Increasing Launch Rate and Payload Capabilities

Total Page:16

File Type:pdf, Size:1020Kb

Increasing Launch Rate and Payload Capabilities Aerial Launch Vehicles: Increasing Launch Rate and Payload Capabilities Yves Tscheuschner1 and Alec B. Devereaux2 University of Colorado, Boulder, Colorado Two of man's greatest achievements have been the first flight at Kitty Hawk and pushing into the final frontier that is space. Air launch systems aim to combine these great achievements into a revolutionary way to deliver satellites, cargo and eventually people into space. Launching from an aircraft has many advantages, including the ability to launch at any inclination and from above bad weather, which could delay ground launches. While many concepts for launching rockets from an airplane have been developed, very few have made it past the drawing board. Only the Pegasus and, to a lesser extent, SpaceShipOne have truly shown the feasibility of such a system. However, a recent push for rapid, small payload to orbit launches by the military and a general need for cheaper, heavy lift options are leading to an increasing interest in air launch methods. In order for the efficiency and flexibility of the system to be realized, however, additional funding and research are necessary. Nomenclature ALASA = airborne launch assist space access ALS = air launch system DARPA = defense advanced research project agency LEO = low Earth orbit LOX = liquid oxygen RP-1 = rocket propellant 1 MAKS = Russian air launch system MECO = main engine cutoff SS1 = space ship one SS2 = space ship two I. Introduction W hat typically comes to mind when considering launching people or satellites to space are the towering rocket poised on the launch pad. These images are engraved in the minds of both the public and scientists alike. There exists another method of launch, one which offers many new advantages for those willing to explore outside the box. Air launch is a long used but not well known method of launching payloads into outer space by using a carrier aircraft to lift a spacecraft to a high altitude and velocity and release it. The spacecraft's own propulsion systems then takes control and provides the additional altitude and speed needed for Earth ascent. While an air launch system may add more complexities, the propellant savings and adaptability of the system outweigh the design difficulties. The following research paper will aim to give the reader a better understanding of air launch technology, both present and future. Initially, the focus shall be on the advantages of air launch and the functionality of such a system. Specific examples of different systems currently in use will also be explored and compared. Additionally, the second major focus of the report is looking towards the future of ALS, specifically increasing the frequency of launch and the cargo size. A hypothetical future winged first stage system has been scaled up to compete with 1 Graduate Student, Aerospace Engineering Sciences, 429 UCB 2 Graduate Student, Aerospace Engineering Sciences, 429 UCB 1 American Institute of Aeronautics and Astronautics current traditional ground launch vehicles in terms of payload. In order for air launch to remain a viable contender in payload delivery its heavy lift capabilities must be demonstrated. II. Background A. Advantages of an Air Launch System: With already well developed ground launch vehicles it may seem like a waste of resources to research and develop air launch capabilities, however, the benefits presented by such a system can easily outweigh the costs. In general, these advantages can be broken up into two primary areas, operational facilities and propellant savings. Both provide good reasoning for further exploration of an air launch system. The facilities necessary for a typical launch are limited, extensive and expensive. Throughout the world there exist a very limited number of not just nations but actual launch sites available for use. Those that have been constructed are extremely expensive not just for the required buildings and towers but for the large tracts of land required. The placement of these facilities must also be a great distance from inhabited areas due to the acoustic noise levels and toxic/explosive propellants. The Baikonur Cosmodrom, for example, is a 160km by 88km facility and sits 470km from the actual city of Baikonur1. Another major inhibiting factor of these large launch facilities is their susceptibility to weather conditions. When there are tight launch window delays caused by weather can play havoc on a mission. In the case of the Challenger, the cold weather proved to be capable of claiming not just a few launch dates but human lives as well. With an air launch system the required launch site becomes much smaller and weather has less of an effect at altitude. The "launch pad" of an air launch system is an aircraft, meaning the primary facility needed for launch is a runway. One aircraft which has been suggested