Safety Consideration on Liquid Hydrogen

Total Page:16

File Type:pdf, Size:1020Kb

Safety Consideration on Liquid Hydrogen Safety Considerations on Liquid Hydrogen Karl Verfondern Helmholtz-Gemeinschaft der 5/JULICH Mitglied FORSCHUNGSZENTRUM TABLE OF CONTENTS 1. INTRODUCTION....................................................................................................................................1 2. PROPERTIES OF LIQUID HYDROGEN..........................................................................................3 2.1. Physical and Chemical Characteristics..............................................................................................3 2.1.1. Physical Properties ......................................................................................................................3 2.1.2. Chemical Properties ....................................................................................................................7 2.2. Influence of Cryogenic Hydrogen on Materials..............................................................................9 2.3. Physiological Problems in Connection with Liquid Hydrogen ....................................................10 3. PRODUCTION OF LIQUID HYDROGEN AND SLUSH HYDROGEN................................... 13 3.1. Liquid Hydrogen Production Methods ............................................................................................ 13 3.1.1. Energy Requirement .................................................................................................................. 13 3.1.2. Linde Hampson Process ............................................................................................................15 3.1.3. Claude Process .......................................................................................................................... 16 3.1.4. Magnetic Refrigeration Process ...............................................................................................20 3.2. Safety Issues......................................................................................................................................21 3.3. Liquefaction Efficiency ....................................................................................................................22 3.4. Present Hydrogen Liquefaction Capacity in the World ...............................................................22 3.5. Slush Hydrogen Production Methods ..............................................................................................23 4. STORAGE OF LIQUID HYDROGEN..............................................................................................25 4.1. Principal Tank Design ...................................................................................................................... 25 4.2. LH2 Tanks for Mobile Applications ................................................................................................28 4.2.1. Passenger Car Tank Design ...................................................................................................... 28 4.2.2. Safety Tests with LH2 Vehicle Tanks...................................................................................... 30 4.3. Stationary LH2 Tanks.......................................................................................................................33 5. TRANSPORTATION OF LIQUID HYDROGEN...........................................................................37 5.1. Road Transportation of LH2............................................................................................................ 37 5.2. Maritime Transportation of LH2...................................................................................................... 39 5.3. Rail Transportation of LH2...............................................................................................................43 iii Schriften des Forschungszentrums Julich Reihe Energie & Umwelt / Energy & Environment Band / Volume 10 Forschungszentrum Julich GmbH Institut fur Energieforschung (IEF) Sicherheitsforschung und Reaktortechnik (IEF-6) Safety Considerations on Liquid Hydrogen Karl Verfcndern Schriften des Forschungszentrums Julich Reihe Energie & Umwelt / Energy & Environment Band / Volume 10 ISSN 1866-1793 ISBN 978-3-89336-530-2 Bibliographic information published by the Deutsche Nationalbibliothek. The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de . Publisher Forschungszentrum Julich GmbH and Distributor: Zentralbibliothek, Verlag D-52425 Julich phone:+49 2461 61-5368 ■ fax:+49 2461 61-6103 e-mail: [email protected] Internet: http://www.fz-juelich.de/zb Cover Design: Grafische Medien, Forschungszentrum Julich GmbH Printer: Grafische Medien, Forschungszentrum Julich GmbH Copyright: Forschungszentrum Julich 2008 Schriften des Forschungszentrums Julich Reihe Energie & Umwelt / Energy & Environment Band / Volume 10 ISSN 1866-1793 ISBN 978-3-89336-530-2 The complete volume is freely available on the Internet on the Julicher Open Access Server (JUWEL) at http://www.fz-juelich.de/zb/juwel Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher. Abstract The interest in hydrogen as a clean fuel and energy carrier of the future has grown in many countries and initiated comprehensive research, development, and demonstration activities with the main objective of the transition from a fossil towards a CO2 emission lean energy structure as the ultimate goal. Reasons for these worldwide incentives towards a change