and habitation of space, with attendant increases in size. Examples of ASI-built products are: · Space-Station outer and interior panels. · Nozzles · Plumbing components · Pre-fabricated, pressurized habitation modules. · Pressure vessels. Artist’s concept of a potential Mars mission, from NASA Web pages, showing connected pressure vessels to form habitation modules. From [Mars Society, 1998 ] Competitive Edge ASI's core technology is the Acoustic Shaping technology proven by our team in over 120 parabolas of microgravity flight on NASA's KC- 135. Our core competence includes the depth and breadth of technical/ business/marketing capabilities from 3 schools and 4 research labs at Georgia Tech, one of the premier technological institutes of the world. Access to Georgia Tech translates into a complete capability across the life-cycle of this technology. These Earth-based facilities offer complete concept-to-test capability, spanning such areas as System Design and Life-Cycle Analysis/Simulation/Optimization, Booster technology, Hypersonic Controls, Spacecraft Attitude Control, Re-entry Aerothermodynamics, Acoustics, Mathematical Modeling & Simulation, and aerodynamic glide/decelerator technologies. ASI's links to the School of Bioengineering at Georgia Tech bring access to an area of rising importance to the human exploration of space. Bioengineering is expected to form a rising share of the mass-market demand on Earth for precision components enabled by ASI's technology. ASI seeks partnerships with the entities leading Space Exploration: NASA, the large aerospace companies Lockheed-Martin and Boeing, as well as a leading technological university, Georgia Tech. The ASI team in particular, and these Georgia Tech schools in general, are models of the future engineering environment envisioned by NASA, our project teams integrating diverse technical disciplines as well as people from all parts of the world. Glimpse of an ASI Manufacturing Facility At the core of the space-based Phase-Controlled Acoustic Shaping Technology (PCAST) facility are 10 Acoustic Chamber modules of various sizes, with up to 25 individually-programmable speaker systems each. The chambers are pressurized with a suitable gas such as nitrogen. Raw material is received at the orbiting station and converted to the desired particle size or liquid characteristics in a preprocessing plant. The temperature and pressure are brought to the needed levels, and a pre- selected sound field is imposed. The material is fed into the chamber along with the binder component, so that the mixture solidifies along the desired surfaces; some processes will use solar / microwave heating or rapid cooling. After curing for the appropriate time, the formed shape removed, finishing processes applied, and the part is loaded back into transporters. 4 Business Location Manufacturing will be located in orbit to use jitter-free, long-duration microgravity essential for quality control. The first location will be at the ISS to serve customers in LEO and GEO. The next will be in lunar proximity, to participate in ISS-2 construction and help initiate lunar mining. With material coming from lunar mines, the Mars station will be built and moved to Mars Orbit, for access to the Martian surface market and to major transfer orbits for missions throughout the Solar System. Mars orbit offers convenient access to Earth, to Earth's Moon, and to the Asteroid Belt. Subsidiary locations in lunar orbit allow exchange between raw materials from the Moon, and finished
Recommended publications
  • Exploration of the Moon
    Exploration of the Moon The physical exploration of the Moon began when Luna 2, a space probe launched by the Soviet Union, made an impact on the surface of the Moon on September 14, 1959. Prior to that the only available means of exploration had been observation from Earth. The invention of the optical telescope brought about the first leap in the quality of lunar observations. Galileo Galilei is generally credited as the first person to use a telescope for astronomical purposes; having made his own telescope in 1609, the mountains and craters on the lunar surface were among his first observations using it. NASA's Apollo program was the first, and to date only, mission to successfully land humans on the Moon, which it did six times. The first landing took place in 1969, when astronauts placed scientific instruments and returnedlunar samples to Earth. Apollo 12 Lunar Module Intrepid prepares to descend towards the surface of the Moon. NASA photo. Contents Early history Space race Recent exploration Plans Past and future lunar missions See also References External links Early history The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. His non-religious view of the heavens was one cause for his imprisonment and eventual exile.[1] In his little book On the Face in the Moon's Orb, Plutarch suggested that the Moon had deep recesses in which the light of the Sun did not reach and that the spots are nothing but the shadows of rivers or deep chasms.
