<<

ANALYSISOFREGENERATIVECOOLINGINLIQUIDPROPELLANT ROCKET ATHESISSUBMITTEDTO THEGRADUATESCHOOLOFNATURALANDAPPLIEDSCIENCES OF MIDDLEEASTTECHNICALUNIVERSITY BY MUSTAFAEMREBOYSAN INPARTIALFULFILLMENTOFTHEREQUIREMENTS FOR THEDEGREEOFMASTEROFSCIENCE IN MECHANICALENGINEERING DECEMBER2008 Approvalofthethesis: ANALYSIS OF IN LIQUID PROPELLANT ROCKET ENGINES

submitted by MUSTAFA EMRE BOYSAN ¸ in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Department, Middle East Technical University by, Prof.Dr.CananÖZGEN Dean,GraduteSchoolofNaturalandAppliedSciences Prof.Dr.SühaORAL HeadofDepartment,MechanicalEngineering Assoc.Prof.Dr.AbdullahULA Supervisor,MechanicalEngineeringDept.,METU Examining Committee Members: Prof.Dr.HalukAKSEL MechanicalEngineeringDept.,METU Assoc.Prof.Dr.AbdullahULA MechanicalEngineeringDept.,METU Prof.Dr.HüseyinVURAL MechanicalEngineeringDept.,METU Asst.Dr.CüneytSERT MechanicalEngineeringDept.,METU Dr.H.TuğrulTINAZTEPE RoketsanMissilesIndustriesInc. Date: 05.12.2008 I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that,asrequiredbytheserulesandconduct,Ihavefullycitedandreferencedall materialandresultsthatarenotoriginaltothis. Name,Lastname :MustafaEmreBOYSAN Signature : iii

ABSTRACT

ANALYSISOFREGENERATIVECOOLINGINLIQUIDPROPELLANT ROCKETENGINES

BOYSAN,MustafaEmre M.Sc.,DepartmentofMechanicalEngineering Supervisor:Assoc.Prof.Dr.AbdullahULA

December2008,82pages

High combustion temperatures and long operation durations require the use of coolingtechniquesinliquidpropellantrocketengines.Forhighandhigh thrustrocketengines,regenerativecoolingisthemostpreferredcoolingmethod.In regenerative cooling, a coolant flows through passages formed either by constructingthechamberlinerfromtubesorbymillingchannelsinasolidliner. Traditionally, approximately square cross sectional channels have been used. However,recentstudieshaveshownthatbyincreasingthecoolantchannelheight towidthaspectratioandchangingthecrosssectionalareainnoncriticalregions for flux, the rocket combustion chamber gas side wall temperature can be reducedsignificantlywithoutanincreaseinthecoolantpressuredrop. Inthisstudy,theregenerativecoolingofaliquidpropellantrockethasbeen numerically simulated. The engine has been modeled to operate on a iv

LOX/Kerosene mixture at a chamber pressure of 60 barwith300kNthrustand keroseneisconsideredasthecoolant.Anumericalinvestigationwasperformedto determinetheeffectofdifferentaspectratiocoolingchannelsanddifferentnumber ofcoolingchannelsongassidewallandcoolanttemperatureandpressuredropin coolingchannel. Keywords: Liquid Propellant Rocket Engines, Regenerative Cooling, Cooling Efficiency,CoolingChannel,LiquidOxygen,Kerosene.

v

ÖZ

SIVIYAKITLIROKETMOTORLARINDAREJENERATĐFSOĞUTMA ANALĐZLERĐ

BOYSAN,MustafaEmre YüksekLisans,MakinaMühendisliğiBölümü TezYöneticisi:Doç.Dr.AbdullahULA

Aralık2008,82sayfa

Yüksekyanmasıcaklıklarıveuzunçalımasüreleri,sıvıyakıtlıroketmotorlarında soğutmatekniklerininkullanılmasınıgereklikılar.Yüksekbasınçlıveyüksekitkili roket motorlarında rejeneratif soğutma, öncelikli tercih edilen soğutma tekniklerinden biridir. Rejeneratif soğutma, soğutma akıkanının yanma odası duvarlarına yerletirilen tüplerden veya yanma odası duvarlarına ilenen kanallardan geçirilmesiyle sağlanır. Soğutma kanalları için genellikle kare kesit alanları tercih edilmekteyken, yapılan çalımalarda kanal kesit alanlarında yükseklikgenilikoranınınarttırılmasıylaveısıakısıbakımındankritikolmayan bölgelerde kesit alanlarının değitirilmesiyle, kanal içinde basınç düüünü çok etkilemeden yanma odası iç yüzeyindeki sıcaklık değerlerinin düürülebildiği gösterilmitir.

vi

Bu çalımada, sıvı yakıtlı roket motorlarında kullanılan soğutma kanalları hesaplamalı akıkanlar dinamiği ile benzetirilmitir. Motor, sıvı oksijen ve kerosen karıımı ile 60 bar yanma odası basıncı ve 300 kN’luk itki seviyesini oluturacak ekilde tasarlanmı, soğutma akıkanı olarak kerosen seçilmitir. Hesaplamalıakıkanlardinamiğiilefarklıyükseklikgenilikoranlarıvekullanılan kanal sayılarının, yanma odası iç yüzeyinin ve soğutma akıkanının sıcaklık değerlerinevekanaliçibasınçdüüüneetkileriincelenmitir. Anahtar Kelimeler: Sıvı Yakıtlı Roket Motorları, Yanma Odası, Regeneratif Soğutma,SoğutmaVerimliliği,SoğutmaKanalları,SıvıOksijen,Kerosen.

vii

ACKNOWLEDGEMENTS

IamextremelygratefultomysupervisorAssoc.Prof.Dr.AbdullahULAforhis professional support, guidance and encouragement throughout the completion of thisthesiswork.Ideeplyappreciatehispatienceandmanyeffortstoproofreadmy thesisoverandoveragain. IwouldliketoexpressmysincereappreciationtomycolleaguesBoraKALPAKLI for his crucial advises, Ezgi CĐVEK and Göktuğ KARACALIOĞLU for their invaluableeffortsduringthepreparationofthisthesis. IwouldliketothanktoDr.TuğrulTINAZTEPE,BaarSEÇKĐNandDr.Atılgan TOKERfortheirgreatsupportandencouragementandROKETSANforpartially supportingthisstudy. Loveandthankstomyfamily,myflatmatesandmyfriendsfortheirneverending patience,supportandencouragement. Ankara,December2008 MustafaEmreBoysan

viii

TABLE OF CONTENTS

ABSTRACT...... IV

ÖZ...... VI

ACKNOWLEDGEMENTS...... VIII

TABLE OF CONTENTS...... IX

LIST OF TABLES ...... XI

LIST OF FIGURES ...... XIII

LIST OF SYMBOLS ...... XVI

1 INTRODUCTION ...... 1

2 BACKGROUND...... 4

2.1 REGENERATIVE COOLING ...... 4 2.2 SELECTIONOF COOLING PASSAGES GEOMETRY ...... 6 2.3 SELECTIONOF MATERIALSFOR THRUST CHAMBERS ...... 7 2.4 HEAT TRANSFER ANALYSIS ...... 8 2.4.1 Definition of the Problem...... 9 2.4.2 Gas Side ...... 10 2.4.3 Coolant Side Heat Transfer...... 13 2.4.4 Pressure Drop in Cooling Channels ...... 16

3 MATHEMATICAL DESCRIPTION AND SOLUTION METHOD...... 18

3.1 MATHEMATICAL DESCRIPTION...... 18 3.2 SOLUTION METHOD...... 21 3.2.1 Thermochemical Equilibrium Code ...... 22 3.2.2 User Defined Function for Solver ...... 22 3.2.3 Grid Generator and Solver ...... 22

4 VALIDATION ...... 23 ix

4.1 BASELINE SOLUTION ...... 25 4.1.1 Grid Generation...... 25 4.1.2 Material Properties...... 26 4.1.3 Results and Discussion...... 26 4.2 BIFURCATION CHANNEL SOLUTION ...... 29 4.3 DISCUSSION ...... 30

5 THRUST CHAMBER PRELIMENARY DESIGN...... 31

5.1 NOZZLE CONTOUR ESTIMATIONFOR REGION II ...... 35 5.2 LENGTH ESTIMATIONFOR REGION I ...... 37 5.3 NOZZLE CONTOUR ESTIMATIONFOR REGION III ...... 38 5.4 NOZZLE CONTOURFORTHE DESIGNED THRUST CHAMBER ...... 38

6 ANALYSIS AND RESULTS ...... 39

6.1 MATERIAL PROPERTIES ...... 39 6.2 BOUNDARY CONDITIONS ...... 39 6.3 EFFECTOF RADIATION HEAT TRANSFERON TEMPERATUREAND PRESSURE ...... 41 6.4 EFFECTOF CHANNEL GEOMETRYON COOLING EFFICIENCY ...... 45 6.5 EFFECTOF NUMBEROF CHANNELSON COOLING EFFICIENCY ...... 56 6.6 COOLING CHANNELSWITH VARIABLE CROSS SECTION AREA ...... 61

7 CONCLUSION AND DISCUSSION ...... 67

REFERENCES...... 69

APPENDICES...... 73

A. THERMAL PROPERTIES OF MATERIALS ...... 73

B. USER DEFINED FUNCTION FOR HEAT FLUX ON GAS SIDE WALL ...... 79

x

LIST OF TABLES

Table2.1–RegenerativelyCooledLiquidPropellantRocketEngines ...... 4 Table2.2–HeatTransferCharacteristicsofSeveralLiquidPropellants[3]...... 15 Table3.1–ConservationEquationVariables ...... 19

Table4.1–89kNGH 2andLOXEngineSpecifications...... 24 Table4.2–GridSpecifications ...... 25 Table4.3–ResultsofBaselineSolution...... 28 Table4.4–ComparisonofPressureValues...... 29 Table5.1–LPRERequirements...... 32

Table5.2–FlameTemperaturesandI sp ValuesforDifferentO/F ...... 32 Table5.3–TypicalCharacteristicLengthsforVariousPropellantCombinations 36 Table6.1–BoundaryConditionsforInnerWall ...... 40 Table6.2–BoundaryConditionsforOuterShell ...... 41 Table6.3–BoundaryConditionsforCoolant...... 41 Table6.4–ParametersforRadiationHeatTransferInvestigation...... 42 Table6.5–ResultsforRadiationHeatTransferInvestigation...... 43 Table6.6–Parametersfor4mmHeightChannels ...... 46 Table6.7–Parametersfor8mmHeightChannels ...... 46 Table6.8–Resultsfor4mmHeightChannels ...... 47 Table6.9–Resultsfor8mmHeightChannels ...... 47 Table6.10–ParametersforNumberofChannelsInvestigation...... 56 Table6.11–ResultsforChannelNumberInvestigation...... 57 Table6.12–ResultsforVariableCrossSectionx150and4x2x150 ...... 62 TableA.1–ThermalPropertiesofKerosene ...... 73 TableA.2–ThermalPropertiesofLiquidHydrogen...... 75 xi

TableA.3–ThermalPropertiesofOFHCCopper ...... 77 TableA.4–ThermalPropertiesofINCONEL718...... 78

xii

LIST OF FIGURES

Figure2.1–CrossSectionalViewofaThrustChamberalongAxialDirectionwith RegenerativeCooling...... 5 Figure2.2–SchematicViewsforDualRegenerativeCooling...... 5 Figure2.3–CrossSectionalViewforDifferentTypeofCoolantPassages ...... 6 Figure2.4–TypicalHeatFluxDistributionalongThrustChamberWall...... 9 Figure2.5–HeatTransferSchematicforRegenerativeCooling[1]...... 10 Figure2.6–RegimesinTransferringHeatfromaHotWalltoaFlowingLiquid[1] ...... 14 Figure3.1–SchematicViewofSolutionDomain...... 18 Figure3.2–ConvectionandRadiationHeatTransferfromCombustedGasestothe SolutionDomain ...... 20 Figure3.3–SchematicViewofSolutionMethod ...... 21

Figure4.1–89kNGH 2andLOXEngine[17] ...... 23 Figure4.2–CrossSectionalViewofSolutionDomains...... 26 Figure4.3–ConvergenceHistoryofTemperatureRise ...... 27 Figure4.4–ConvergenceHistoryofPressureDrop...... 27 Figure4.5–TemperatureDistributiononGasSideWallforBaselineSolution ... 28 Figure4.6–TemperatureDistributiononGasSideWallforBifurcationChannel Solution...... 29 Figure5.1–TheSchemeofLPREChamber...... 31 Figure5.2–FlameTemperaturevsMassPercentageofRP1...... 33

