Looking in the Right Direction

Total Page:16

File Type:pdf, Size:1020Kb

Looking in the Right Direction REVIEW REVIEW RNA Biology 11:3, 1–6; March 2014; © 2014 Landes Bioscience Looking in the right direction Carl Woese and evolutionary biology Nigel Goldenfeld I nstitute for Universal Biology; Institute for Genomic Biology, and Department of Physics; University of Illinois at Urbana-Champaign; Urbana, IL USA Carl Woese is known to the scientific community primarily So began a scientific partnership and friendship that lasted through his landmark contributions to microbiology, in par- more than a decade until his death. During that time, we met ticular, his discovery of the third Domain of Life, which came to nearly every day and talked on the phone or via email other- be known as the Archaea. While it is well known how he made wise. Looking back at these fragments of correspondence, it is this discovery, through the techniques he developed based on remarkable to note how much of our future trajectory was set in his studies of rRNA, the reasons why he was driven in this scien- those initial exchanges. Carl had indeed set his sights on a goal tific direction, and what he saw as the principle outcome of his of making biology a quantitative science with roots in complex discovery—it was not the Archaea!—are not so widely appre- dynamical systems, but his enlisting a theoretical physicist to his ciated. In this essay, I discuss his vision of evolution, one which distribute. transcends population genetics, and which has ramifications cause was more than a way to help create a new breed of biolo- not only for our understanding of the origin of life on Earth and gist—one with better math skills. Carl himself had trained as a elsewhere, but also for our understanding of biology as a novel physicist, with a BA in Mathematics and Physics from Amherst not class of complex dynamical systems. College in 1950 and a PhD in Biophysics from Yale three years later. Thus, he was no stranger to the great value that quantifica- tion could provide to biology. In fact, what Carl wanted was to Do complete his understanding of the evolutionary history of all life At exactly 2 pm on Friday September 20, 2002, I received the on Earth, a program of research that he had begun to think about most important email of my life. Originating from a computer seriously during the 1960s. That program of research had been mysteriously called “ninja,” the sender wasted no time on getting articulated with clarity in a letter to Francis Crick dated June 24, to the point: 1969, a lengthy extract of which was reproduced in our article on “This is Carl Woese, over in Life Sciences. I’d like to talk to the historical and conceptual relationship between microbiology, you at some point about moving the teaching of biology into the molecular biology, and evolution theory.1 21st century. Molecular biology clearly has lost (run out of) its “If we are ever to unravel the course of events leading to the vision, and a new and very different biology needs to emerge. I evolution of the prokaryotic (i.e., simplest) cells, I feel it will be Bioscience. have been told of your interests, and know, thereofore [sic], that necessary to extend our knowledge of evolution backward in time you are atune [sic] to what I’m talking about. I would like to see by a billion years or so. i.e., backward into the period of actual at least some cognizance on the part of card carrying biologists Cellular Evolution.”1 of complex dynamic systems, an appreciation for the fact that the Carl had famously spent much of the following decade set- cell is indeed a complex dynamic system and evolved in such a ting this investigation into motion, through his work on rRNA, manner. My telephone is 3–9369, if you care to discuss the mat- culminating in the celebrated discovery of both the relatedness Landes ter with me.” and tripartite structure of life by Woese and Fox in 1977,2 and Naturally, I responded with alacrity, writing that ultimately leading to a new proposal for the classification of life3,4 “I am a theoretical physicist, but tend to work on topics that that is today the mainstream view. Not so frequently empha- are regarded as out of the mainstream by most of my colleagues sized, the finding that all life is related implies the existence of … I don’t know very much about biology, and worse, I don’t a last universal common ancestor (LUCA), now known to be think I have the sort of mind that can be engaged by or penetrate positioned between the Bacterial and the Archaeal/Eukaryotic ©2012 much of the subject. Despite these handicaps, …” branches and representing in one extreme view a single organ- Carl’s response was frank and, to be honest, tremendously ism, or in another view, a community of associated organisms. exciting to me: Although the significance of these two discoveries is hard to “You may not feel too much at home with biology as it now exaggerate, and despite Carl’s manifest pride in this remarkable stands, but if I am any judge the field is decidedly moving to accomplishment, he was deeply dissatisfied with it, disappointed meet you.