    [Show full text]
  • Actual Problems Актуальные Проблемы
    АКАДЕМИЯ НАУК АВИАЦИИ И ВОЗДУХОПЛАВАНИЯ РОССИЙСКАЯ АКАДЕМИЯ КОСМОНАВТИКИ ИМ. К.Э.ЦИОЛКОВСКОГО RUSSIAN ASTRONAUTICS ACADEMY OF K.E.TSIOLKOVSKY'S NAME ACADEMY OF AVIATION AND AERONAUTICS SCIENCES СССР 7 195 ISSN 1727-6853 12.04.1961 АКТУАЛЬНЫЕ ПРОБЛЕМЫ АВИАЦИОННЫХ И АЭРОКОСМИЧЕСКИХ СИСТЕМ процессы, модели, эксперимент 1(42), т.21, 2016 RUSSIAN-AMERICAN SCIENTIFIC JOURNAL ACTUAL PROBLEMS OF AVIATION AND AEROSPACE SYSTEMS processes, models, experiment УРНАЛ 1(42), v.21, 2016 УЧНЫЙ Ж О-АМЕРИКАНСКИЙ НА ОССИЙСК Р Казань Daytona Beach А К Т УА Л Ь Н Ы Е П Р О Б Л Е М Ы А В И А Ц И О Н Н Ы Х И А Э Р О К О С М И Ч Е С К И Х С И С Т Е М Казань, Дайтона Бич Вып. 1 (42), том 21, 1-210, 2016 СОДЕРЖАНИЕ CONTENTS С.К.Крикалёв, О.А.Сапрыкин 1 S.K.Krikalev, O.A.Saprykin Пилотируемые Лунные миссии: Manned Moon missions: problems and задачи и перспективы prospects В.Е.Бугров 28 V.E.Bugrov О государственном управлении About government management of программами пилотируемых manned space flights programs космических полетов (критический (critical analysis of problems in анализ проблем отечественной Russian astronautics of the past and космонавтики прошлого и present) настоящего) А.В.Даниленко, К.С.Ёлкин, 90 A.V.Danilenko, K.S.Elkin, С.Ц.Лягушина S.C.Lyagushina Проект программы развития в Project of Russian program on России перспективной космической technology development of prospective технологии – космических тросовых space tethers applications систем Г.Р.Успенский 102 G.R.Uspenskii Прогнозирование космической Forecasting of space activity on деятельности по пилотируемой manned astronautics космонавтике А.В.Шевяков 114 A.V.Shevyakov Математические методы обработки Mathematical methods of images изображений в аэрокосмических processing in aerospace information информационных системах systems Р.С.Зарипов 140 R.S.Zaripov Роль и место военно-транспортных Russian native military transport самолетов в истории авиации aircrafts: history and experience of life России, опыт их боевого применения (part II) (ч.
    [Show full text]
  • The Effect of Time and Volume Stater of Bioethanol Content from Coconut Fiber Waste and Mengkudu Nutrient Content Compositions 8 in 100 Gr Mengkudu [8]
    Copyright © 2019 American Scientific Publishers Journal of All rights reserved Computational and Theoretical Nanoscience Printed in the United States of America Vol. 16, 5224–5227, 2019 The Effect of Time and Volume Stater of Bioethanol Content from Coconut Fiber Waste and Mengkudu Netty Herawati∗, Muh A. P. Muplih, M. Iqbal Satriansyah, and Kiagus A. Roni Chemical Engineering Study Program, Faculty of Engineering, Muhammadiyah University of Palembang, Jalan Jendral Ahmad Yani 13 Ulu, Plaju, Palembang, 3011, Indonesia Mengkudu and coconut fiber are a plant which frequently find in Indonesia. Mengkudu is a plant that has many advantages and carbohydrate content as 51,67%. Coconut fiber has high enough cellulose content as 43,44%, with high carbohydrate content and high cellulose content they can be utilized as basic ingredient in the making of bioethanol. The purpose of this research is to determine the best condition in the process of making bioethanol from them. Bioethanol was made by fermentation which was helped by bactery, that was Saccaromyches cerevisae or often known as bread yeast. The results of this research were obtained fermentation time and volume of the stater used in making bioethanol from mengkudui fruit in order to get the best content bioetanol is in 60 hours using a stater volume of 10% which produces 6.26% bioethanol, while for the manufacture of bioethanol from waste Coconut coir is at 72 hours using a 6 gr volume of starch which produces bioethanol 13.80%. RESEARCH ARTICLE Keywords: Mengkudu, Coconut Fiber, Bioethanol, Time Variety, Stater Volume, Saccaromy chescerevisae. 1. INTRODUCTION as FGE [6]. Bioethanol is an alcohol compound with a The increase of human population and the develop of hydroxyl group (OH), 2 carbon atoms C, with the chem- industry are directly proportional with the increase of ical formula C2H5OH, which is made by sugar fermen- dependency number with oil fuel.
