What Is a Species, and What Is Not? Ernst Mayr Philosophy of Science

Total Page:16

File Type:pdf, Size:1020Kb

What Is a Species, and What Is Not? Ernst Mayr Philosophy of Science What Is a Species, and What Is Not? Ernst Mayr Philosophy of Science, Vol. 63, No. 2. (Jun., 1996), pp. 262-277. Stable URL: http://links.jstor.org/sici?sici=0031-8248%28199606%2963%3A2%3C262%3AWIASAW%3E2.0.CO%3B2-H Philosophy of Science is currently published by The University of Chicago Press. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ucpress.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Tue Aug 21 14:59:32 2007 WHAT IS A SPECIES, AND WHAT IS NOT?" ERNST MAYRT I analyze a number of widespread misconceptions concerning species. The spe- cies category, defined by a concept, denotes the rank of a species taxon in the Linnaean hierarchy. Biological species are reproducing isolated from each other, which protects the integrity of their genotypes. Degree of morphological difference is not an appropriate species definition. Unequal rates of evolution of different characters and lack of information on the mating potential of isolated populations are the major difficulties in the demarcation of species taxa. 1. What is a Species, and What is Not? As someone who has published books and papers on the biological species for more than 50 years, and who has revised and studied in detail more than 500 species of birds and many species of other groups of organisms, the reading of some recent papers on species has been a rather troubling experience. There is only one term that fits some of these authors: armchair taxonomists. Since many authors have never personally analyzed any species populations or studied species in nature, they lack any feeling for what species actually are. Darwin already knew this when, in September 1845, he wrote to Jo- seph Hooker: "How painfully true is your remark that no one has hardly the right to examine the question of species who has not minutely de- scribed many" (Darwin 1987, 253). These authors make a number of mis- takes that have been pointed out again and again in the recent literature. Admittedly, the relevant literature is quite scattered, and some of it is perhaps rather inaccessible to a non-taxonomist. Yet, because the species concept is an important concept in the philosophy of science, every effort should be made to clarify it. It occurred to me that instead of criticizing certain recently published papers individually, it would be more construc- tive and helpful if I would here attempt to present, from the perspective of a practicing systematist, a concise overview of the philosophically im- portant aspects of the problem of the 'species'. There is nothing of the sort in the literature. The species is the principal unit of evolution and it is impossible to write about evolution, and indeed about almost any aspect of the philosophy of biology, without having a sound understanding of the meaning of bi- ological species. A study of the history of the species problem helps to dispel some of the misconceptions (Mayr 1957, Grant 1994). *Received December 1994; revised October 1995. ?Send reprint requests to the author, Museum of Comparative Zoology, Harvard Uni- versity, 26 Oxford Street, Cambridge, MA 02138. Philosophy of'Science, 63 (June 1996) pp. 262-277. 0031-824819616302-0007S2.00 Copyright 1996 by the Philosophy of Science Association. All rights reserved. WHAT IS A SPECIES, AND WHAT IS NOT? 263 2. Species of Organisms Are Concrete Phenomena of Nature. Some recent authors have dealt with the concept of species as if it were merely an arbitrary, man-made concept, like the concepts of reduction, demarcation, cause, derivation, prediction, progress, each of which may have almost as many definitions as there are authors who have written about them. How- ever, the concept biological species is not like such concepts. The term 'species' refers to a concrete phenomenon of nature and this fact severely constrains the number and kinds of possible definitions. The word 'species' is, like the words 'planet' or 'moon', a technical term for a concrete phe- nomenon. One cannot propose a new definition of a planet as "a satellite of a sun that has its own satellite," because this would exclude Venus, and some other planets without moons. A definition of any class of objects must be applicable to any member of this class and exclude reference to attributes not characteristic of this class. This is why any definition of the term 'species' must be based on a careful study of the phenomenon of nature to which this term is applied. Alas, this necessity is not appreciated by all too many of those who have recently discussed the species problem after a mere analysis of the literature. The conclusion that there are concrete describable objects in nature which deserve to be called "species" is not unanimously accepted. There has been a widespread view that species are only arbitrary artifacts of the human mind, as some nominalists, in particular, have claimed. Their ar- guments were criticized by Mayr (1949a, 371). 