for a carrier is a C-5 Galaxy, which only requires a 6000 feet of runway for takeoff.2 Other large, potential carriers can require longer runways, around 10000 feet, but the overall number of airports with adequate runways is much greater than the current number of launch facilities. Also, since the rocket is launched in the air, the acoustic energy from the engine is reduced since there is no reflection from the ground and the density of the air at higher altitudes is lower.3 Both of these factors mean the potential, safe launch sites are far greater for an air launch system. Additionally, the aircraft carries the rocket above much of the inclement weather. Therefore, bad weather doesn't necessarily mean the cancelation of a launch. The most expensive and massive part of a launch system is the propellant needed to launch the payload to the desired orbit or planet. An airlift system has the potential to greatly reduce propellant needs by acting as a winged first stage and also by possessing the capability to launch at many orbital inclinations. Currently, jet propulsion technology is far more fuel efficient than rocketry, in part because the oxidizer can be obtained from the atmosphere rather than being stored in tanks. While the aircraft has to carry its own weight as well as the rocket to the launch altitude, there are multiple reasons why this provides fuel savings. First, the carrier does provide some foreword speed to the rocket upon launch, 600 to 800fps for a subsonic carrier. Second, ∆V losses are greatly reduced since the rocket doesn't have to deal with the drag of thick air near Earth's surface and has to fight gravity less since it is already at about 40,000feet. Finally, typical first stage engines have to function over a wide altitude range but are optimized for only one altitude. An engine used for an air launch rocket has a much smaller altitude and pressure band to optimize for so there is the potential for higher ISPs.3 Another fuel saving advantage a flying launch pad has is that it can fly to almost any inclination required by the payload. As such, significant savings can be recognized by removing the need for expensive orbital plane and inclination changes.3 B. Air Launch Methods: For air launch systems there exist four distinct methods by which a rocket can be launched from the carrier: 1. Captive on Bottom: The first method of air launch is captive on top, where the launch vehicle is attached to the top of the carrier aircraft. This configuration offers the ability to carry a large launch vehicle without concerns of landing gear clearance during takeoff, if it were on bottom, or interference with other flight systems such as the engines. Being on top of the aircraft, however, creates quite a few problems during launch. To separate from the carrier the spacecraft has to accelerate upwards, meaning that rocket exhaust will likely hit the aircraft. As such, additionally shielding or modification is necessary to prevent damage to the carrier. Also, if the spacecraft will be returning to Earth, there is a concern about the thermal protection system (TPS) on the windward side of the return vehicle.3 Since the attachment hardpoints for the spacecraft-to-carrier connection will interfere with the TPS, it is necessary to take this into account when designing heat protection. 2 American Institute of Aeronautics and Astronautics Currently there are no routinely used captive on top air launch system but several designs and prototypes have been created. Several systems have been proposed, Spiral, Saenger II and Interim HOTOL to name a few, but few have made it to a prototype stage due to technology limitations.3 One of the most well known systems is the Russian MAKS, developed . The MAKS system consisted of a An-225 carrier aircraft and one of several MAKS variants. The four major variants designed where the manned version (MAKS-OS), an unmanned disposable cargo carrier (MAKS-T) an unmanned reusable cargo carrier (MAKS-M) and a sub orbital demonstrator (MAKS-D), three of which are shown in Figure 1. Figure 1. MAKS Air Launch System4 A typical flight would carry the 600,000lb MAKS (approximately the same weight for all variants) to an altitude of 30,000 feet and speed of 480kts before launching the craft to orbit.3 The MAKS-OS version's would carry two astronauts/cosmonauts to LEO and possessed a propulsion system of two RD-701 engines which utilized a tri- propellant system of LH, LOX and kerosene. The MAKS-T cargo transport could carry a payload of 18mT to a 200km orbit at inclination of 51 degrees.4 The program was cancelled in 1991, despite a successful engine test and several mock-ups being build. As of 2010, however, the program is being revitalized and has the potential to deliver payloads at a rate of $1,000-2,000 per kg compared to the $20,000 per kg for the shuttle.5 While still a spacecraft of the future, MARKS and many other captive on top systems are being developed to increase access to space.