of the energy structure are the obvious indications for a climate change from man-made greenhouse gas emissions, the steadily increasing world energy consumption connected with the finite nature of fossil resources, but also the need of reducing national dependencies on energy imports. Hydrogen represents an energy carrier with high energy content and a clean, environmentally friendly source of energy to the end-user. The volume-related energy content of gaseous hydrogen, however, is comparatively small. For various applications of hydrogen where volume is an essential issue, it is necessary, e.g., to liquefy the hydrogen for the sake of volume reduction. But there are also other situations where the liquid state represents a reasonable and economic solution for storage and distribution of large amounts of hydrogen depending on the end-user’s requirements. Furthermore liquid hydrogen has the advantage of extreme cleanliness making it, apart from its cooling ability, appropriate in many industrial applications. Major drawback is the enormous energy input required to liquefy the hydrogen gas, which has a significant impact on the economy of handling LH2. The experimental and theoretical investigation of the characteristics of liquid hydrogen, its favorable and unfavorable properties, as well as the lessons learnt from accidents have led to a set of codes, standards, regulations, and guidelines, which resulted in a high level of safety achieved today. This applies to both LH2 production and the methods of mobile or stationary LH2 storage and transportation/distribution, and its application in both science and industries. The hazards associated with the presence and operation of LH2 containing systems are subject of safety and risk assessments. Essential part of such accident sequence analyses is the simulation of the physical phenomena, which occur in connection with the inadvertent release of LH2 into the environment by computation models. The behavior of cryogenic pool propagation and vaporization on either a liquid or a solid ground is principally well understood. Furthermore state-of-the-art computer models have been developed and validated against respective experimental data. There are, however, still open questions which require further efforts to extent the still poor experimental data basis. These efforts should include the examination of the pool propagation from large spills of LH2, the vaporization on different grounds, and pool fire, but also the atmospheric dispersion behavior of cold vapor clouds evolving from the vaporization of the cryogenic liquid. i Kurzfassung Weltweit ist das Interesse an Wasserstoff als einem umweltfreundlichen Brennstoff und moglichen Energietrager der Zukunft gestiegen und hat umfassende Forschungs- und Entwicklungsarbeiten ausgelost. Ziel ist es dabei, den Ubergang von einer fossil-gesteuerten hin zu einer weitgehend CO2-emissionsfreien Energiestruktur zu fordern. Ausloser fur diese Anstrengungen sind die offensichtlichen Anzeichen eines Klimawandels infolge erhohten AusstoBes von Treibhausgasen, der weltweit stetig wachsende Verbrauch an Energie verbunden mit den allmahlich zu Neige gehenden Vorraten an fossilen Energievorraten, aber ebenso die Notwendigkeit vieler Staaten, ihre nationale Abhangigkeit von Energieimporten zu mildern. Wasserstoff ist ein attraktiver Energietrager mit hohem masse-bezogenen Energiegehalt und stellt eine fur den Endverbraucher umweltvertragliche Energiequelle dar. Der volumen- bezogene Energieinhalt gasformigen Wasserstoffs jedoch ist vergleichsweise gering. Viele Anwendungen, in denen das Volumen eine wichtige Rolle spielt, erfordern daher eine Verflussigung des Wasserstoffgases aus Grunden der Platzersparnis. Ferner ist Speicherung und Transport von Wasserstoff in flussiger Form
Recommended publications
  • 1 Introduction Agata Godula-Jopek
    1 1 Introduction Agata Godula-Jopek We find ourselves on the cusp of a new epoch in history, where every pos- sibility is still an option. Hydrogen, the very stuff of the stars and our own sun, is now being seized by human ingenuity and harnessed for human ends. Charting the right course at the very beginning of the journey is essential if we are to make the great promise of a hydrogen age a viable reality for our children and a worthy legacy for the generations that will come after us. Jeremy Rifkin [1]. Hydrogen is being considered as an important future energy carrier, which means it can store and deliver energy in a usable form. At standard temperature and pressure (0 ∘C and 1013 hPa), hydrogen exists in a gaseous form. It is odourless, colourless, tasteless, non-toxic and lighter than air. The stoichiometric fraction of hydrogen in air is 29.53 vol%. Abundant on earth as an element, hydrogen is present everywhere, being the simplest element in the universe representing 75 wt% or 90 vol% of all matter. As an energy carrier, hydrogen is not an energy source itself; it can only be produced from other sources of energy, such as fossil fuels, renewable sources or nuclear power by different energy conversion processes. Exothermic combustion reaction with oxygen forms water (heat of combustion 1.4 × 108 Jkg−1) and no greenhouse gases containing carbon are emitted to the atmosphere. Selected physical properties of hydrogen based on Van Nostrand are presented in Table 1.1 [2]. The energy content of hydrogen is 33.3 kWh kg−1, corresponding to 120 MJ kg−1 (lower heating value, LHV), and 39.4 kWh kg−1, corresponding to 142 MJ kg−1 (upper heating value, UHV).