Figure5.3–I sp vsMassPercentageofRP1 ...... 33 Figure 5.4 – Calculated Combustion Chamber and Nozzle Contour for 300 kN LPRE...... 38 xiii

Figure6.1–SchematicViewofSolutionDomain...... 40 Figure6.2–HeatFluxDistributiononGasSideWall along Axial Direction for RadiationHeatTransferInvestigation ...... 43 Figure6.3–TemperatureDistributiononGasSideWallalongAxialDirectionfor RadiationHeatTransferInvestigation ...... 44 Figure 6.4 – Temperature Distribution of Coolant on Coolant Side Wall along AxialDirectionforRadiationHeatTransferInvestigation ...... 44 Figure6.5–PressureDistributionofCoolantalongAxialDirectionforRadiation HeatTransferInvestigation...... 45 Figure6.6–VelocityProfilesofCoolantatThroat(x=0) ...... 48 Figure6.7–HeatFluxDistributiononGasSideWallalongAxialDirectionfor4 mmChannelHeight ...... 49 Figure6.8–HeatFluxDistributiononGasSideWallalongAxialDirectionfor8 mmChannelHeight ...... 50 Figure6.9–TemperatureDistributiononGasSideWallalongAxialDirectionfor 4mmChannelHeight ...... 50 Figure6.10–TemperatureDistributiononGasSideWallalongAxialDirectionfor 8mmChannelHeight ...... 51 Figure 6.11 – Temperature Distribution of Coolant on Coolant Side Wall along AxialDirectionfor4mmChannelHeight...... 51 Figure 6.12 – Temperature Distribution of Coolant on Coolant Side Wall along AxialDirectionfor8mmChannelHeight...... 52 Figure6.13–EffectsofAspectRatioonGasSideWallTemperature ...... 53 Figure6.14–EffectsofAspectRatioonCoolantTemperature...... 53 Figure6.15–EffectsofAspectRatioonPressureDropinChannel ...... 54 Figure 6.16 – Pressure Distribution of Coolant along Axial Direction for 4 mm ChannelHeight ...... 55 Figure 6.17 – Pressure Distribution of Coolant along Axial Direction for 8 mm ChannelHeight ...... 55 Figure6.18–VelocityProfilesofCoolantatThroat(x=0) ...... 57 Figure6.19–EffectsofNumberofChannelsonGasSideWallTemperature...... 58 xiv

Figure6.20–EffectsofNumberofChannelsonCoolantTemperature...... 58 Figure6.21–HeatFluxDistributiononGasSideWallalongAxialDirectionfor DifferentNumberofCoolingChannels...... 59 Figure6.22–TemperatureDistributiononGasSideWallalongAxialDirectionfor DifferentNumberofCoolingChannels...... 59 Figure 6.23 – Temperature Distribution of Coolant on Coolant Side Wall along AxialDirectionforDifferentNumberofCoolingChannels...... 60 Figure6.24–EffectsofNumberofChannelsonPressureDrop ...... 60 Figure6.25–PressureDistributionofCoolantalongAxialDirectionforDifferent NumberofChannels ...... 61 Figure6.26–ChannelGeometryforVariableCrossSectionArea ...... 62 Figure6.27–VelocityProfilesofCoolantforVariableCrossSectionChannelat DifferentLocations ...... 63 Figure6.28–TemperatureDistributiononGasSideWallalongAxialDirectionfor 8mmChannelHeight ...... 64 Figure 6.29 – Temperature Distribution of Coolant on Coolant Side Wall along AxialDirectionforVariableCrossSectionAreaInvestigation ...... 64 Figure6.30–PressureDistributionofCoolantalongAxialDirectionforVariable CrossSectionAreaInvestigation...... 65

FigureA.1–TemperatureVariableC pforKerosene ...... 73 FigureA.2–TemperatureVariableThermalConductivityforKerosene...... 74 FigureA.3–TemperatureVariableViscosityforKerosene ...... 74

FigureA.4–TemperatureVariableC pforLiquidHydrogen...... 75 FigureA.5–TemperatureVariableThermalConductivityforLiquidHydrogen . 76 FigureA.6–TemperatureVariableViscosityforLiquidHydrogen...... 76

FigureA.7–TemperatureVariableC pforOFHCCopper...... 77 FigureA.8–TemperatureVariableThermalConductivityforOFHCCopper ..... 77

FigureA.9–TemperatureVariableC pforINCONEL718...... 78 FigureA.10–TemperatureVariableThermalConductivityforINCONEL718 .. 78

xv

LIST OF SYMBOLS

A Area[m 2] C* CharacteristicVelocity[m/s]

C1 ConstantinturbulenceModel

C2 ConstantinturbulenceModel

Cf ThrustCoefficient

C ConstantinturbulenceModel

Cp SpecificHeatatConstantPressure[J/kgK] d Diameter[m]

D h HydraulicDiameter[m] f FrictionFactor h HeatTransferCoefficient[W/m 2K] h HeightofCoolingChannel[mm]

Isp SpecificImpulse[s] k ThermalConductivity[W/mK] L LengthofCoolingChannelinAxialDirection[m]

m& MassFlowRate[kg/s] M MachNumber n NormalOutwardDirection P Pressure[bar] Pr PrantlNumber 2 q& HeatFlux[W/m ] r RecoveryFactor

xvi

Re ReynoldsNumber S SourceTerm T Temperature[K] u VelocityAlongxDirection[m/s] v VelocityAlongyDirection[m/s] V VelocityMagnitude[m/s] w WidthofCoolingChannel[mm] ω VelocityAlongzDirection[m/s] x xaxisofCartesianCoordinate y yaxisofCartesianCoordinate z zaxisofCartesianCoordinate OtherSymbols:

σκ TurbulentPrandtlNumbersforκ

σ ε TurbulentPrandtlNumbersforε

σ T TurbulentPrandtlNumbersforT ρ Density[kg/m 3] γ SpecificHeatRatio Viscosity[kg/ms]

eff EffectiveTurbulenceViscosity[kg/ms]

t TurbulenceViscosity[kg/ms] Subscripts: aw AdiabaticWallTemperature c Chamber cb CoolantBulkTemperature conv. Convection

xvii

CO2 CarbonDioxide

H 2O WaterVapor g GasDomain l LiquidDomain ox Oxidizer pr Propellant rad. Radiation s SolidDomain t Throat tot Total wc CoolantSideWall wg GasSideWall

xviii

CHAPTER 1 1 INTRODUCTION

INTRODUCTION

All rocket engines have one problem in common; high energy released by combustedgases.Thisproblemresultsinhighcombustiontemperatures(2400to 3600 K), high heat transfer rates (0.8 to 160 MW/m 2) in thrust chamber and requires special cooling techniques for the engine [1]. Cooling techniques developed to cope with this problem, either singly or in combination, include regenerativecooling,radiationcooling,filmortranspirationcooling,ablation,arid inertorendothermicheatsinks[2].Tochoosethepropercoolingtechniquemission requirements,environmentalrequirementsandoperationalrequirementsshouldbe considered. Regenerativecoolingisoneofthemostwidelyappliedcoolingtechniquesusedin liquidpropellantrocketengines[1].Ithasbeeneffectiveinapplicationswithhigh chamberpressureandforlongdurationswithaheatfluxrange1.6to160MW/m 2 [3]. Regenerative cooling of a liquid propellant rocket engine consists of a balance betweentheenergyrejectedbythecombustedgasesandtheheatenergyabsorbed bythecoolant[4].Theenergyabsorbedbythecoolantisnotwasted;itaugments theinitialenergycontentofthepropellantpriortoinjection,increasingtheexhaust velocityslightly (0.1to1.5%)[2].Thereforethermal energy is recovered in the

1

system[5].Howeverbythisprocesstheoverallengine performance gain is less than1%[1]. Basically there are three domains in a regeneratively cooled rocket engine; gas domain(combustedgases),liquiddomain(coolant)and the solid domain (thrust chamberwall).Theheattransferanalysisinregenerativecoolingaresimplybased onconvectionandradiationheattransferforgasdomain,conductionheattransfer forsoliddomainandconvectionheattransferforliquiddomain.Heattransferfrom theoutersurfaceofthrustchambertotheenvironment can be neglected and the outersurface wallcanbeassumedas adiabatic[6].Tosimplifythegassideand coolantsideheattransferanalysis,manycorrelationsaredevelopedtocalculatethe heattransfercoefficients. Inthisstudy,theeffectsofgeometryandnumberofrectangularcoolingchannels on cooling efficiency are investigated in terms of the maximum temperature of thrustchamberwallandcoolant,andthepressuredropincoolingchannel. Thrust chamber is geometry is obtained preliminary according to the design parametersthataredeterminedforfutureworks.Thermalpropertiesofcombustion gases are calculated with thermochemical equilibrium code [7]. The contour of thrust chamber is obtained by using isentropic gas equations [8, 9] and nozzle contourdesigntools[10,11]. Heattransferanalysisfromgassidedomain(combustiongases)tothesoliddomain (thrust chamber) is simulated with Bartz correlation [12]. Therefore solution domainconsistsofonlyliquiddomain(coolant)andsoliddomain(thrustchamber wall). GAMBIT[13]andFLUENT[14]softwareprogramsareusedasgridgeneratorand solverrespectivelyinthesolution.Fluidflowinthecoolingchannelisassumedto

2

be threedimensional, steadystate and turbulent. The standard kε turbulence modelisemployedtothemodel[15]. Solutionmethodisvalidatedwithexperimentalandnumericalstudies[16,17].The effectofradiationheattransferontemperatureandpressurevaluesofthesystemis investigated. Several different channel geometries are formed with different constantcrosssectionareainaxialdirectionandanalysesareperformed.Results areexaminedaccordingtothemaximumtemperatureofthrustchamberwalland coolant, and also pressure drop in cooling channel. The most suitable geometry from the engineering point of view is selected and optimum number of cooling channel is found for this geometry with additional analyses. To decrease the pressuredropinthecoolingchannel,crosssectionareaisincreasedinnoncritical regions,finalanalysisisperformedandfinalgeometryisobtained.

3

CHAPTER 2 2 BACKGROUND

BACKGROUND

2.1 Regenerative Cooling

Regenerativecoolingisfirstdemonstratedin1938inUnitedStatesbyJamesH. Wyld[18]andtodayoneofthemostwidely applied cooling technique used in liquid propellant rocket engines. Some of the engines, which use regenerative cooling,andtheirspecificationsisgiveninTable2.1.

Table2.1–RegenerativelyCooledLiquidPropellantRocketEngines Rocket Country Thrust [N] Chamber Oxidizer Fuel Pressure [bar] AETUSII Germany 30,000 10 NTO MMH

RL10A USA 64,700 40 LOX LH 2 RD861K Ukraine 77,600 90 NTO UDMH

VINCI Germany 155,000 60 LOX LH 2 USA 270,000 80 LOX Kerosene

HM7B 35 LOX LH 2 Inregenerativecoolingprocess,thecoolant,generallythefuelenterspassagesat nozzleexitofthethrustchamber,passesbythethroatregionand exitsnearthe injectorface.Crosssectionalviewofaregenerativelycooledthrustchamberalong therocketaxisisgiveninFigure2.1.

4

Figure2.1–CrossSectionalViewofaThrustChamberalongAxialDirectionwith RegenerativeCooling Thenozzlethroatregionusuallyhasthehighestheatfluxandisthereforethemost difficulttocool.Forthisreasonthecoolingpassageisoftendesignedsothatthe coolantvelocityishighestatthecriticalregionsbyrestrictingthecoolantpassage crosssection[3].Insomecasestoincreasethecoolingefficiency,coolantcanenter thecoolantpassageseitherfromthenozzleexitandthroat(Figure2.2a)ordirectly fromthethroat(Figure2.2b).Thistypeofregenerativecoolingiscalledasdual regenerativecooling[19].

Figure2.2–SchematicViewsforDualRegenerativeCooling

5

2.2 Selection of Cooling Passages Geometry

Mainlytwotypesofcoolingtechniquesareusedinregenerativecooling.Cooling passagescanconsistofanassemblyofcontouredadjacenttubesorseparateinner wall. Inthefirsttechniquecoolingtubesarebrazedtogethertoanoutershellthatforms thecontourofthrustchamber.Inthistechniquethecrosssectionalareaofthetubes are changed according to the region of thrust chamber. For the high heat flux regions,tubesareelongatedandsqueezedtoincreasethevelocityofthecoolant andtoincreasetheheattransferarea(Figure2.3.ab). Inthesecondtechnique,rectangularcoolingchannelsaremilledalongthecontour ofarelativelythickthrustchamber.Thecrosssectionsoftherectangularpassages aresmallerinthehighheatfluxregionstoincrease the velocity of the coolant. Outershellisaddedtoenclosethecoolingpassages(Figure2.3.c).