3. Why Are There Species of Organisms? Why is the total genetic varia- bility of nature organized in the form of discrete packages, called species? Why are there species in nature? What is their significance? The Darwinian always asks why questions because he knows that everything in living nature is the product of evolution and must have had some selective sig- nificance in order to have evolved.' He therefore asks: What selection forces in nature favor the origin and maintenance of species? The answer to this question becomes evident when one makes a certain thought ex- periment. "It is quite possible to think of a world in which species do not exist but are replaced by a single reproductive community of individuals, each one different from every other one, and each one capable of reproducing with those other individuals that are most similar to it. Each individual would then be the center of a concentric series of circles of genetically more and more unlike individuals. What would be the consequence of the continuous uninterrupted gene flow through such a large system? In each generation certain individuals would have a selective advantage because '1 am not aware of a single major feature of living nature of which this claim could be refuted. 264 ERNST MAYR they have a gene complex that is specially adapted to a particular ecolog- ical situation. However, most of these favorable combinations would be broken up by pairing with individuals with a gene complex adapted to a slightly different environment. In such a system there is no defense against the destruction of superior gene combinations except the abandonment of sexual reproduction. It is obvious that any system that prevents such un- restricted outcrossing is s~perior"~(Mayr 1949b, 282). The biological spe- cies is such a system. The biological meaning of species is thus quite apparent: "The segre- gation of the total genetic variability of nature into discrete packages, so called species, which are separated from each other by reproductive bar- riers, prevents the production of too great a number of disharmonious incompatible gene combinations. This is the basic biological meaning of species and this is the reason why there are discontinuities between sym- patric species. We do know that genotypes are extremely complex epige- netic systems. There are severe limits to the amount of genetic variability that can be accommodated in a single gene pool without producing too many incompatible gene combinations" (Mayr 1969, 3 16). The validity of this argument is substantiated by the fact that hybrids between species, particularly in animals, are almost always of inferior viability and more extreme hybrids are usually even sterile. "Almost always" means that there are species interpreted to be the result of hybridization, particularly among plants, but except for the special case of allopolyploidy, such cases are rare. Among the attributes members of a species share, the only ones that are of crucial significance for the species definition are those which serve the biological purpose of the species, that is, the protection of a harmo- nious gene pool. These attributes were named by Dobzhansky (1935) iso- lating mechanisms. It is immaterial whether or not the term isolating mech- anism was well chosen, nor is it important whether one places the stress on the prevention of interbreeding with non-conspecific individuals or the facilitation ("recognition") of breeding with conspecific individuals. The concept I have just developed is articulated in the so-called biological species definition: "Species are groups of interbreeding natural populations that are reproductively isolated from other such groups." The isolating mechanism by which reproductive isolation is effected are properties of individuals.
Recommended publications
  • Karl Jordan: a Life in Systematics
    AN ABSTRACT OF THE DISSERTATION OF Kristin Renee Johnson for the degree of Doctor of Philosophy in History of SciencePresented on July 21, 2003. Title: Karl Jordan: A Life in Systematics Abstract approved: Paul Lawrence Farber Karl Jordan (1861-1959) was an extraordinarily productive entomologist who influenced the development of systematics, entomology, and naturalists' theoretical framework as well as their practice. He has been a figure in existing accounts of the naturalist tradition between 1890 and 1940 that have defended the relative contribution of naturalists to the modem evolutionary synthesis. These accounts, while useful, have primarily examined the natural history of the period in view of how it led to developments in the 193 Os and 40s, removing pre-Synthesis naturalists like Jordan from their research programs, institutional contexts, and disciplinary homes, for the sake of synthesis narratives. This dissertation redresses this picture by examining a naturalist, who, although often cited as important in the synthesis, is more accurately viewed as a man working on the problems of an earlier period. This study examines the specific problems that concerned Jordan, as well as the dynamic institutional, international, theoretical and methodological context of entomology and natural history during his lifetime. It focuses upon how the context in which natural history has been done changed greatly during Jordan's life time, and discusses the role of these changes in both placing naturalists on the defensive among an array of new disciplines and attitudes in science, and providing them with new tools and justifications for doing natural history. One of the primary intents of this study is to demonstrate the many different motives and conditions through which naturalists came to and worked in natural history.
