Assessment of the Thermal Advantages of Biased Supersonic Cooling
Total Page:16
File Type:pdf, Size:1020Kb
Dissertations and Theses 4-2014 Assessment of the Thermal Advantages of Biased Supersonic Cooling Michael J. Carkin Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional works at: https://commons.erau.edu/edt Part of the Aerospace Engineering Commons Scholarly Commons Citation Carkin, Michael J., "Assessment of the Thermal Advantages of Biased Supersonic Cooling" (2014). Dissertations and Theses. 34. https://commons.erau.edu/edt/34 This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Assessment of the Thermal Advantages of Biased Supersonic Cooling by Michael J. Carkin A Thesis Submitted to the College of Engineering Department of Aerospace Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Science in Aerospace Engineering Embry-Riddle Aeronautical University Daytona Beach, Florida April 2014 Acknowledgements I would like to begin by giving my utmost thanks to Dr. Sandra Boetcher who not only oversaw the execution of this work, but realized the potential of the research at its earliest stages. Without her willingness to oversee and provide recommendations throughout the course of research, the work would not have been produced. Secondly, I would like to thank a number of individuals for their contributions to the thesis: Mike Borgi for aiding in the gridding process, members of the ERPL CFD Team for their numerical investigations, Gregory Carkin for on-going technical support, and Matt Meyers for formatting assistance. I’d also like to thank those who I consider my support structure: my parents for their undying support and aid, Aliraza Rattansi, Warren Hiner, and Alvydas Civinskas for numerous recommendations, and Kelly Donnenwirth for seeing me through the thick and thin of the research. Lastly, I would like to thank both Professor Lakshmanan L. Narayanaswami and Professor Eric R. Perrell for their willingness to review the research presented in the following work. iii I do not think there is any thrill that can go through the human heart like that felt by the inventor as he sees some creation of the brain unfolding to success... such emotions make a man forget food, sleep, friends, love, everything. -Nikola Tesla iv Abstract Researcher: Michael J. Carkin Title: Assessment of the Thermal Advantages of Biased Supersonic Cooling Institution: Embry-Riddle Aeronautical University Degree: Master of Science in Aerospace Engineering Year: 2014 The following work investigates an alternative supersonic film cooling method for hydrogen-fueled, gas-generator cycle rocket engines. The research is intended to serve as an initial proof-of-concept for a biased supersonic film cooling method envisioned for nozzle extension thermal management. The proposed method utilizes a dual-stream injection process that leverages the high heat capacity of the fuel-rich gas-generator gases. By comparing the proposed cooling strategy to the conventional mixed injection process, the research numerically validates the biased supersonic film cooling scheme for low supersonic slot Mach numbers. The average film cooling effectiveness was improved 5%-8% with increases as high as 12%. The average reduction in wall temperature ranged from 9%-15% with maximum reductions as high as 36% over the conventional method. v Table of Contents Page Thesis Review Committee .................................................................................................................. ii Acknowledgements ............................................................................................................................. iii Abstract .................................................................................................................................................. v List of Tables ........................................................................................................................................ x List of Figures ...................................................................................................................................... xi Nomenclature .................................................................................................................................... xiv Greek .................................................................................................................................................... xv List of Acronyms and Abbreviations ............................................................................................. xvi Chapter I Introduction ............................................................................................................... 1 Motivation .................................................................................................... 1 Problem Description ................................................................................... 4 Proposed Cooling Method ......................................................................... 7 Objective Statement .................................................................................... 7 II Film Cooling Overview ............................................................................................ 8 Introduction ................................................................................................. 8 Film Cooling Classification ...................................................................... 10 Discrete Injection ........................................................................ 10 Slot Injection ................................................................................ 11 Subsonic Injection ....................................................................... 13 Supersonic Injection .................................................................... 13 Core-Driven .................................................................................. 14 Wall-Jet .......................................................................................... 15 vi Previous Work ........................................................................................... 16 Introduction .................................................................................. 16 Analytical Work ............................................................................ 16 Experimental Work ..................................................................... 18 Numerical Work .......................................................................... 18 Film Cooling Reviews ................................................................. 19 III Methodology ............................................................................................................ 20 Introduction ............................................................................................... 20 Phase I: Preliminary Steps ........................................................................ 20 Phase II: Computational Gas Model ...................................................... 20 Phase III: Biased Flat Plate Models ........................................................ 21 Phase IV: Implementation ....................................................................... 21 IV Preliminary Steps ..................................................................................................... 23 Introduction ............................................................................................... 23 Flat Plate Analysis ..................................................................................... 23 CAL-Tech Experiments.............................................................. 23 CFD Flat Plate Models ............................................................... 25 Turbulence Model Selection ...................................................... 27 Engine Selection ........................................................................................ 29 Vulcain II Parameters .................................................................. 30 Nozzle Contour ......................................................................................... 32 Phase I: Nozzle Extension ......................................................... 32 Phase II: Combustion Chamber ................................................ 34 Phase III: Throat Region ............................................................ 34 vii ‘Default’ Engine Geometry ........................................................ 35 Conventional and Biased Supersonic Film Cooling Definitions ........ 37 V Computational Gas Model .................................................................................... 41 Introduction ............................................................................................... 41 Alternative Gas Models ............................................................................ 41 Core-Flow Composition........................................................................... 44 Core-Flow Specific Heat Approximation .............................................. 45 Core-Flow Transport Properties ............................................................. 48 Turbine Exhaust Gas Composition and Properties ............................. 48 Lennard-Jones Parameters ....................................................................... 49 Film Mole Fraction Adjustment .............................................................