Energiya-Buran : the Soviet Space Shuttle Pdf, Epub, Ebook

Total Page:16

File Type:pdf, Size:1020Kb

Energiya-Buran : the Soviet Space Shuttle Pdf, Epub, Ebook ENERGIYA-BURAN : THE SOVIET SPACE SHUTTLE PDF, EPUB, EBOOK Bart Hendrickx | 526 pages | 04 Oct 2007 | Springer-Verlag New York Inc. | 9780387698489 | English | New York, NY, United States Energiya-Buran : The Soviet Space Shuttle PDF Book Summing Up: Recommended. At least for the non-Russian speaking. So the 6. The authors can do that because of their own decades of investigation into the shadows of Soviet space mysteries I've been privileged to be their colleague on many of those quests , and their superbly- honed skills at analysis, organization, and explanation. The sleek-looking white space plane, bearing a remarkable outward resemblance of NASA's space shuttle, only flew once and never took off with cosmonauts on-board. Sorry, I was active military US at the time the shuttles were built. How the March report actually influenced the development of Soviet space and defense policy remains to be explored. The document was written by Yu. Scott marked it as to-read Sep 18, There are no discussion topics on this book yet. This technique would enable a weapon to be deployed from the shuttle and detonate over Moscow seconds later, far faster than an American submarine-launched ballistic missile could accomplish the same task. Comparisons are made with the American shuttle system and details of the talented Soviet test pilots chosen to train to fly the system are included, as well as the operational, political and engineering problems that finally sealed the fate of Buran and ultimately of NASA's Shuttle fleet. FAQ Policy. Condition: new. Iranica added it Aug 13, Finally, an overview is given of alternative spaceplane proposals during and after the Buran era, including the MAKS air-launched spaceplane, the Kliper spacecraft and various single-stage-to-orbit systems. Swetha marked it as to-read Jun 14, Next the focus turns to the extensive test program that preceded the first flight of Buran, notably the often trouble-plagued test firings of rocket engines, the first flight of Energiya with the enigmatic Polyus payload, test flights of subscale models and atmospheric approach and landing tests. Toch jammer dat het programma na de eerste vlucht letterlijk niet meer van de grond kwam. Book Description Praxis , About this book In Energiya-Buran: the Soviet Space Shuttle , the authors describe the long development path of the Soviet space shuttle system, consisting of the Energiya rocket and the Buran orbiter. Based largely on Russian sources, it is richly illustrated with some pictures and diagrams. Write a customer review. In Energiya-Buran: the Soviet Space Shuttle, the authors describe the long development path of the Soviet space shuttle system, consisting of the Energiya rocket and the Buran orbiter. Energiya-Buran : The Soviet Space Shuttle Writer Recommended for you. Next the authors explain how the perceived military threat of the US Space Shuttle led to the decision in February to build a Soviet equivalent, and explore the evolution of the design until it was frozen in Ricardo marked it as to-read Oct 18, Verkoop door bol. Read this book on SpringerLink. Anthony K. One of the primary myths that developed in the Soviet Union and Russian space history circles was that the report was used to justify the Soviet Buran space shuttle. The Russian's aren't that dumb. Of the two rocket-powered versions only nr. Refresh and try again. According to RSC Energia, the launcher's state-owned contractor, the Energia rocket could put tons of payload into low Earth orbit and send 32 tons of equipment to the moon. Shubin is the first to uncover it. New Quantity available: 5. One of those is the still murky story of the Soviet conclusion that the American space shuttle was developed in part to drop a bomb on Moscow. Next the focus turns to the extensive test program that preceded the first flight of Buran, notably the often trouble-plagued test firings of rocket engines, the first flight of Energiya with the enigmatic Polyus payload, test flights of subscale models and atmospheric approach and landing tests. Space News space history and artifacts articles Messages space history discussion forums Sightings worldwide astronaut appearances Resources selected space history documents. Online Lecture Notes Math Avl. More information about this seller Contact this seller. Yes, we heard a lot of propaganda about the "Russian threat". Finally, an overview is given of alternative spaceplane proposals during and after the Buran era, including the MAKS air-launched spaceplane, the Kliper spacecraft and various single-stage-to-orbit systems. But the people who counter by saying that Buran had to look the same as the shuttle are also wrong. All levels. Photo credit: Buran. And once you remove those, you remove a lot of weight from