“ by a necessary limitation of his chosen instrument of biological revelation: the ribosome. The highly conserved nature of the ribosome, in particular 16SrRNA, made its molecular sequence Correspondence to: Nigel Goldenfeld; Email: [email protected] a brilliant choice to mark the dynamics of evolution writ large; http://dx.doi.org/10.4161/rna.28640 however, 16SrRNA sequence comparison only tracked (or more Submitted: 03/21/2014; Accepted: 03/21/2014 accurately, defined) the lineages of organisms whose cellular www.landesbioscience.com RNA Biology 1 structure included ribosomes. In the modern era that leaves out occurred, but the speed of evolution. In fact, the work that had viruses of course, but in the era before LUCA, it necessarily leaves made the most impression on him was G.G. Simpson’s Tempo out all of life. LUCA was not just the last universal common and Mode of Evolution,10 because its analysis of the fossil record ancestor but a representative of the first organisms which exhib- echoed something that had puzzled Carl right from the early ited translational machinery in sufficiently advanced form to be results with Fox: How could evolution have achieved so much, traced by 16SrRNA phylogeny. Earlier classes of life would not starting from an abiotic earth and attaining an essentially modern have translational machinery recognizable as related to today’s translational machinery in a time frame of what could be at most ribosomes, and thus would be invisible to 16SrRNA phylogeny. one billion years? My early discussions with Carl centered on this Woese’s program to uncover the evolutionary history of life on issue, because Carl had the intuition that some understanding Earth had apparently run into a roadblock. of complex dynamical systems would be pertinent to the issue. The spectacular success of molecular phylogeny in uncov- That is to say, he felt that the picture of evolution, which had ering the three Domains of Life overshadowed Carl’s original emerged from the modern synthesis during the first half of the endeavor. Carl was convinced that to get his original program on 20th century, was somehow missing an important aspect of the track, he would need to make a conceptual advance. One of my evolutionary process. One way to phrase this seeming inadequacy first questions to him was why are there only three Domains of is to ask how population genetics can possibly be considered as a Life? I was not attaching any special significance to the number full explanation of the evolutionary process, when, by construc- three, but the fact that number is of order unity, and not one tion, the biological world before there were genes as such was hundred, for example, is surely significant. What does this tell us manifestly beyond the regime of validity of the theory. Carl had about the singularity that is LUCA? What does it tell us about already given a lot of thought to life before genes, and in the same distribute. life before LUCA? Carl was extremely animated by these and year as the discovery of the Archaea had, in another magnificent related questions, but I soon found that there were more urgent paper also with Fox, initiated conceptual discussion on such a preoccupations on his mind, because there were challenges to phase of life, which he called the “progenote.”11 not the very notion of Tree of Life itself, arising from the increasing The progenote was a phase of life in which the distinction recognition of the evolutionary impact of horizontal gene trans- between genotype and phenotype had not yet emerged. Carl con- Do fer (HGT). Remarkably, in understanding these issues, the life sidered the emergence of the genotype–phenotype relationship to before LUCA problem also began to be resolved. be the primary force shaping the evolution of the cell, an argu- Horizontal gene transfer—the transmission of genes from one ment he based on the simple incisive observation that the trans- organism to another unrelated organism—was being invoked as lational apparatus is large and complex, perhaps more than any an invalidation of the concept of lineage, thus casting doubt on other cellular machinery. Carl attributed the size and complex- the idea that post-LUCA, a Tree of Life was a meaningful concept ity to the requirements for accuracy of the translational process, (for a review, see ref. 5).
