1 Introduction Agata Godula-Jopek
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biofuel Technology Handbook
BioFuel Technology Handbook 2007 Dominik Rutz Rainer Janssen This handbook is WIP Renewable Energies published by: Sylvensteinstr. 2 81369 München Germany www.wip-munich.de [email protected] Copyright: © WIP Renewable Energies Autors: Dipl.-Ing. Dominik Rutz M.Sc. Dr. Rainer Janssen Version: 1. Version, February 2007 Project: Biofuel Marketplace www.biofuelmarketplace.com With the support of: Contract No. EIE/05/022/SI2.420009 Content Content 1. Introduction .............................................................................................. 9 PART A: COMMON ASPECTS OF BIOFUELS..........................11 2. Potential of Biomass ...............................................................................12 3. Biofuel Policies........................................................................................16 3.1. Biofuel Policy in the EU................................................................................................... 16 3.2. Biofuel Standardization.................................................................................................... 18 3.3. International Trade of Biofuels........................................................................................ 19 3.3.1 Trade of Biodiesel and Related Products................................................................................... 20 3.3.2 Trade of Bioethanol ................................................................................................................... 20 4. Biofuel Life Cycle ...................................................................................23 -
Vehicle Applicatons, Future of IC Engines
Part 10: Vehicle Applications, Future of IC Engines Reciprocating Internal Combustion Engines Prof. Rolf D. Reitz Engine Research Center University of Wisconsin-Madison 2014 Princeton-CEFRC Summer School on Combustion Course Length: 15 hrs (Mon.- Fri., June 23 – 27, 2014) Copyright ©2014 by Rolf D. Reitz. This material is not to be sold, reproduced or distributed without prior written permission of the owner, Rolf D. Reitz. 1 1 CEFRC9 CEFRC5 June-10, 29, 2014 2012 Part 10: Vehicle Applications, Future of IC Engines Short course outine: Engine fundamentals and performance metrics, computer modeling supported by in-depth understanding of fundamental engine processes and detailed experiments in engine design optimization. Day 1 (Engine fundamentals) Part 1: IC Engine Review, 0, 1 and 3-D modeling Part 2: Turbochargers, Engine Performance Metrics Day 2 (Combustion Modeling) Part 3: Chemical Kinetics, HCCI & SI Combustion Part 4: Heat transfer, NOx and Soot Emissions Day 3 (Spray Modeling) Part 5: Atomization, Drop Breakup/Coalescence Part 6: Drop Drag/Wall Impinge/Vaporization/Sprays Day 4 (Engine Optimization) Part 7: Diesel combustion and SI knock modeling Part 8: Optimization and Low Temperature Combustion Day 5 (Applications and the Future) Part 9: Fuels, After-treatment and Controls Part 10: Vehicle Applications, Future of IC Engines 2 CEFRC5-10, 2014 Part 10: Vehicle Applications, Future of IC Engines Kokjohn, IJER 2011, SAE 2011, SAE 2009 Light- & heavy-duty engine RCCI Heavy Light Duty Duty HD and LD engines compared over Engine CAT GM 1.9 L IMEP (bar) 9 gasoline/diesel fuel ratio sweep at 9 Engine speed (rev/min) 1300 1900 bar IMEP Mean piston speed (m/s) 7.2 5.7 LD engine intake temperature and Total fuel mass (mg) 94 20.2 pressure adjusted in to match HD EGR (%) 41 compression stroke Premixed gasoline (%) 82 to 89 81 to 84 Diesel SOI 1 (°ATDC) -58 -56 Engine size scaling laws do not provide Diesel SOI 2 (°ATDC) -37 -35 a scaling parameter for engine speed Diesel inj. -
Safety Consideration on Liquid Hydrogen
Safety Considerations on Liquid Hydrogen Karl Verfondern Helmholtz-Gemeinschaft der 5/JULICH Mitglied FORSCHUNGSZENTRUM TABLE OF CONTENTS 1. INTRODUCTION....................................................................................................................................1 2. PROPERTIES OF LIQUID HYDROGEN..........................................................................................3 2.1. Physical and Chemical Characteristics..............................................................................................3 2.1.1. Physical Properties ......................................................................................................................3 2.1.2. Chemical Properties ....................................................................................................................7 2.2. Influence of Cryogenic Hydrogen on Materials..............................................................................9 2.3. Physiological Problems in Connection with Liquid Hydrogen ....................................................10 3. PRODUCTION OF LIQUID HYDROGEN AND SLUSH HYDROGEN................................... 13 3.1. Liquid Hydrogen Production Methods ............................................................................................ 13 3.1.1. Energy Requirement .................................................................................................................. 13 3.1.2. Linde Hampson Process ............................................................................................................15 -
Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy
Review Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy Michael Handwerker 1,2,*, Jörg Wellnitz 1,2 and Hormoz Marzbani 2 1 Faculty of Mechanical Engineering, University of Applied Sciences Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany; [email protected] 2 Royal Melbourne Institute of Technology, School of Engineering, Plenty Road, Bundoora, VIC 3083, Australia; [email protected] * Correspondence: [email protected] Abstract: Climate change is one of the major problems that people face in this century, with fossil fuel combustion engines being huge contributors. Currently, the battery powered electric vehicle is considered the predecessor, while hydrogen vehicles only have an insignificant market share. To evaluate if this is justified, different hydrogen power train technologies are analyzed and compared to the battery powered electric vehicle. Even though most research focuses on the hydrogen fuel cells, it is shown that, despite the lower efficiency, the often-neglected hydrogen combustion engine could be the right solution for transitioning away from fossil fuels. This is mainly due to the lower costs and possibility of the use of existing manufacturing infrastructure. To achieve a similar level of refueling comfort as with the battery powered electric vehicle, the economic and technological aspects of the local small-scale hydrogen production are being investigated. Due to the low efficiency Citation: Handwerker, M.; Wellnitz, and high prices for the required components, this domestically produced hydrogen cannot compete J.; Marzbani, H. Comparison of with hydrogen produced from fossil fuels on a larger scale. -
Clean Energy Partnership
CLEAN ENERGY 2002–2016 PARTNERSHIP Clean Energy Partnership c/o be: public relations gmbh Phone: +49 (0)40 238 05 87 90 Fax: +49 (0)40 238 05 87 96 Email: [email protected] www.cleanenergypartnership.de/en www.facebook.com/cleanenergypartnership www.youtube.com/cleanenergypartner HYDROGEN – WHAT KEPT US MOVING 2002–2016 CONTENT Foreword............................................................................................................................................................ 04 Fourteen years of hydrogen mobility....................................................................................................... 06 Knowledge and project management...................................................................................................... 08 Developing.solutions.together..................................................................................................................... 08 The.focus.is.on.customer.friendliness......................................................................................................... 08 What.we.are.talking.about............................................................................................................................ 09 Production and storage..................................................................................................................................10 Crude.glycerol.pyrolysis...................................................................................................................................12 Reforming.process............................................................................................................................................12 -
The Case for Hydrogen Internal Combustion Engines Adam Campisi, Kyle Bartosik Stephen Poppa, Casey Rivera Advisor: Professor Brian Savilonis
Hydrogen Powered Vehicle The Case for Hydrogen Internal Combustion Engines Adam Campisi, Kyle Bartosik Stephen Poppa, Casey Rivera Advisor: Professor Brian Savilonis Abstract HICE vs. Fuel Cells Hydrogen Fuel Cell Hydrogen powered vehicles have been in development for the past decade. While hydrogen fuel cells HICE Vs. Current Fuel Cells have been receiving the majority of the attention, they will not be ready for mass production for fifteen to twenty-five years. Hydrogen internal combustion engines may prove to be the most Now Widespread Availability 15-25 Years effective solution for the immediate future. This project explores the feasibility of making hydrogen internal combustion engines in mass produced vehicles. We researched the different methods for $5000 to convert ICE to Cost >$100,000 producing hydrogen, storing it in vehicles and converting traditional internal combustion to burn HICE hydrogen instead of gasoline. Through this research we investigated the advantages of hydrogen BMW Hydrogen 7 HICE internal combustion engines over hydrogen fuel cells. 65% Efficiency 50% Power output compared to Up to 120% 80% gas None, runs effectively in all Difficulties running in Condition Limits conditions freezing temperatures Production Methods •Electrolysis is the separation of water into oxygen and hydrogen by running a direct electric current through the water. •It is the simplest and cleanest way of producing hydrogen, because the hydrogen that comes out of the process is 99.999% pure. •The total land area of Class 4 (medium purple color 50-100 thousand kg/sq. km year) and higher wind areas is approximately 568 944 square kilometers. If http://geothermal.marin.org/geopresentation/sld117.htm we assume the output of these areas to be 5 megawatts/sq kilometer (MW/km 2), the calculated potential for the United States becomes 2,845,000 MW. -