the rear, meaning that the center of gravity changes entirely, and the center of pressure, etc. Phase 2 had been initiated in late with the decision to press ahead with the development of the X high-altitude hypersonic research aircraft, which eventually performed a largely successful test program between and Beyond Buran. Anderen bekeken ook. They didn't believe it would be capable of rapid turnarounds on the ground, and they didn't believe it would lower the cost to orbit. This is also discussed in this well researched book. Whereas there are various books and different literature on spacecraft electrical energy platforms, there are not any finished unmarried references describing the allowing applied sciences utilized in spacecraft energy platforms. Original Title. More Details The birth of Buran. When you put this in light of the fact that we had and still have other methods of delivering nuclear weapons, even on Russian soil, that logic doesn't hold water. Convert currency. Shattered dreams, new beginnings Pages Buy options. View all copies of this ISBN edition:. And that is what I was saying was silly. Books by Bart Hendrickx. This absorbing book describes the long development of the Soviet space shuttle system, its infrastructure and the space agency's plans to follow up the first historic unmanned mission. Shattered dreams, new beginnings. Buy Softcover. Organizations and infrastructure. The authors then detail ground support, and the facilities and infrastructure created to prepare, launch, control and recover the Buran vehicle. That, plus the details of the American shuttle available in literature as Mr. Paperback , pages. The Buran did not carry its own main engines like the space shuttle. Four cryogenic engines on Energia's core stage helped put the Buran shuttle into low Earth orbit. Space video for your computer, iPod or big screen TV. Energiya-Buran : The Soviet Space Shuttle Reviews Buy eBook. They go on to detail the selection and training of teams of civilian and military test pilots for Buran, crew assignments for the first manned missions and preparatory flights aboard Soyuz spacecraft. Following this is a detailed technical description of both Energiya and Buran and a look at nominal flight scenarios and emergency situations, highlighting similarities and differences with the US Space Shuttle. Review this product Share your thoughts with other customers. The Soviets thought the shuttle however improbable it might seem now had a theoretical "first strike" role, so they had to have one too - which explains why they copied it exactly and didn't go with one of their own designs which they had been toying with in the s. I say that as a confirmed shuttle hugger and big booster of the program. The authors had access so wide and so deep into the project that the narrative they created probably tells the reader a lot more -- and in useful context -- than even the program's managers knew themselves as they were working on it. How much of that info was published openly? This service is more advanced with JavaScript available. FAQ Policy. Next the focus turns to the extensive test program that preceded the first flight of Buran, notably the often trouble-plagued test firings of rocket engines, the first flight of Energiya with the enigmatic Polyus payload, test flights of subscale models and atmospheric approach and landing tests. In Energiya-Buran: the Soviet Space Shuttle , the authors describe the long development path of the Soviet space shuttle system, consisting of the Energiya rocket and the Buran orbiter. And once you remove those, you remove a lot of weight from the rear, meaning that the center of gravity changes entirely, and the center of pressure, etc. One can compare the two vehicles side-by-side and conclude they are practically identical. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. The 3B requirement was for the shuttle to launch into the same orbit and conduct a rapid rendezvous and retrieval of the same payload that would have been launched under requirement 3A. But this doesn't make sense. Anthony K. Seller Inventory LQ I've read claims that all of that information was published openly in the United States. The people who say that the Buran designers "stole" the US shuttle design are wrong. Buran's designers also emphasized crew safety and survival far more than NASA did. I'm very glad we didn't do that. About this book Introduction In Energiya- Buran: the Soviet Space Shuttle , the authors describe the long development path of the Soviet space shuttle system, consisting of the Energiya rocket and the Buran orbiter. Levertijd We doen er alles aan om dit artikel op tijd te bezorgen. A review is included of the decisions to proceed with the US space shuttle in and the Soviet decision to construct Buran in and a physical description of the Energiya system and a comparison with the American system is provided in tabular form.