    [Show full text]
  • George C. Marshall Space Flight Center Malshall Space Flight Center, Alabama
    NASA TECHNICAL MEMORANDUM NASA TM X-53973 SPACE FLIGHT EVOLUTION By Georg von Tiesenhausen and Terry H. Sharpe Advanced Systems Analysis Office June 30,1970 NASA George C. Marshall Space Flight Center Malshall Space Flight Center, Alabama MSFC - Form 3190 (September 1968) j NASA TM X-53973 I [. TITLE AND SUBTITLE 5. REPORT DATE June 30,1970 Space Flight Evolution 6. PERFORMlNG ORGANIZATION CODE PD-SA 7. AUTHOR(S) 8. PERFORMING ORGANIZATION REPORT # Georg von Tiesenhausen and Terry H. Sharpe I 3. PERFORMlNG ORGANIZATION NAME AND ADDRESS lo. WORK UNIT, NO. Advanced Systems Analysis Office Program Development 1 1. CONTRACT OR GRANT NO. Marshall Space Flight Center, Alabama 35812 13. TYPE OF REPORT & PERIOD COVEREC 2. SPONSORING AGENCY NAME AND ADDRESS Technical Memorandum 14. SPONSORING AGENCY CODE I 15. SUPPLEMENTARY NOTES 16. ABSTRACT This report describes a possible comprehensive path of future, space flight evolution. The material in part originated from earlier NASA efforts to defme a space program in which earth orbital, lunar, and planetary programs are integrated. The material presented is not related to specific time schedules but provides an evolutionary sequence. The concepts of commonality of hardware and reusability of systems are introduced as keys to a low cost approach to space flight. The verbal descriptions are complemented by graphic interpretations in order to convey a more vivid impression of the concepts and ideas which make upthis program. 17. KEY WORDS 18. DISTRIBUTION STATEMENT STAR Announcement Advanced Systems Analysis Office 19. SECURITY CLASSIF. (of this rePmt> (20. SECURITY CLA ;IF. (of this page) 121. NO. OF PAGES 122.
    [Show full text]
  • JBIS Journal of the British Interplanetary Society
    JBIS Journal of the British Interplanetary Society VOL. 66 No. 5/6 MAY/JUNE 2013 Contents On the Possibility of Detecting Class A Stellar Engines using Exoplanet Transit Curves Duncan H. Forgan Asteroid Control and Resource Utilization Graham Paterson, Gianmarco Radice and J-Pau Sanchez Application of COTS Components for Martian Surface Exploration Matthew Cross, Christopher Nicol, Ala’ Qadi and Alex Ellery In-Orbit Construction with a Helical Seam Pipe Mill Neill Gilhooley The Effect of Probe Dynamics on Galactic Exploration Timescales Duncan H. Forgan, Semeli Papadogiannakis and Thomas Kitching Innovative Approaches to Fuel-Air Mixing and Combustion in Airbreathing Hypersonic Engines Christopher MacLeod Gravitational Assist via Near-Sun Chaotic Trajectories of Binary Objects Joseph L. Breeden jbis.org.uk ISSN 0007-084X Publication Date: 24 July 2013 Notice to Contributors JBIS welcomes the submission for publication of suitable technical articles, research contributions and reviews in space science and technology, astronautics and related fields. Text should be: Figure captions should be short and concise. Every figure 1. As concise as the scientific or technical content allows. used must be referred to in the text. Typically 5000 to 6000 words but shorter (2-3 page) papers 2. Permission should be obtained and formal acknowledgement are also accepted called Technical Notes. Papers longer made for use of a copyright illustration or material from than this would only be accepted when the content demands elsewhere. it, such as a major subject review. 3. Photos: Original photos are preferred if possible or good 2. Mathematical equations may be either handwritten or typed, quality copies.
