Institute of Space Propulsion Lampoldshausen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WARP Ten, 1992 Columbia College Chicago
Columbia College Chicago Digital Commons @ Columbia College Chicago WARP ten Publications 2-1-1992 WARP ten, 1992 Columbia College Chicago Follow this and additional works at: https://digitalcommons.colum.edu/warpten Part of the Journalism Studies Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Columbia College Chicago, "WARP ten, 1992" (1992). WARP ten. 1. https://digitalcommons.colum.edu/warpten/1 This Book is brought to you for free and open access by the Publications at Digital Commons @ Columbia College Chicago. It has been accepted for inclusion in WARP ten by an authorized administrator of Digital Commons @ Columbia College Chicago. For more information, please contact [email protected]. A Science Newsletter of Columbia College Journalism Department Vol.I , No.I -~ Of Mars and Men By Robbie Robb the moon, a distance of 384,000km (239,000 miles) is but a three day voyage. A one-way trip to Mars, a distance of 56.4 million km. (35 million miles) rcquimi 280 days. The sheec The lure of the red planet has tantalized hlJIJUlllity for cen scope of the project thus demands a more expensive turies. Authors from H. G. Wells to Ray Bradbury havewriucn spacecraft. But traveling to Mars would also require more about life on Mars and coloni2ation of the planet. The Arnold resources at additional cosl Vast arnounlS of supplies, food. Schwanznegger movie, "Total Recall," portrayed a Martilln equipment, and fuel would be needed for a trip of this m11& world inhabited by tran.splanted earthlings. Now the idea of nitude. -
Numerical Investigation of a 7-Element GOX/GCH4 Subscale Combustion Chamber
DOI: 10.13009/EUCASS2017-173 7TH EUROPEAN CONFERENCE FOR AERONAUTICS AND AEROSPACE SCIENCES (EUCASS) Numerical Investigation of a 7-Element GOX/GCH4 Subscale Combustion Chamber ? ? ? Daniel Eiringhaus †, Daniel Rahn‡, Hendrik Riedmann , Oliver Knab and Oskar Haidn‡ ?ArianeGroup Robert-Koch-Straße 1, 82024 Taufkirchen, Germany ‡Institute of Turbomachinery and Flight Propulsion (LTF), Technische Universität München (TUM) Boltzmannstr. 15, 85748 Garching, Germany [email protected] †Corresponding author Abstract For future liquid rocket engines methane has become the focus of several studies on alternative fuels in the western hemisphere. At ArianeGroup numerical simulation tools have been established as a powerful instrument in the design process. In order to achieve the same confidence level for CH4/O2 as for H2/O2 combustion, the applied numerical models have to be adapted and validated against sufficient test data. At the Chair of Space Propulsion at the Technical University of Munich (TUM) several combustion cham- bers have been designed and tests at different operating points have been conducted. In this paper one of these subscale combustion chambers with calorimetric cooling and seven shear coaxial injection elements running on gaseous methane and oxygen is used to examine ArianeGroup’s in-house tools for combustion chamber performance analysis. 1. Introduction Current development programs in many space-faring nations focus on launchers utilizing a propellant combination of liquid oxygen (LOX) and liquid methane (CH4). In Europe, hydrocarbons have been identified as an alternative fuel in the frame of the Future Launcher Preparatory Programme (FLPP).14, 23 Major industrial development of methane / oxy- gen rocket engines is ongoing in the United States at SpaceX with the Raptor engine (staged combustion), at Blue Origin with the BE-4 engine (staged combustion) and in Europe at ArianeGroup with the Prometheus engine (gas gen- erator). -
Qualification Over Ariane's Lifetime