    [Show full text]
  • Systematics in Palaeontology
    Systematics in palaeontology THOMAS NEVILLE GEORGE PRESIDENT'S ANNIVERSARY ADDRESS 1969 CONTENTS Fossils in neontological categories I98 (A) Purpose and method x98 (B) Linnaean taxa . x99 (e) The biospecies . 202 (D) Morphology and evolution 205 The systematics of the lineage 205 (A) Bioserial change 205 (B) The palaeodeme in phyletic series 209 (e) Palaeodemes as facies-controlled phena 2xi Phyletic series . 2~6 (A) Rates of bioserial change 2~6 (B) Character mosaics 218 (c) Differential characters 222 Phylogenetics and systematics 224 (A) Clade and grade 224 (a) Phylogenes and cladogenes 228 (e) Phylogenetic reconstruction 23 I (D) Species and genus 235 (~) The taxonomic hierarchy 238 5 Adansonian methods 240 6 References 243 SUMMARY A 'natural' taxonomic system, inherent in evolutionary change, pulses of biased selection organisms that themselves demonstrate their pressure in expanded and restricted palaeo- 'affinity', is to be recognized perhaps only in demes, and permutations of character-expres- the biospecies. The concept of the biospecies as sion in the evolutionary plexus impose a need a comprehensive taxon is, however, only for a palaeontologically-orientated systematics notional amongst the vast majority of living under which (in evolutionary descent) could organisms, and it is not directly applicable to be subsumed the taxa of the neontological fossils. 'Natural' systems of Linnaean kind rest moment. on assumptions made a priori and are imposed Environmentally controlled morphs, bio- by the systematist. The graded time-sequence facies variants, migrating variation fields, and of the lineage and the clade introduces factors typological segregants are sources of ambiguity into a systematics that cannot well be accommo- in a distinction between phenetic and genetic dated under pre-Darwinian assumptions or be fossil grades.
    [Show full text]
  • Looking in the Right Direction
    REVIEW REVIEW RNA Biology 11:3, 1–6; March 2014; © 2014 Landes Bioscience Looking in the right direction Carl Woese and evolutionary biology Nigel Goldenfeld I nstitute for Universal Biology; Institute for Genomic Biology, and Department of Physics; University of Illinois at Urbana-Champaign; Urbana, IL USA Carl Woese is known to the scientific community primarily So began a scientific partnership and friendship that lasted through his landmark contributions to microbiology, in par- more than a decade until his death. During that time, we met ticular, his discovery of the third Domain of Life, which came to nearly every day and talked on the phone or via email other- be known as the Archaea. While it is well known how he made wise. Looking back at these fragments of correspondence, it is this discovery, through the techniques he developed based on remarkable to note how much of our future trajectory was set in his studies of rRNA, the reasons why he was driven in this scien- those initial exchanges. Carl had indeed set his sights on a goal tific direction, and what he saw as the principle outcome of his of making biology a quantitative science with roots in complex discovery—it was not the Archaea!—are not so widely appre- dynamical systems, but his enlisting a theoretical physicist to his ciated. In this essay, I discuss his vision of evolution, one which distribute. transcends population genetics, and which has ramifications cause was more than a way to help create a new breed of biolo- not only for our understanding of the origin of life on Earth and gist—one with better math skills.
    [Show full text]
  • Chapter 1 Chapter 2 Chapter 3
    Notes CHAPTER 1 1. Herbert Westren Turnbull, The Great Mathematicians in The World of Mathematics. James R. Newrnan, ed. New York: Sirnon & Schuster, 1956. 2. Will Durant, The Story of Philosophy. New York: Sirnon & Schuster, 1961, p. 41. 3. lbid., p. 44. 4. G. E. L. Owen, "Aristotle," Dictionary of Scientific Biography. New York: Char1es Scribner's Sons, Vol. 1, 1970, p. 250. 5. Durant, op. cit., p. 44. 6. Owen, op. cit., p. 251. 7. Durant, op. cit., p. 53. CHAPTER 2 1. Williarn H. Stahl, '' Aristarchus of Samos,'' Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 1, 1970, p. 246. 2. Jbid., p. 247. 3. G. J. Toorner, "Ptolerny," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 11, 1975, p. 187. CHAPTER 3 1. Stephen F. Mason, A History of the Sciences. New York: Abelard-Schurnan Ltd., 1962, p. 127. 2. Edward Rosen, "Nicolaus Copernicus," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 3, 1971, pp. 401-402. 3. Mason, op. cit., p. 128. 4. Rosen, op. cit., p. 403. 391 392 NOTES 5. David Pingree, "Tycho Brahe," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 2, 1970, p. 401. 6. lbid.. p. 402. 7. Jbid., pp. 402-403. 8. lbid., p. 413. 9. Owen Gingerich, "Johannes Kepler," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 7, 1970, p. 289. 10. lbid.• p. 290. 11. Mason, op. cit., p. 135. 12. Jbid .. p. 136. 13. Gingerich, op. cit., p. 305. CHAPTER 4 1.