Recommended publications
  • Selection of Favorite Reusable Launch Vehicle Concepts by Using the Method of Pairwise Comparison
    Selection of Favorite Reusable Launch Vehicle Concepts by using the Method of Pairwise Comparison Robert A. Goehlich Keio University, Department of System Design Engineering, Ohkami Laboratory, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, JAPAN, Mobile: +81-90-1767-1667, Fax: +81-45-566-1778 email: [email protected], Internet: www.Robert-Goehlich.de Abstract The attempt of this paper is to select promising Reusable Launch Vehicle (RLV) concepts by using a formal evaluation procedure. The vehicle system is divided into design features. Every design feature can have alternative characteristics. All combinations of design features and characteristics are compared pairwise with each other with respect to relative importance for a feasible vehicle concept as seen from technical, economic, and political aspects. This valuation process leads to a ranked list of design features for suborbital and orbital applications. The result is a theoretical optimized suborbital and orbital vehicle each. The method of pairwise comparison allows to determine not only ranking but also assessing the relative weight of each feature compared to others. Keywords: Pairwise Comparison, Reusable Launch Vehicle, Space Tourism Introduction The potential for an introduction of reusable launch vehicles is derived from an expected increasing demand for transportation of passengers in the decades to come. The assumed future satellite market does not justify to operate reusable launch vehicles only for satellites due to a low launch rate. Finding feasible vehicle concepts, which satisfy operator’s, passenger’s, and public’s needs, will be a challenging task. Since it is not possible to satisfy all space tourism markets by one vehicle, different vehicles that are capable to serve one particular segment (suborbital or orbital) are needed.
    [Show full text]
  • Annual Report of S.P
    ANNUAL REPORT OF S.P. KOROLEV ROCKET AND SPACE PUBLIC CORPORATION ENERGIA FOR 2019 This Annual Report of S.P.Korolev Rocket and Space Public Corporation Energia (RSC Energia) was prepared based upon its performance in 2019 with due regard for the requirements stated in the Russian Federation Government Decree of December 31, 2010 No. 1214 “On Improvement of the Procedure to Control Open Joint-Stock Companies whose Stock is in Federal Ownership and Federal State Unitary Enterprises”, and in accordance with the Regulations “On Information Disclosure by the Issuers of Outstanding Securities” No. 454-P approved by the Bank of Russia on December 30, 2014 Accuracy of the data contained in this Annual Report, including the Report on the interested-party transactions effected by RSC Energia in 2019, was confirmed by RSC Energia’s Auditing Committee Report as of 01.06.2020. This Annual Report was preliminary approved by RSC Energia’s Board of Directors on August 24, 2020 (Minutes No. 31). This Annual Report was approved at RSC Energia’s General Shareholders’ Meeting on September 28, 2020 (Minutes No 40 of 01.10.2020). 2 TABLE OF CONTENTS 1. BACKGROUND INFORMATION ABOUT RSC ENERGIA ............................. 6 1.1. Company background .........................................................................................................................6 1.2. Period of the Company operation in the industry ...............................................................................6 1.3. Information about the purchase and sale contracts for participating interests, equities, shares of business partnerships and companies concluded by the Company in 2019 ..............................................7 1.4. Information about the holding structure and the organizations involved ...........................................8 2. PRIORITY DIRECTIONS OF RSC ENERGIA OPERATION ........................ 11 2.1.