r bulletin 94 — may 1998 Qualification Over Ariane’s Lifetime A. González Blázquez Directorate of Launchers, ESA, Paris M. Eymard Groupe Programme CNES/Arianespace, Evry, France Introduction Similarly, the RL10 engine on the Centaur stage The primary objectives of the qualification of the Atlas launcher has been the subject of an activities performed during the operational ongoing improvement programme. About 5000 lifetime of a launcher are: tests were performed before the first flight, and – to verify the qualification status of the vehicle 4000 during the subsequent ten years. – to resolve any technical problems relating to subsystem operations on the ground or in On-going qualification activities of a similar flight. nature were started for the Ariane-3 and 4 launchers in 1986, and for Ariane-5 in 1996. Before focussing on the European family of They can be classified into two main launchers, it is perhaps informative to review categories: ‘regular’ and ‘one-off’. just one or two of the US efforts in the area of solid and liquid propulsion in order to put the Ariane-3/4 accompanying activities Ariane-related activities into context. Regular activities These activities are mainly devoted to In principle, the development programme for a launcher ends with the verification of the qualification status of the qualification phase, after which it enters operational service. In various launcher subsystems. They include the practice, however, the assessment of a launcher’s reliability is a following work packages: continuing process and qualification-type activities proceed, as an – Periodic sampling of engines: one HM7 and extension of the development programme (as is done in aeronautics), one Viking per year, tested to the limits of the over the course of the vehicle’s lifetime. -
High-Thrust In-Space Liquid Propulsion Stage: Storable Propellants
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications Space Propulsion 2014 – ID 2968378 High-Thrust in-Space Liquid Propulsion Stage: Storable Propellants Etienne Dumont, Alexander Kopp, Carina Ludwig, Nicole Garbers DLR, Space Launcher Systems Analysis (SART), Bremen, Germany [email protected] Abstract In the frame of a project funded by ESA, a consortium led Subscripts, Abbreviations by Avio in cooperation with Snecma, Cira, and DLR is ATV Automated Transfer Vehicle performing the preliminary design of a High-Thrust in- CDF Concurrent Design Facility Space Liquid Propulsion Stage for two different types of ECSS European Cooperation on Space manned missions beyond Earth orbit. For these missions, Standardization one or two 100 ton stages are to be used to propel a Elec assy electronic assembly manned vehicle. Three different propellant combinations; EPS Etage à propergols stockables (Ariane 5’s LOx/LH2, LOx/CH4 and MON-3/MMH are being storable propellant stage) compared. GNC Guidance Navigation and Control HTS High-Thrust Stage The preliminary design of the storable variant (MON- IF Interface 3/MMH) has been performed by DLR. The Aestus II ISS International Space Station engine with a large nozzle expansion ratio has been LEO Low Earth Orbit chosen as baseline. A first iteration has demonstrated, that LEOP Launch and Early Orbit Phase it indeed provides the best performance for the storable LH2 Liquid Hydrogen propellant combination, when considering all engines LOx Liquid Oxygen available today or which may be available in a short- to MLI Multi-Layer Insulation medium term. -
Materials for Liquid Propulsion Systems
https://ntrs.nasa.gov/search.jsp?R=20160008869 2019-08-29T17:47:59+00:00Z CHAPTER 12 Materials for Liquid Propulsion Systems John A. Halchak Consultant, Los Angeles, California James L. Cannon NASA Marshall Space Flight Center, Huntsville, Alabama Corey Brown Aerojet-Rocketdyne, West Palm Beach, Florida 12.1 Introduction Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton’s third law: for every action there is an equal and opposite reaction. [1] Solid rocket motors are cheaper to manufacture and offer good values for their cost. -
Cryogenic Technology & Rocket Engines