    [Show full text]
  • Philosophy of Biology Versus Philosophy of Physics'
    R. c(/ Fundamenta Scienliae, Vol. 3, No. 1, pp. 55-78, 1982 © 1982 Pergamon Press Imprime en France Philosophy of Biology versus Philosophy of Physics' WILLIAM W. BARTLEY, 111* Not long ago I witnessed a remarkable interchange between two great thinkers: the cosmo- logist and physicist John Archibald Wheeler, and the philosopher of science Sir Karl Popper. Popper and Wheeler were meeting with a dozen other philosophers and scientists at Schloss Kronberg, the Victorian castle built by Kaiser Wilhelm's mother outside of Frankfurt during the closing years of the nineteenth century. The group was gathered in the late afternoon around an enormous round table in the Grand Salon, and Wheeler had just delivered a bril- liant exposition of his own interpretation of quantum mechanics. Popper turned to him and quietly said: "What you say is contradicted by biology ". It was a dramatic moment A hush fell around the table. The physicists present appeared to be taken aback. And then the biolo- gists, including Sir Peter Medawar, the Nobel prizewinner who was chairing the meeting, broke into a delighted applause. It was as if someone had finally said what they had all been thinking2. No one present meant to suggest that the reported facts of physics and biology were in conflict - nor even that physical and biological theoiy were in conflict. Rather, it was meant that fhe interpretation (or philosophy) of physics was incompatible with fact and interpreta- tion in the life sciences. Behind Popper's remark, unstated on this occasion yetlending it bite, was yet another contention: that the interpretation of physics that had been presented did not apply to physics either.
    [Show full text]
  • The Tempo and Mode of Evolution Reconsidered Stephen Jay Gould
    Punctuated Equilibria: The Tempo and Mode of Evolution Reconsidered Stephen Jay Gould; Niles Eldredge Paleobiology, Vol. 3, No. 2. (Spring, 1977), pp. 115-151. Stable URL: http://links.jstor.org/sici?sici=0094-8373%28197721%293%3A2%3C115%3APETTAM%3E2.0.CO%3B2-H Paleobiology is currently published by Paleontological Society. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/paleo.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Sun Aug 19 19:30:53 2007 Paleobiology.
    [Show full text]
  • How a Generation Was Misled About Natural Selection
    Gabora, L. (2011). How a Generation Was Misled About Natural Selection. Psychology Today (online). http://www.psychologytoday.com/blog/mindbloggling How a Generation Was Misled About Natural Selection Subtitle: Natural Selection: How it Works, How it Applies to Culture Liane Gabora Department of Psychology, University of British Columbia Okanagan Campus, Arts Building, 333 University Way, Kelowna BC, V1V 1V7, CANADA For 'Mindbloggling' column, Psychology Today Abstract This article explains how natural selection works and how it has been inappropriately applied to the description of cultural change. It proposes an alternative evolutionary explanation for cultural evolution that describes it in terms of communal exchange. When science is explained to the general public it is necessary to simplify. Inevitably details get left out, details that some consider important, and the ‘sexy' parts of the story get played up. But so long as the overall picture is more or less right, scientists generally appreciate the efforts of popular science writers, the press, and in some cases their fellow colleagues, to make their work accessible to a wider audience. The public in turn benefits from the opportunity to see the world they live in from a new perspective, and consider questions they might not otherwise have considered. Sometimes, though, the baby gets thrown out with the bathwater. The ‘babyless' version of a scientific story may be a hit nonetheless. Unless one has advanced training in a highly specialized area of a scientific discipline, it may appear to make sense. In most cases, the 1 misrepresentation of science doesn't make much difference; life goes on as normal.
