Lynn Margulis and Dorion Sagan, Acquiring Genomes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Parasitic Host: Symbiosis Contra Neo-Darwinism
Pli 9 (2000), 119-38. The Parasitic Host: Symbiosis contra Neo-Darwinism MICHELLE SPEIDEL Introduction Darwinism, and its modern formulation, neo-Darwinism, have often been the target of philosophically motivated attacks which centre on what are often seen as the ideological underpinnings, assumptions or consequences that are believed to emanate from Darwinism’s Malthusian origins. More often than not, these attacks focus on the ‘improper’ extensions of Darwinism into the social realm, in the areas of social engineering, evolutionary psychology (or its much-derided former incarnation, sociobiology), biopolitics, and the like. Occasionally, some attacks on Darwinism and neo-Darwinism have a force that is more ‘scientific’ in nature, that is, the attacks on the ideology attempt to show the entailment of real consequences for the methodology and practice of biological science itself, and are serious challenges not just to the ideological aspects of Darwinism, but to the theory itself. The group of approaches to evolution that can be grouped under the heading of ‘symbiosis’ appear to be challenges of precisely this kind. Symbiosis, the phenomenon that describes the ‘coevolution’ of two distinct species into a partnership-oriented evolutionary relationship, does appear at first glance to be absent from most descriptions of neo- Darwinism as a scientific theory, since such descriptions invariably prescribe competition as the primary impetus for evolutionary change. As I hope to show, there is a real sense in which a theory which emphasises competition cannot explain cooperative behaviours, except by fairly circuitous reroutings of the operational terms of the theory. Furthermore, I will argue that the real strength of symbiosis as a challenge to neo- 120 Pli 9 (2000) Darwinism lies in the very notion of symbiosis itself, quite apart from the ‘cooperative’ nature of symbiotic associations. -
Karl Jordan: a Life in Systematics
AN ABSTRACT OF THE DISSERTATION OF Kristin Renee Johnson for the degree of Doctor of Philosophy in History of SciencePresented on July 21, 2003. Title: Karl Jordan: A Life in Systematics Abstract approved: Paul Lawrence Farber Karl Jordan (1861-1959) was an extraordinarily productive entomologist who influenced the development of systematics, entomology, and naturalists' theoretical framework as well as their practice. He has been a figure in existing accounts of the naturalist tradition between 1890 and 1940 that have defended the relative contribution of naturalists to the modem evolutionary synthesis. These accounts, while useful, have primarily examined the natural history of the period in view of how it led to developments in the 193 Os and 40s, removing pre-Synthesis naturalists like Jordan from their research programs, institutional contexts, and disciplinary homes, for the sake of synthesis narratives. This dissertation redresses this picture by examining a naturalist, who, although often cited as important in the synthesis, is more accurately viewed as a man working on the problems of an earlier period. This study examines the specific problems that concerned Jordan, as well as the dynamic institutional, international, theoretical and methodological context of entomology and natural history during his lifetime. It focuses upon how the context in which natural history has been done changed greatly during Jordan's life time, and discusses the role of these changes in both placing naturalists on the defensive among an array of new disciplines and attitudes in science, and providing them with new tools and justifications for doing natural history. One of the primary intents of this study is to demonstrate the many different motives and conditions through which naturalists came to and worked in natural history. -
Copyright by Paul Harold Rubinson 2008
Copyright by Paul Harold Rubinson 2008 The Dissertation Committee for Paul Harold Rubinson certifies that this is the approved version of the following dissertation: Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War Committee: —————————————————— Mark A. Lawrence, Supervisor —————————————————— Francis J. Gavin —————————————————— Bruce J. Hunt —————————————————— David M. Oshinsky —————————————————— Michael B. Stoff Containing Science: The U.S. National Security State and Scientists’ Challenge to Nuclear Weapons during the Cold War by Paul Harold Rubinson, B.A.; M.A. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2008 Acknowledgements Thanks first and foremost to Mark Lawrence for his guidance, support, and enthusiasm throughout this project. It would be impossible to overstate how essential his insight and mentoring have been to this dissertation and my career in general. Just as important has been his camaraderie, which made the researching and writing of this dissertation infinitely more rewarding. Thanks as well to Bruce Hunt for his support. Especially helpful was his incisive feedback, which both encouraged me to think through my ideas more thoroughly, and reined me in when my writing overshot my argument. I offer my sincerest gratitude to the Smith Richardson Foundation and Yale University International Security Studies for the Predoctoral Fellowship that allowed me to do the bulk of the writing of this dissertation. Thanks also to the Brady-Johnson Program in Grand Strategy at Yale University, and John Gaddis and the incomparable Ann Carter-Drier at ISS. -
