Progress Report on Apollo Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Space Administration
https://ntrs.nasa.gov/search.jsp?R=19700024651 2020-03-23T18:20:34+00:00Z TO THE CONGRESSOF THE UNITEDSTATES : Transmitted herewith is the Twenty-first Semiannual Repol* of the National Aeronautics and Space Administration. Twen~-first SEMIANNUAL REPORT TO CONGRESS JANUARY 1 - JUNE 30, 1969 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. 20546 Editors: G. B. DeGennaro, H. H. Milton, W. E. Boardman, Office of Public Affairs; Art work: A. Jordan, T. L. Lindsey, Office of Organiza- tion and Management. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402-Price $1.25 THE PRESIDENT May 27,1970 The White House I submit this Twenty-First Semiannual Report of the National Aeronautics and Space Aldministration to you for transmitttal to Congress in accordance with section 206(a) of the National Aero- nautics and Space Act of 1958. It reports on aotivities which took place betiween January 1 and June 30, 1969. During this time, the Nation's space program moved forward on schedule. ApolIo 9 and 10 demonstrated the ability of ;the man- ned Lunar Module to operate in earth and lunar orbit and its 'eadi- ness to attempt the lunar landing. Unmanned observatory and ex- plorer class satellites carried on scientific studies of the regions surrounding the Earth, the Moon, and the Sun; a Biosatellite oarwing complex biological science experiment was orbited; and sophisticated weather satellites and advanced commercial com- munications spacecraft became operational. Advanced research projects expanded knowledge of space flighk and spacecraft engi- neering as well as of aeronautics. -
PEANUTS and SPACE FOUNDATION Apollo and Beyond
Reproducible Master PEANUTS and SPACE FOUNDATION Apollo and Beyond GRADE 4 – 5 OBJECTIVES PAGE 1 Students will: ö Read Snoopy, First Beagle on the Moon! and Shoot for the Moon, Snoopy! ö Learn facts about the Apollo Moon missions. ö Use this information to complete a fill-in-the-blank fact worksheet. ö Create mission objectives for a brand new mission to the moon. SUGGESTED GRADE LEVELS 4 – 5 SUBJECT AREAS Space Science, History TIMELINE 30 – 45 minutes NEXT GENERATION SCIENCE STANDARDS ö 5-ESS1 ESS1.B Earth and the Solar System ö 3-5-ETS1 ETS1.B Developing Possible Solutions 21st CENTURY ESSENTIAL SKILLS Collaboration and Teamwork, Communication, Information Literacy, Flexibility, Leadership, Initiative, Organizing Concepts, Obtaining/Evaluating/Communicating Ideas BACKGROUND ö According to NASA.gov, NASA has proudly shared an association with Charles M. Schulz and his American icon Snoopy since Apollo missions began in the 1960s. Schulz created comic strips depicting Snoopy on the Moon, capturing public excitement about America’s achievements in space. In May 1969, Apollo 10 astronauts traveled to the Moon for a final trial run before the lunar landings took place on later missions. Because that mission required the lunar module to skim within 50,000 feet of the Moon’s surface and “snoop around” to determine the landing site for Apollo 11, the crew named the lunar module Snoopy. The command module was named Charlie Brown, after Snoopy’s loyal owner. These books are a united effort between Peanuts Worldwide, NASA and Simon & Schuster to generate interest in space among today’s younger children. -
APOLLO EXPERIENCE REPORT - THERMAL PROTECTION SUBSYSTEM by Jumes E
NASA TECHNICAL NOTE NASA TN D-7564 w= ro VI h d z c Q rn 4 z t APOLLO EXPERIENCE REPORT - THERMAL PROTECTION SUBSYSTEM by Jumes E. Puulosky und Leslie G, St. Leger Ly12d012 B. Johlzson Space Center Honst0~2, Texus 77058 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, 0. C. JANUARY 1974 ~--_. - .. 