    [Show full text]
  • Lecture 19 Cryocoolers
    Lecture 19 Cryocoolers J. G. Weisend II Goals • Introduce the characteristics and applications of cryocoolers • Discuss recuperative vs. regenerative heat exchangers • Describe regenerator materials • Describe the Stirling cycle, Gifford McMahon and pulse tube cryocoolers and give examples June 2019 Cryocoolers - J. G. Weisend II Slide 2 Introduction to Cryocoolers • Cryocoolers are smaller closed cycle mechanical refrigeration systems – There is no official upper size for a cryocooler but typically these provide less than few 100 W of cooling at 20 – 100 K and less than 10 W at 4.2 K – Cryocoolers do not use the Claude/Collins cycles used by large refrigeration plants but use alternative cycles – Working fluid is almost always helium – some exceptions exist – All the laws of thermodynamics still apply – Improved technology ( bearings, miniaturized compressors, better materials, CFD, better reliability etc) has lead to the development of a large number of practical cryocooler designs in the past 10 – 20 years – We will concentrate on 3 types: Stirling, Gifford McMahon & Pulse tube June 2019 Cryocoolers - J. G. Weisend II Slide 3 Cryocooler Applications • Cryocoolers are most useful in applications that: – Have smaller heat loads ( < 1 kW) – Operate above 10 K (though there are significant 4.2 K applications) • Note synergy with HTS operating temperatures – Require small size, weight, portability or operation in remote locations – space and military applications – Are single cryogenic applications within a larger system – reliquefiers for MRI magnets, sample cooling, “cooling at the flip of a switch” June 2019 Cryocoolers - J. G. Weisend II Slide 4 Cryocooler Applications – Cooling of infrared sensors for night vision, missile guidance, surveillance or astronomy • Much IR astronomy requires < 3 K and thus can’t be met by cryocoolers – “Cryogen free” superconducting magnets or SQUID arrays – Reliquefing LN2,LHe or other cryogens – Cooling of thermal radiation shields – Cooling of HiTc based electronics e.g.
    [Show full text]
  • Starliner Rudolf Spoor Vertregt-Raket Van De Hoofdredacteur
    Starliner Rudolf Spoor Vertregt-raket Van de hoofdredacteur: Ook de NVR ontsnapt niet aan de gevolgen van het Corona- virus: zoals u in de nieuwsbrief heeft kunnen lezen zijn we genoodzaakt geweest de voor maart, april en mei geplande evenementen op te schorten. In de tussentijd zijn online ruimtevaart-gerelateerde initiatieven zeer de moeite waard om te volgen, en in de nieuwsbrief heeft u daar ook een overzicht van kunnen vinden. De redactie heeft zijn best gedaan om ook in deze moeilijke tijden voor u een afwisselend nummer samen te stellen, met onder andere aandacht voor de lancering van de eerste Starliner, een studentenproject waarin een supersone para- Bij de voorplaat chute getest wordt, tests van een prototype maanrover op het DECOS terrein in Noordwijk en een uitgebreide analyse Kunstzinnige weergave van de lancering van de Vertregt-raket vanuit met moderne middelen van het Vertregt raketontwerp uit de Suriname. De vlammen zijn gebaseerd op die van andere raketten jaren ‘50. Dit laatste artikel is geïnspireerd door de biografie met dezelfde stuwstoffen. [achtergrond: ESA] van Marius Vertregt die in het tweede nummer van 2019 gepubliceerd werd, en waarvan we een Engelstalige versie hebben ingediend voor het IAC 2020 in Dubai. Dit artikel is ook daadwerkelijk geselecteerd voor presentatie op de confe- rentie, maar door de onzekerheden rond het Coronavirus is de conferentie helaas een jaar uitgesteld. Ook andere artikelen uit Ruimtevaart worden in vertaalde vorm overgenomen door Engelstalige media. Zo verscheen het artikel van Henk Smid over Iraanse ruimtevaart uit het eerste nummer van dit jaar zelfs in de bekende online publicatie The Space Review.