    [Show full text]
  • The International Space Station and the Space Shuttle
    Order Code RL33568 The International Space Station and the Space Shuttle Updated November 9, 2007 Carl E. Behrens Specialist in Energy Policy Resources, Science, and Industry Division The International Space Station and the Space Shuttle Summary The International Space Station (ISS) program began in 1993, with Russia joining the United States, Europe, Japan, and Canada. Crews have occupied ISS on a 4-6 month rotating basis since November 2000. The U.S. Space Shuttle, which first flew in April 1981, has been the major vehicle taking crews and cargo back and forth to ISS, but the shuttle system has encountered difficulties since the Columbia disaster in 2003. Russian Soyuz spacecraft are also used to take crews to and from ISS, and Russian Progress spacecraft deliver cargo, but cannot return anything to Earth, since they are not designed to survive reentry into the Earth’s atmosphere. A Soyuz is always attached to the station as a lifeboat in case of an emergency. President Bush, prompted in part by the Columbia tragedy, made a major space policy address on January 14, 2004, directing NASA to focus its activities on returning humans to the Moon and someday sending them to Mars. Included in this “Vision for Space Exploration” is a plan to retire the space shuttle in 2010. The President said the United States would fulfill its commitments to its space station partners, but the details of how to accomplish that without the shuttle were not announced. The shuttle Discovery was launched on July 4, 2006, and returned safely to Earth on July 17.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • 20110015353.Pdf
    ! ! " # $ % & # ' ( ) * ! * ) + ' , " ! - . - ( / 0 - ! Interim Report Design, Cost, and Performance Analyses Executive Summary This report, jointly sponsored by the Defense Advanced Research Projects Agency (DARPA) and the National Aeronautics and Space Administration (NASA), is the result of a comprehensive study to explore the trade space of horizontal launch system concepts and identify potential near- and mid-term launch system concepts that are capable of delivering approximately 15,000 lbs to low Earth orbit. The Horizontal Launch Study (HLS) has produced a set of launch system concepts that meet this criterion and has identified potential subsonic flight test demonstrators. Based on the results of this study, DARPA has initiated a new program to explore horizontal launch concepts in more depth and to develop, build, and fly a flight test demonstrator that is on the path to reduce development risks for an operational horizontal take-off space launch system. The intent of this interim report is to extract salient results from the in-process HLS final report that will aid the potential proposers of the DARPA Airborne Launch Assist Space Access (ALASA) program. Near-term results are presented for a range of subsonic system concepts selected for their availability and relatively low development costs. This interim report provides an overview of the study background and assumptions, idealized concepts, point design concepts, and flight test demonstrator concepts. The final report, to be published later this year, will address more details of the study processes, a broader trade space matrix including concepts at higher speed regimes, operational analyses, benefits of targeted technology investments, expanded information on models, and detailed appendices and references.
    [Show full text]
  • Using Energia (Arduino)
    Using Energia (Arduino) Introduction This chapter of the MSP430 workshop explores Energia, the Arduino port for the Texas Instruments Launchpad kits. After a quick definition and history of Arduino and Energia, we provide a quick introduction to Wiring – the language/library used by Arduino & Energia. Most of the learning comes from using the Launchpad board along with the Energia IDE to light LED’s, read switches and communicate with your PC via the serial connection. Learning Objectives, Requirements, Prereq’s Prerequisites & Objectives Prerequisites Basic knowledge of C language Basic understanding of using a C library and header files This chapter doesn’t explain clock, interrupt, and GPIO features in detail, this is left to the other chapters in the MSP430 workshop Requirements - Tools and Software Hardware Windows (XP, 7, 8) PC with available USB port MSP430F5529 Launchpad Software Already installed, if you Energia Download have installed CCSv5.x Launchpad drivers (Optional) MSP430ware / Driverlib Objectives Define ‘Arduino’ and describe what is was created for Define ‘Energia’ and explain what it is ‘forked’ from Install Energia, open and run included example sketches Use serial communication between the board & PC Add an external interrupt to an Energia sketch Modify CPU registers from an Energia sketch MSP430 Workshop - Using Energia (Arduino) 8 - 1 What is Arduino Chapter Topics Using Energia (Arduino) ............................................................................................................