    [Show full text]
  • Modelling the Evolution and Expected Lifetime of a Deme's Principal Gene
    Letters in Biomathematics, 2015 Vol. 2, No. 1, 13–28, http://dx.doi.org/10.1080/23737867.2015.1040859 RESEARCH ARTICLE Modelling the evolution and expected lifetime of a deme’s principal gene sequence B.K. Clark∗ Department of Physics, Illinois State University, Normal, IL, USA (Received 3 April 2015; accepted 10 April 2015) The principal gene sequence (PGS), defined as the most common gene sequence in a deme, is replaced over time because new gene sequences are created and compete with the current PGS, and a small fraction become PGSs. We have developed a set of coupled difference equations to represent an ensemble of demes, in which new gene sequences are introduced via chromosomal inversions. The set of equations used to calculate the expected lifetime of an existing PGS include inversion size and rate, recombination rate and deme size. Inversion rate and deme size effects are highlighted in this work. Our results compare favourably with a cellular automaton-based representation of a deme. Keywords: inversion; recombination; gene sequence; stasipatric speciation 1. Introduction Chromosomal inversions are examples of a broader group of chromosomal rearrangements. Stasipatric speciation is when chromosomal inversions are the primary mechanism of speciation (White, 1978); however, examples of speciation typically include chromosomal inversions only as a contributing factor. Examples are ubiquitous, including Drosophila (Ayala & Coluzzi, 2005; Noor, Grams, Bertucci, & Reiland, 2001; Ranz et al., 2007), sunflowers (Rieseberg, 2001; Rieseberg et al., 2003), and primates (Ayala & Coluzzi, 2005; Lee, Han, Meyer, Kim, & Batzer, 2008; Navarro & Barton, 2003a, 2003b), for example. Suppressed recombination of inverted chromosome segments has been investigated as a speciation mechanism (Ayala & Coluzzi, 2005; Navarro & Barton, 2003a, 2003b), and the precise role of inversions in speciation is still debated (Faria & Navarro, 2010).
    [Show full text]
  • Lynn Margulis and Dorion Sagan, Acquiring Genomes
    CONTENTS Forewordby Ernst Mayr XI xv CaJ1•1thtO JOOJ by lfnn M.,1i1ll1111J l>nrlun S1tc11n Preface Pulttl1h,Jby 1111k Rook,, PART ONE. THE EVOLUTIONARY IMPERATIVE AM,mber of rh, l'wucu1Book, Group. 1 Darwinism Not Neodarwinism 3 Allrlahu re1crved. Printed in the United States of America. No part of this book may be 2 Darwin's Dilemma 25 rc~r<>ducedin any manner whatsoever without written permission except in the case of 3 Relative Individuality 51 briefquotations embodied in critical articles and reviews.For information, address Basic 67 Books, 387 Park Avenue South, New York NY 10016-8810. 4 The Natural Selector 5 Principles of Evolutionary Novelty 71 Library of Congress Cataloging-in-Publication Data PART TWO. THE MICROBE IN EVOLUTION Margulis, Lynn, 1938- Acquiring genomes : a theory of the origins of species / Lynn Margulis and Dorion 6 Species and Cells 81 Sagan.-lst ed. 7 History of the Heritable 89 p. cm. Includes bibiliographical references PART THREE. PLANETARY LEGACY ISBN 0-465-04391-7 (hardcover) 1. Species. 2. Symbiogenesis. 3. Evolution (Biology). 4. Sagan Dorion 1959- II 123 Title. ' ' . 8 Gaian Planet 139 QH380 .M37 2002 9 Eukaryosis in an Anoxic World 576.8'6-dc21 2002001521 PART FOUR. CONSORTIA 165 Text design by TrishWilkimon 10 Seaworthy Alliances Set in 12.5-point AGaramond by The Perseus Books Group 11 Plant Proclivities 185 12 Chromosome Dance: The Fission Theory 191 FIRST EDITION 13 Darwin Revisited: 02 03 04 05 / IO 9 8 7 6 5 4 3 2 1 Spedes in the Evolutionary Dialogue 201 ..•,, •HI /,,/tit,,,,,,/ 1//11,11,111,,,,,
    [Show full text]
  • What Is a Population? an Empirical Evaluation of Some Genetic Methods for Identifying the Number of Gene Pools and Their Degree of Connectivity
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Publications, Agencies and Staff of the U.S. Department of Commerce U.S. Department of Commerce 2006 What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity Robin Waples NOAA, [email protected] Oscar Gaggiotti Université Joseph Fourier, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usdeptcommercepub Waples, Robin and Gaggiotti, Oscar, "What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity" (2006). Publications, Agencies and Staff of the U.S. Department of Commerce. 463. https://digitalcommons.unl.edu/usdeptcommercepub/463 This Article is brought to you for free and open access by the U.S. Department of Commerce at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications, Agencies and Staff of the U.S. Department of Commerce by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Molecular Ecology (2006) 15, 1419–1439 doi: 10.1111/j.1365-294X.2006.02890.x INVITEDBlackwell Publishing Ltd REVIEW What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity ROBIN S. WAPLES* and OSCAR GAGGIOTTI† *Northwest Fisheries Science Center, 2725 Montlake Blvd East, Seattle, WA 98112 USA, †Laboratoire d’Ecologie Alpine (LECA), Génomique des Populations et Biodiversité, Université Joseph Fourier, Grenoble, France Abstract We review commonly used population definitions under both the ecological paradigm (which emphasizes demographic cohesion) and the evolutionary paradigm (which emphasizes reproductive cohesion) and find that none are truly operational.