Recommended publications
  • Selection of Favorite Reusable Launch Vehicle Concepts by Using the Method of Pairwise Comparison
    Selection of Favorite Reusable Launch Vehicle Concepts by using the Method of Pairwise Comparison Robert A. Goehlich Keio University, Department of System Design Engineering, Ohkami Laboratory, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, JAPAN, Mobile: +81-90-1767-1667, Fax: +81-45-566-1778 email: [email protected], Internet: www.Robert-Goehlich.de Abstract The attempt of this paper is to select promising Reusable Launch Vehicle (RLV) concepts by using a formal evaluation procedure. The vehicle system is divided into design features. Every design feature can have alternative characteristics. All combinations of design features and characteristics are compared pairwise with each other with respect to relative importance for a feasible vehicle concept as seen from technical, economic, and political aspects. This valuation process leads to a ranked list of design features for suborbital and orbital applications. The result is a theoretical optimized suborbital and orbital vehicle each. The method of pairwise comparison allows to determine not only ranking but also assessing the relative weight of each feature compared to others. Keywords: Pairwise Comparison, Reusable Launch Vehicle, Space Tourism Introduction The potential for an introduction of reusable launch vehicles is derived from an expected increasing demand for transportation of passengers in the decades to come. The assumed future satellite market does not justify to operate reusable launch vehicles only for satellites due to a low launch rate. Finding feasible vehicle concepts, which satisfy operator’s, passenger’s, and public’s needs, will be a challenging task. Since it is not possible to satisfy all space tourism markets by one vehicle, different vehicles that are capable to serve one particular segment (suborbital or orbital) are needed.
    [Show full text]
  • Douglas Missile & Space Systems Division
    ·, THE THOR HISTORY. MAY 1963 DOUGLAS REPORT SM-41860 APPROVED BY: W.H.. HOOPER CHIEF, THOR SYSTEMS ENGINEERING AEROSPACE SYSTEMS ENGINEERING DOUGLAS MISSILE & SPACE SYSTEMS DIVISION ABSTRACT This history is intended as a quick orientation source and as n ready-reference for review of the Thor and its sys­ tems. The report briefly states the development of Thor, sur'lli-:arizes and chronicles Thor missile and booster launch­ inGs, provides illustrations and descriptions of the vehicle systcn1s, relates their genealogy, explains sane of the per­ fon:iance capabilities of the Thor and Thor-based vehicles used, and focuses attention to the exploration of space by Douelas Aircraf't Company, Inc. (DAC). iii PREFACE The purpose of The Thor History is to survey the launch record of the Thor Weapon, Special Weapon, and Space Systems; give a systematic account of the major events; and review Thor's participation in the military and space programs of this nation. The period covered is from December 27, 1955, the date of the first contract award, through May, 1963. V �LE OF CONTENTS Page Contract'Award . • • • • • • • • • • • • • • • • • • • • • • • • • 1 Background • • • • • • • • • • • • • • • • • • • • • • • • • • • • l Basic Or�anization and Objectives • • • • • • • • • • • • • • • • 1 Basic Developmenta� Philosophy . • • • • • • • • • • • • • • • • • 2 Early Research and Development Launches • • • ·• • • • • • • • • • 4 Transition to ICBM with Space Capabilities--Multi-Stage Vehicles . 6 Initial Lunar and Space Probes ••••••• • • • • • • •
    [Show full text]
  • Rocket Propulsion Fundamentals 2
    https://ntrs.nasa.gov/search.jsp?R=20140002716 2019-08-29T14:36:45+00:00Z Liquid Propulsion Systems – Evolution & Advancements Launch Vehicle Propulsion & Systems LPTC Liquid Propulsion Technical Committee Rick Ballard Liquid Engine Systems Lead SLS Liquid Engines Office NASA / MSFC All rights reserved. No part of this publication may be reproduced, distributed, or transmitted, unless for course participation and to a paid course student, in any form or by any means, or stored in a database or retrieval system, without the prior written permission of AIAA and/or course instructor. Contact the American Institute of Aeronautics and Astronautics, Professional Development Program, Suite 500, 1801 Alexander Bell Drive, Reston, VA 20191-4344 Modules 1. Rocket Propulsion Fundamentals 2. LRE Applications 3. Liquid Propellants 4. Engine Power Cycles 5. Engine Components Module 1: Rocket Propulsion TOPICS Fundamentals • Thrust • Specific Impulse • Mixture Ratio • Isp vs. MR • Density vs. Isp • Propellant Mass vs. Volume Warning: Contents deal with math, • Area Ratio physics and thermodynamics. Be afraid…be very afraid… Terms A Area a Acceleration F Force (thrust) g Gravity constant (32.2 ft/sec2) I Impulse m Mass P Pressure Subscripts t Time a Ambient T Temperature c Chamber e Exit V Velocity o Initial state r Reaction ∆ Delta / Difference s Stagnation sp Specific ε Area Ratio t Throat or Total γ Ratio of specific heats Thrust (1/3) Rocket thrust can be explained using Newton’s 2nd and 3rd laws of motion. 2nd Law: a force applied to a body is equal to the mass of the body and its acceleration in the direction of the force.