    [Show full text]
  • Vehicle Applicatons, Future of IC Engines
    Part 10: Vehicle Applications, Future of IC Engines Reciprocating Internal Combustion Engines Prof. Rolf D. Reitz Engine Research Center University of Wisconsin-Madison 2014 Princeton-CEFRC Summer School on Combustion Course Length: 15 hrs (Mon.- Fri., June 23 – 27, 2014) Copyright ©2014 by Rolf D. Reitz. This material is not to be sold, reproduced or distributed without prior written permission of the owner, Rolf D. Reitz. 1 1 CEFRC9 CEFRC5 June-10, 29, 2014 2012 Part 10: Vehicle Applications, Future of IC Engines Short course outine: Engine fundamentals and performance metrics, computer modeling supported by in-depth understanding of fundamental engine processes and detailed experiments in engine design optimization. Day 1 (Engine fundamentals) Part 1: IC Engine Review, 0, 1 and 3-D modeling Part 2: Turbochargers, Engine Performance Metrics Day 2 (Combustion Modeling) Part 3: Chemical Kinetics, HCCI & SI Combustion Part 4: Heat transfer, NOx and Soot Emissions Day 3 (Spray Modeling) Part 5: Atomization, Drop Breakup/Coalescence Part 6: Drop Drag/Wall Impinge/Vaporization/Sprays Day 4 (Engine Optimization) Part 7: Diesel combustion and SI knock modeling Part 8: Optimization and Low Temperature Combustion Day 5 (Applications and the Future) Part 9: Fuels, After-treatment and Controls Part 10: Vehicle Applications, Future of IC Engines 2 CEFRC5-10, 2014 Part 10: Vehicle Applications, Future of IC Engines Kokjohn, IJER 2011, SAE 2011, SAE 2009 Light- & heavy-duty engine RCCI Heavy Light Duty Duty HD and LD engines compared over Engine CAT GM 1.9 L IMEP (bar) 9 gasoline/diesel fuel ratio sweep at 9 Engine speed (rev/min) 1300 1900 bar IMEP Mean piston speed (m/s) 7.2 5.7 LD engine intake temperature and Total fuel mass (mg) 94 20.2 pressure adjusted in to match HD EGR (%) 41 compression stroke Premixed gasoline (%) 82 to 89 81 to 84 Diesel SOI 1 (°ATDC) -58 -56 Engine size scaling laws do not provide Diesel SOI 2 (°ATDC) -37 -35 a scaling parameter for engine speed Diesel inj.
    [Show full text]
  • Richard Hunter1, Mike Loucks2, Jonathan Currie1, Doug Sinclair3, Ehson Mosleh1, Peter Beck1
    Co-Authors: Richard Hunter1, Mike Loucks2, Jonathan Currie1, Doug Sinclair3, Ehson Mosleh1, Peter Beck1 1 Rocket Lab USA, Inc. 2Space Exploration Engineering 3Sinclair by Rocket Lab (formerly Sinclair Interplanetary) Photon-enabled Planetary Small Spacecraft Missions For Decadal Science A White Paper for the 2023-2032 Planetary Decadal Survey 1. OVERVIEW Regular, low-cost Decadal-class science missions to planetary destinations enabled by small high-ΔV spacecraft, like the high-energy Photon, support expanding opportunities for scientists and increase the rate of science return. The high-energy Photon can launch on Electron to precisely target escape asymptotes for planetary small spacecraft missions with payload masses up to ~50 kg without the need for a medium or heavy lift launch vehicle. The high-energy Photon can also launch as a secondary payload with even greater payload masses to deep-space science targets. This paper describes planetary mission concepts connected to science objectives that leverage Rocket Lab’s deep space mission approach. The high-energy Photon can access various planetary science targets of interest including the cislunar environment, Small Bodies, Mars, Venus, and the Outer Planets. Additional planetary small spacecraft missions with focused investigations are recommended, including dedicated small spacecraft missions that do not rely on launch as a secondary payload. 2. HIGH-ENERGY PHOTON Figure 1: The high-energy The high-energy Photon (Figure 1) is a self-sufficient small spacecraft Photon enables small planetary capable of long-duration interplanetary cruise. Its power system is science missions, including Venus probe missions. conventional, using photovoltaic solar arrays and lithium-polymer secondary batteries. The attitude control system includes star trackers, sun sensors, an inertial measurement unit, three reaction wheels, and a cold-gas reaction control system (RCS).