Recommended publications
  • Karl Jordan: a Life in Systematics
    AN ABSTRACT OF THE DISSERTATION OF Kristin Renee Johnson for the degree of Doctor of Philosophy in History of SciencePresented on July 21, 2003. Title: Karl Jordan: A Life in Systematics Abstract approved: Paul Lawrence Farber Karl Jordan (1861-1959) was an extraordinarily productive entomologist who influenced the development of systematics, entomology, and naturalists' theoretical framework as well as their practice. He has been a figure in existing accounts of the naturalist tradition between 1890 and 1940 that have defended the relative contribution of naturalists to the modem evolutionary synthesis. These accounts, while useful, have primarily examined the natural history of the period in view of how it led to developments in the 193 Os and 40s, removing pre-Synthesis naturalists like Jordan from their research programs, institutional contexts, and disciplinary homes, for the sake of synthesis narratives. This dissertation redresses this picture by examining a naturalist, who, although often cited as important in the synthesis, is more accurately viewed as a man working on the problems of an earlier period. This study examines the specific problems that concerned Jordan, as well as the dynamic institutional, international, theoretical and methodological context of entomology and natural history during his lifetime. It focuses upon how the context in which natural history has been done changed greatly during Jordan's life time, and discusses the role of these changes in both placing naturalists on the defensive among an array of new disciplines and attitudes in science, and providing them with new tools and justifications for doing natural history. One of the primary intents of this study is to demonstrate the many different motives and conditions through which naturalists came to and worked in natural history.
    [Show full text]
  • What Is a Species, and What Is Not? Ernst Mayr Philosophy of Science
    What Is a Species, and What Is Not? Ernst Mayr Philosophy of Science, Vol. 63, No. 2. (Jun., 1996), pp. 262-277. Stable URL: http://links.jstor.org/sici?sici=0031-8248%28199606%2963%3A2%3C262%3AWIASAW%3E2.0.CO%3B2-H Philosophy of Science is currently published by The University of Chicago Press. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ucpress.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Tue Aug 21 14:59:32 2007 WHAT IS A SPECIES, AND WHAT IS NOT?" ERNST MAYRT I analyze a number of widespread misconceptions concerning species.
    [Show full text]
  • Chapter 1 Chapter 2 Chapter 3
    Notes CHAPTER 1 1. Herbert Westren Turnbull, The Great Mathematicians in The World of Mathematics. James R. Newrnan, ed. New York: Sirnon & Schuster, 1956. 2. Will Durant, The Story of Philosophy. New York: Sirnon & Schuster, 1961, p. 41. 3. lbid., p. 44. 4. G. E. L. Owen, "Aristotle," Dictionary of Scientific Biography. New York: Char1es Scribner's Sons, Vol. 1, 1970, p. 250. 5. Durant, op. cit., p. 44. 6. Owen, op. cit., p. 251. 7. Durant, op. cit., p. 53. CHAPTER 2 1. Williarn H. Stahl, '' Aristarchus of Samos,'' Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 1, 1970, p. 246. 2. Jbid., p. 247. 3. G. J. Toorner, "Ptolerny," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 11, 1975, p. 187. CHAPTER 3 1. Stephen F. Mason, A History of the Sciences. New York: Abelard-Schurnan Ltd., 1962, p. 127. 2. Edward Rosen, "Nicolaus Copernicus," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 3, 1971, pp. 401-402. 3. Mason, op. cit., p. 128. 4. Rosen, op. cit., p. 403. 391 392 NOTES 5. David Pingree, "Tycho Brahe," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 2, 1970, p. 401. 6. lbid.. p. 402. 7. Jbid., pp. 402-403. 8. lbid., p. 413. 9. Owen Gingerich, "Johannes Kepler," Dictionary of Scientific Biography. New York: Charles Scribner's Sons, Vol. 7, 1970, p. 289. 10. lbid.• p. 290. 11. Mason, op. cit., p. 135. 12. Jbid .. p. 136. 13. Gingerich, op. cit., p. 305. CHAPTER 4 1.