    [Show full text]
  • Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports
    Commercial Space Transportation 2006 Commercial Space Transportation Developments and Concepts: Vehicles, Technologies and Spaceports January 2006 HQ003606.INDD 2006 U.S. Commercial Space Transportation Developments and Concepts About FAA/AST About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encour- age, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Federal Aviation Administration Office of Commercial Space Transportation i About FAA/AST 2006 U.S. Commercial Space Transportation Developments and Concepts NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Federal Aviation Administration Office of Commercial Space Transportation 2006 U.S. Commercial Space Transportation Developments and Concepts Contents Table of Contents Introduction . .1 Significant 2005 Events . .4 Space Competitions . .6 Expendable Launch Vehicles . .9 Current Expendable Launch Vehicle Systems . .9 Atlas 5 - Lockheed Martin Corporation .
    [Show full text]
  • Safety Consideration on Liquid Hydrogen
    Safety Considerations on Liquid Hydrogen Karl Verfondern Helmholtz-Gemeinschaft der 5/JULICH Mitglied FORSCHUNGSZENTRUM TABLE OF CONTENTS 1. INTRODUCTION....................................................................................................................................1 2. PROPERTIES OF LIQUID HYDROGEN..........................................................................................3 2.1. Physical and Chemical Characteristics..............................................................................................3 2.1.1. Physical Properties ......................................................................................................................3 2.1.2. Chemical Properties ....................................................................................................................7 2.2. Influence of Cryogenic Hydrogen on Materials..............................................................................9 2.3. Physiological Problems in Connection with Liquid Hydrogen ....................................................10 3. PRODUCTION OF LIQUID HYDROGEN AND SLUSH HYDROGEN................................... 13 3.1. Liquid Hydrogen Production Methods ............................................................................................ 13 3.1.1. Energy Requirement .................................................................................................................. 13 3.1.2. Linde Hampson Process ............................................................................................................15
    [Show full text]
  • Annual Report of S.P
    ANNUAL REPORT OF S.P. KOROLEV ROCKET AND SPACE PUBLIC CORPORATION ENERGIA FOR 2019 This Annual Report of S.P.Korolev Rocket and Space Public Corporation Energia (RSC Energia) was prepared based upon its performance in 2019 with due regard for the requirements stated in the Russian Federation Government Decree of December 31, 2010 No. 1214 “On Improvement of the Procedure to Control Open Joint-Stock Companies whose Stock is in Federal Ownership and Federal State Unitary Enterprises”, and in accordance with the Regulations “On Information Disclosure by the Issuers of Outstanding Securities” No. 454-P approved by the Bank of Russia on December 30, 2014 Accuracy of the data contained in this Annual Report, including the Report on the interested-party transactions effected by RSC Energia in 2019, was confirmed by RSC Energia’s Auditing Committee Report as of 01.06.2020. This Annual Report was preliminary approved by RSC Energia’s Board of Directors on August 24, 2020 (Minutes No. 31). This Annual Report was approved at RSC Energia’s General Shareholders’ Meeting on September 28, 2020 (Minutes No 40 of 01.10.2020). 2 TABLE OF CONTENTS 1. BACKGROUND INFORMATION ABOUT RSC ENERGIA ............................. 6 1.1. Company background .........................................................................................................................6 1.2. Period of the Company operation in the industry ...............................................................................6 1.3. Information about the purchase and sale contracts for participating interests, equities, shares of business partnerships and companies concluded by the Company in 2019 ..............................................7 1.4. Information about the holding structure and the organizations involved ...........................................8 2. PRIORITY DIRECTIONS OF RSC ENERGIA OPERATION ........................ 11 2.1.