    [Show full text]
  • Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy
    Review Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy Michael Handwerker 1,2,*, Jörg Wellnitz 1,2 and Hormoz Marzbani 2 1 Faculty of Mechanical Engineering, University of Applied Sciences Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany; [email protected] 2 Royal Melbourne Institute of Technology, School of Engineering, Plenty Road, Bundoora, VIC 3083, Australia; [email protected] * Correspondence: [email protected] Abstract: Climate change is one of the major problems that people face in this century, with fossil fuel combustion engines being huge contributors. Currently, the battery powered electric vehicle is considered the predecessor, while hydrogen vehicles only have an insignificant market share. To evaluate if this is justified, different hydrogen power train technologies are analyzed and compared to the battery powered electric vehicle. Even though most research focuses on the hydrogen fuel cells, it is shown that, despite the lower efficiency, the often-neglected hydrogen combustion engine could be the right solution for transitioning away from fossil fuels. This is mainly due to the lower costs and possibility of the use of existing manufacturing infrastructure. To achieve a similar level of refueling comfort as with the battery powered electric vehicle, the economic and technological aspects of the local small-scale hydrogen production are being investigated. Due to the low efficiency Citation: Handwerker, M.; Wellnitz, and high prices for the required components, this domestically produced hydrogen cannot compete J.; Marzbani, H. Comparison of with hydrogen produced from fossil fuels on a larger scale.
    [Show full text]
  • Materials for Liquid Propulsion Systems
    https://ntrs.nasa.gov/search.jsp?R=20160008869 2019-08-29T17:47:59+00:00Z CHAPTER 12 Materials for Liquid Propulsion Systems John A. Halchak Consultant, Los Angeles, California James L. Cannon NASA Marshall Space Flight Center, Huntsville, Alabama Corey Brown Aerojet-Rocketdyne, West Palm Beach, Florida 12.1 Introduction Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton’s third law: for every action there is an equal and opposite reaction. [1] Solid rocket motors are cheaper to manufacture and offer good values for their cost.
    [Show full text]
  • Cryogenic Technology & Rocket Engines
    ISSN (O): 2393-8609 International Journal of Aerospace and Mechanical Engineering Volume 2 – No.5, August 2015 Cryogenic Technology & Rocket Engines AKHIL GARG KARTIK JAKHU KISHAN SINGH ABHINAV B.Tech – Aerospace B.Tech – Aerospace B.Tech – Aerospace MAURYA Engg. Engg. Engg. B.Tech – Aerospace PUNJAB PUNJAB PUNJAB Engg. TECHNICAL TECHNICAL TECHNICAL PUNJAB UNIVERSITY, UNIVERSITY, UNIVERSITY, TECHNICAL JALANDHAR JALANDHAR JALANDHAR UNIVERSITY, akhilgarg.313@g kartik.lphawk@g kishansngh1996 JALANDHAR mail.com mail.com @gmail.com abhinavguru123 @gmail.com ABSTRACT 3.2 What is Cryogenic Rocket Engine? This paper is all about the rocket engine involving the use of A cryogenic rocket engine is a rocket engine that cryogenic technology at a cryogenic temperature (123K). This uses a cryogenic fuel or oxidizer, that is, its fuel or basically uses the liquid oxygen and liquid hydrogen as an oxidizer (or both) is gases liquefied and stored at oxidizer and fuel, which are very clean and non-pollutant very low temperatures. Notably, these engines were fuels compared to other hydrocarbon fuels like petrol, diesel, one of the main factors of the ultimate success in gasoline, LPG, CNG, etc., sometimes, liquid nitrogen is also reaching the Moon by the Saturn V rocket. used as an fuel. During World War II, when powerful rocket engines were first considered by the German, American and Keywords Soviet engineers independently, all discovered that Rocket engine, Cryogenic technology, Cryogenic temperature, rocket engines need high mass flow rate of both Liquid hydrogen and Oxygen. oxidizer and fuel to generate a sufficient thrust. At that time oxygen and low molecular weight 1.