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. D-7564 4. Title and Subtitle 5. Report Date January 1974 APOLLOEXPERIENCEREPORT THERMAL PROTECTION SUBSYSTEM 6. Performing Organization Code I 7. Author(s) I 8. Performing Organization Report No. JSC S-383 James E. Pavlosky and Leslie G. St. Leger, JSC 10. Work Unit No. I 9. Performing Organization Name and Address 11. Contract or Grant No. Lyndon B. Johnson Space Center Houston, Texas 77058 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address 14. Sponsoring Agency Code National Aeronautics and SDace Administration Washington, D. C. 20546 1 15. Supplementary Notes The JSC Director waived the use of the International System of Units (SI) for this Apollo Experienc Report because, in his judgment, the use of SI units would impair the usefulness of th'e report or result in excessive cost. 16. Abstract The Apollo command module was the first manned spacecraft to be designed to enter the atmos- phere of the earth at lunar-return velocity, and the design of the thermal protection subsystem for the resulting entry environment presented a major technological challenge. Brief descrip- tions of the Apollo command module thermal design requirements and thermal protection con- figuration, and some highlights of the ground and flight testing used for design verification of the system are presented. -
Project: Apollo 8
v ._. I / I NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TELS WO 2-4155 NEWS WASHINGTON,D.C.20546 • WO 3-6925 FOR RELEASE: SUNDAY December 15, 1968 RELEASE NO: 68.208 P PROJECT: APOLLO 8 R E contents GENERAL RELEASE----------~-------~·~-~-~--~~----~----~-~--~-l-lO MISSION OBJECTIVES------------------------------------------11 SEQUENCE OF EVENTS-------------~-------------~----~----~--~~12-14 5 Launch W1ndow~~-~----~--~-~--~-------~-----~---------w--~-14 MISSION DESCRIPTION-----------------------------------------15-19 FLIGHT PLAN--~---~-----·------------~------~----~---~----~--20-23 ALTERNATE MISSIONS---------------------------------~--------24-26 5 ABORT MODES-----~--------------~--~--~------------~---~~--~-27~29 PHOTOGRAPHIC TASKS------------------------------------------30-32 SPACECRAFT STRUCTURE SYSTEMS--------------------------------33-37 SATURN V LAUNCH VEHICLE-------------------------------------38-50 APOLLO 8 LAUNCH OPERATIONS----------------------------------51.64 MISSION CONTROL CENTER--------------------------------------65-66 MANNED SPACE FLIGHT NETWORK---------------------------------67-71 APOLLO 8 RECOVERY-------------------------------------------72-73 APOLLO 8 CREW-------------~--~--~~-~~---~---~~~-------------74-86 K LUNAR DESCRIPTION-------------------------------------------87-88 APOLLO PROGRAM MANAGEMENT/CONTRACTORS---~-------------------39-94 I APOLLO 8 GLOSSARY-------- -----------------------------------95-101 T -0- 12/6/68 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WO 2-4155 NEWS WASHINGTON, D.C. 20546 TELS. -
Apollo Over the Moon: a View from Orbit (Nasa Sp-362)
chl APOLLO OVER THE MOON: A VIEW FROM ORBIT (NASA SP-362) Chapter 1 - Introduction Harold Masursky, Farouk El-Baz, Frederick J. Doyle, and Leon J. Kosofsky [For a high resolution picture- click here] Objectives [1] Photography of the lunar surface was considered an important goal of the Apollo program by the National Aeronautics and Space Administration. The important objectives of Apollo photography were (1) to gather data pertaining to the topography and specific landmarks along the approach paths to the early Apollo landing sites; (2) to obtain high-resolution photographs of the landing sites and surrounding areas to plan lunar surface exploration, and to provide a basis for extrapolating the concentrated observations at the landing sites to nearby areas; and (3) to obtain photographs suitable for regional studies of the lunar geologic environment and the processes that act upon it. Through study of the photographs and all other arrays of information gathered by the Apollo and earlier lunar programs, we may develop an understanding of the evolution of the lunar crust. In this introductory chapter we describe how the Apollo photographic systems were selected and used; how the photographic mission plans were formulated and conducted; how part of the great mass of data is being analyzed and published; and, finally, we describe some of the scientific results. Historically most lunar atlases have used photointerpretive techniques to discuss the possible origins of the Moon's crust and its surface features. The ideas presented in this volume also rely on photointerpretation. However, many ideas are substantiated or expanded by information obtained from the huge arrays of supporting data gathered by Earth-based and orbital sensors, from experiments deployed on the lunar surface, and from studies made of the returned samples. -