Figure2.3–CrossSectionalViewforDifferentTypeofCoolantPassages 6

In1990,byconventionalmanufacturingtechniques,aspectratios(ratioofchannel heighttochannelwidth)ashighas8couldbemanufacturedandbyintroducingthe platelettechnology[20]aspectratioofcoolingchannelsisincreasedashighas15. Today, improvements in manufacturing technologies have shown that by conventional manufacturing methods (milling), cooling channels with an aspect ratio16(8mmheightand0.5mmwidth)canbemilled[21]. 2.3 Selection of Materials for Thrust Chambers

Thematerialselectionforthebrazedtubesorinnerwalldependsontheamountof theheatfluxandcoolantproperties.Formostapplications,copperisusedfortubes andinnerwall.Cooperisanexcellentconductoranddoesnotoxidizeinfuelrich noncorrosivegasmixtures[3].Toincreasethestrengthofmaterial,copperalloys withsmalladditionsofzirconium,silverorsiliconcanbeusedforthrustchambers. Amzirc and NARloyZ are two examples for copper alloys used for thrust chambers. Amzirc is a copper base alloy containing nominal 0.15 % zirconium. This zirconium copper alloy combines high electrical and thermal conductivity with goodstrengthretentationathightemperatures.NARloyZ is a copper base alloy containinganominal3%silverand0.5%zirconium.Thesilverzirconiumcopper alloy combines high electrical and thermal conductivity with moderate strength retentionathightemperatures[22].Althoughthesematerialshavebetterstrength retention,theyhavelowerconductivitythanoxygenfreehighconductivity(OFHC) copper. Forpropellantcombinationswithcorrosiveandaggressiveoxidizers(nitricasicor nitrogentetroxide)stainlesssteelisusedastheinnerwallmaterial,sincecopper wouldchemicallyreactwiththesepropellants[3].

7

Nickel and nickel alloys are preferred for the thrust chamber outer shell. INCONEL718isanickelchromiumbasealloyusedinaircraftengines, thrust chamber outer shells, bellows and tubing for liquid oxygen type rocket engines [23]. INCONEL718 has high yield, tensile, creep and creeprupture strengthathightemperaturesupto1000Kandatcryogenictemperatures[23]. 2.4 Heat Transfer Analysis

Inactualrocketdevelopment,notonlytheheattransferis analyzedbut alsothe rocket units are almost always tested to assure that the heat is transferred satisfactorilyunderalloperatingandemergencyconditions.Heattransferanalysis isrequiredtoguidethedesign,testingandfailureinvestigations[3]. Several different computational fluid dynamics (CFD) computer programs have been used for the analysis of thrust chamber steadystate heat transfer, with different chamber geometries or different materials with temperature variable properties.Someofthecomputerprogramsaredescribedbelow. Rocket thermal evaluation (RTE) code and twodimensional kinetics nozzle performancecode(TDK)aredevelopedfortheanalysisofliquidpropellantrocket engineswithregenerativecoolingbyNASA.RTEisathreedimensionalanalysis code and uses a three dimensional finite differencing method. A GaussSeidel iterativemethodisusedateachaxiallocationtodeterminethewalltemperature distributions. Gas properties (GASP) and complex chemical equilibrium and transportproperties(CAT)arethetwosubroutinesusedinthiscodetodetermine the coolant and hotgasside thermal properties. TDK code evaluates the heat fluxes on hotgasside walls with the wall temperature distribution from RTE. Chamberpressure,coolanttemperature,massflowratesandcoolantinletpressure are given as input parameters; pressure drop, hotgasside wall temperature and coolantexitpressurearetheresultsofthesolution[16,17,19,24]. 8

GEMS(generalequationandmeshsolver)solvestheconservationequationsforan arbitrarymaterialusingahybridstructured/unstructuredgriddevelopedbyPurdue University.Thecodedividesthecomputationaldomainintoseveralzoneswherein eachzonedifferenttypesofconservationequationscanbedescribed[6]. Rocketengineheattransferevaluationcomputercode (REHTEP) [20] calculates thegassideandcoolantsideheattransfercoefficientswithbasiccorrelationsfor rocketenginesandthisdataisimportedintoatwodimensionalconductionanalysis which used a numerical differencing analyzer computer program (SINDA) [20, 25];developedbyNASA;tocalculatethewalltemperatureprofiles. 2.4.1 Definition of the Problem

Only 0.5 to 5 % of total energy generated by combustion is transmitted to all internalsurfacesofthrustchamberexposedtohotgases[3].Localheatfluxvalues varyalongthethrustchamberwallaccordingtogeometryanddesignparametersof thrustchamber.Atypicalheatfluxdistributionalongthethrustchamberwallis giveninFigure2.4.Thepeakisalwaysatthenozzlethroatandthelowestvalueis usuallynearthenozzleexitforuncooledthrustchambers.

Figure2.4–TypicalHeatFluxDistributionalongThrustChamberWall 9

Heattransferinaregenerativelycooledchambercanbedescribedastheheatflow betweentwomovingfluids,throughamultilayerpartitionasgiveninFigure2.5 andtotalheatfluxcanbegivenas:

q& tot = q& g = q& s = q& c (2.1)

Figure2.5–HeatTransferSchematicforRegenerativeCooling[1] 2.4.2 Gas Side Heat Transfer

The heat transfer between the combusted gases and thrust chamber wall is by convectionandradiation.

q& g = q& ,g conv + q& ,g rad (2.2) 2.4.2.1 Heat Transfer by Convection

Inthrustchamber,beforethecombustedgasescantransfer heat to the wall, the heatenergymustpassthroughalayerofstagnantgas along the wall, boundary

10

layer.Thisbasiccorrelationforthiscomplicated convective heat transfer can be expressedbythefollowingequation:

q& ,g conv = hg T( aw − Twg ) (2.3) Theadiabaticwalltemperatureofcombustiongasatagivenlocationinthethrust chambermaybeobtainedfromthefollowingexpression:

  γ −1 2  1+ r M   2  Taw = Tc   (2.4)   γ −1 2  1+  M   2   whererecoveryfactor(r)canbeestimatedforturbulentflowsas: r = (Pr) .0 33 (2.5) Determination of gas side heat transfer coefficient presents a very complex problem. Comparisons of analytical results with experimental heat transfer data haveoftenshowndisagreement.Thedifferencesarelargelyattributedtotheinitial assumptionsforanalyticalcalculations.Theboundarylayerthatcontrolstheheat transfer rate to the wall is greatly affected by the turbulent combustion process, localgascompositionsandtemperature.Alsoeachinjectorconfigurationproduces differentcombustion[1]. Based on experience with turbulent boundary layer, some relatively simple correlationsforthecalculationofgassideheattransferhavebeendeveloped. Bartz Correlation [12] is a well known equation used for estimation of rocket nozzle convective heat transfer coefficients based on thermal properties of

11

combustedgasesandisentropicgasequations.Inthisstudyandalsoinreferences [26] and [27], heat transfer coefficient is estimated in terms of gas side wall temperaturebyusingBartzCorrelation.  2.0  8.0 9.0 .0 026 g C g,p  P   A  h =    c   t  σ (2.6) g 2.0  6.0  * d t Pr  C   A   g 0

− .0 68 − .0 12  Twg  γ −1 2    γ −1 2  σ =  5.0 1+ M  + 5.0  1+ M  (2.7)  Tc  2    2  BasedontheexperimentalstudiesofCiniarefandDobrovoliski[28]therelation forconvectiveheattransfercanbegivenas:

.0 35 k  T  h = g .0 0162Pr .0 82 Re .0 82  aw  (2.8) g g g   d  Twg  2.4.2.2 Heat Transfer by Radiation

Theexactsolutionoftheamountofheattransmittedtothewallbyradiationisan extremelycomplexproblemforrocketpropulsionsystems. Inrocketcombustiondevices,gastemperaturevariesbetween1900and3900K; whereradiationheattransferofcombustedgasescontributes3to40%oftheheat transfertothechamberwalls,dependingonthereactiongascomposition,chamber size,geometryandtemperature[3]. Gaseswithsymmetricalmolecules,suchashydrogen,oxygen,andnitrogen,have been found not to show many strong emission bands. Also they do not really absorbradiationanddonotincreasetheradiationheattransfer.Heteropolargases, such as water vapor, carbon monoxide, carbon dioxide and etc. have strong emissionbands[3]. 12

Forthepropellantscontainingonlycarbon,hydrogen,oxygen,andnitrogenatoms, thetotalradiationheatfluxcanbeapproximatedas[29]: q ≈ q + q (2.9) & ,g rad & rad,CO 2 & rad,H 2O

 5.3 5.3  T  Twg  3  aw  q& rad,CO = 5.3 PCO Le   −    (2.10) 2 2 100 100      

 3 3  8.0 6.0  Taw   Twg  q& rad,H O = 5.3 PH OLe   −    (2.11) 2 2 100 100       2 2 whereLe = 6.0 D in[m],heatfluxin[kcal/m h]andpressurein[kg/cm ]. 2.4.3 Coolant Side Heat Transfer

The heat transfer between the coolant and thrust chamber wall is by forced convection.

q& l = q& ,l conv (2.12)

q& ,l conv = h l T( wc − Tcb ) (2.13) Thecoolantsideheattransfercoefficientisinfluencedbymanyfactors.Propellants usedforcoolantmaybecomecorrosive,maydecompose,ormaydepositimpurities underhightemperaturesandheatfluxes,therebyreducingcoolingeffectiveness.It isnotpossibletogettheactualheattransfercoefficientswithoutexperiments[1]. The characteristic of coolant side heat transfer depend largely on the coolant pressure and coolant side wall temperature (Figure 2.6). Curve A indicates the behaviorofheattransferatcoolantpressurebelowcriticalpressure.Linesegment

A1 – A 2 represents the forced convection when the temperatureofthecoolantis

13

below critical temperature. As the wall temperature of the coolant increases and exceedsthecriticaltemperature,smallbubblesstartedtoformintheboundaryand grow continuously. When the bubbles reach the colder liquid stream, they condensate.Thisphenomenonisknownasnucleateboilingandcorrespondsline segment A 2 – A 3 in Figure 2.6. Nucleate boiling increase the heat transfer coefficient,resultinginlittleincreaseinwalltemperatureforawiderangeofheat flux. A further increase in the heat flux increasethebubblepopulation,gas film occurs in the boundary and decrease heat transfer coefficient. Coolant side wall temperatureincreasessohighandcausesfailureofthewallmaterial.Thereforefor coolantpressurevaluesbelowcriticaltemperature,A 3isthemaximumheatfluxfor nucleateboilingandusedasadesigncriteriaforregenerativecooling[1].

Figure2.6–RegimesinTransferringHeatfromaHotWalltoaFlowingLiquid[1] CurveBindicatestheheattransferbehaviorof coolantforpressurelevelsabove critical pressure. Since no boiling can occur, the wall temperature continuously increasesastheheatfluxincreasesandheattransfercoefficientremainsessentially constant(linesegmentB 1–B 2).Ifthewalltemperaturereachesandexceedsthe critical temperature of coolant, a stable supercritical vaporfilm boundary layer forms;thisresultsinlowerheattransfercoefficientsandlowercoolingefficiencies

(linesegmentB 2–B 3).Heattransfercanbeincreaseduptothecriticaltemperature

14

valuesofthewallmaterial.Heattransfercharacteristicofsomepropellantsusedfor regenerativecoolingisgiveninTable2.2.