    [Show full text]
  • Stephen J. Gould's Legacy
    STEPHEN J. GOULD’S LEGACY NATURE, HISTORY, SOCIETY Venice, May 10–12, 2012 Organized by Istituto Veneto di Scienze, Lettere ed Arti in collaboration with Università Ca’ Foscari di Venezia ABSTRACTS Organizing Committee Gian Antonio Danieli, Istituto Veneto di Scienze, Lettere ed Arti Elena Gagliasso, Sapienza Università di Roma Alessandro Minelli, Università degli studi di Padova and Istituto Veneto di Scienze, Lettere ed Arti Telmo Pievani, Università degli studi di Milano Bicocca and Istituto Veneto di Scienze, Lettere ed Arti Maria Turchetto, Università Ca’ Foscari di Venezia Chairpersons Bernardino Fantini, Université de Genève Marco Ferraguti, Università degli studi di Milano Elena Gagliasso, Sapienza Università di Roma Giorgio Manzi, Sapienza Università di Roma Alessandro Minelli, Università degli studi di Padova and Istituto Veneto di Scienze, Lettere ed Arti Telmo Pievani, Università degli studi di Milano Bicocca and Istituto Veneto di Scienze, Lettere ed Arti Maria Turchetto, Università Ca’ Foscari di Venezia Invited speakers Guido Barbujani, Università degli studi di Ferrara Marcello Buiatti, Università degli studi di Firenze Andrea Cavazzini, Université de Liège Niles Eldredge, American Museum of Natural History, New York T. Ryan Gregory, University of Guelph Alberto Gualandi, Università degli studi di Bologna Elisabeth Lloyd, Indiana University Giuseppe Longo, CNRS; École Normale Supérieure, Paris Winfried Menninghaus, Freie Universität Berlin Alessandro Minelli, Università degli studi di Padova and Istituto Veneto di Scienze, Lettere ed Arti Gerd Müller, Konrad Lorenz Institute, Vienna and Istituto Veneto di Scienze, Lettere ed Arti Marco Pappalardo, McGill University, Montreal Telmo Pievani, Università degli studi di Milano Bicocca and Istituto Veneto di Scienze, Lettere ed Arti Klaus Scherer, Université de Genève Ian Tattersall, American Museum of Natural History, New York May 20, 2012 will be the tenth anniversary of Stephen Jay Gould’s death.
    [Show full text]
  • The Genesis of IOPB: a Personal Memoir
    Heywood • Genesis of IOPB TAXON 60 (2) • April 2011: 320–323 The genesis of IOPB: A personal memoir Vernon H. Heywood School of Biological Sciences, University of Reading, Reading RG6 6AS, U.K.; [email protected] Abstract An account is given of the circumstances that led to the decision to create the International Organization of Plant Biosystematics. The pioneer work of biologists on both sides of the Atlantic in biosystematics and experimental taxonomy is outlined, especially that of the San Francisco Bay group in the U.S.A. and that of J.S.L. Gilmour, G. Turesson, and J.W. Gregor on genecology and the deme terminology in Europe. The continuing need for a biosystematics perspective in our understand- ing of taxonomy at the species level and below is stressed. Keywords biosystematics; deme terminology; experimental taxonomy; genecology INTRODUCTION In general, as I have noted elsewhere (Heywood, 2002), few taxonomic text books were available and those that did In the post-war years, the taxonomic world, like the rest exist were out of date or scarcely stimulating: they focused of botanical science, was beginning to go through a period largely on classification at the family level and above and on of reassessment and development. The focus of mainstream constructing so-called phylogenetic systems based on supposed taxonomy was still on writing Floras and monographs and trends in character evolution while largely ignoring how to in some countries this was largely confined to the national undertake taxonomy at the genus and species level and below. institutions while taxonomic teaching and research had fallen It was largely for this reason that Peter Davis and I decided to out of favour in many universities.
    [Show full text]