A Tool for Preliminary Design of Rockets Aerospace Engineering
A Tool for Preliminary Design of Rockets Diogo Marques Gaspar Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisor : Professor Paulo Jorge Soares Gil Examination Committee Chairperson: Professor Fernando José Parracho Lau Supervisor: Professor Paulo Jorge Soares Gil Members of the Committee: Professor João Manuel Gonçalves de Sousa Oliveira July 2014 ii Dedicated to my Mother iii iv Acknowledgments To my supervisor Professor Paulo Gil for the opportunity to work on this interesting subject and for all his support and patience. To my family, in particular to my parents and brothers for all the support and affection since ever. To my friends: from IST for all the companionship in all this years and from Coimbra for the fellowship since I remember. To my teammates for all the victories and good moments. v vi Resumo A unica´ forma que a humanidade ate´ agora conseguiu encontrar para explorar o espac¸o e´ atraves´ do uso de rockets, vulgarmente conhecidos como foguetoes,˜ responsaveis´ por transportar cargas da Terra para o Espac¸o. O principal objectivo no design de rockets e´ diminuir o peso na descolagem e maximizar o payload ratio i.e. aumentar a capacidade de carga util´ ao seu alcance. A latitude e o local de lanc¸amento, a orbita´ desejada, as caracter´ısticas de propulsao˜ e estruturais sao˜ constrangimentos ao projecto do foguetao.˜ As trajectorias´ dos foguetoes˜ estao˜ permanentemente a ser optimizadas, devido a necessidade de aumento da carga util´ transportada e reduc¸ao˜ do combust´ıvel consumido. E´ um processo utilizado nas fases iniciais do design de uma missao,˜ que afecta partes cruciais do planeamento, desde a concepc¸ao˜ do ve´ıculo ate´ aos seus objectivos globais. -
Apollo 7 Mission Report December 1968
oolt_o,.IoJo Ioeloolo_oIQeieIolo_le= :::::::::::::::::::::::........... MSC-PA-R-68-15 °°,°°,°%=*oQ*.,oI,,,*°io°%%-°°° %Io%%oloooootoolliol "_ NATIONAL AERONAUTICS AND SPACE ADMINISTRATION :.:,.......... .%%o.'ao.'aoa'.%*e" I .:.:.:.:.:.:.:.:.:.:.:. ==-..-.-,%,o,=O= °%* :-:':.:.:.:':-:':.:C': t.¢3 ":':':':':':':':':':':" t'_ .'-o%%°..Q.',%.o...'.°•°.%'='• • i ::::::::::::::::::::::: ¢O .:.:.:.:,:.:.:•:.:.:.:, '_ %%%%:::::::::::::::::::::::*:%°...%-.%. APOLLO 7 MISSION REPORT _ i .:•:,:.:':.:.:•:.:.:.:, ,4: ::::::::::::::::::::::: ::::::::::::::::::::::: | o%%%%%°o=o%•o%•o 0 ::::::::::::::::::::::: (/) .:.:.:.:.:.:.:.:.:.:.:. _ =_iiiiii!_iiiiiiiiiiiiiii ,oO.%Oo%,,o.%,.-.o,- ..,,,,oo,o,. oo.o,,,oo,o•ooo.,,oo,o. ,o,,,,•oo,o oo.°ooo,...o•°.,,,.o,,o • ., .... ,o,.o ,°,,o.,o,,,. •.,,,ooo,oo,,.,,.,,o.,o ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: .=%Oo=..=*oO.-.°..=%. ::::::::::::::::::::::: i:i:!:i:!:i:i:i:i:i:i:i ,,,:::::::::::=,o.,,.,. ::::::::::::::::::::::: iii!!iiiiiii!!!!!!!!! .:.:.:.:.:.:.:.:.:.:. • • • • • o_%%%,o• ::::::::::::::::::::: :::::::::::::::::::::: ::::::::::::::::::::: • ,,_•o%O_%%,.%o • • ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: ::::::::::::::::::::::: Oo,o,,O•,,O,Oo%,.,o%• ::::::::::::::::::::::: :::::::::::::::::::::: ::::::::::::::::::::::: DISTRIBUTION AND REFERENCING .,.,,.o.,o, ...oo,o,,,o.%-.-,,°,,,o,oo o=o,.-,, •:.:,:.:,:,:,:.:,:.:.:, This -
Mission Task Checklist
MISSION TASK CHECKLIST Entryway Discovery (page 2) Astronaut Encounter (page 3) Astronaut Autograph (page 3) Where in the World? (page 4) Mission Patch (page 5) Wild Neighbors (page 6) NASA Speak (page 7) Journey To Mars: Explorers Wanted (page 7) The Orion spacecraft is the Science On A Sphere (page 8) crew vehicle NASA is Move the Galaxy (page 8) currently developing for future deep-space missions. Mapping Survey (page 9) Crew Conference (page 10) Shuttle Launch Experience (page 15) EXPEDITION Bus Tour (page16) Touch the Moon (page16) LOGBOOK Energy for the Future (page 11-12) From Sketchpad to Launchpad (page 13) Team Name: ______________________________ ISS Live! (page 14) Rocket Garden Rap (page 17) Commander (teacher): ______________________ Rocket Search (page 18) Pilot (chaperone): __________________________ Mission Specialist 1 (MS1): ________________________ For more cool information and activities, visit www.nasa.gov and click on the “For Students” tab! Mission Specialist 2 (MS2): ________________________ Mission Specialist 3 (MS3): ________________________ Mission Specialist 4 (MS4): ________________________ MISSION TASK: Rocket Search LOCATION: Rocket Garden Expedition 321 YOU ARE GO FOR LAUNCH The rockets on display here are real, space worthy rockets left over from the early days of space exploration. Unlike the space shuttle, they are all “expendable” rockets, which means they were designed to be used only once. Some of these were Welcome the Kennedy Space Center Visitor Complex, the only place surplus, while others were designed for missions that were later canceled. on Earth where human beings have left the planet, traveled to Find the following items in the Rocket Garden and in the Word Search puzzle. -
THE EARLY APOLLO PROGRAM Project Apollo Was an American Space Project Which Landed People on the Moon and Brought Them Safely Back to Earth
AIAA AEROSPACE M ICRO-LESSON Easily digestible Aerospace Principles revealed for K-12 Students and Educators. These lessons will be sent on a bi-weekly basis and allow grade-level focused learning. - AIAA STEM K-12 Committee. THE EARLY APOLLO PROGRAM Project Apollo was an American space project which landed people on the Moon and brought them safely back to Earth. Most people know about Apollo 1, in which three astronauts lost their lives in a fire during a countdown rehearsal, and about Apollo 8, which flew to the Moon, orbited around it, and returned to Earth. Just about everybody knows about Apollo 11, which first landed astronauts on the Moon. But what happened in between these missions? This lesson explores the lesser-known but still essential building blocks of the later missions’ success. Next Generation Science Standards (NGSS): ● Discipline: Engineering Design ● Crosscutting Concept: Systems and System Models ● Science & Engineering Practice: Constructing Explanations and Designing Solutions GRADES K-2 K-2-ETS1-1. Ask questions, make observations, and gather information about a situation people want to change to define a simple problem that can be solved through the development of a new or improved object or tool. NASA engineers knew that Apollo astronauts would need special training to succeed in their missions to the moon, but how could they train under conditions similar to those the crew would encounter? One answer was to send them to places with barren areas and volcanic features that were like what they expected to find on the lunar surface. The astronauts received geology training as well as practicing maneuvers in their spacesuits and driving a replica of the GRADES K-2 (CONTINUED) lunar rover vehicle. -
Apollo Rocket Propulsion Development
REMEMBERING THE GIANTS APOLLO ROCKET PROPULSION DEVELOPMENT Editors: Steven C. Fisher Shamim A. Rahman John C. Stennis Space Center The NASA History Series National Aeronautics and Space Administration NASA History Division Office of External Relations Washington, DC December 2009 NASA SP-2009-4545 Library of Congress Cataloging-in-Publication Data Remembering the Giants: Apollo Rocket Propulsion Development / editors, Steven C. Fisher, Shamim A. Rahman. p. cm. -- (The NASA history series) Papers from a lecture series held April 25, 2006 at the John C. Stennis Space Center. Includes bibliographical references. 1. Saturn Project (U.S.)--Congresses. 2. Saturn launch vehicles--Congresses. 3. Project Apollo (U.S.)--Congresses. 4. Rocketry--Research--United States--History--20th century-- Congresses. I. Fisher, Steven C., 1949- II. Rahman, Shamim A., 1963- TL781.5.S3R46 2009 629.47’52--dc22 2009054178 Table of Contents Foreword ...............................................................................................................................7 Acknowledgments .................................................................................................................9 Welcome Remarks Richard Gilbrech ..........................................................................................................11 Steve Fisher ...................................................................................................................13 Chapter One - Robert Biggs, Rocketdyne - F-1 Saturn V First Stage Engine .......................15 -