ISSN (O): 2393-8609 International Journal of Aerospace and Mechanical Engineering Volume 2 – No.5, August 2015 Cryogenic Technology & Rocket Engines AKHIL GARG KARTIK JAKHU KISHAN SINGH ABHINAV B.Tech – Aerospace B.Tech – Aerospace B.Tech – Aerospace MAURYA Engg. Engg. Engg. B.Tech – Aerospace PUNJAB PUNJAB PUNJAB Engg. TECHNICAL TECHNICAL TECHNICAL PUNJAB UNIVERSITY, UNIVERSITY, UNIVERSITY, TECHNICAL JALANDHAR JALANDHAR JALANDHAR UNIVERSITY, akhilgarg.313@g kartik.lphawk@g kishansngh1996 JALANDHAR mail.com mail.com @gmail.com abhinavguru123 @gmail.com ABSTRACT 3.2 What is Cryogenic Rocket Engine? This paper is all about the rocket engine involving the use of A cryogenic rocket engine is a rocket engine that cryogenic technology at a cryogenic temperature (123K). This uses a cryogenic fuel or oxidizer, that is, its fuel or basically uses the liquid oxygen and liquid hydrogen as an oxidizer (or both) is gases liquefied and stored at oxidizer and fuel, which are very clean and non-pollutant very low temperatures. Notably, these engines were fuels compared to other hydrocarbon fuels like petrol, diesel, one of the main factors of the ultimate success in gasoline, LPG, CNG, etc., sometimes, liquid nitrogen is also reaching the Moon by the Saturn V rocket. used as an fuel. During World War II, when powerful rocket engines were first considered by the German, American and Keywords Soviet engineers independently, all discovered that Rocket engine, Cryogenic technology, Cryogenic temperature, rocket engines need high mass flow rate of both Liquid hydrogen and Oxygen. oxidizer and fuel to generate a sufficient thrust. At that time oxygen and low molecular weight 1. -
Analysis of Regenerative Cooling in Liquid Propellant Rocket Engines
ANALYSIS OF REGENERATIVE COOLING IN LIQUID PROPELLANT ROCKET ENGINES A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY MUSTAFA EMRE BOYSAN IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MECHANICAL ENGINEERING DECEMBER 2008 Approval of the thesis: ANALYSIS OF REGENERATIVE COOLING IN LIQUID PROPELLANT ROCKET ENGINES submitted by MUSTAFA EMRE BOYSAN ¸ in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Department, Middle East Technical University by, Prof. Dr. Canan ÖZGEN Dean, Gradute School of Natural and Applied Sciences Prof. Dr. Süha ORAL Head of Department, Mechanical Engineering Assoc. Prof. Dr. Abdullah ULAŞ Supervisor, Mechanical Engineering Dept., METU Examining Committee Members: Prof. Dr. Haluk AKSEL Mechanical Engineering Dept., METU Assoc. Prof. Dr. Abdullah ULAŞ Mechanical Engineering Dept., METU Prof. Dr. Hüseyin VURAL Mechanical Engineering Dept., METU Asst. Dr. Cüneyt SERT Mechanical Engineering Dept., METU Dr. H. Tuğrul TINAZTEPE Roketsan Missiles Industries Inc. Date: 05.12.2008 I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Mustafa Emre BOYSAN Signature : iii ABSTRACT ANALYSIS OF REGENERATIVE COOLING IN LIQUID PROPELLANT ROCKET ENGINES BOYSAN, Mustafa Emre M. Sc., Department of Mechanical Engineering Supervisor: Assoc. Prof. Dr. Abdullah ULAŞ December 2008, 82 pages High combustion temperatures and long operation durations require the use of cooling techniques in liquid propellant rocket engines. -
19940015753.Pdf
National Aeronautics and Educational Product Space Administration Teachers I Grades 2-6 I Office of Education and Human Resources Education Division _o N N cO 0 u_ 0 N t_ I ,.-, CO ,4" U O" 0_ _ Z _ 0 0 tM < u Is LIJ I-. _-.q4" W_ O ul ,,_ W;Z. INWel I I,,-. UJ .... 0,. i,-,{ .... u4 uJ I-,- .. IU_ Z_ .1 i ! I i I j | ] ROCKETS Physical Science Teacher's Guide with Activities National Aeronautics and Space Administration Office of Human Resources and Education Education Division This publication is in the Public Domain and is not protected by copyright. Permission is not required for duplication. EP-291 July 1993 Acknowledgments This publication was developed for the National Aeronautics and Space Administra- tion with the assistance of the many educa- tors of the Aerospace Education Services Program, Oklahoma State University. Writer: Gregory L. Vogt, Ed.D. Teaching From Space Program NASA Johnson Space Center Houston, TX Editor: Carla R. Rosenberg Teaching From Space Program NASA Headquarters Washington, DC Table of Contents How To Use This Guide ............................... 