    [Show full text]
  • The Future of European Commercial Spacecraft Manufacturing
    The Future of European Commercial Spacecraft Manufacturing Report 58 May 2016 Cenan Al-Ekabi Short title: ESPI Report 58 ISSN: 2218-0931 (print), 2076-6688 (online) Published in May 2016 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 58; May 2016. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 58 2 May 2016 The Future of European Commercial Spacecraft Manufacturing Table of Contents Executive Summary 5 Introduction – Research Question 7 1. The Global Satellite Manufacturing Landscape 9 1.1 Introduction 9 1.2 Satellites in Operation 9 1.3 Describing the Satellite Industry Market 10 1.4 The Satellite Industry Value Chain 12 1.4.1 Upstream Revenue by Segment 13 1.4.2 Downstream Revenue by Segment 14 1.5 The Different Actors 15 1.5.1 Government as the Prominent Space Actor 15 1.5.2 Commercial Actors in Space 16 1.6 The Satellite Manufacturing Supply Chain 17 1.6.1 European Consolidation of the Spacecraft Manufacturing Industry 18 1.7 The Satellite Manufacturing Industry 19 1.7.1 The Six Prime Contractors 21 1.7.2 The Smaller Commercial Prime Contractors 23 1.7.3 Asian National Prime Contractors in the Commercial Market 23 1.7.4 European Prime Contractors’ Relative Position in the Global Industry 23 2.
    [Show full text]
  • Ross University School of Medicine Annual Disclosure
    Ross University School of Medicine 2020-2021 Annual Disclosure Student Right-to-Know and Campus Security (Clery Act) Annual Security Report Annual Fire Safety Report Sex and Gender Based Misconduct Response and Prevention Policy Alcohol & Substance Abuse Policy Student Rights under FERPA (The Family Educational Rights and Privacy Act) This document includes information for: Ross University School of Medicine, Barbados Campus, 2 mile Hill, St. Michael, Barbados December 15, 2020 The policies outlined in this document are current as of December 15, 2020. The most current versions of the policies are available online. 1 TABLE OF CONTENTS CAMPUS WATCH ............................................................................................ 4 REPORTING CRIMES AND EMERGENCIES ................................................ 4 ANNUAL SECURITY REPORT ....................................................................... 4 SIREN EMERGENCY ALERT SYSTEM ......................................................... 5 CAMPUS ACCESS, FACILITY SECURITY AND LAW ENFORCEMENT ............................................................................................... 5 MISSING STUDENT POLICY .......................................................................... 6 MISSING STUDENT PROCEDURES .............................................................. 7 SAFETY AND SECURITY ............................................................................... 7 FIRE SAFETY ...................................................................................................
    [Show full text]
  • January 2018 Satellite & Space Monthly Review
    February 5, 2018 Industry Brief Chris Quilty [email protected] January 2018 +1 (727)-828-7085 Austin Moeller Satellite & Space Monthly Review [email protected] +1 (727)-828-7601 January 11, 2018: Air force to utilize more smallsats for weather DMSP F19 Readying for Launch observation. Citing growing budget constraints, the US Air Force announced that is considering using small satellites in combination with next-gen software rather than procuring traditional multibillion-dollar, cost-plus spacecraft to replace/replenish its Defense Meteorological Satellite Program (DMSP). Despite awarding a $94 million contract to Ball Aerospace in November to design the Weather System Follow-on Microwave (WSF-M) satellite, the Air Force plans to begin launching small satellites equipped with infrared imaging and electro-optical instruments to monitor battlefield weather starting in 2021-2022. The Air Force is also considering augmenting their current capabilities with inactive NOAA GOES satellites in the near-term. These considerations parallel recent comments by USSTRATCOM commander Gen. John Hyten, who has repeatedly stated that the Air Force currently spends too much time and money developing large, high- cost satellites, and needs to invest in more small satellites for strategic Source: Lockheed Martin and budgetary reasons. Conclusion: Smallsats ready for a DoD growth spurt? With growing evidence of Russian/Chinese anti- satellite technology demonstrations, the Pentagon is becoming increasingly reluctant to spend billions of dollars on monolithic “Battlestar Galactica” satellite systems that place too many eggs in one basket. While not as robust or technologically-capable as high-end spacecraft built by traditional contractor, such as Lockheed Martin, small satellites are orders-of-magnitude less expensive to build, launch, and maintain.