    [Show full text]
  • Conceptual Design and Optimization of Hybrid Rockets
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2021-01-14 Conceptual Design and Optimization of Hybrid Rockets Messinger, Troy Leonard Messinger, T. L. (2021). Conceptual Design and Optimization of Hybrid Rockets (Unpublished master's thesis). University of Calgary, Calgary, AB. http://hdl.handle.net/1880/113011 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Conceptual Design and Optimization of Hybrid Rockets by Troy Leonard Messinger A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN MECHANICAL ENGINEERING CALGARY, ALBERTA JANUARY, 2021 © Troy Leonard Messinger 2021 Abstract A framework was developed to perform conceptual multi-disciplinary design parametric and optimization studies of single-stage sub-orbital flight vehicles, and two-stage-to-orbit flight vehicles, that employ hybrid rocket engines as the principal means of propulsion. The framework was written in the Python programming language and incorporates many sub- disciplines to generate vehicle designs, model the relevant physics, and analyze flight perfor- mance. The relative performance (payload fraction capability) of different vehicle masses and feed system/propellant configurations was found. The major findings include conceptually viable pressure-fed and electric pump-fed two-stage-to-orbit configurations taking advan- tage of relatively low combustion pressures in increasing overall performance.
    [Show full text]
  • 20110015353.Pdf
    ! ! " # $ % & # ' ( ) * ! * ) + ' , " ! - . - ( / 0 - ! Interim Report Design, Cost, and Performance Analyses Executive Summary This report, jointly sponsored by the Defense Advanced Research Projects Agency (DARPA) and the National Aeronautics and Space Administration (NASA), is the result of a comprehensive study to explore the trade space of horizontal launch system concepts and identify potential near- and mid-term launch system concepts that are capable of delivering approximately 15,000 lbs to low Earth orbit. The Horizontal Launch Study (HLS) has produced a set of launch system concepts that meet this criterion and has identified potential subsonic flight test demonstrators. Based on the results of this study, DARPA has initiated a new program to explore horizontal launch concepts in more depth and to develop, build, and fly a flight test demonstrator that is on the path to reduce development risks for an operational horizontal take-off space launch system. The intent of this interim report is to extract salient results from the in-process HLS final report that will aid the potential proposers of the DARPA Airborne Launch Assist Space Access (ALASA) program. Near-term results are presented for a range of subsonic system concepts selected for their availability and relatively low development costs. This interim report provides an overview of the study background and assumptions, idealized concepts, point design concepts, and flight test demonstrator concepts. The final report, to be published later this year, will address more details of the study processes, a broader trade space matrix including concepts at higher speed regimes, operational analyses, benefits of targeted technology investments, expanded information on models, and detailed appendices and references.
    [Show full text]
  • Atlas V Cutaway Poster
    ATLAS V Since 2002, Atlas V rockets have delivered vital national security, science and exploration, and commercial missions for customers across the globe including the U.S. Air Force, the National Reconnaissance Oice and NASA. 225 ft The spacecraft is encapsulated in either a 5-m (17.8-ft) or a 4-m (13.8-ft) diameter payload fairing (PLF). The 4-m-diameter PLF is a bisector (two-piece shell) fairing consisting of aluminum skin/stringer construction with vertical split-line longerons. The Atlas V 400 series oers three payload fairing options: the large (LPF, shown at left), the extended (EPF) and the extra extended (XPF). The 5-m PLF is a sandwich composite structure made with a vented aluminum-honeycomb core and graphite-epoxy face sheets. The bisector (two-piece shell) PLF encapsulates both the Centaur upper stage and the spacecraft, which separates using a debris-free pyrotechnic actuating 200 ft system. Payload clearance and vehicle structural stability are enhanced by the all-aluminum forward load reactor (FLR), which centers the PLF around the Centaur upper stage and shares payload shear loading. The Atlas V 500 series oers 1 three payload fairing options: the short (shown at left), medium 18 and long. 1 1 The Centaur upper stage is 3.1 m (10 ft) in diameter and 12.7 m (41.6 ft) long. Its propellant tanks are constructed of pressure-stabilized, corrosion-resistant stainless steel. Centaur is a liquid hydrogen/liquid oxygen-fueled vehicle. It uses a single RL10 engine producing 99.2 kN (22,300 lbf) of thrust.