Table2.2–HeatTransferCharacteristicsofSeveralLiquidPropellants[3] Boiling NucleateBoiling Characteristics Characteristics Boiling Critical Critical Liquid Pressure Pressure Temp. Temp. Pressure Temp.[K] Coolant [MPa] [MPa] [K] [K] [MPa] 0.101 387 652 14.7 322.2 4.31 0.689 455 Hydrazine 3.45 540 405.6 4.31 6.89 588 0.101 490 678 2.0 297.2 0.689 Kerosene 0.689 603 1.38 651 297.2 1.38 0.101 294 431 10.1 288.9 4.31 Nitrogen 0.689 342 322.2 tetroxide 4.31 394 366.7 Unsymm. 0.101 336 522 6.06 300 2.07 dimethyl 1.01 400 hydrazine 3.45 489 300 5.22

Forthenonboilingsubcriticalregions(linesegmentsA 1–A 2andB 1–B 2),itis possible to predict the heat transfer coefficient. Some correlations are defined to calculatetheheattransfercoefficientbasedonexperimentalstudies. The correlations used for coolant side heat transfer are principally based on the conventionalDittusBoelterequationforturbulent,thermallyfullydevelopedflow for fluids with constant property values [30]. Some of the correlations used for regenerativecoolinganalysisaregivenbelow. 15

CiniarefandDobrovolski[28]:

.0 25 h D  Pr  Nu = l h = .0 021Re 8.0 Pr .0 43  l  (2.14) l l   k l  Pr ,l wc  Taylor[31]:

 D  − .0 57− .1 59 h  h D  T   x  l h 8.0 4.0  wc  Nu = = .0 023Rel Prl   (2.15) k l  Tcb  SiederandTate[32]:

− .0 14 h D   Nu = l h = .0 027Re 8.0 Pr .0 33  l  (2.16) l l   k l  ,l cw  McCarthyandWolf[33]:

− .0 55 h D  T  l h 8.0 4.0  wc  Nu = = .0 025Re l Prl   (2.17) k l  Tcb  2.4.4 Pressure Drop in Cooling Channels

A higher pressure drop allows a higher velocity in the coolant channel which increases the cooling efficiency but requires heavier feeding systems which decreasesthesystemefficiencyofthepropulsionsystem.

16

The pressure drop in steady, laminar and fullydeveloped flow of an incompressiblefluidthroughahorizontalpipecanbedefinedas[34]: L ρV2 P = f (2.18) Dh 2

17

CHAPTER 3 3 MATHEMATICAL DESCRIPTION AND SOLUTION METHOD MATHEMATICAL DESCRIPTION AND SOLUTION METHOD

3.1 MATHEMATICAL DESCRIPTION

Thesolutiondomainusedinthisstudyconsistsof3medium:coolant,innerwallof thethrustchamberandoutershellofthethrustchamber.Becauseofthesymmetry characteristicofthesystem,thedomainisdividedbytwosymmetryplanes(Figure 3.1).

Figure3.1–SchematicViewofSolutionDomain 18

Inthisstudythefluidflowandheattransferinthecoolingchannelwasassumedto bethreedimensional,steadystateandturbulentflow.Thestandardkεturbulence modelisemployedtothemodel.Theconservationequationsoffluidflowandheat transferareexpressedas:

∇ ⋅ (ρVφ)= ∇ ⋅ (Γφ ∇φ)+ Sφ (3.1) wheretheexpressionsof φ,Γ φandS φfordifferentvariablesaregivenin Table3.1.

Table3.1–ConservationEquationVariables

Equations φ Γφ Sφ Continuity 1 0 0 Equation

∂p ∂  ∂u  ∂  ∂v  ∂  ∂ω  uEquation u eff − + eff  + eff  + eff  ∂x ∂x  ∂x  ∂y  ∂x  ∂z  ∂x 

∂p ∂  ∂u  ∂  ∂v  ∂  ∂ω  vEquation v eff − + eff  + eff  + eff  ∂y ∂x  ∂y  ∂y  ∂y  ∂z  ∂z 

∂p ∂  ∂u  ∂  ∂v  ∂  ∂ω  ωEquation ω eff − + eff  + eff  + eff  ∂z ∂x  ∂z  ∂y  ∂z  ∂x  ∂z  Energy T /Pr+/σ T 0 Equation kEquation k +(/σ k) ρ G k − ρε

ε εEquation ε +(/σ ε) (C ρ G − C ρε ) k 1 k 2

 2 2 2  2 2 2  t   ∂u   ∂ω   ∂ω   ∂u   ∂v   ∂u   ∂ω   ∂v  ∂ω  Gk =    +  +   + +  + +  + +   ρ  ∂x  ∂y  ∂z   ∂y ∂x   ∂z ∂x   ∂z  ∂y                     

C = .0 09 C1 = .1 44 C2 = .1 92 σ k = 0.1 σ ε = 3.1 σ T = .0 85

19

The effect of heat transfer from combusted gases to the solution domain is considered in two parts: convection heat transfer and radiation heat transfer as showninFigure3.2.

Figure3.2–ConvectionandRadiationHeatTransferfromCombustedGasestothe SolutionDomain Convectionheatfluxcanbegivenas:

q& conv = hg T( aw − Twg ) (3.2) HeattransfercoefficientcanbecalculatedbyusingBartzCorrelation[13]as:

 2.0  8.0 9.0 .0 026 c C c,p  P   A  h =   c   t  σ (3.3) g 2.0  6.0  * A dt  Prc  C   

− .0 68 − .0 12  Twg  γ −1 2    γ −1 2  σ =  5.0 1+ M  + 5.0  1+ M  (3.4)  Tc  2    2 

  γ −1 2  1+ r M   2  Taw = Tc   (3.5)   γ −1 2  1+  M   2  

20

.0 33 where r = (Prc ) forturbulentflows. Forthepropellantscontainingonlycarbon,hydrogen,oxygen,andnitrogenatoms, thetotalradiationheatflux,canbeapproximatedas[28]: q ≈ q + q (3.6) & rad & rad,CO 2 & rad,H 2O

 5.3 5.3  T  Twg  3  aw  q& rad,CO = 3 pCO Le   −    (3.7) 2 2 100 100      

 3 3  8.0 6.0  Taw   Twg  q& rad,H O = p3 H OLe   −    (3.8) 2 2 100 100       3.2 SOLUTION METHOD

SolutionmethodusedinthisstudyisgiveninaschematicviewinFigure3.3.

Figure3.3–SchematicViewofSolutionMethod

21

3.2.1 Thermochemical Equilibrium Code

Togetthermalpropertiesofthecombustedgas,NASA computer program CEA (Chemical Equilibrium with Applications) [7] is used. The program calculates chemical equilibrium product concentrations from any set of reactants and determines thermodynamic and transport properties for the product mixture. Associated with the program are independent databases with transport and thermodynamicpropertiesofindividualspecies. 3.2.2 User Defined Function for Solver

UserDefinedFunction,whichiscoupledwiththesolver,basicallycalculatesthe heatfluxfromcombustedgasestosolutiondomainintermsofT wg (gassidewall temperature)byusingtheequations3.2and3.6.Thermalpropertiesofcombusted gasesaregivenasaninputdatafromCEAcode.Thecodegetsthecoordinatesof thenodesfromthesolvertocalculateMachnumberandareawhichareusedin equation3.3.Machnumbersarecalculatedusingisentropicgasequations. 3.2.3 Grid Generator and Solver

GAMBIT [13] is used for grid generation. The grid is generated by hexahedral elements in consideration of structured mesh. FLUENT [14], a pressure based segregatedsolver,isusedforthesolution.Standardkεtwoequationturbulence modelisemployedwithstandardwallfunctions.SIMPLEalgorithmisusedtoget thepressurefield.

22

CHAPTER 4 4 VALIDATION

VALIDATION

Validation of the solution method was performed using the experimental and numericalstudiesofWadelandMeyer[16,17].Theyused89kNGH 2andLOX enginefortheirexperimentalstudies[17].Theenginespecificationsare givenin Table4.1.

Figure4.1–89kNGH 2andLOXEngine[17] Thethrustchamberconsistedofanoxygenfreehighconductivity(OFHC)copper inner wall with a nickel outer shell. The injector had 91 liquid oxygen posts. Chamberlinerwasmilledwith100conventionalcoolantchannels.Thesechannels had an aspect ratio of 2.5. In the critical heat flux area (nozzle throat region) 23

coolingchannelsarebifurcatedinto200channelsandaspectratiowasincreasedup to8.Forbifurcatedchannelcoolingsystems,channelsweresplitintotwochannels andcombinedbacktoasinglechannel.

Table4.1–89kNGH 2andLOXEngineSpecifications Thrust[kN] 89 ChamberPressure[bar] 110 Oxidizer/Fuel LiquidOxygen/GasHydrogen O/F 6 Coolant LiquidHydrogen LOXmassflowrate[kg/s] 13.8 GH2massflowrate[kg/s] 2.3 LH2massflowrate[kg/s] 2.3 InitialTemperatureofLOX[K] 91.7 InitialTemperatureofGH2[K] 300 InitialTemperatureofLH2[K] 44.4 To get the temperature values on the hotgasside wall temperature, nine thermocoupleswereinsertedintoholesdrilledinthecentreofthecoolantchannel ribs.Alsopressuretapswereplacedinthelocationsofcoolantchannelinletand coolant channel outlet. The tests are performed for different mass flow rates in coolingchannels.Gassidewalltemperaturedistributionsandpressuredropsinthe channelsareobtained[17]. Their numerical solution method is validated with the experiments explained above.FornumericalanalysisRocketThermalEvaluationcode(RTE)andTwo Dimensional Kinetics nozzle performance code (TDK) are used (explained in Chapter2).Radiationeffectsarenotconsideredinanalysis. After the validation of their code, Wadel performed a numerical study for comparisonofhighaspectratiocoolingchanneldesigns[16].Inthisstudyseven different cooling channel designs are compared according to their cooling 24

efficiencieswithconsideringfabrication.Firstdesign is called as “Baseline” and has100continuouscoolingchannelswithanaspectratioof2.5andconstantcross sectional area. Fifth design is the bifurcated model which corresponds to the experimental data performed by Wadel and Meyer [17]. For the validation of solutionmethodusedinthisstudythesetwomodelsareconsidered. 4.1 Baseline Solution

4.1.1 Grid Generation

Solutiondomainisgeneratedfor5cases.Foreachcasessolutiondomainconsistof 3subdomains;innerwall,outershellandcoolant.Forsoliddomainstetrahedral elementsandforcoolantdomainhexahedralelementsareused.Betweenthesub domainsnonconformalgridboundaryisused.Thespecificationsofthegridfor5 casesaregiveninTable4.2andthecrosssectionofthesolutiondomainsaregiven inFigure4.2.

Table4.2–GridSpecifications CASE01 CASE02 CASE03 CASE04 CASE05 GridType Tetrahedral Tetrahedral Tetrahedral Tetrahedral Tetrahedral (InnerWall) #ofElements 56,672 56,672 56,672 56,672 56,672 (InnerWall) GridType Tetrahedral Tetrahedral Tetrahedral Tetrahedral Tetrahedral (OuterShell) #ofElements 104,026 104,026 104,026 104,026 104,026 (OuterShell) GridType Hexahedral Hexahedral Hexahedral Hexahedral Hexahedral (Coolant) #ofElements 82,134 167,112 450,400 1,014,000 4,563,000 (Coolant) ThicknessofFirst 10m 5m 1m 0.5m 0.1m Row(Coolant) TotalNumberof 211,832 296,810 580,098 1,143,698 4,692,698 Elements

25

CASE01 CASE02 CASE03 CASE04 CASE05

Figure4.2–CrossSectionalViewofSolutionDomains 4.1.2 Material Properties

Materials used in the analysis are defined as Liquid Hydrogen for the coolant, OxygenFreeHighConductivityCopperfortheinnerwallandINCONEL718for the outer shell. Thermal properties of the materials are given in (Appendix APPENDIX A). Surface roughness for metal structures is taken 3.5 m by consideringmillingprocess[35]. 4.1.3 Results and Discussion

Results are obtained for 5 different solution domains. Convergence history of temperature rise and pressure drop in cooling channels according to number of elements,aregiveninFigure4.3andFigure4.4.Solutionresultsofthefivecases alongwiththeWadel’sSolution[16]aregiveninTable4.3andFigure4.5.