    [Show full text]
  • Building and Maintaining the International Space Station (ISS)
    / Building and maintaining the International Space Station (ISS) is a very complex task. An international fleet of space vehicles launches ISS components; rotates crews; provides logistical support; and replenishes propellant, items for science experi- ments, and other necessary supplies and equipment. The Space Shuttle must be used to deliver most ISS modules and major components. All of these important deliveries sustain a constant supply line that is crucial to the development and maintenance of the International Space Station. The fleet is also responsible for returning experiment results to Earth and for removing trash and waste from the ISS. Currently, transport vehicles are launched from two sites on transportation logistics Earth. In the future, the number of launch sites will increase to four or more. Future plans also include new commercial trans- ports that will take over the role of U.S. ISS logistical support. INTERNATIONAL SPACE STATION GUIDE TRANSPORTATION/LOGISTICS 39 LAUNCH VEHICLES Soyuz Proton H-II Ariane Shuttle Roscosmos JAXA ESA NASA Russia Japan Europe United States Russia Japan EuRopE u.s. soyuz sL-4 proton sL-12 H-ii ariane 5 space shuttle First launch 1957 1965 1996 1996 1981 1963 (Soyuz variant) Launch site(s) Baikonur Baikonur Tanegashima Guiana Kennedy Space Center Cosmodrome Cosmodrome Space Center Space Center Launch performance 7,150 kg 20,000 kg 16,500 kg 18,000 kg 18,600 kg payload capacity (15,750 lb) (44,000 lb) (36,400 lb) (39,700 lb) (41,000 lb) 105,000 kg (230,000 lb), orbiter only Return performance
    [Show full text]
  • The New American Space Age: a Progress Report on Human Spaceflight the New American Space Age: a Progress Report on Human Spaceflight the International Space
    The New American Space Age: A PROGRESS REPORT ON HUMAN SpaCEFLIGHT The New American Space Age: A Progress Report on Human Spaceflight The International Space Station: the largest international scientific and engineering achievement in human history. The New American Space Age: A Progress Report on Human Spaceflight Lately, it seems the public cannot get enough of space! The recent hit movie “Gravity” not only won 7 Academy Awards – it was a runaway box office success, no doubt inspiring young future scientists, engineers and mathematicians just as “2001: A Space Odyssey” did more than 40 years ago. “Cosmos,” a PBS series on the origins of the universe from the 1980s, has been updated to include the latest discoveries – and funded by a major television network in primetime. And let’s not forget the terrific online videos of science experiments from former International Space Station Commander Chris Hadfield that were viewed by millions of people online. Clearly, the American public is eager to carry the torch of space exploration again. Thankfully, NASA and the space industry are building a host of new vehicles that will do just that. American industry is hard at work developing new commercial transportation services to suborbital altitudes and even low Earth orbit. NASA and the space industry are also building vehicles to take astronauts beyond low Earth orbit for the first time since the Apollo program. Meanwhile, in the U.S. National Lab on the space station, unprecedented research in zero-g is paving the way for Earth breakthroughs in genetics, gerontology, new vaccines and much more.
    [Show full text]
  • Please Type Your Paper Title Here In
    Estimating the Reliability of a Soyuz Spacecraft Mission Michael G. Lutomskia*, Steven J. Farnham IIb, and Warren C. Grantb aNASA-JSC, Houston, TX – [email protected] bARES Corporation, Houston, TX Abstract: Once the US Space Shuttle retires in 2010, the Russian Soyuz Launcher and Soyuz Spacecraft will comprise the only means for crew transportation to and from the International Space Station (ISS). The U.S. Government and NASA have contracted for crew transportation services to the ISS with Russia. The resulting implications for the US space program including issues such as astronaut safety must be carefully considered. Are the astronauts and cosmonauts safer on the Soyuz than the Space Shuttle system? Is the Soyuz launch system more robust than the Space Shuttle? Is it safer to continue to fly the 30 year old Shuttle fleet for crew transportation and cargo resupply than the Soyuz? Should we extend the life of the Shuttle Program? How does the development of the Orion/Ares crew transportation system affect these decisions? The Soyuz launcher has been in operation for over 40 years. There have been only two loss of life incidents and two loss of mission incidents. Given that the most recent incident took place in 1983, how do we determine current reliability of the system? Do failures of unmanned Soyuz rockets impact the reliability of the currently operational man-rated launcher? Does the Soyuz exhibit characteristics that demonstrate reliability growth and how would that be reflected in future estimates of success? NASA’s next manned rocket and spacecraft development project is currently underway.
    [Show full text]