    [Show full text]
  • The Advanced Cryogenic Evolved Stage (ACES)- a Low-Cost, Low-Risk Approach to Space Exploration Launch
    The Advanced Cryogenic Evolved Stage (ACES)- A Low-Cost, Low-Risk Approach to Space Exploration Launch J. F. LeBar1 and E. C. Cady2 Boeing Phantom Works, Huntington Beach CA 92647 Space exploration top-level objectives have been defined with the United States first returning to the moon as a precursor to missions to Mars and beyond. System architecture studies are being conducted to develop the overall approach and define requirements for the various system elements, both Earth-to-orbit and in-space. One way of minimizing cost and risk is through the use of proven systems and/or multiple-use elements. Use of a Delta IV second stage derivative as a long duration in-space transportation stage offers cost, reliability, and performance advantages over earth-storable propellants and/or all new stages. The Delta IV second stage mission currently is measured in hours, and the various vehicle and propellant systems have been designed for these durations. In order for the ACES to have sufficient life to be useful as an Earth Departure Stage (EDS), many systems must be modified for long duration missions. One of the highest risk subsystems is the propellant storage Thermal Control System (TCS). The ACES effort concentrated on a lower risk passive TCS, the RL10 engine, and the other subsystems. An active TCS incorporating a cryocoolers was also studied. In addition, a number of computational models were developed to aid in the subsystem studies. The high performance TCS developed under ACES was simulated within the Delta IV thermal model and long-duration mission stage performance assessed.
    [Show full text]
  • Commercial Orbital Transportation Services
    National Aeronautics and Space Administration Commercial Orbital Transportation Services A New Era in Spaceflight NASA/SP-2014-617 Commercial Orbital Transportation Services A New Era in Spaceflight On the cover: Background photo: The terminator—the line separating the sunlit side of Earth from the side in darkness—marks the changeover between day and night on the ground. By establishing government-industry partnerships, the Commercial Orbital Transportation Services (COTS) program marked a change from the traditional way NASA had worked. Inset photos, right: The COTS program supported two U.S. companies in their efforts to design and build transportation systems to carry cargo to low-Earth orbit. (Top photo—Credit: SpaceX) SpaceX launched its Falcon 9 rocket on May 22, 2012, from Cape Canaveral, Florida. (Second photo) Three days later, the company successfully completed the mission that sent its Dragon spacecraft to the Station. (Third photo—Credit: NASA/Bill Ingalls) Orbital Sciences Corp. sent its Antares rocket on its test flight on April 21, 2013, from a new launchpad on Virginia’s eastern shore. Later that year, the second Antares lifted off with Orbital’s cargo capsule, (Fourth photo) the Cygnus, that berthed with the ISS on September 29, 2013. Both companies successfully proved the capability to deliver cargo to the International Space Station by U.S. commercial companies and began a new era of spaceflight. ISS photo, center left: Benefiting from the success of the partnerships is the International Space Station, pictured as seen by the last Space Shuttle crew that visited the orbiting laboratory (July 19, 2011). More photos of the ISS are featured on the first pages of each chapter.
    [Show full text]
  • Cubesat Mission: from Design to Operation
    applied sciences Article CubeSat Mission: From Design to Operation Cristóbal Nieto-Peroy 1 and M. Reza Emami 1,2,* 1 Onboard Space Systems Group, Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Space Campus, 981 92 Kiruna, Sweden 2 Aerospace Mechatronics Group, University of Toronto Institute for Aerospace Studies, Toronto, ON M3H 5T6, Canada * Correspondence: [email protected]; Tel.: +1-416-946-3357 Received: 30 June 2019; Accepted: 29 July 2019; Published: 1 August 2019 Featured Application: Design, fabrication, testing, launch and operation of a particular CubeSat are detailed, as a reference for prospective developers of CubeSat missions. Abstract: The current success rate of CubeSat missions, particularly for first-time developers, may discourage non-profit organizations to start new projects. CubeSat development teams may not be able to dedicate the resources that are necessary to maintain Quality Assurance as it is performed for the reliable conventional satellite projects. This paper discusses the structured life-cycle of a CubeSat project, using as a reference the authors’ recent experience of developing and operating a 2U CubeSat, called qbee50-LTU-OC, as part of the QB50 mission. This paper also provides a critique of some of the current poor practices and methodologies while carrying out CubeSat projects. Keywords: CubeSat; miniaturized satellite; nanosatellite; small satellite development 1. Introduction There have been nearly 1000 CubeSats launched to the orbit since the inception of the concept in 2000 [1]. An up-to-date statistics of CubeSat missions can be found in Reference [2]. A summary of CubeSat missions up to 2016 can also be found in Reference [3].
    [Show full text]