    [Show full text]
  • Luna 27:RUSSIAN Remote LUNAR Observation EXPLORATION of Hydrogenmissions Subsurface (Down to 0.5 M) Distribution with Active Neutron and Gamma Spectrometers
    RUSSIAN LUNAR EXPLORATION MISSIONS The vision of the Russian Space Agency on the robotic settlements in the Moon Maxim Litvak Space Research Institute Russian Academy of sciences page 1 RUSSIAN LUNAR EXPLORATION MISSIONS History/Heritage Zond-3 photos of far side of the Moon Luna-9 Luna-16 with Lunokhod-1 first landing samples of regolith page 2 RUSSIAN LUNAR EXPLORATION MISSIONS Main principles of Lunar Program page 3 RUSSIAN LUNAR EXPLORATION MISSIONS 1. Lunar program shall include initial exploration/investigation stage to solve key, most important lunar tasks and to provide basis for following human exploration and utilization of lunar resources. 2. Lunar program shall be developed as a sequence of key projects/missions with increasing complexity where subsequent missions inherit and develop science results and technologies achieved in previous missions and projects. 3. Lunar program goals shall take into account current technology readiness level (including technologies developed by Soviet lunar program and other space agencies) and available funding resources. 4. Lunar Program shall start with robotic missions and continue with manned lunar missions, solving specific tasks at each stage to effectively approach strategic goal – human exploration of the Moon and creating long living lunar bases. 5. Lunar Program (primary goals) shall be based on national funding capabilities but allow and provides possibilities for close involvement of international cooperation. page 4 RUSSIAN LUNAR EXPLORATION MISSIONS Main goals of Lunar Program page 5 RUSSIAN LUNAR EXPLORATION MISSIONS 1. NEW MOON SCIENCE . Origin and evolution . Polar regions and volatiles . Lunar exosphere and radiation environment. 2. NEW LUNAR TRANSPORT CAPABILITIES . To support robotic and human missions to lunar orbit and lunar surface.
    [Show full text]
  • Lunar Mission Safety and Rescue : Technical Summary
    MSC-03976 LMSC-A984262B JULY 15,1971 LUN..A..R 1Vl:ISSION S..A..FET-y ..A..ND RESCUE PREPARED FOR NATIONAL AERONAUTICS &SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS CONTRACT NAS 9-10969 _ .. .... // .. ~ ~---·-_:. ·.. : -· :_:_. __ ;._· __ ._· ... ::. ·.--.:' ..:: -: .. ,' ·... -~ -=:-.}!· '..... ._ ... ::_::. · :' _ __ _.:_ .. _·:; : ....... -.. .- ·: :. .. _ .. · , .. I ·.' _~...,~- - ... ·-.· . ·.. ;- _-... _.·_ ·•·· .. ··•·••·· . ;~~ :., ~:···.·· .. ··· h .,·, .. >- ' ·.··· .· . ·.. ·. ~-~~\:, .•. #~?L ·. <____ , ;..,;.,_::·: _____ ............,. _____ -..;...--.....;....;·.· ·____- ... .;.......,..__----'--·--· :...;....·_:"'--_... :·· --· .___ .· ---'-"--~ TECHNICAL SUMMARY LOCKHEED MISSILES & SPACE COMPANY A GllOUP D I VISION OF LO C KHEED AIR C RAfT CORPORATI O N SPACE SYSTEMS DIVISION • SUNNYVALE, C ALIFORNIA MSC-03976 LMSC-A984262B Revision 1 LUNAR MISSION SAFETY AND RESCUE TECHNICAL SUMMARY i( Prepared for National Aeronautics and Space Administration Manned Spacecraft Center Houston, Texas 77058 Under Contract NAS 9-10969 MSC DRL-T-591 Line Item 7 LOCKHEED MISSILES & SPACE COMPANY ,) SPACE SYSTEMS DIVISION P. O. BOX 504, SUNNYVALE, CALIF. 94088 Lunar Surface Features - Apollo 14 Mission iii LMSC-A984262B FOREWORD This report was prepared by the Lockheed Missiles & Space Company, Sunnyvale, California, and presents a technical summary of results of the Lunar Mission Safety and Rescue Study performed for the National Aeronautics and Space Admin­ istration, Manned Spacecraft Center, under Contract NAS 9-10969. This is one of the following four reports documenting the contract findings: MSC-03975, LMSC-A984262A, Lunar Mission Safety and Rescue Executive Summary MSC-03976, LMSC-A984262B, Lunar Mission Safety and Rescue Technical Summary MSC-03977, LMSC-A984262C, Lunar Mission Safety and Rescue Hazards Analysis and Safety Requirements MSC-03978, LMSC-A984262D, Lunar Mission Safety and Rescue Escape/Rescue Analysis and Plan v LMSC-A984262B ACKNOWLEDGMENTS The Lunar Mission Safety and Rescue Study was performed under the direction of Mr.