26

320

300

280

260

240 Temperature Rise inRise Temperature Channel (K) 220

200 1.0E+05 1.0E+06 1.0E+07 Number of Elements Figure4.3–ConvergenceHistoryofTemperatureRise

55

50

45

40 Pressure Drop inDrop Pressure [bar] Channel 35

30 1.0E+05 1.0E+06 1.0E+07 Number of Elements Figure4.4–ConvergenceHistoryofPressureDrop 27

Table4.3–ResultsofBaselineSolution TmaxonGas PressureDropin TemperatureRisein SideWall[K] Channel P[bar] Channel T[K] CASE01 882.7 53.8 216.8 CASE02 816.9 51.4 229.8 CASE03 783.2 45.7 265.4 CASE04 755.07 40.5 297.8 CASE05 748.4 40.1 302.8 Wadel’sSolution 764 37

1000.00

900.00

800.00

700.00 CASE 01

CASE 02 600.00 CASE 03

Temperature(K) 500.00 CASE 04

CASE 05 400.00 WADEL'S SOLUTION 300.00

200.00 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 Axial Distance (m) Figure4.5–TemperatureDistributiononGasSideWallforBaselineSolution As can be seen from the results, as the number of elements increased and the thicknessofboundarylayerisdecreased,thesolutionisconverged.Theresultsfor CASE04andCASE05arequitesimilarandatthispointthegridspecificationsfor CASE04areenoughtogetgridindependentsolutions.Thereforeforthefollowing analysisinthisstudy,gridswillbegeneratedaccordingtothegridspecificationsof CASE04. 28

4.2 Bifurcation Channel Solution

ByusingthegridspecificationsofCASE04,thesolutiondomainisgeneratedfor bifurcationchannel.Resultsareobtainedbypresentsolutionmethodandcompared withthenumericalandexperimentalsolutionsofWadelandMeyerinTable4.4 andFigure4.5

Table4.4–ComparisonofPressureValues

Pinlet [bar] Poutlet [bar] P[bar] PresentNumericalSolution 175.0 138.3 36.7 Wadel’sNumericalSolution 175.0 135.5 40.0 Wadel’s&Mayer’sExperimental 175.0 125.0 50.0 Data

700

600

500

400 Present Numerical Solution Wadel's Numerical 300 Solution Wadel's & Mayer's Experimental Data 200 Gas-Side Gas-Side Wall[K] Temperature

100

0 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 Axial Distance [m] Figure4.6–TemperatureDistributiononGasSideWallforBifurcationChannel Solution

29

4.3 Discussion

For both analysis solutions, the results are quite similar with the numerical and experimentalresultsfoundinliterature.Althoughtherearesomeminordifferences between temperature and pressure values, these differences are acceptable. The reasonsforthedifferencescouldbetheuncertaintiesonmaterialthermalproperties and cooling channel geometry. The numerical solutions are strictly based on thermalpropertiesandchannelgeometryandtheseparametersaregivenroughlyin literature. Inthisstudymainaimistoseetheeffectofcoolingchannelparametersoncooling efficiency.Thereforethepresentsolutionissuitable and sufficient to understand theeffectofcoolingparametersonefficiency.

30

CHAPTER 5 5 THRUST CHAMBER PRELIMENARY DESIGN

THRUST CHAMBER PRELIMINARY DESIGN

Although the design of thrust chamber consists of many parameters and detail calculations, using basic geometric parameters are adequate to understand the regenerative cooling effect on the system. In this study, a preliminary thrust chamberdesignisperformedtogetthethrustchambercontour.InFigure5.1the schemeofchamberLPREisgiven.RegionIistheCombustionRegion,RegionII istheSubsonicRegionandRegionIIIistheSupersonicRegion.Thecombination ofRegion IIandRegion III canbecalledasnozzleandRegionIascombustion chamber.

Figure5.1–TheSchemeofLPREChamber 31

Forbuiltupofgasdynamicprofileofthecombustionchamber,itisnecessaryto givesomeinputdatatothesystemsuchasthrust(atsealevel),chamberpressure, exitpressure,ambientpressureandpropellantcomponents.Theseparametersare giveninTable5.1.

Table5.1–LPRERequirements Thrust[kN] 300 CombustionChamberPressure[bar] 60 ExitPressure[bar] 1.5 AmbientPressure[bar] 1 Fuel Kerosene(RP1) Oxidizer LOX Oxidizerfuelratioisoneofthemainparametersalso. To find the oxidizerfuel ratio (O/F) for high combustion efficiency, oxidizerfuel couple with different ratiosiscombustedby usingthethermochemicalcode CEA. For different fuel oxidizer ratios (O/F), flame temperatures and I sp values are found and given in Table5.2,obtainedgraphsaregiveninFigure5.2andFigure5.3.

Table5.2–FlameTemperaturesandIsp ValuesforDifferentO/F

MassPercentageofRP1[%] FlameTemperature[K] Isp [s] 5 1809 164 10 2944 224 15 3402 257 20 3607 278 25 3678 292 30 3570 295 35 3154 281

32

3800

3600

3400

3200

3000

2800

2600

2400

Flame Temperature [K] Temperature Flame 2200

2000

1800

1600 0 5 10 15 20 25 30 35 40 Mass Percentage of RP-1 [%] Figure5.2–FlameTemperaturevsMassPercentageofRP1

300 290 280 270 260 250 240 230 220 Isp [s] Isp 210 200 190 180 170 160 150 0 5 10 15 20 25 30 35 40 Mass Percentage of RP-1 [%]

Figure5.3–Isp vsMassPercentageofRP1

Maximum I sp is obtained around 30 percentage of RP1. ThereforeO F/ = 3/7 ,

Isp = 295s and Tf = 3570K areselectedforthecombustion.Totalmassflowrate

33

and mass flow rates for the propellant and oxidizer can be calculated as given below.ForthisO/FratioSpecificHeatRatio(γ)isfoundas1.146. MassFlowRate: F m& = (5.1) Ispg kg m& = 103 8. s kg m& ox = 103 8. × 7.0 = 72 7. s kg m& pr = 103 8. × 3.0 = 31 1. s NozzleExpansionAreaRatio: 1 ε = (5.2) 1 1  γ −1   γ +1γ −1  P γ γ +1  P  γ  e  1−  e            2   Pc  γ −1  Pc    ε = .6 573 ThrustCoefficient:

γ +1  γ −1  2γ 2  2 γ −1  P  γ P − P C =   1−  e  ε e a (5.3) f       γ −1 γ +1  Pc  Pc  

Cf = 6.1 34

ThroatArea: F At = (5.4) Cf Pc

2 A t = 31205mm ThroatDiameter:

4A d = t (5.5) t π

d t = 200 mm ExitArea:

Ae = Atε (5.6)

2 A e = 205097mm ExitDiameter:

4A d = e (5.7) e π

d e = 512 mm 5.1 Nozzle Contour Estimation for Region II

Thetotalcombustionprocess;frominjectionofthereactantsuntilcompletionof conversationofthereactantstohotproductgases,requiresfiniteamountoftime and which can be defined by Characteristic Length (L*). L * can be estimated from experimental data and previously successful designs. Typical

35

CharacteristicLengthsforvariouspropellantcombinationsaregiveninTable5.3. ForthefollowingcalculationL *istakenas0.1 m (LiquidOxygen/RP1). Table5.3–TypicalCharacteristicLengthsforVariousPropellantCombinations Characteristic PropellantCombination Length,L *[m] ChlorineTrifluoride/HydrazineBaseFuel 0.5–0.76 LiquidFluorine/Hydrazine 0.61–0.71 LiquidFluorine/GasHydrogen 0.56–0.66 LiquidFluorine/LiquidHydrogen 0.64–0.76 HydrogenPeroxide/RP1 1.52–1.78 NitricAcid/HydrazineBaseFuel 0.76–0.89 NitrogenTetroxide/HydrazineBaseFuel 0.76–0.89 LiquidOxygen/Ammonia 0.76–1.02 LiquidOxygen/GasHydrogen 0.56–0.71 LiquidOxygen/LiquidHydrogen 0.76–1.02 LiquidOxygen/RP1 1.02–1.27 ConditionalLength:

Lc = .0 05 r2 t (5.8)

L c = .0 424 m

WhereL cinmetersandr tinmillimeters. NozzleContractionAreaRatio: L* ε c = (5.9) Lc

ε c = .2 361 36

ChamberArea:

Ac = Atεc (5.10)

2 A c = 73675mm ChamberDiameter:

4A d = c (5.11) c π

d c = 306 mm ContourofRegionIIcanbeestimatedbyaknownformulaofVitoshinsky[10]: r y = t (5.12) 2 3  2   2  2       r     x    1  x   1− 1−  t   1−    1−      3 3   rc        3      rc   rc    2     2   5.2 Length Estimation for Region I

Volume(RegionIandRegionII)

* Vcc = At × L (5.13)

9 3 Vcc = .0 031×10 mm

VII canbeobtainedbyfittingacurveonRegionIIcontourpointsandtakingthe

9 3 integralofthecurve,where VII = .0 013×10 mm .

VI = Vcc − VII 37

9 3 VI = .0 018×10 mm

VI L1 = Ac

L1 = 240mm 5.3 Nozzle Contour Estimation for Region III

NCDT (Nozzle Contour Design Tool) Code [11] is used to estimate the nozzle contourforRegionIII.NCDTisaFortranbasedprogram,whichiscomposedof three parts: Ideal nozzle contour design, Rao nozzle contour design and 2D axisymmetric,irrotational,inviscidflowanalyzer.InthisstudyRaonozzlecontour designtoolisused. 5.4 Nozzle Contour for the Designed Thrust Chamber

With the analytical equations and obtained data points the nozzle contour is obtainedandgiveninFigure5.4.

Figure5.4–CalculatedCombustionChamberandNozzleContourfor300kN LPRE 38

CHAPTER 6 6 ANALYSIS AND RESULTS

ANALYSIS AND RESULTS

AnalysesareperformedfordesignedthrustchamberinChapter5for16different channelgeometries. 6.1 Material Properties

Materials used in the analysis are defined as Kerosene (RP1) for the coolant, OxygenFreeHighConductivityCopperfortheinnerwallandINCONEL718for theoutershell.Thermalpropertiesofthematerialsaregivenin(APPENDIXA). Surface roughness for metal structures is taken 3.5 m by considering milling process[35] 6.2 Boundary Conditions

Boundaryconditionsforsolutiondomain(Figure6.1)aregiveninTable6.1,Table 6.2andTable6.3.

39

Figure6.1–SchematicViewofSolutionDomain

Table6.1–BoundaryConditionsforInnerWall PlaneABGFDC ∂T = 0 ∂n PlaneJKPOML ∂T = 0 ∂n PlaneBGPK ∂T = 0 ∂n PlaneACLJ ∂T = 0 ∂n PlaneABKJ* ∂(kT) = q& g ∂n (*)SubcodeusedforcalculatingheatfluxonplaneABKJ isgiveninAPPENDIXB.

40

Table6.2–BoundaryConditionsforOuterShell PlaneEFGIH ∂T = 0 ∂n PlaneNOPRS ∂T = 0 ∂n PlaneEHRN ∂T = 0 ∂n PlaneGISP ∂T = 0 ∂n PlaneHIRS ∂T = 0 ∂n

Table6.3–BoundaryConditionsforCoolant

PlaneLMON* m& pr m& = , T = Tinlet 2× N

PlaneCDFE** P = Pc PlaneCENL ∂u ∂v ∂w ∂T = = = = 0 ∂n ∂n ∂n ∂n

(*)Nreferstonumberofcoolingchannels.Tinlet istheinitial temperatureofcoolantand300Kforallanalyses. (**)Pressurelosesininjectorareneglected.Thereforecoolant exit pressure should be at combustion chamber pressure in idealconditions.Forallanalysesexitpressureofcoolantis60 bar. 6.3 Effect of Radiation Heat Transfer on Temperature and Pressure

To examine the radiation heat transfer effect, 2 analyses are performed with the samegeometryunderdifferentheatfluxboundaryconditions.Analysisparameters aregiveninTable6.4.

41

Table6.4–ParametersforRadiationHeatTransferInvestigation 4x4x100 4x4x100 (norad) ChannelHeight[mm] 4 4 ChannelWidth[mm] 4 4 #ofcoolingChannels 100 100

HeatFlux( q& g ) Convection Convection,Radiation

m& (perchannel)[kg/s] 0.311 0.311 AnalysisresultsaregiveninTable6.5.Radiationheattransferincreasedthetotal heatfluxonthrustchamberwallapproximately1.1 MW/m 2 (8.4 %) at chamber region,1.2MW/m 2(4.4%)atthroatregionand0.7MW/m 2(13.1%)atnozzleexit region(Figure6.2). Asthetotalheatfluxincreased,temperaturesongassidewallandincoolantare increased also. At throat region gas side wall temperature is increased approximately 18 K (2.3 %) and at combustion region coolant temperature is increasedapproximately23K(3.5%).Temperaturedistributionsforgassidewall andcoolantalongaxialdirectionaregiveninFigure6.3andFigure6.4. There is an inverse proportion between viscosity and temperature for coolant kerosene (Figure A.3). Addition of radiation heat transfer increased the overall temperatureofcoolantandresultinslightlylesspressuredropincoolingchannel (Figure6.5). Asa resultradiationheattransfershouldbe considered for regenerativly cooled thrustchamberswithhydrocarbonfuels.Thereforeforthefollowinganalysessum ofradiationheatfluxandconvectionheatfluxisusedasaboundaryconditionfor gassidethrustchamberwall.