Assessment of Hydrogen Opportunities in Manitoba’S Transportation Sector August 2002
An Assessment of Global Hydrogen Transportation Technologies and Implications for Manitoba’s Transportation Sector Transportation: Vehicles and Refueling Working Group Prepared for: Province of Manitoba Transportation & Government Services Written by: Doug Duncan, Strategy & Business Development Advisor Connie van Rosmalen, Research Associate The Transport Institute August 2002 Assessment of Hydrogen Opportunities in Manitoba’s Transportation Sector August 2002 Acknowledgements The contributions of Natural Resources Canada to this study are gratefully acknowledged. This report has been financially supported by the Manitoba Department of Transportation and Government Services. The views expressed do not necessarily represent those of the Department. The Department provides no warranties as to the validity or accuracy of the information presented herein. 2 Assessment of Hydrogen Opportunities in Manitoba’s Transportation Sector August 2002 TABLE OF CONTENTS ACKNOWLEDGEMENTS ....................................................................................2 EXECUTIVE SUMMARY ......................................................................................5 1.0 INTRODUCTION ............................................................................................7 2.0 MARKET DRIVERS BEHIND HYDROGEN VEHICLES ................................8 3.0 GLOBAL FUEL CELL INDUSTRY STATUS................................................11 3.1 THE PLAYERS ..............................................................................................11 -
CNG Or Compressed Natural
(F)1736 29 March 2018 Study on the cost-effectiveness of natural gas (CNG or compressed natural gas) used as fuel in cars Article 15/14, §2, subparagraph 2, 2° indent, of Law of 12 April 1965 on the transport of gas products and others by pipelines Non-confidential CREG – rue de l’Industrie 26-38, 1040 Brussels, Belgium T +32 2 289 76 11 – F + 32 2 289 76 09 – [email protected] – www.creg.be TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................................... 2 EXECUTIVE SUMMARY ............................................................................................................................. 4 INTRODUCTION ....................................................................................................................................... 5 1. CHARACTERISTICS ............................................................................................................................ 6 1.1. AVAILABILITY ........................................................................................................................... 6 1.2. USES AND NAMES .................................................................................................................... 6 1.3. ENVIRONMENT AND PHYSICS ................................................................................................. 7 1.4. CNG VS LPG & LNG .................................................................................................................. 7 1.5. FOSSIL -
Biodiesel Production from Wastes: Process Development and Quality Control
Biodiesel Production from Wastes: Process Development and Quality Control Joana Maia Moreira Dias 2010 BIODIESEL PRODUCTION FROM WASTES: PROCESS DEVELOPMENT AND QUALITY CONTROL Porto, August 2010 BIODIESEL PRODUCTION FROM WASTES: PROCESS DEVELOPMENT AND QUALITY CONTROL Dissertation presented by JOANA MAIA MOREIRA DIAS for the degree of DOCTOR OF PHILOSOPHY IN ENVIRONMENTAL ENGINEERING to the Faculty of Engineering, University of Porto Thesis supervised by Professor Maria da Conceição Machado Alvim Ferraz (Chemical Engineering Department) Professor Manuel Afonso Magalhães Fonseca Almeida (Metallurgical and Materials Engineering Department) To my family and friends, for always believing in me ACKNOWLEDGEMENTS My sincere thanks to my Supervisor Maria da Conceição Machado Alvim Ferraz and my Co- supervisor Manuel Afonso Magalhães Fonseca Almeida for making this study possible, providing scientific and technical support in all phases of the work and specially for personal support always believing in my capacities, being present at all times and giving me the needed strength to carry on when difficulties appeared. Thanks to Fundação para a Ciência e a Tecnologia (Grant SFRD/BD/22293/2005) and Project QREN 3491: Fat-Value -Valorização de Subprodutos de Carne, for financial support of the work. I would also like to thank to the Chemical Engineering Department, namely to the Laboratory for Process, Environmental and Energy Engineering, and to the Metallurgical and Materials Engineer- ing department for providing the resources needed to perform the work. Also, thanks to all the professors that kindly provided help during the work, namely Maria do Carmo Pereira, Fernando Gomes Martins, Arminda Alves, Margarida Bastos and Lúcia Santos from FEUP and Beatriz Oliveira and Susana Casal from the Pharmacy Faculty of Oporto University. -