    [Show full text]
  • Clean Energy Partnership
    CLEAN ENERGY 2002–2016 PARTNERSHIP Clean Energy Partnership c/o be: public relations gmbh Phone: +49 (0)40 238 05 87 90 Fax: +49 (0)40 238 05 87 96 Email: [email protected] www.cleanenergypartnership.de/en www.facebook.com/cleanenergypartnership www.youtube.com/cleanenergypartner HYDROGEN – WHAT KEPT US MOVING 2002–2016 CONTENT Foreword............................................................................................................................................................ 04 Fourteen years of hydrogen mobility....................................................................................................... 06 Knowledge and project management...................................................................................................... 08 Developing.solutions.together..................................................................................................................... 08 The.focus.is.on.customer.friendliness......................................................................................................... 08 What.we.are.talking.about............................................................................................................................ 09 Production and storage..................................................................................................................................10 Crude.glycerol.pyrolysis...................................................................................................................................12 Reforming.process............................................................................................................................................12
    [Show full text]
  • Laboratory Bsalamos,New Mexico 87545
    LA-UR--86-1643 DE86 011252 TITLE A CWPACT REAC’iOR/ORC POWER SOURCE AUTHORISI Karl L. Meier, Walter L. Kirchner, and Gordon J. Wlllcutt, Q-12 SUBM1 TEE TO To be prcsmtd nt the 21st Intcrnocicty Energy Convcrsiun l?ngLnmr tng Con rcrmcc (IECEC), in San Diego, C..l~forn1il, in Au~uMt 25-?9, 1986. II,, ;. , 1,1 : 1. ,: . , , ,....,, d .,, !1 :. ...ml I i,, 1,,, I \ J ‘hr. ‘ . 1.1! ‘:1.111% ,m . .. ., ,1.. ,. .,,. .!. , ,,,, #,, . ,: n,.,., ., , 11111: ., ‘. ,,. 1“ ,,l. ;.”’,,.:.. .! 11.1 ., ., .,, ., ..,, l,. -,. .,1 1, :’, . ,, ..,,.,,.. ...A!.1,1 l!,l, , ,.” . ...!, 1 . - ,. ,1. :, ., ,,. ,,, I.. l,,,: r.. ,, :.,1. ,.,.,, k. ,:, ,,, 1,. :,,, t v ,’. .,, .. ,1,’, ., s,, 1, ., .,,,:, ,1. ,.,,, ” ., .. ,.,. .,1 , . .,111 —— n LosAlamos Nationa!Laboratory AhlmlmbsAlamos,New Mexico 87545 UISll{ll,NJllON (X’ I HIS DWUMENT IS UNUMIUUJ A COW’ACT REACTOR/ORC PONER SOURCE technology. A long mean-time-between-failure (MTBF) results from redundant components and a design with few moving parts. Figure 1 is a three-dimensional Karl L. Meier, Walter L. Kirchner, and cutaway view of the CNPS showing the vessel, reactor Gordon J. Uillcutt core, reflector~, control rod:, heat pipes, and Los Alamos National Laboratory vaporizers. Reactor Design and Analysis Group (Q-12) The reactor combines a number of inherent safety. Los Alamos, NM 87545 features (1*). mized by the use‘affguadsA9.9% enrichedConsider?\gsf;:;. m’;;; coated partic’1 fuel retains virtually all the fis- ABSTRACT sion products generated throughout the 20-yr life of the reactor. Transier,teffects are mitigated by the A compact power source that combines an organic large graphite mass of the core. A strong negative Rankine Cycle (ORC) electric generator with a temperature coef~icient of reactivity is the salient nuclear reactor heat source is being designed and inherent safety feature, limiting peak reactor tem- f~bricated.