The Complexity and Origins of the Human Eye: a Brief Study on the Anatomy, Physiology, and Origin of the Eye
Running Head: THE COMPLEX HUMAN EYE 1 The Complexity and Origins of the Human Eye: A Brief Study on the Anatomy, Physiology, and Origin of the Eye Evan Sebastian A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2010 THE COMPLEX HUMAN EYE 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ David A. Titcomb, PT, DPT Thesis Chair ______________________________ David DeWitt, Ph.D. Committee Member ______________________________ Garth McGibbon, M.S. Committee Member ______________________________ Marilyn Gadomski, Ph.D. Assistant Honors Director ______________________________ Date THE COMPLEX HUMAN EYE 3 Abstract The human eye has been the cause of much controversy in regards to its complexity and how the human eye came to be. Through following and discussing the anatomical and physiological functions of the eye, a better understanding of the argument of origins can be seen. The anatomy of the human eye and its many functions are clearly seen, through its complexity. When observing the intricacy of vision and all of the different aspects and connections, it does seem that the human eye is a miracle, no matter its origins. Major biological functions and processes occurring in the retina show the intensity of the eye’s intricacy. After viewing the eye and reviewing its anatomical and physiological domain, arguments regarding its origins are more clearly seen and understood. Evolutionary theory, in terms of Darwin’s thoughts, theorized fossilization of animals, computer simulations of eye evolution, and new research on supposed prior genes occurring in lower life forms leading to human life. -
Publications of Peter H. Raven
Peter H. Raven LIST OF PUBLICATIONS 1950 1. 1950 Base Camp botany. Pp. 1-19 in Base Camp 1950, (mimeographed Sierra Club report of trip). [Upper basin of Middle Fork of Bishop Creek, Inyo Co., CA]. 1951 2. The plant list interpreted for the botanical low-brow. Pp. 54-56 in Base Camp 1951, (mimeographed Sierra Club report of trip). 3. Natural science. An integral part of Base Camp. Pp. 51-52 in Base Camp 1951, (mimeographed Sierra Club report of trip). 4. Ediza entomology. Pp. 52-54 in Base Camp 1951, (mimeographed Sierra Club report of trip). 5. 1951 Base Camp botany. Pp. 51-56 in Base Camp 1951, (mimeographed Sierra Club report of trip). [Devils Postpile-Minaret Region, Madera and Mono Counties, CA]. 1952 6. Parsley for Marin County. Leafl. West. Bot. 6: 204. 7. Plant notes from San Francisco, California. Leafl. West. Bot. 6: 208-211. 8. 1952 Base Camp bird list. Pp. 46-48 in Base Camp 1952, (mimeographed Sierra Club report of trip). 9. Charybdis. Pp. 163-165 in Base Camp 1952, (mimeographed Sierra Club report of trip). 10. 1952 Base Camp botany. Pp. 1-30 in Base Camp 1952, (mimeographed Sierra Club report of trip). [Evolution Country - Blaney Meadows - Florence Lake, Fresno, CA]. 11. Natural science report. Pp. 38-39 in Base Camp 1952, (mimeographed Sierra Club report of trip). 1953 12. 1953 Base Camp botany. Pp. 1-26 in Base Camp 1953, (mimeographed Sierra Club report of trip). [Mono Recesses, Fresno Co., CA]. 13. Ecology of the Mono Recesses. Pp. 109-116 in Base Camp 1953, (illustrated by M. -
Chapter 9. NATURAL SELECTION and BIOLOGICAL EVOLUTION
Chapter 9. NATURAL SELECTION AND BIOLOGICAL EVOLUTION Which beginning of time [the Creation] according to our Chronologie, fell upon the entrance of the night preced- ing the twenty third day of Octob. in the year of the Julian Calendar, 710 [i.e. B.C. 4004]. Archbishop James Ussher (1581—1656) The Annals of the World1 (1658:1) “How stupid not to have thought of that!” Thomas Huxley (1825-1895), about Darwin’s theory of Evolution by Nat- ural Selection. I. Introduction A. Classical Discoveries of Biology From the mid 18th Century to the early part of the 20th, a large fraction of biologists’ efforts went into two massive collective discoveries, the discovery of biotic diversity, and the discovery of evolution. Over the period from 1750 to 1950 the careful descriptive analyses of Swedish biol- ogist