APOLLO 6,7, and a BLACKOUT TEST RESULTS
X-550-69-277 PREPRINT APOLLO6,7, AND a BLACKOUT TEST RESULTS JOHN W. MARINI FREDERICK W. HAGER JULY 1969 - GOODARD SPACE FLIGHT GREENBELT, MARYLAND X-550-69-277 PREPRINT APOLLO 6, 7, AND 8 BLACKOUT TEST RESULTS John W. Marini Frederick W. Hager* JULY 1.969 dendix Employee under contract to GSFC, Con!rcet Number NASS-10750. Goddard Space Flight Center Greenbelt, Maiyland APOLLO 6, 7, AND 8 BLACKOUT TEST RESULTS John W. Marini Frederick W. Hager ABSTRACT S-band communication blackout measurements made during the reentry phases of the Apollo 6, 7, and 8 mis- sions are presented. The occurrence of blackout as a function of the altitude and speed of the reentering Apollo Command Module are compared with a cheoretical curve. The agreement is good at the high speed end of the curve, but poor for the one point available at the low speed end. iii CONTENTS I . INTRODUCTION .................................. 1 II . APOLLO-6 REENTRY .............................. A . NASA 427 Data ................................. B. "WatertowP Data ............................... C . Results ...................................... IZI . APOLLO-7 REENTRY .............................. A . MIL. GBM and NASA 427 Anomalous Loss of Si,- 1 ........ 3 B . ARIA 5 Data ................................... 4 c . Results ...................................... 4 IV . APOLLO-8 REENTRY .............................. 4 A. ARZAlData ................................... 7 B . Results ...................................... 7 V . CONCLUSIONS ................................... 7 REFERENCES ...................................... 8 I iv APOLLO 6, 7, AND 8 BLACKOUT TEST RESULTS I. a INTROIlUCTION This report contains the results of S-band (2287.5 MHz) blackout (Reference 1) measurements taken during the reentry phases of the Apollo 6, 7, and 8 mis- sion,. The measurements of the occurrence of blackout are compared with a theoretical prediction curve developed ut. -
Apollo Navigation, Guidance, and Control Systems a Progress Report
Date&$+& 7 INSTRUMENTATION LABORATORY Presented at the National Space Meeting of the Institute of Navigation, April 22-24, 1969, Houston, Texas. E-2411 APOLLO NAVIGATION, GUIDANCE, AND CONTROL SYSTEMS A PROGRESS REPORT David G. Hoag APRIL 1969 CAMBRIDGE 39, MASSACHUSETTS ACKNOWLEDGMENT This report was prepared under DSR Project 55-23870, sponsored by the Manned Spacecraft Center of the National Aeronautics and Space Administr.ation through Contract NAS 9-4065 with the Instrumentation Laboratory of Massachusetts Institute of Technology in Cambridge, Massachusetts. The publication of this report does not constitute approval by the National Aeronautics and Space Administration of the findings or the con- clusions contained therein. It is published only for the exchange and stimulation of ideas. E-2411 APOLLO NAVIGATION, GUIDANCE, AND CONTROL SYSTEMS A PROGRESS REPORT ABSTRACT The status of certain aspects of the Apollo navigation, guidance, and control systems in the command module and lunar module are examined on the basis of experience with the first eight development flights . Covered in this paper are facets of the inertial, optical, and computer hardware operation. The application of these hardware subsystems to the digital autopilots, rendezvous navigation, midcourse navigation, and entry are examined. The systems are judged to be fully ready to help a crew of astronauts land on the moon. by David G. Hoag April 1969 TABLE OF CONTENTS Section Title .-Page l-NTRODUCTION . , . , . 1 NAVIGATION, GUIDANCE, AND CONTROL FUNCTIONS . , 1 SYSTEM DESCRIPTION. Command Module System . LUNAR MODULE SYSTEM. * * * * * * * * -. *. - . * .4 FLIGHT EXPERIENCE . * ., . .6 THE INERTIAL MEASUREMENT UN‘IT..:. .6 Gyro or Accelerometer Failure Prediction .......... 6 Accelerator Performance. ............. ; ...8 Gyro Performance ...................