A Tool for Preliminary Design of Rockets Aerospace Engineering
Total Page:16
File Type:pdf, Size:1020Kb
A Tool for Preliminary Design of Rockets Diogo Marques Gaspar Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisor : Professor Paulo Jorge Soares Gil Examination Committee Chairperson: Professor Fernando José Parracho Lau Supervisor: Professor Paulo Jorge Soares Gil Members of the Committee: Professor João Manuel Gonçalves de Sousa Oliveira July 2014 ii Dedicated to my Mother iii iv Acknowledgments To my supervisor Professor Paulo Gil for the opportunity to work on this interesting subject and for all his support and patience. To my family, in particular to my parents and brothers for all the support and affection since ever. To my friends: from IST for all the companionship in all this years and from Coimbra for the fellowship since I remember. To my teammates for all the victories and good moments. v vi Resumo A unica´ forma que a humanidade ate´ agora conseguiu encontrar para explorar o espac¸o e´ atraves´ do uso de rockets, vulgarmente conhecidos como foguetoes,˜ responsaveis´ por transportar cargas da Terra para o Espac¸o. O principal objectivo no design de rockets e´ diminuir o peso na descolagem e maximizar o payload ratio i.e. aumentar a capacidade de carga util´ ao seu alcance. A latitude e o local de lanc¸amento, a orbita´ desejada, as caracter´ısticas de propulsao˜ e estruturais sao˜ constrangimentos ao projecto do foguetao.˜ As trajectorias´ dos foguetoes˜ estao˜ permanentemente a ser optimizadas, devido a necessidade de aumento da carga util´ transportada e reduc¸ao˜ do combust´ıvel consumido. E´ um processo utilizado nas fases iniciais do design de uma missao,˜ que afecta partes cruciais do planeamento, desde a concepc¸ao˜ do ve´ıculo ate´ aos seus objectivos globais. O principal objectivo deste trabalho e´ encontrar o design mais adequado de um foguetao,˜ para uma orbita´ e carga espec´ıficas, considerando a melhor trajectoria´ que pode ser utilizada. Foi desenvolvido um programa que permite o estudo de diferentes configurac¸oes˜ e a variac¸ao˜ dos parametrosˆ de design, calculando para cada configurac¸ao˜ e conjunto de parametrosˆ as diferentes massas e dimensoes˜ do foguetao,˜ para depois iterativamente com a trajectoria´ conseguir maximizar o payload ratio, minimizando o peso na descolagem. Para validar o codigo´ foram feitas comparac¸oes˜ com os resultados obtidos para os lanc¸adores Vega e Proton K/DM3. Por ultimo,´ e´ feita uma optimizac¸ao˜ do lanc¸ador Ariane 5 atraves´ da variac¸ao˜ da sua configurac¸ao˜ e de parametrosˆ de design. Palavras-chave: Multi-Estagios´ Rockets, Gravity Turn, Optimizac¸ao˜ de Trajectoria,´ Optimizac¸ao˜ de Rockets, Maximizar o Payload Ratio. vii viii Abstract The only way mankind can explore space is with the use of space launch vehicles, commonly known as rockets, which carry payloads from Earth into Space. The main goal in the rocket design is to reduce the gross lift-off weight (GLOW) and increase the payload ratio, giving them the capacity of having the maximum amount of payload or its range. Launch latitude, launch site, final kick-off location for payload, propulsion characteristics and, or, its own struc- tural characteristics are all limitations in the launch vehicle’s design. The trajectories of launch vehicles are permanently being optimized, due to the demand of increased payload and reduced propellant requirements. Optimization of a trajectory is a process used in early stages of the mission design, it affects crucial parts of mission planning, ranging from vehicle design to even overall mission objectives. The main objective of this study is to find the best design of a rocket for a specific orbit and payload mass, considering the best trajectory that can be used. A tool was developed allowing the study of different configurations and the variation of design parameters, calculating for each configuration and parameters the different masses and dimensions that characterize a rocket, and then iteratively with the trajectory will achieve the minimum GLOW and obtain the maximum payload ratio. In order to validate the code comparisons with Vega and Proton K/DM3 launchers were made. At last an optimization of the Ariane 5 launcher is made by varying its configuration and some design parameters. Keywords: Multistage Rockets, Gravity Turn, Trajectory optimization, Rocket optimization, Max- imize Payload Ratio. ix x Contents Acknowledgments...........................................v Resumo................................................. vii Abstract................................................. ix List of Tables.............................................. xv List of Figures............................................. xviii Nomenclature.............................................. xx Glossary................................................ xxi 1 Introduction 1 1.1 Goal of this work.........................................1 1.2 History of Rockets........................................1 1.3 Challenges in the design of a Rocket..............................3 1.4 Work overview..........................................5 2 Rockets 7 2.1 Introduction to Rockets......................................7 2.2 Delta-V calculations.......................................7 2.3 Configuration...........................................8 2.3.1 Multi Stage........................................8 2.3.2 Boosters......................................... 10 2.4 Structure............................................. 11 2.4.1 Lower Stages....................................... 11 2.4.2 Upper Stages....................................... 11 2.4.3 Fairing........................................... 12 2.4.4 Other components.................................... 13 2.5 Propulsion............................................. 13 2.5.1 Solid Propellants..................................... 14 2.5.2 Liquid Propellants.................................... 15 2.5.3 Hybrid Propellants.................................... 16 3 Ascent Rocket Trajectories 19 3.1 Trajectories............................................ 19 xi 3.1.1 Ascent Phase....................................... 19 3.1.2 Gravity Turn........................................ 20 3.1.3 Free-flight phase..................................... 21 3.1.4 Coast Phases....................................... 24 3.1.5 Drag Model........................................ 25 3.1.6 Atmospheric Model................................... 26 3.1.7 Gravitational Model................................... 27 4 Rocket Knowledge Database 29 4.1 DB construction development.................................. 29 4.1.1 Small........................................... 29 4.1.2 Medium.......................................... 29 4.1.3 Heavy........................................... 30 4.2 Information gathered....................................... 30 4.3 Propellant Selection....................................... 33 4.4 Mass Estimation Relationships................................. 34 5 Rocket Design Tool 37 5.1 Program Overview........................................ 37 5.2 Parametrization.......................................... 38 5.3 Algorithm............................................. 38 5.3.1 Mass Model........................................ 40 5.3.2 Trajectory......................................... 42 6 Results 45 6.1 Validation............................................. 45 6.1.1 Trajectory......................................... 45 6.1.2 Mass model validation.................................. 47 6.2 Preliminary Design and Optimization.............................. 53 7 Conclusions 59 7.1 Future Work............................................ 61 Bibliography 67 A Nose Cone Geometries 69 A.1 Nose Cone Geometries..................................... 69 A.1.1 Ogive........................................... 69 A.1.2 Power........................................... 70 A.1.3 Ellipse........................................... 71 A.1.4 Haack........................................... 71 xii B Propellant properties 73 xiii xiv List of Tables 4.1 Characteristics gathered for each Stage of each Launcher.................. 30 4.2 Structural factor for each Stage................................. 31 4.3 Thrust in Vacuum for each Stage................................ 31 4.4 Length/Diameter ratio...................................... 31 4.5 Characteristics of Payload Fairings............................... 32 4.6 Ratio between Mass Fairing and GLOW............................ 32 4.7 Propellant Specifications [1]................................... 33 5.1 Configuration and parameters introduced in the tool...................... 38 5.2 Parameters of the Exterior Structure [2][3]........................... 41 6.1 Vega Launcher - Main characteristics [4] ............................ 46 6.2 Proton K/DM3 - Main characteristics [5]. ............................ 46 6.3 Configuration and parameters introduced in the tool..................... 47 6.4 Mass Model Comparison - Vega ................................ 48 6.5 Volume Comparison - Vega ................................... 48 6.6 Mass Model Comparison - PROTON K ............................ 50 6.7 Volume Comparison - Proton K ................................. 51 6.8 Ariane 5 Launcher - Main characteristics. ........................... 53 6.9 Parameters varied in the tool................................... 54 6.10 Optimal Configuration Achieved................................. 55 6.11 Mass Model Comparison - Ariane 5 .............................. 55 6.12 Volume Comparison - Ariane 5 ................................