1 Activities and Demonstration Matrix ............. 2 Brief History of Rockets ................................ 3 Rocket Principles ......................................... 8 Practical Rocketry ...................................... 12 Activities and Demonstrations .................... 19 Glossary ..................................................... 40 NASA Educational Materials And Suggested Readings .......................... 41 NASA Educational Resources ................... 42 Evaluation Card ..................................... Insert ii How To Use This Guide vehiclesockets arein theexistence.oldest formEarlyofrocketsself-containedwere in use more than two thousand years ago. Over a long and exciting history, rockets have evolved from simple tubes filled with black powder into mighty vehicles capable of launching a spacecraft out into the galaxy. -
First Stage of a Highly Reliable Reusable Launch System
First Stage of a Highly Reliable Reusable Launch System * $ Kurt J. Kloesel , Jonathan B. Pickrelf, and Emily L. Sayles NASA Dryden Flight Research Center, Edwards, California, 93523-0273 Michael Wright § NASA Goddard Space Flight Center, Greenbelt, Maryland, 20771-0001 Darin Marriott** Embry-Riddle University, Prescott, Arizona, 86301-3720 Dr. Leo Hollandtf General Atomics Electromagnetic Systems Division, San Diego, California, 92121-1194 Dr. Stephen Kuznetsov$$ Power Superconductor Applications Corporation, New Castle, Pennsylvania, 16101-5241 Electromagnetic launch assist has the potential to provide a highly reliable reusable first stage to a space access system infrastructure at a lower overall cost. This paper explores the benefits of a smaller system that adds the advantages of a high specific impulse air-breathing stage and supersonic launch speeds. The method of virtual specific impulse is introduced as a tool to emphasize the gains afforded by launch assist. Analysis shows launch assist can provide a 278-s virtual specific impulse for a first-stage solid rocket. Additional trajectory analysis demonstrates that a system composed of a launch-assisted first-stage ramjet plus a bipropellant second stage can provide a 48-percent gross lift-off weight reduction versus an all-rocket system. The combination of high-speed linear induction motors and ramjets is identified, as the enabling technologies and benchtop prototypes are investigated. The high-speed response of a standard 60 Hz linear induction motor was tested with a pulse width modulated variable frequency drive to 150 Hz using a 10-lb load, achieving 150 mph. A 300-Hz stator-compensated linear induction motor was constructed and static-tested to 1900 lbf average. -
AVAILABLE PROM Superintendent of Documents, U
DOCUMENT MUNE ED 096 097 32 016 450 TITLE Aerospace Bibliography. Sixth Edition. INSTITUTION National Aerospace Education Cocncil, Washington, D.C. SPONS AGENCY National Aeronautics and Space Administration, Washington, D.C. REPORT NO EP-48 PUB DATE 72 NOTE 115p. AVAILABLE PROM Superintendent of Documents, U. S. Government Printing Office, Washington, D. C. 20402 (Stock No. 3300-0460, $1.25) MIS PRICE BP-$0.75 HC-$5.40 PLUS POSTAGE DESCRIPTORS *Aerospace Technology; *Annotated Bibliographies; Astronomy; *Booklists; Career Opportunities; Information Sources; *Reference Materials; Satellite Laboratories; Space Sciences IDENTIFIERS NASA; National Aeronautics and Space Administration ABSTRACT This sixth edition of the National Aeronautics and Space Administration's (NASA) bibliography presentsan updated list of books, references, periodicals, and other educational materials related to space flight and space science. To find materialson a particular subject and for a specific reading level,users are advised to refer first to Part 1-Subject Index. Detailsare found in Part 2. Part 3 includes listings of reference materials related to