42

Table6.5–ResultsforRadiationHeatTransferInvestigation 4x4x100(norad) 4x4x100 MaximumHeatFluxon 28.43 29.32 GasSideWall[MW/m 2] MaximumWall 783.7 801.8 TemperatureonGas SideWall[K] MaximumCoolant 647.1 669.8 Temperature[K] RequiredPressureInlet 78.1 77.8 forCoolant[bar] PressureDropin 18.1 17.8 Channel[bar]

Figure6.2–HeatFluxDistributiononGasSideWallalongAxialDirectionfor RadiationHeatTransferInvestigation

43

Figure6.3–TemperatureDistributiononGasSideWallalongAxialDirectionfor RadiationHeatTransferInvestigation

Figure6.4–TemperatureDistributionofCoolantonCoolantSideWallalong AxialDirectionforRadiationHeatTransferInvestigation 44

Figure6.5–PressureDistributionofCoolantalongAxialDirectionforRadiation HeatTransferInvestigation 6.4 Effect of Channel Geometry on Cooling Efficiency

The effect of channel geometry on cooling efficiency will be examined in two groups.Ineachgrouptheheightofthecoolingchannelsareconstantandwidthof thechannelsaredecreasedgradually.Forthefirstgroupheightis4mmandforthe secondgroupheightis8mm.AnalysisparametersaregiveninTable6.6andTable 6.7.

45

Table6.6–Parametersfor4mmHeightChannels 4x5x100 4x4x100 4x3x100 4x2x100 4x1x100 ChannelHeight[mm] 4 4 4 4 4 ChannelWidth[mm] 5 4 3 2 1 #ofcoolingChannels 100 100 100 100 100 AR(AspectRatio) 0.8 1.0 1.3 2.0 4

Dh[mm] 4.4 4.0 3.4 2.7 1.6

HeatFlux( q& g ) Convection Convection Convection Convection Convection Radiation Radiation Radiation Radiation Radiation

m& (perchannel)[kg/s] 0.311 0.311 0.311 0.311 0.311 ChannelGeometry

Table6.7–Parametersfor8mmHeightChannels 8x5x100 8x4x100 8x3x100 8x2x100 8x1x100 ChannelHeight[mm] 8 8 8 8 8 ChannelWidth[mm] 5 4 3 2 1 #ofcoolingChannels 100 100 100 100 100 AR(AspectRatio) 1.6 2.0 2.7 4.0 8.0

Dh[mm] 6.2 5.3 4.4 3.2 1.8

HeatFlux( q& g ) Convection Convection Convection Convection Convection Radiation Radiation Radiation Radiation Radiation

m& (per channel) 0.1555 0.1555 0.1555 0.1555 0.1555 [kg/s] ChannelGeometry

TheresultsaregiveninTable6.8andTable6.9.

46

Table6.8–Resultsfor4mmHeightChannels 4x5x100 4x4x100 4x3x100 4x2x100 4x1x100 MaximumHeatFluxonGas 29.03 29.32 29.53 29.67 29.74 SideWall[MW/m 2] MaximumWallTemperature 822.3 801.8 787.5 777.9 773.2 onGasSideWall[K] MaximumCoolant 681.2 669.8 659.2 649.7 640.3 Temperature[K] RequiredPressureInletfor 70.3 77.8 96.3 164.0 741.0 Coolant[bar] PressureDropinChannel 10.3 17.8 26.3 104.0 681.0 [bar]

Table6.9–Resultsfor8mmHeightChannels 8x5x100 8x4x100 8x3x100 8x2x100 8x1x100 MaximumHeatFluxonGas 27.33 27.90 28.36 28.79 29.24 SideWall[MW/m 2] MaximumWallTemperature 944.5 904.9 872.5 842.7 811.8 onGasSideWall[K] MaximumCoolant 805.0 760.6 724.0 703.4 679.0 Temperature[K] RequiredPressureInletfor 61.9 63.4 67.6 83.3 247.2 Coolant[bar] PressureDropinChannel 1.9 3.4 7.6 23.3 187.2 [bar] AsgiveninChapter2,heattransfercoefficientishighlydependsonRenumber (Re 0.8 )andRenumberisdescribedas: ρuD Re = h (6.1) Forincompressibleflows: m m u = & = & (6.2) ρA ρhw 47

4hw D = (6.3) h h(2 + w)

ρ m& 4hw 2 1 Re = = m& (6.4) ρhw h(2 + w) h( + w) Asaresult,withthesamemassflowrate(samenumberofcoolingchannels)and channelheight,aswedecreasethewidthofthecoolingchannel(increasingaspect ratio),Velocity,Renumberandheattransfercoefficientoncoolantsidewallwill increaseassumingofconstantthermalproperties.Velocityprofilesofthecoolantat throat(x=0)foreachgeometryaregiveninFigure6.6. VelocityMagnitudes(m/s)

4x5x100 4x4x100 4x3x100 4x2x100 4x1x100

8x5x100 8x4x100 8x3x100 8x2x100 8x1x100

Figure6.6–VelocityProfilesofCoolantatThroat(x=0)

48

Increasingheattransfercoefficientbyincreasingaspectratiooncoolantsidewill resultinincreasingtotalsurfaceheatfluxongassidewall.InFigure6.7andFigure 6.8totalsurfaceheatfluxdistributionalongaxialdirectionisgivenfor4mmand8 mmchannelheights.For4mmchannelheightstotalsurfaceheatfluxisincreased 2.5%betweenthemaximumandminimumaspectratiocoolingchannelsandfor8 mm cooling channel heat fluxis increased 7.0 % at throat section. As the total surface heat flux is increased, temperature difference between gas domain and thrust chamber wall will increase with an assumption of constant heat transfer coefficientandasaresulttemperatureongassidewallandcoolantsidewallwill decrease as the aspect ratio is increased. Temperature distribution along axial directionongassidewallandcoolantsidewallare giveninFigure6.9,Figure 6.10,Figure6.11andFigure6.12for4mmand8mmchannelheights.

Figure6.7–HeatFluxDistributiononGasSideWallalongAxialDirectionfor4 mmChannelHeight

49

Figure6.8–HeatFluxDistributiononGasSideWallalongAxialDirectionfor8 mmChannelHeight

Figure6.9–TemperatureDistributiononGasSideWallalongAxialDirectionfor 4mmChannelHeight 50

Figure6.10–TemperatureDistributiononGasSideWallalongAxialDirectionfor 8mmChannelHeight

Figure6.11–TemperatureDistributionofCoolantonCoolantSideWallalong AxialDirectionfor4mmChannelHeight 51

Figure6.12–TemperatureDistributionofCoolantonCoolantSideWallalong AxialDirectionfor8mmChannelHeight With constant channel height and channel number the cooling efficiency is expectedtoreachanoptimumlevel,becauseasweincreasetheaspectratio,heat transferareaforthecoolantdecreasesandafterawhilecoolantefficiencywillstart todecrease.AsgiveninFigure6.13Figure6.14,increasingaspectratiocausesa convergingsolutionforminimumtemperatureongassidewallandcoolant.Inthis studythisoptimumlevelhasnotbeenconsideredasadesignpoint.

52

1000 4 mm Channel Height 8 mm Channel Height 950

900

850

800

750 Maximum on Temperature SideGas Wall [K]

700 0 1 2 3 4 5 6 7 8 9 Aspect Ratio (AR) Figure6.13–EffectsofAspectRatioonGasSideWallTemperature

900 4 mm Channel Height 8 mm Channel Height 850

800

750

700

Maximum of [K] Coolant Temperature 650

600 0 1 2 3 4 5 6 7 8 9 Aspect Ratio (AR) Figure6.14–EffectsofAspectRatioonCoolantTemperature PressuredropincoolantchannelcanbeapproximatedasgiveninChapter2. L ρV2 P = f (6.5) Dh 2

53

2 (w + )h P = fLm& (6.6) (4 wh)2 Inequation6.6withconstantchannelheightandmassflowrate,aswedecreasethe channel width, pressure of coolant and pressure drop in coolant channel will increase (Figure 6.15 – Figure 6.17). For channel geometries 4x2x100,4x1x100 and8x1x100pressuredropsarecalculatedashigherthenthecombustionchamber pressure(60bar)andthesedesignsarenotacceptablesincetheyneedlargefeeding systems.Pressuredrops aroundhalfofthecombustion chamber pressure can be usedasasystemdesigncriteria.

700 4 mm Channel Height 8 mm Channel Height 600

500

400

300

200 Pressure Drop inPressure Channel [bar]

100

0 0 1 2 3 4 5 6 7 8 9 Aspect Ratio (AR) Figure6.15–EffectsofAspectRatioonPressureDropinChannel

54

Figure6.16–PressureDistributionofCoolantalongAxialDirectionfor4mm ChannelHeight

Figure6.17–PressureDistributionofCoolantalongAxialDirectionfor8mm ChannelHeight 55

6.5 Effect of Number of Channels on Cooling Efficiency

Accordingtotheanalysisresultsobtainedinsection6.4,coolantchannelswith4x1 mm 2and4x2mm 2crosssectionareahavethebesttemperatureresultsforcooling buthavehighpressuredropsinthechannel.(681bar and 104 bar respectively). Althoughitisstatedthatthesetwo geometries are not suitable because of high pressuredropsincoolantchannel,bychangingthenumberofcoolantchannels,it ispossibletodecreasepressuredropandtemperaturesonsolidbody. Sincethecoolingefficiencyisquitecloseforthesegeometries,thereisnoneedto work on case with 4x1 mm 2 which has a very high pressure drop. Therefore, channel geometry with 4x2 mm 2crosssectionareaisselectedtoinvestigatethe effectofnumberofchannelsoncoolingefficiency. The effect of number of channels on cooling efficiency is investigated for 6 differentchannelnumbers.AnalysisparametersaregiveninTable6.10.

Table6.10–ParametersforNumberofChannelsInvestigation 4x2x50 4x2x100 4x2x150 4x2x200 4x2x250 4x2x300 ChannelHeight 4 4 4 4 4 4 [mm] ChannelWidth 2 2 2 2 2 2 [mm] #ofcooling 50 100 150 200 250 300 Channels AR(Aspect 2.0 2.0 2.0 2.0 2.0 2.0 Ratio)

Dh[mm] 2.7 2.7 2.7 2.7 2.7 2.7

HeatFlux( q& g ) Convection Convection Convection Convection Convection Convection Radiation Radiation Radiation Radiation Radiation Radiation m& (per 0.6220 0.3110 0.2073 0.1555 0.1244 0.1037 channel)[kg/s] 56

TheresultsaregiveninTable6.11.Forlessnumberofcoolantchannelsmassflow rateofthecoolantishighandforthesamecrosssectionareacoolantvelocitiesare high.Velocityprofilesofcoolantaregivenatthroatregion(x=0)inFigure6.18.

Table6.11–ResultsforChannelNumberInvestigation 4x2x50 4x2x100 4x2x150 4x2x200 4x2x250 4x2x300 MaximumHeatFluxonGas 29.07 29.67 29.83 29.71 29.39 28.67 SideWall[MW/m 2] MaximumWallTemperature 821.7 777.9 770.5 778.6 800.6 850.1 onGasSideWall[K] MaximumCoolant 654.8 649.7 647.3 649.3 654.4 695.5 Temperature[K] RequiredPressureInletfor 411.9 164.0 110.8 90.3 80.3 74.6 Coolant[bar] PressureDropinChannel 351.9 104.0 50.8 30.3 20.3 14.6 [bar] VelocityMagnitudes(m/s)

4x2x50 4x2x100 4x2x150 4x2x200 4x2x250 4x2x300

Figure6.18–VelocityProfilesofCoolantatThroat(x=0) Maximumcoolantsideheattransfercoefficientisobtainedforgeometrywith50 channelsbutalsothisgeometryhastheminimumtotalheattransferareabetween 57

thecoolantandsolidbodyislow.Asweincreasethenumberofchannels,total heat transfer area is increased. The results show that there exists an optimum numberofcoolingchannelswhichhasthehighestheatfluxongassidewalland lowesttemperatureon gassidewall(Figure6.19)andcoolant(Figure6.20).For 4x2 mm crosssection area optimum number of cooling channels for cooling efficiency is around 150. Gas side heat flux distribution and temperature distributionsforgassidewallandcoolantsidewallaregiveninFigure6.21,Figure 6.22andFigure6.23.