    [Show full text]
  • Philosophy of Biology Versus Philosophy of Physics'
    R. c(/ Fundamenta Scienliae, Vol. 3, No. 1, pp. 55-78, 1982 © 1982 Pergamon Press Imprime en France Philosophy of Biology versus Philosophy of Physics' WILLIAM W. BARTLEY, 111* Not long ago I witnessed a remarkable interchange between two great thinkers: the cosmo- logist and physicist John Archibald Wheeler, and the philosopher of science Sir Karl Popper. Popper and Wheeler were meeting with a dozen other philosophers and scientists at Schloss Kronberg, the Victorian castle built by Kaiser Wilhelm's mother outside of Frankfurt during the closing years of the nineteenth century. The group was gathered in the late afternoon around an enormous round table in the Grand Salon, and Wheeler had just delivered a bril- liant exposition of his own interpretation of quantum mechanics. Popper turned to him and quietly said: "What you say is contradicted by biology ". It was a dramatic moment A hush fell around the table. The physicists present appeared to be taken aback. And then the biolo- gists, including Sir Peter Medawar, the Nobel prizewinner who was chairing the meeting, broke into a delighted applause. It was as if someone had finally said what they had all been thinking2. No one present meant to suggest that the reported facts of physics and biology were in conflict - nor even that physical and biological theoiy were in conflict. Rather, it was meant that fhe interpretation (or philosophy) of physics was incompatible with fact and interpreta- tion in the life sciences. Behind Popper's remark, unstated on this occasion yetlending it bite, was yet another contention: that the interpretation of physics that had been presented did not apply to physics either.
    [Show full text]
  • How a Generation Was Misled About Natural Selection
    Gabora, L. (2011). How a Generation Was Misled About Natural Selection. Psychology Today (online). http://www.psychologytoday.com/blog/mindbloggling How a Generation Was Misled About Natural Selection Subtitle: Natural Selection: How it Works, How it Applies to Culture Liane Gabora Department of Psychology, University of British Columbia Okanagan Campus, Arts Building, 333 University Way, Kelowna BC, V1V 1V7, CANADA For 'Mindbloggling' column, Psychology Today Abstract This article explains how natural selection works and how it has been inappropriately applied to the description of cultural change. It proposes an alternative evolutionary explanation for cultural evolution that describes it in terms of communal exchange. When science is explained to the general public it is necessary to simplify. Inevitably details get left out, details that some consider important, and the ‘sexy' parts of the story get played up. But so long as the overall picture is more or less right, scientists generally appreciate the efforts of popular science writers, the press, and in some cases their fellow colleagues, to make their work accessible to a wider audience. The public in turn benefits from the opportunity to see the world they live in from a new perspective, and consider questions they might not otherwise have considered. Sometimes, though, the baby gets thrown out with the bathwater. The ‘babyless' version of a scientific story may be a hit nonetheless. Unless one has advanced training in a highly specialized area of a scientific discipline, it may appear to make sense. In most cases, the 1 misrepresentation of science doesn't make much difference; life goes on as normal.