Karl von Linné and his followers showed there to be on the order of 10 million or so different types of living organisms. The differences in biotas in different parts of the world came to be appreciated, the amazing diversity of the tropics was documented, and previ- ously unimagined major groups of organisms were discovered, including microorganisms and the biota of odd habitats like the oceanic plankton. The sometimes bizarre and always impressive adaptation of organisms to their habitats and ways of life greatly impressed the early scientific naturalists, who argued that it proved the existence of an All Seeing Design- er. Similarly, paleontologists described a huge variety of fossil plants and animals. The succession of forms, and the presence of many detailed structural similarities between liv- ing and extinct forms, as well as structural parallels between living forms, strongly suggest- ed that living and ancient forms of life were connected by branching lines of descent. -
What Is a Species, and What Is Not? Ernst Mayr Philosophy of Science
What Is a Species, and What Is Not? Ernst Mayr Philosophy of Science, Vol. 63, No. 2. (Jun., 1996), pp. 262-277. Stable URL: http://links.jstor.org/sici?sici=0031-8248%28199606%2963%3A2%3C262%3AWIASAW%3E2.0.CO%3B2-H Philosophy of Science is currently published by The University of Chicago Press. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ucpress.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Tue Aug 21 14:59:32 2007 WHAT IS A SPECIES, AND WHAT IS NOT?" ERNST MAYRT I analyze a number of widespread misconceptions concerning species. -
Emanuele Serrelli Nathalie Gontier Editors Explanation, Interpretation
Interdisciplinary Evolution Research 2 Emanuele Serrelli Nathalie Gontier Editors Macroevolution Explanation, Interpretation and Evidence Interdisciplinary Evolution Research Volume 2 Series editors Nathalie Gontier, Lisbon, Portugal Olga Pombo, Lisbon, Portugal [email protected] About the Series The time when only biologists studied evolution has long since passed. Accepting evolution requires us to come to terms with the fact that everything that exists must be the outcome of evolutionary processes. Today, a wide variety of academic disciplines are therefore confronted with evolutionary problems, ranging from physics and medicine, to linguistics, anthropology and sociology. Solving evolutionary problems also necessitates an inter- and transdisciplinary approach, which is why the Modern Synthesis is currently extended to include drift theory, symbiogenesis, lateral gene transfer, hybridization, epigenetics and punctuated equilibria theory. The series Interdisciplinary Evolution Research aims to provide a scholarly platform for the growing demand to examine specific evolutionary problems from the perspectives of multiple disciplines. It does not adhere to one specific academic field, one specific school of thought, or one specific evolutionary theory. Rather, books in the series thematically analyze how a variety of evolutionary fields and evolutionary theories provide insights into specific, well-defined evolutionary problems of life and the socio-cultural domain. Editors-in-chief of the series are Nathalie Gontier and Olga Pombo. The -
Looking in the Right Direction
REVIEW REVIEW RNA Biology 11:3, 1–6; March 2014; © 2014 Landes Bioscience Looking in the right direction Carl Woese and evolutionary biology Nigel Goldenfeld I nstitute for Universal Biology; Institute for Genomic Biology, and Department of Physics; University of Illinois at Urbana-Champaign; Urbana, IL USA Carl Woese is known to the scientific community primarily So began a scientific partnership and friendship that lasted through his landmark contributions to microbiology, in par- more than a decade until his death. During that time, we met ticular, his discovery of the third Domain of Life, which came to nearly every day and talked on the phone or via email other- be known as the Archaea. While it is well known how he made wise. Looking back at these fragments of correspondence, it is this discovery, through the techniques he developed based on remarkable to note how much of our future trajectory was set in his studies of rRNA, the reasons why he was driven in this scien- those initial exchanges. Carl had indeed set his sights on a goal tific direction, and what he saw as the principle outcome of his of making biology a quantitative science with roots in complex discovery—it was not the Archaea!—are not so widely appre- dynamical systems, but his enlisting a theoretical physicist to his ciated. In this essay, I discuss his vision of evolution, one which distribute. transcends population genetics, and which has ramifications cause was more than a way to help create a new breed of biolo- not only for our understanding of the origin of life on Earth and gist—one with better math skills. -