900

875

850

825

800

775

750

Maximum on Side Temperature Gas Wall [K] 725

700 0 50 100 150 200 250 300 350 # of Coolant Channels Figure6.19–EffectsofNumberofChannelsonGasSideWallTemperature

700

675

650

625 Maximum of [K] Coolant Temperature

600 0 50 100 150 200 250 300 350 # of Coolant Channels Figure6.20–EffectsofNumberofChannelsonCoolantTemperature 58

Figure6.21–HeatFluxDistributiononGasSideWallalongAxialDirectionfor DifferentNumberofCoolingChannels

Figure6.22–TemperatureDistributiononGasSideWallalongAxialDirectionfor DifferentNumberofCoolingChannels 59

Figure6.23–TemperatureDistributionofCoolantonCoolantSideWallalong AxialDirectionforDifferentNumberofCoolingChannels Sincethevelocitymagnitudesaredecreasedasthenumberofcoolingchannelsare incresed,itisobvioustoseelowerpressurevaluesincoolantchannelwithhigh number of coolant channels (Figure 6.24). Pressure distributions along axial directionfordifferentnumberofcoolantchannelsaregiveninFigure6.25

400

350

300

250

200

150

100 Pressure Drop inPressure Channel [bar]

50

0 0 50 100 150 200 250 300 350 # of Coolant Channels Figure6.24–EffectsofNumberofChannelsonPressureDrop 60

Figure6.25–PressureDistributionofCoolantalongAxialDirectionforDifferent NumberofChannels Insummarybychangingthenumberofcoolingchannelsmaximumgassidewall temperature decreased from 777.9 K to 770.5 K (1.0 %), maximum coolant temperature decreased from 649.7 K to 647.3 K (0.4 %) and pressure drop decreased from 104.0 bar to 50.8 bar (51.2 %). Although the pressure drop is decreasedbychangingthenumberofcoolingchannels,50.8barpressuredropis stillhigh.Bychangingthecrosssectionareaofcooling channel for non critical regions(lowheatfluxregions),itispossibletodecreasepressuredrop.Thistopic willbediscussedinnextsection. 6.6 Cooling Channels with Variable Cross Section Area

To understand the effects of variable cross section on temperature and pressure, newcoolingchannelgeometryisformed.Thechannelhas4x2mm 2crosssection areainthethroatregionand4x4mm 2crosssectionareasinthecombustionregion andnozzleregion.ThegeometryofcoolingchannelisgiveninFigure6.26. 61

Figure6.26–ChannelGeometryforVariableCrossSectionArea Resultsarecomparedwiththe4x2x150channelgeometryandgiveninTable6.12. Althoughthereisnotabigdifferenceforthemaximumheatfluxandmaximum walltemperatureon gassidewall,maximumtemperatureofcoolantis increased approximately30Kandthepressuredropinthecoolingchanneldecreasedto18.4 bar.

Table6.12–ResultsforVariableCrossSectionx150and4x2x150 4x2x150 VariableCrossSectionAreax150 Maximum Heat Flux on Gas Side 29.83 29.82 Wall[MW/m 2] MaximumWallTemperatureonGas 770.5 772.2 SideWall[K] MaximumCoolantTemperature[K] 647.3 675.2 Required Pressure Inlet for Coolant 110.8 78.4 [bar] PressureDropinChannel[bar] 50.8 18.4

62

AscanbeseenfromFigure6.27,velocitymagnitudeishighinthroatregionand lowincombustionandnozzleexitregions.Thereforeitisexpectedabettercooling efficiencyinthroatregionrelativelytocombustionandnozzleexitregions.Since forbothcasesthecrosssectionareaissameinthroatregion,temperaturevaluesare quitesimilarinthisregion.Butasweincreasedthecrosssectionareathecooling efficiencyisdecreasedandincreasesthelocaltemperaturesatlargercrosssection arearegions(Figure6.28andFigure6.29). VelocityMagnitudes(m/s)

x=0.5m x=0m x=0.6m

Figure6.27–VelocityProfilesofCoolantforVariableCrossSectionChannelat DifferentLocations

63

Figure6.28–TemperatureDistributiononGasSideWallalongAxialDirectionfor 8mmChannelHeight

Figure6.29–TemperatureDistributionofCoolantonCoolantSideWallalong AxialDirectionforVariableCrossSectionAreaInvestigation 64

As the velocity is decreased in larger cross section regions pressure drop is decreased also. In Figure 6.30 the pressure distribution along axial direction for 4x2x150 channel geometry and variable cross section area channel geometry is given.Forvariablecrosssectiongeometrytheslope of pressure drop is low for largercrosssectionregionsandtheslopeofpressuredropishighforsmallercross sectionregion.

Figure6.30–PressureDistributionofCoolantalongAxialDirectionforVariable CrossSectionAreaInvestigation 16differentchannelgeometriesareinvestigatedandthevariablecrosssectionarea channel geometry gives the best sufficient results from the engineering point of viewalthoughcoolanttemperatureisreachedhighertemperaturevaluescompared withothergeometries. Maximumwalltemperatureongassidewalliscalculatedas770.5K.ForOFHC Coppermeltingtemperatureis1083 °C(1356K).Thereforewecanconcludeno

65

failure will be observed in thrust chamber because of the melting of the solid domain. InTable2.2thecriticaltemperatureandcriticalpressureofKerosenisgiven678K and 2.0 MPa (20 Bar). For the variable cross section channel geometry, the maximum temperature of the coolant is calculated as 675.2 K. This put the convectionheattransferoncurveB 1–B 2inFigure2.6.Noboilingoccursinthe coolant. Pressuredropinthechannelcalculatedas18.4barwhichisquitesufficientfora regenerativelycooledrocketenginewith60barchamberpressure.

66

CHAPTER 7 7 CONCLUSION AND DISCUSSION

CONCLUSION AND DISCUSSION

Inthisstudy,theeffectsofgeometryandnumberofrectangularcoolingchannels on cooling efficiency are investigated in terms of the maximum temperature of thrust chamber wall and coolant, and the pressure drop in cooling channel of a liquid propellant rocket engine. The engine has been modeled to operate on a LOX/Kerosenemixtureatachamberpressureof60barwith300kNthrust. 10differentchannelgeometriesareformedin2groupswith100coolingchannels anddifferentconstantcrosssectionareainaxialdirectionIneachgrouptheheight of the cooling channels are constant and width of the channels are decreased gradually. For the first group channel height is4 mm and for the second group channel height is 8 mm. Results are examined according to the maximum temperatureofthrustchamberwallandcoolant,andalsopressuredropincooling channel.Fromtheengineeringpointofviewthebestcoolingefficiencyisobtained by4x2mm 2channelcrosssectionareaand100coolingchannelswithrelatively highpressuredrop. Optimumnumberofcoolingchannelsisfoundfortheconstantcrosssectionarea 4x2mm 2and150coolingchannelswithapressuredrop50.8bar.Byincreasingthe number of cooling channels 50%, the pressure drop in the cooling channel is decreased approximately 51%. To decrease the pressure drop in the cooling

67

channel more, crosssection area is increased in low heat flux regions up to 4x4 mm 2andpressuredropisdecreasedto18.4bar(approximately64%). Accordingtotheanalysisresultsfollowingdesignrulesforcoolingchannelscanbe summarizedas: • Increasing the aspect ratio with constant height and constant number of cooling channels, will increase the cooling efficiency up to a optimum level,thenefficiencywilldecreasebecauseofdecreasingheattransferarea. • Increasing the aspect ratio with constant height and constant number of coolingchannels,willincreasethepressuredropincoolingchannel. • Increasingthenumberofcoolingchannelswithoutchangingthegeometry, willincreasethecoolingefficiencyuptoanoptimumlevelwithincreasing totalheattransferarea,thenefficiencywilldecreasebecauseofdecreasing massflowrateperchannel. • Increasingthenumberofcoolingchannelswithoutchangingthegeometry, willdecreasethepressuredropinchannel. • Increasing the cross section area of a channel in certain regions of the cooling channel, will decrease the cooling efficiency, increase the local temperaturesanddecreasethepressuredropinthisregion. Thisthesisgivestheanalysisofregenerativecooling for a preliminary designed thrustchamber.Asafuturework,theparametersaffectingthecoolingefficiency canbeoptimizedforgivenconditions.Userdefinedfunctionusedforheatfluxon gassidewallcanbeimprovedinconsiderationofturbulenceeffectincombustion regionofthrustchamber.

68

REFERENCES

[1] Huzel, D., K., Huang, D., H., “Modern Engineering for Design LiquidPropellantRocketEngines”,AIAA,1992.

[2] Coulbert,C.,D.,“SelectingCoolingTechniques for Liquid Rockets forSpacecraft”,JournalofSpacecraftandRockets,Vol.1,2,1964.

[3] Sutton G., P., “Rocket Propulsion Elements”, John Wiley & Sons, Inc.,6 th Edition,1992.

[4] Batha,D.,R.,Carey,M.,D.,Campell,J.,G.,Coulbert,C.,D.,“Thrust Chamber Cooling Techniques for Spacecraft Engines”, Marquardt Corporation,NAS7103,1963.

[5] Sullivian,J.,A.,Y.,“NumericalAnalysisofVariableProperty Flow Through Rectangular Channels”, The Pennsylvania State University, 1995.

[6] MerkleC.,L.,Li,D.,Sankaran,V.,“Analysis of Regen Cooling in RocketCombusters”,JannafPropulsionConference,2004.

[7] Sanford,G., Bonnie,J.,M.,“ComputerProgram for Calculation of Complex Chemical Equilibrium Compositions and Applications” NASARP1311,1994.

[8] Zucrow,M.,J.,Hoffman,J.,D.,“GasDynamics: Multidimensional Flows”,vol.1&2,JohnWiley&SonsInc.,1977.

69

[9] Aksel,M.,H.,Eralp,O.,C.,“GasDynamics”,PrenticeHall.,1994.

[10] Bucharsky V., L., “Sıvı Yakıtlı Đtki Sistemleri Eğitim Notları”, METU,2008.

[11] Seçkin,B.,“RocketNozzleDesignandOptimization”,M.Sc.Thesis, METU,2003.

[12] Bartz, D., R., “A Simple Equation for Rapid Estimation of Rocket Nozzle Convective Heat Transfer Coefficients”, Technical Notes, CaliforniaInstituteofTechnology,DA04495,1957.

[13] GAMBIT ®,htpp://www.fluent.com/software/gambit/index.htm

[14] FLUENT ®,htpp://www.fluent.com/software/fluent/index.htm

[15] Arpaci, V. S., Larsen, P. S., “Convection Heat Transfer”, Prentice Hall,Inc.,1984.

[16] Wadel,M.,F.,“ComparisonofHighAspectRatioCoolingChannel Designs for a Rocket combustion Chamber with Development of an OptimizedDesign”,NASA/TM1998206313

[17] Wadel, M., F., Meyer, M., L., “Validation of High Aspect Ratio Coolingina89kNThrustChamber”,AIAA962584,July1996.

[18] Sutton,G.,P.,“historyofLiquidPropellantEnginesinUnitedStates”, JournalofPropulsionandPower,Vol.19,No.6,2003.

[19] Naraghi, M., H., Dunn, S., Coats, D., “Dual Regenerative Cooling CircuitsforLiquidRocketEngines”,AIAA20064367,July2006.

70

[20] Carlie,J.,Quentmeyer,R.,“AnExperimentalInvestigationofHigh AspectRatioCoolingPassages”,AIAA923154,July1992.

[21] MitsubishiMaterials,C003EGeneralCatalogue,20072009

[22] Esposito, J., J., Zabora, R., F., “Thrust Chamber Life Prediction – Mechanical and Physical Properties of High Performance Rocket NozzleMaterials”,NASACR–134806,1975.

[23] Muraca,R.,F.,Whittick,J.,S.,“MaterialsDataHandbook–Inconel Alloy718”,NASACR–123774,April1972.

[24] Naraghi, M., H., Dunn, S., Coats, D., “A Model for Design and Analysis of Regeneratively cooled for Rocket Engine”, AIAA 2004 3852,2006.

[25] Wang,T.,Luong,V.,“HotGasSideandCoolantSideHeatTransfer inLiquidRocketEngineCombustors”,JournalofThermophysicsand HeatTransfer,Vol.8,No.3,1994.