    [Show full text]
  • Analysis of Regenerative Cooling in Liquid Propellant Rocket Engines
    ANALYSIS OF REGENERATIVE COOLING IN LIQUID PROPELLANT ROCKET ENGINES A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY MUSTAFA EMRE BOYSAN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING DECEMBER 2008 Approval of the thesis: ANALYSIS OF REGENERATIVE COOLING IN LIQUID PROPELLANT ROCKET ENGINES submitted by MUSTAFA EMRE BOYSAN ¸ in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Department, Middle East Technical University by, Prof. Dr. Canan ÖZGEN Dean, Gradute School of Natural and Applied Sciences Prof. Dr. Süha ORAL Head of Department, Mechanical Engineering Assoc. Prof. Dr. Abdullah ULAŞ Supervisor, Mechanical Engineering Dept., METU Examining Committee Members: Prof. Dr. Haluk AKSEL Mechanical Engineering Dept., METU Assoc. Prof. Dr. Abdullah ULAŞ Mechanical Engineering Dept., METU Prof. Dr. Hüseyin VURAL Mechanical Engineering Dept., METU Asst. Dr. Cüneyt SERT Mechanical Engineering Dept., METU Dr. H. Tuğrul TINAZTEPE Roketsan Missiles Industries Inc. Date: 05.12.2008 I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Mustafa Emre BOYSAN Signature : iii ABSTRACT ANALYSIS OF REGENERATIVE COOLING IN LIQUID PROPELLANT ROCKET ENGINES BOYSAN, Mustafa Emre M. Sc., Department of Mechanical Engineering Supervisor: Assoc. Prof. Dr. Abdullah ULAŞ December 2008, 82 pages High combustion temperatures and long operation durations require the use of cooling techniques in liquid propellant rocket engines.
    [Show full text]
  • Internal Aerodynamics in Solid Rocket Propulsion (L’Aérodynamique Interne De La Propulsion Par Moteurs-Fusées À Propergols Solides)
    NORTH ATLANTIC TREATY RESEARCH AND TECHNOLOGY ORGANISATION ORGANISATION AC/323(AVT-096)TP/70 www.rta.nato.int RTO EDUCATIONAL NOTES EN-023 AVT-096 Internal Aerodynamics in Solid Rocket Propulsion (L’aérodynamique interne de la propulsion par moteurs-fusées à propergols solides) The material in this publication was assembled to support a RTO/VKI Special Course under the sponsorship of the Applied Vehicle Technology Panel (AVT) and the von Kármán Institute for Fluid Dynamics (VKI) presented on 27-31 May 2002 in Rhode-Saint-Genèse, Belgium. Published January 2004 Distribution and Availability on Back Cover NORTH ATLANTIC TREATY RESEARCH AND TECHNOLOGY ORGANISATION ORGANISATION AC/323(AVT-096)TP/70 www.rta.nato.int RTO EDUCATIONAL NOTES EN-023 AVT-096 Internal Aerodynamics in Solid Rocket Propulsion (L’aérodynamique interne de la propulsion par moteurs-fusées à propergols solides) The material in this publication was assembled to support a RTO/VKI Special Course under the sponsorship of the Applied Vehicle Technology Panel (AVT) and the von Kármán Institute for Fluid Dynamics (VKI) presented on 27-31 May 2002 in Rhode-Saint-Genèse, Belgium. The Research and Technology Organisation (RTO) of NATO RTO is the single focus in NATO for Defence Research and Technology activities. Its mission is to conduct and promote co-operative research and information exchange. The objective is to support the development and effective use of national defence research and technology and to meet the military needs of the Alliance, to maintain a technological lead, and to provide advice to NATO and national decision makers. The RTO performs its mission with the support of an extensive network of national experts.
    [Show full text]