    [Show full text]
  • Aas 20-695 Geometrical Tools for the Systematic Design of Low-Energy
    AAS 20-695 GEOMETRICAL TOOLS FOR THE SYSTEMATIC DESIGN OF LOW-ENERGY TRANSFERS IN THE EARTH-MOON-SUN SYSTEM Anastasia Tselousova,∗ Maksim Shirobokov,y and Sergey Trofimovz Weak stability boundary (WSB) trajectories are Sun-perturbed low-energy trajec- tories connecting a near-Earth orbit and a lunar orbit. Among their benefits are the increased mass delivered to a working orbit and larger launch windows. However, the flight is much longer than for traditional high-energy lunar transfers. Since the discovery of WSB trajectories several decades ago, they have been being designed numerically, by a single or multiple shooting procedure. The major challenge is in choosing a good initial guess for that procedure: a WSB trajectory consists of legs with alternating fast/slow dynamics and is extremely sensitive. The paper presents several geometrical tools that enable the systematic design of a high-quality initial guess in the framework of the planar bicircular four-body problem. The constraints on the launch energy C3 and the selenocentric distance of the lunar orbit insertion point are satisfied by construction. The initial-guess planar WSB trajectory is then fed to the standard multiple shooting procedure in order to get a three-dimensional trajectory with the trans-lunar injection from a specific parking orbit adapted to the realistic ephemeris model. The technique developed is ideologically similar to the patched conic approximation for high-energy trajectories: the region of prevalence concept introduced by R. Castelli is exploited instead of the sphere of influence, so that a WSB trajectory appears to be divided into the three legs: departing, exterior, and arriving.
    [Show full text]
  • Deep Space Habitats Hearing Committee on Science, Space, and Technology House of Representatives
    NEXT STEP TO MARS: DEEP SPACE HABITATS HEARING BEFORE THE SUBCOMMITTEE ON SPACE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED FOURTEENTH CONGRESS SECOND SESSION May 18, 2016 Serial No. 114–78 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 20–875PDF WASHINGTON : 2017 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. LAMAR S. SMITH, Texas, Chair FRANK D. LUCAS, Oklahoma EDDIE BERNICE JOHNSON, Texas F. JAMES SENSENBRENNER, JR., ZOE LOFGREN, California Wisconsin DANIEL LIPINSKI, Illinois DANA ROHRABACHER, California DONNA F. EDWARDS, Maryland RANDY NEUGEBAUER, Texas SUZANNE BONAMICI, Oregon MICHAEL T. MCCAUL, Texas ERIC SWALWELL, California MO BROOKS, Alabama ALAN GRAYSON, Florida RANDY HULTGREN, Illinois AMI BERA, California BILL POSEY, Florida ELIZABETH H. ESTY, Connecticut THOMAS MASSIE, Kentucky MARC A. VEASEY, Texas JIM BRIDENSTINE, Oklahoma KATHERINE M. CLARK, Massachusetts RANDY K. WEBER, Texas DONALD S. BEYER, JR., Virginia BILL JOHNSON, Ohio ED PERLMUTTER, Colorado JOHN R. MOOLENAAR, Michigan PAUL TONKO, New York STEPHEN KNIGHT, California MARK TAKANO, California BRIAN BABIN, Texas BILL FOSTER, Illinois BRUCE WESTERMAN, Arkansas BARBARA COMSTOCK, Virginia GARY PALMER, Alabama BARRY LOUDERMILK, Georgia RALPH LEE ABRAHAM, Louisiana DRAIN LAHOOD, Illinois SUBCOMMITTEE ON SPACE HON. BRIAN BABIN, Texas, Chair DANA ROHRABACHER, California DONNA F. EDWARDS, Maryland FRANK D. LUCAS, Oklahoma AMI BERA, California MICHAEL T.