[26] Wang, Q., Wu, F., Zeng, M., Luo, L., “Numerical simulation and OptimizationonHeatTransferandFluidFlowinCoolingChannelof Liquid Rocket Engine Thrust Chamber”, International Journal for ComputerAidedEngineeringandSoftware,Vol.23,No.8,pp.907 921,2006.

[27] Schuff,R.,Maier,M.,Sindiy,O.,Ulrich,C.,Fugger,S.,“Integrated ModelingandAnalysisforaLOX/MethaneExpanderCycleEngine: FocusingonRegenerativeCoolingJacketDesign”,AIAA20064534, July2006.

[28] Ciniaref,G.,D.,Dorovoliski,M.,B.,“Theory of LiquidPropellant Rockets”,Moscow,1957.

71

[29] Barrere M., Jaumotte, A., Veubeke, B., F., Vandenkerckhove J., “RocketPropulsion”,ElsevierPublishingCompany,1960.

[30] Locke, J., M., “Analysis of Heat Transfer Correlations for Supercritical Hydrogen in Regenerative Cooling Channels”, The UniversityofAlabama,2005.

[31] Taylor,M.,F.,“PredictionofFrictionandHeatTransferCoefficients withLargeVariationsinfluidProperties”,NASATMX2145,1970.

[32] Sieder, E., N., Tate, G., E., “Heat Transfer and Pressure Drop of LiquidsinTubes”,IndustrialandEngineeringChemistry,Vol.28,No. 12,Dec.1936,pp.14921453.

[33] McCarthy, J. R., Wolf, H., “Forced Convection Heat Transfer to GaseousHydrogenatHighHeatFluxandHighPressureinaSmooth, Round, Electrically Heated Tube”, ARS Journal, 30, 1960, pp.423 424.

[34] Aksel,M.,H.,“NotesonFluidMechanics”,METU,1990.

[35] Degarmo, E., P., Black, J., T., Kosher, R., A., “Materials and Processes in Manufacturing”, Macmillan Publishing Company, 7 th Edition,1988.

72

APPENDICES

APPENDIX A THERMAL PROPERTIES OF MATERIALS

TableA.1–ThermalPropertiesofKerosene Density[kg/m3] 820

SpecificHeat[J/kgK] Cp = − .2 82×10−8 × T2 − .2 95×10−4 ×T + .0 261

Thermal Conductivity k = .9 64×10−8 × T2 − .2 95×10−4 × T + .0 261 [W/mK]

Viscosity[kg/ms] = − .1 46×10−11 ×T3 + .3 22×10−8 ×T2 − .2 39×10−5 ×T + .6 00×10−3

4000

3500

3000

2500

2000

1500

1000

Specific Heat at Constant Pressure [J/kg-K] Pressure Constant at Specific Heat 500

0 200 300 400 500 600 700 800 900 Temperature [K]

FigureA.1–TemperatureVariableC pforKerosene

73

0.18

0.16

0.14

0.12

0.1

0.08

0.06

Thermal Conductivity Thermal [W/m-K] Conductivity 0.04

0.02

0 300 350 400 450 500 550 600 650 700 750 800 Temperature [K] FigureA.2–TemperatureVariableThermalConductivityforKerosene

0.0006

0.0005

0.0004

0.0003

Viscosity Viscosity [kg/m-s] 0.0002

0.0001

0 300 400 500 600 700 800 900 Temperature [K] FigureA.3–TemperatureVariableViscosityforKerosene

74

TableA.2–ThermalPropertiesofLiquidHydrogen Density 71 [kg/m3]

Specific Heat Cp = − .5 85×10−1 × T2 + .1 85×102 × T + .3 62×103(between 30 −195K) [J/kgK] Cp = − .1 09×10−4 × T3 + .1 53×101 × T2 − .7 22×101 × T + .2 60×104 (between 195 − 550K)

Thermal k = .2 33×10−7 × T2 + .2 05×10−4 × T + .0 141 Conductivity [W/mK]

Viscosity = − .2 83×10−6 T + .1 75×10−4(between 20− 60K) [kg/ms] = − .4 45×10−13 ×T3 + .4 75×10−10 ×T2 − .1 40×10−7 ×T + .2 06×10−5(between 60 − 550K)

20000

18000

16000

14000

12000

10000

8000

6000

4000 Specific Heat at Constant Pressure [J/kg-K] [J/kg-K] Pressure Constant at Specific Heat 2000

0 0 100 200 300 400 500 600 Temperature [K]

FigureA.4–TemperatureVariableCpforLiquidHydrogen

75

Chart Title

0.35

0.3

0.25

0.2

0.15

0.1 Thermal [W/m-K] Conductivity 0.05

0 0 100 200 300 400 500 600 Temperature [K] FigureA.5–TemperatureVariableThermalConductivityforLiquidHydrogen

0.00012

0.0001

0.00008

0.00006

Viscosity Viscosity [kg/m-s] 0.00004

0.00002

0 0 100 200 300 400 500 600 Temperature [K] FigureA.6–TemperatureVariableViscosityforLiquidHydrogen 76

TableA.3–ThermalPropertiesofOFHCCopper Density 8890 [kg/m3] Specific Heat Cp = .2 61× T − 39 2. (between 20 −123K) [J/kgK] Cp = .5 32 ×10−6 × T3 − .6 17 ×10−3 × T2 + .2 44 × T + 64 7. (between. 123 − 800K)

Thermal k = .1 10×10−1 × T2 − 23 9. × T +1730 (between 20 − 90K) Conductivity k = .6 66×10−4 × T2 − .5 91×10−1 × T + 520 (between 90 − 800K) [W/mK]

500

450

400

350

300

250

200

150 Specific Heat (J/kg-K) Specific Heat 100

50

0 0 100 200 300 400 500 600 700 800 900 Temperature (K)

FigureA.7–TemperatureVariableCpforOFHCCopper

1200

1000

800

600

400

200 Thermal Conductivity (W/m-K) Conductivity Thermal

0 0 100 200 300 400 500 600 700 800 900 Temperature (K) FigureA.8–TemperatureVariableThermalConductivityforOFHCCopper 77

TableA.4–ThermalPropertiesofINCONEL718 Density[kg/m3] 8190

SpecificHeat[J/kgK] Cp = .5 79×10−7 × T2 + .3 04×10−1 × T−1 + 327

ThermalConductivity[W/mK] k = .1 44×10−2 × T + 4.7

700

650

600

550

500

450 Specific Heat(J/kg-K) Specific 400

350

300 0 200 400 600 800 1000 1200 Temperature (K)

FigureA.9–TemperatureVariableCpforINCONEL718

30

25

20

15

10 ThermalConductivity (W/m-K) 5

0 0 200 400 600 800 1000 1200 1400 Temperature (K) FigureA.10–TemperatureVariableThermalConductivityforINCONEL718

78

APPENDIX B USER DEFINED FUNCTION FOR HEAT FLUX ON GAS SIDE WALL

#include"udf.h" #definepi(3.14159) DEFINE_PROFILE(Boun_Cond,t,i) { realx[ND_ND]; /*thiswillholdthepositionvector*/ realrt,dt,At,vis,Cp,Pr,Pc,Tc,gamma,Cstar,g,r,A,M,Mnew,N1,N2,N3,Taw,sigma,hgas, func,ffunc,fCO2,fH2O,Le,qrad,qCO2,qH2O,P,Pcr; face_tf; intk,NI; rt=0.1; /*m */ vis=0.00010863; /*kg/ms */ Cp=2083.3; /*J/kgK */ Pr=0.63; Pc=6000000; /*Pa */ Pcr=61.18297; /*kg/cm2 */ Tc=3570.44; /*K */ gamma=1.146; Cstar=1804.7; /*m/s */ NI=100000; dt=rt*2; At=pi*pow(rt,2); fCO2=0.11917; /*MoleFractionofCO2*/ fH2O=0.31769; /*MoleFractionofH2O*/ begin_f_loop(f,t) { 79

F_CENTROID(x,f,t); r=sqrt(pow(x[a],2)+pow(x[1],2)); A=pi*pow(r,2); Le=0.6*2*r; /*ForCombustionRegion*/ if(x[0]<0.28) { M=0; P=Pcr/pow((1+(gamma1)*pow(M,2)/2),(gamma/(gamma1))); Taw=Tc*((1+pow(Pr,0.33)*((gamma1)/2)*pow(M,2))/ (1+((gamma1)/2)*pow(M,2))); sigma=pow((0.5*F_T(f,t)/Tc*(1+(gamma1)* pow(M,2)/2)+0.5),0.68)*pow((1+(gamma1)*pow(M,2)/2),0.12); hgas=0.026*pow(vis/dt,0.2)*Cp*pow(Pc/Cstar,0.8)*pow(At/A,0.9)* sigma/pow(Pr,0.6); /*RadiationHeatTransfer*/ qCO2=4.0705*pow((P*fCO2*Le),1/3)*(pow((Taw/100),3.5) pow((F_T(f,t)/100),3.5)); qH2O=4.0705*pow(P*fH2O,0.8)*pow(Le,0.6)* (pow((Taw/100),3)pow((F_T(f,t)/100),3)); qrad=qCO2+qH2O; } /*ForSubsonicRegion*/ if(x[0]<0&&x[0]>=0.28) { for(k=1;k<=NI;k++) { if(k==1) M=0.05; 80

else M=Mnew; N1=2/(gamma+1); N2=(gamma+1)/(2*(gamma1)); N3=1+(gamma1)*pow(M,2)/2; func=pow(N1,N2)*pow(N3,N2)/MA/At; ffunc=pow(N1,N2)*pow(N3,N2)*pow(M,2)+ pow(N1,N2)*N2*pow(N3,N21)*(gamma1); Mnew=Mfunc/ffunc; if(fabs(MnewM)<0.01) break; } P=Pcr/pow((1+(gamma1)*pow(M,2)/2),(gamma/(gamma1))); Taw=Tc*((1+pow(Pr,0.33)*((gamma1)/2)*pow(M,2))/ (1+((gamma1)/2)*pow(M,2))); sigma=pow((0.5*F_T(f,t)/Tc*(1+(gamma1)* pow(M,2)/2)+0.5),0.68)*pow((1+(gamma1)*pow(M,2)/2),0.12); hgas=0.026*pow(vis/dt,0.2)*Cp*pow(Pc/Cstar,0.8)*pow(At/A,0.9)* sigma/pow(Pr,0.6); /*RadiationHeatTransfer*/ qCO2=4.0705*pow((P*fCO2*Le),1/3)*(pow((Taw/100),3.5) pow((F_T(f,t)/100),3.5)); qH2O=4.0705*pow(P*fH2O,0.8)*pow(Le,0.6)* (pow((Taw/100),3)pow((F_T(f,t)/100),3)); qrad=qCO2+qH2O; } /*ForSupersonicRegion*/ if(x[0]>=0) { for(k=1;k<=NI;k++) { if(k==1) M=20; 81

else M=Mnew; N1=2/(gamma+1); N2=(gamma+1)/(2*(gamma1)); N3=1+(gamma1)*pow(M,2)/2; func=pow(N1,N2)*pow(N3,N2)/MA/At; ffunc=pow(N1,N2)*pow(N3,N2)*pow(M,2)+ pow(N1,N2)*N2*pow(N3,N21)*(gamma1); Mnew=Mfunc/ffunc; if(fabs(MnewM)<0.01) break; } P=Pcr/pow((1+(gamma1)*pow(M,2)/2),(gamma/(gamma1))); Taw=Tc*((1+pow(Pr,0.33)*((gamma1)/2)*pow(M,2))/ (1+((gamma1)/2)*pow(M,2))); sigma=pow((0.5*F_T(f,t)/Tc*(1+(gamma1)* pow(M,2)/2)+0.5),0.68)*pow((1+(gamma1)*pow(M,2)/2),0.12); hgas=0.026*pow(vis/dt,0.2)*Cp*pow(Pc/Cstar,0.8)*pow(At/A,0.9)* sigma/pow(Pr,0.6); /*RadiationHeatTransfer*/ qCO2=4.0705*pow((P*fCO2*Le),1/3)*(pow((Taw/100),3.5) pow((F_T(f,t)/100),3.5)); qH2O=4.0705*pow(P*fH2O,0.8)*pow(Le,0.6)* (pow((Taw/100),3)pow((F_T(f,t)/100),3)); qrad=qCO2+qH2O; } F_PROFILE(f,t,i)=(hgas*(TawF_T(f,t))+qrad); } end_f_loop(f,t) }

82