New Perspectives on Eye Development and the Evolution of Eyes and Photoreceptors
Journal of Heredity 2005:96(3):171–184 ª 2005 The American Genetic Association doi:10.1093/jhered/esi027 Advance Access publication January 13, 2005 THE WILHEMINE E. KEY 2004 INVITATIONAL LECTURE New Perspectives on Eye Development and the Evolution of Eyes and Photoreceptors W. J. GEHRING From the Department of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland Address correspondence to Walter Gehring at the address above, or e-mail: [email protected] Walter J. Gehring is Professor at the Biozentrum of the University of Basel, Switzerland. He obtained his Ph.D. at the University of Zurich in 1965 and after two years as a research assistant of Professor Ernst Hadorn he joined Professor Alan Garen’s group at Yale University in New Haven as a postdoctoral fellow. In 1969 he was appointed as an associate professor at the Yale Medical School and 1972 he returned to Switzerland to become a professor of developmental biology and genetics at the Biozentrum of the University of Basel. He has served as Secretary General of the European Molecular Biology Organization and President of the International Society for Developmental Biologists. He was elected as a Foreign Associate of the US National Academy of Sciences, the Royal Swedish Academy of Science, the Leopoldina, a Foreign Member of the Royal Society of London for Improving Natural Knowledge and the French Acade´mie des Sciences. Walter Gehring has been involved in studies of Drosophila genetics and development, particularly in the analysis of cell determination in the embryo and transdetermination of imaginal discs. -
Chapter 1 Chapter 2 Chapter 3
Notes CHAPTER 1 1. Herbert Westren Turnbull, The Great Mathematicians in The World of Mathematics. James R. Newrnan, ed. New York: Sirnon & Schuster, 1956. 2. Will Durant, The Story of Philosophy. New York: Sirnon & Schuster, 1961, p. 41. 3. lbid., p. 44. 4. G. E. L. Owen, "Aristotle," Dictionary of Scientific Biography. New York: Char1es Scribner's Sons, Vol. 1, 1970, p. 250. 5. Durant, op. cit., p. 44. 6. Owen, op. cit., p. 251. 7. Durant, op. cit., p. 53. CHAPTER 2 1. Williarn H. Stahl, '' Aristarchus of Samos,'' Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 1, 1970, p. 246. 2. Jbid., p. 247. 3. G. J. Toorner, "Ptolerny," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 11, 1975, p. 187. CHAPTER 3 1. Stephen F. Mason, A History of the Sciences. New York: Abelard-Schurnan Ltd., 1962, p. 127. 2. Edward Rosen, "Nicolaus Copernicus," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 3, 1971, pp. 401-402. 3. Mason, op. cit., p. 128. 4. Rosen, op. cit., p. 403. 391 392 NOTES 5. David Pingree, "Tycho Brahe," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 2, 1970, p. 401. 6. lbid.. p. 402. 7. Jbid., pp. 402-403. 8. lbid., p. 413. 9. Owen Gingerich, "Johannes Kepler," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 7, 1970, p. 289. 10. lbid.• p. 290. 11. Mason, op. cit., p. 135. 12. Jbid .. p. 136. 13. Gingerich, op. cit., p. 305. CHAPTER 4 1. -
Philosophy of Biology Versus Philosophy of Physics'
R. c(/ Fundamenta Scienliae, Vol. 3, No. 1, pp. 55-78, 1982 © 1982 Pergamon Press Imprime en France Philosophy of Biology versus Philosophy of Physics' WILLIAM W. BARTLEY, 111* Not long ago I witnessed a remarkable interchange between two great thinkers: the cosmo- logist and physicist John Archibald Wheeler, and the philosopher of science Sir Karl Popper. Popper and Wheeler were meeting with a dozen other philosophers and scientists at Schloss Kronberg, the Victorian castle built by Kaiser Wilhelm's mother outside of Frankfurt during the closing years of the nineteenth century. The group was gathered in the late afternoon around an enormous round table in the Grand Salon, and Wheeler had just delivered a bril- liant exposition of his own interpretation of quantum mechanics. Popper turned to him and quietly said: "What you say is contradicted by biology ". It was a dramatic moment A hush fell around the table. The physicists present appeared to be taken aback. And then the biolo- gists, including Sir Peter Medawar, the Nobel prizewinner who was chairing the meeting, broke into a delighted applause. It was as if someone had finally said what they had all been thinking2. No one present meant to suggest that the reported facts of physics and biology were in conflict - nor even that physical and biological theoiy were in conflict. Rather, it was meant that fhe interpretation (or philosophy) of physics was incompatible with fact and interpreta- tion in the life sciences. Behind Popper's remark, unstated on this occasion yetlending it bite, was yet another contention: that the interpretation of physics that had been presented did not apply to physics either.