    [Show full text]
  • Lunar Bases and Space Actmties of the 21St Century (1986)
    10 / SOCIETAL ISSUES STABLISHING A PERMANENTLY MANNED BASE on the Moon is, of necessity, a large and visible exercise of engineering and technology. Some Ewill see no more than that, but such a reductionist viewpoint misses the whole that is greater than the parts. A lunar settlement continues humanity's movement to accessible frontiers. It may start as a statement of national resolve or as a monument to international cooperation.It could be an heroic enterprise of epic dimensions or the stimulus for democratization of space through economic growth. One thing is clear-the Moon sits on the lip of the confining terrestrial gravity well and thus is the stepping stone to the solar system. The space program blends a curious mixture of romance and pragmatism. Goals are set by dreamers and implemented by realists. Many of yesterday's visions have been realized,but the awe-inspiring accomplishments rest on carefully executed, often mundane contributions from tens of thousands of people. The inspirational and the commonplace are both aspects of the human condition to be reflected in the space activities of the 2 1st Century, and both are discussed in the contributionshere. Any grand achievement by society must begin as an expression of the ordinary processes of decision making. Logsdon, an experienced observer of the space program, looks at the initiation of past endeavors for clues to the key elements of consensus. The debate over allocation of public resources revolves around the worth and expense of any program. Sellers and Keaton analyze historical space expenditures in terms of the gross national product of the U.S.and predict the availabilityof fbnding for major ventures over the next two decades.
    [Show full text]
  • International Space Exploration Coordination Group (ISECG) Provides an Overview of ISECG Activities, Products and Accomplishments in That Year
    Annual Report 2014 Annual Report 2014 About ISECG ISECG was established in response to the “The Global Exploration Strategy: The Framework for Coordination” (GES) developed by 14 space agencies1 and released in May 2007. This GES Framework Document articulated a shared vision of coordinated human and robotic space exploration focused on solar system destinations where humans may one day live and work. The purpose of ISECG is to provide a forum to discuss interests, objectives and plans in space exploration and to support promotion of interest and engagement in space exploration activities throughout society. The work of ISECG results in documents, papers, findings and recommendations that are critical in informing individual agency decision-making. In 2014, ISECG remained focused on working collectively towards the further development and implementation of the GES to facilitate collaborations. Since September 2014, the Chairmanship of ISECG is held by ESA (European Space Agency). INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP ISECG Secretariat Keplerlaan 1, PO Box 299, NL-2200 AG Noordwijk, The Netherlands +31 (0) 71 565 3325 [email protected] All ISECG documents and information can be found on: http://www.globalspaceexploration.org/ 2 Annual Report 2014 Table of Contents 1. Introduction 4 2. Executive Summary 4 3. ISECG at a Glance: Background and Scope 5 4. Activities 6 4.1. Overview 6 4.2. Activities on ISECG Level 6 4.3. Activities on WG Level 8 4.3.1. Exploration Roadmap Working Group (ERWG) 8 4.3.2. International Architecture Working Group (IAWG) 9 4.3.3. Science Working Group (SWG) 10 4.3.4.
    [Show full text]
  • Michael Najjar
    KARMAN December 2020, Germany space10 ✴ DECEMBER 2030 — 01 ✴ Ten space headlines in 2030. Inspired by facts & figures, tech & business innovation, and the arts. 10 space 6 7 Space Transportation WILL THE RACE FOR SUPER-HEAVY ROCKETS EVER END? ✴ The super-heavy rocket [...] launched another batch of 350 satellites, positioning them in a parking orbit from which space tugs brought them FACTS & to their final orbital destination. FIGURES 2020 While space transportation is increasingly resembling Earth transportation, ✶ Super Heavy Launchers (+100t to Low Earth we have perhaps reached a point of equilibrium in the race for heavier rockets. Orbit) in development in 2020: Starship Super-heavy launchers were designed to launch to the Moon and/or to Mars (SpaceX), SLS (NASA), Long March 9 +20t spacecrafts with men and equipment on-board. Big rockets also mean a (China), Yenisei (Russia). lower price/kg - a competitive advantage to launch satellites. But with last- mile delivery tugs and in-orbit refuelled spacecrafts, inter-operability and ✶ +15 last-mile delivery startups worldwide. international standards are taking the spotlight to become more important than further increasing the power of such rockets. ✶ INSPIRATIONALTIMELINE ✶ gravity turn (2016) 20 20 Maiden flight of Starship (SpaceX). ✶ ✶ 2024 2022 ✶ 2025 Maiden flight of Virdoride tug Maiden flight of Atomos (Momentus). Orbital Transfer Vehicle (Atomos). 20 30 10 space 12 13 Communication from Space 99% OF WORLD POPULATION CONNECTED TO BROADBAND INTERNET. ✴ New era for accessing knowledge also brings space FACTS & pollution challenges. FIGURES Thanks to the 20,000 satellites flying in orbit, the global population is online. 2020 Starlink (SpaceX, US) and GW (China) have achieved their mission to connect ✶ the world.
    [Show full text]