Development of Electrode Architectures for Miniaturized Biofuel Cells Aleksandar Karajic
Development of electrode architectures for miniaturized biofuel cells Aleksandar Karajic To cite this version: Aleksandar Karajic. Development of electrode architectures for miniaturized biofuel cells. Chemical Physics [physics.chem-ph]. Université de Bordeaux, 2015. English. NNT : 2015BORD0305. tel- 01424143 HAL Id: tel-01424143 https://tel.archives-ouvertes.fr/tel-01424143 Submitted on 2 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE PRÉSENTÉE A L’UNIVERSITÉ DE BORDEAUX ÉCOLE DOCTORALE DES SCIENCES CHIMIQUES Par Aleksandar Karajić POUR OBTENIR LE GRADE DE DOCTEUR SPÉCIALITÉ : Chimie-Physique Development of electrode architectures for miniaturized biofuel cells Directeurs de thèse : Prof. Alexander Kuhn et Dr. Nicolas Mano Soutenue le : 15.12.2015. Devant la commission d’examen formée de : M. BARTLETT N. Philip Professeur, Université de Southampton Rapporteur M. WALCARIUS Alain Directeur de recherche, CNRS, Nancy Rapporteur M. MIHI Agustín Chercheur, Université de Rovira i Virgili Tarragona Examinateur M. RAVAINE Serge Professeur, Université de Bordeaux Examinateur M. KUHN Alexander Professeur, INP - Bordeaux Directeur de thèse M. MANO Nicolas Directeur de recherche, CNRS, Bordeaux Co- directeur de thèse Acknowledgements This work has been done in the laboratories of Institute of Molecular Sciences (ISM) and Research Center Paule Pascal (CRPP) at the University of Bordeaux. -
Goddard Unveils New Antenna Network in White Sands
National Aeronautics and Space Administration www.nasa.gov Volume 3 Issue 16 November 2007 View Goddard Unveils New Antenna Network in White Sands Pg 2 Employees Participate in Tree Planting as Part of the GSFC Sustainability Program Pg 6 The BMW Hydrogen 7 Visits Goddard Pg 8 Goddard 02 Goddard Unveils New Antenna Table of Contents Network in White Sands GoddardUpdates By Rob Garner Goddard Unveils New Antenna Network in White Sands - 2 SDO Instrument to Peer Inside the Sun Arrives at Goddard - 4 NESC Honors Goddard Employees and Partners for Technical Excellence - 5 Updates Daniel Glavin Wins Center’s First IRAD Innovator of the Year Award - 5 Employees Participate in Tree Planting as Part of the GSFC Sustainability Program - 6 The BMW Hydrogen 7 Visits Goddard - 8 GSFC Replaces Standard Government Sedan With a Neighborhood Electric Vehicle - 9 NASA Warms Up to Maryland’s Trash - 10 Employee Spotlight Fred Pierce - 12 Goddard Cover: White Sands Test Facility Team posing in front of one of the Ka-band antenna’s. Photo credit: Bill Gardner Photo credit: Bill Gardner Caption: Dr. Weiler gives remarks before cutting the ribbon to dedicate NASA’s new Ka-band antennas at the White Sands facility in New Mexico. GoddardView Info Goddard engineers showcased the new 18-meter Ka-band An- tenna Network, the first such system in Agency history, during a Goddard View is an official publication of the Goddard Space ribbon-cutting ceremony at the White Sands Test Facility in New Flight Center. It is published biweekly by the Office of Public Mexico on November 8. -
Design of an Innovative Natural Gas Two-Stroke Engine
INTERNATIONAL DESIGN CONFERENCE - DESIGN 2016 Dubrovnik - Croatia, May 16 - 19, 2016. DESIGN OF AN INNOVATIVE NATURAL GAS TWO-STROKE ENGINE P. Diwisch, C. Dinkel, F. Rieg and B. Alber-Laukant Keywords: split-single two-stroke engine, CFD, FEM, simulation, exhaust emission 1. Introduction High-speed two-stroke engines in the field of small hand-operated devices, Jet Skis, snowmobiles, motorboats and ultralight aircrafts have a large market share. In Asia, two-stroke engines are predominantly applied in motorcycles [Meinig 2001]. Due to rising demand on exhaust emissions, two- stroke engines are less and less employed despite considerable advantages. In contrast to four-stroke engines, two-stroke engines fire at each crankshaft revolution. Thus, besides a more even progression of torque a bisection of the mean effective pressure is achieved. As a result, higher power density as well as minor construction volume can be obtained. Concerning the prospective usage of two-stroke engines the progress in adherence to emission standards will be decisive. This would also enable the development of further areas of application. Hence, possible applications of two-stroke engines include the usage as a range extender in electric vehicles to increase their range and customer acceptance as well as the usage in combined heat and power stations (CHP). Therefore, the Chair for Engineering Design and CAD, under the direction of Prof. Dr.-Ing. Rieg at the University of Bayreuth, focuses on the constructive improvement of scavenging caused fuel consumption and thus hydrocarbon exhaust emissions concerning two-stroke engines. The realization consists of two phases. During the first stage the selection of a suitable concept for a two-stroke engine takes place.