space flight and space science, while Part 4 provides as list of related periodicals. Elementary and secondary teachers and adult readers will find this bibliography useful. There isan index to titles, a description of NASA services, anda list of addresses of sources of books and other materials. For the most part, books listed in this bibliography bear copyright dates beginning with 1969through fall 1971. (EB) sixth edition aerospace bibliography US DEPARTMENT nF NEAL TN EDUCATION I WELFARE NATIONAL INSTITUTE OF EDUCATION IIUS00( ',MI NtIIA } Pito {) xm et r 1S 1,1 (I t)I WOY tilt Pt USON 014(.AN 11 ',ors, uk .1,.N 111 itit,I PO,NtS Of v t., OW (11,N.ON% ST DO NOT NI (I csA14. -
Space in Space
SPACE IN SPACE Michal V{J~ÁK 16.5.2019 1. AREA IN SPACE OPPORTUNITY 2. WHY IS IT STILL HERE ? 3. WHAT IS IN PROGRESS ? Technologie které známe, máme a ovládáme 4. WHAT IS THE FUTURE ? musíme umět spojit do komplexních celků tady 5. HOW CAN WE MANAGE IT ? v Česku a tyto pak obchodovat. 6. VEGA EXAMPLE Jedině tak se dostaneme na vyšší příčky 7. EPD EXAMPLE hodnotových řetězců. 8. VISION Je třeba spolupracovat a důvěřovat si. Michal Vajdák Mezi občany nesmějí platit jiné privileje, diplomy a erby, než které spočívají v zásluhách, práci a rozumu. (krédo bratří Grégrů na pamětní desce při vstupu do pražského Žofína) AREA IN SPACE OPPORTUNITY Space Business . Higher levels of value chains opportunity . Space - the technology development driver . No boundaries in expansion . Space - the unique integrator of human activities . Research activities to explore NEW . Development of new technologies . Commercialization of new technologies . A new age of autonomous systems and businesses . UP and DOWN stream of technology transfer WHY IS IT STILL HERE ? Business Specifics . Low volume production . National interests and limitations . New technologies maturation needs . Significant SME support . Need for autonomous systems WHAT IS IN PROGRESS = ALREADY GONE Space Areas . Low Earth orbit satellites . Defense on orbit . Stratospheric applications . Mission spacecraft . Launchers under development (VEGA-C/E, Ariane 6/7) Source: ESA WHAT IS THE FUTURE ? Future Space Areas . New launcher technologies . Human flight technologies as space safety and security, transportation of humans and cargo or sub-orbital spaceflights . Spacecraft technologies to be used for a variety of purposes, including deep space missions (e.g. -
Worldwide Equipment Guide
WORLDWIDE EQUIPMENT GUIDE TRADOC DCSINT Threat Support Directorate DISTRIBUTION RESTRICTION: Approved for public release; distribution unlimited. Worldwide Equipment Guide Sep 2001 TABLE OF CONTENTS Page Page Memorandum, 24 Sep 2001 ...................................... *i V-150................................................................. 2-12 Introduction ............................................................ *vii VTT-323 ......................................................... 2-12.1 Table: Units of Measure........................................... ix WZ 551........................................................... 2-12.2 Errata Notes................................................................ x YW 531A/531C/Type 63 Vehicle Series........... 2-13 Supplement Page Changes.................................... *xiii YW 531H/Type 85 Vehicle Series ................... 2-14 1. INFANTRY WEAPONS ................................... 1-1 Infantry Fighting Vehicles AMX-10P IFV................................................... 2-15 Small Arms BMD-1 Airborne Fighting Vehicle.................... 2-17 AK-74 5.45-mm Assault Rifle ............................. 1-3 BMD-3 Airborne Fighting Vehicle.................... 2-19 RPK-74 5.45-mm Light Machinegun................... 1-4 BMP-1 IFV..................................................... 2-20.1 AK-47 7.62-mm Assault Rifle .......................... 1-4.1 BMP-1P IFV...................................................... 2-21 Sniper Rifles.....................................................