    [Show full text]
  • Lynn Margulis and Dorion Sagan, Acquiring Genomes
    CONTENTS Forewordby Ernst Mayr XI xv CaJ1•1thtO JOOJ by lfnn M.,1i1ll1111J l>nrlun S1tc11n Preface Pulttl1h,Jby 1111k Rook,, PART ONE. THE EVOLUTIONARY IMPERATIVE AM,mber of rh, l'wucu1Book, Group. 1 Darwinism Not Neodarwinism 3 Allrlahu re1crved. Printed in the United States of America. No part of this book may be 2 Darwin's Dilemma 25 rc~r<>ducedin any manner whatsoever without written permission except in the case of 3 Relative Individuality 51 briefquotations embodied in critical articles and reviews.For information, address Basic 67 Books, 387 Park Avenue South, New York NY 10016-8810. 4 The Natural Selector 5 Principles of Evolutionary Novelty 71 Library of Congress Cataloging-in-Publication Data PART TWO. THE MICROBE IN EVOLUTION Margulis, Lynn, 1938- Acquiring genomes : a theory of the origins of species / Lynn Margulis and Dorion 6 Species and Cells 81 Sagan.-lst ed. 7 History of the Heritable 89 p. cm. Includes bibiliographical references PART THREE. PLANETARY LEGACY ISBN 0-465-04391-7 (hardcover) 1. Species. 2. Symbiogenesis. 3. Evolution (Biology). 4. Sagan Dorion 1959- II 123 Title. ' ' . 8 Gaian Planet 139 QH380 .M37 2002 9 Eukaryosis in an Anoxic World 576.8'6-dc21 2002001521 PART FOUR. CONSORTIA 165 Text design by TrishWilkimon 10 Seaworthy Alliances Set in 12.5-point AGaramond by The Perseus Books Group 11 Plant Proclivities 185 12 Chromosome Dance: The Fission Theory 191 FIRST EDITION 13 Darwin Revisited: 02 03 04 05 / IO 9 8 7 6 5 4 3 2 1 Spedes in the Evolutionary Dialogue 201 ..•,, •HI /,,/tit,,,,,,/ 1//11,11,111,,,,,
    [Show full text]
  • Ernst Mayr's Interactions with JBS Haldane
    HPLS DOI 10.1007/s40656-016-0098-x NOTES AND COMMENTS Ernst Mayr’s interactions with J. B. S. Haldane 1 2,3 Veena Rao • Vidyanand Nanjundiah Received: 30 October 2015 / Accepted: 8 February 2016 Ó Springer International Publishing AG 2016 Abstract Ernst Mayr and J. B. S. Haldane, major contributors to the ‘modern synthesis’ in evolutionary theory, set an example of how scientific disagreements need not come in the way of friendship. After getting acquainted, they kept dis- cussing issues related to evolution until just before Haldane’s death in 1964. Their dissimilar backgrounds meant that they adopted different approaches. A major disagreement emerged regarding the right way to look at the role of genes in evolution. Mayr felt that the elementary models of population genetics were oversimplifications and therefore inadequate for representing evolutionary pro- cesses, though he was not consistent in his attitude. Haldane, on the other hand, maintained that the mathematical treatment of simple models had an important role to play. The Mayr-Haldane interactions illustrate divergent viewpoints concerning the utility of mathematics in biology. Keywords Population genetics Á Beanbag dispute Á Evolution Á Mathematical models & Veena Rao [email protected] Vidyanand Nanjundiah [email protected] 1 National Institute of Advanced Studies, Bangalore 560012, India 2 Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Marais Street, Stellenbosch 7600, South Africa 3 Centre for Human Genetics, Electronic City (Phase I), Bangalore 560100, India 123 V. Rao, V. Nanjundiah 1 Introduction Population genetics is a mathematical approach that aims at explaining biological evolution in terms of how evolutionary forces affect the distribution of genes and genotypes in populations.
    [Show full text]
  • Concepts and Methods
    CONCEPTS AND PART METHODS I THE CONCEPT CHAPTER OF MICROBIAL SPECIES 1 INTRODUCTION Chapter contents What distinguishes microbiology from other disciplines of biology? This question no longer has a straightforward answer that can satisfy all biologists. The traditional answer focused Old and new challenges for assessing on the extremely small size of organisms under investigation; however, this leaves little room microbial diversity for distinction on the basis of taxonomy because practically all organisms have a microscopic Traditional concepts of species stage during their life cycles. Some organisms that are physiologically closely related to large Typological species concept macroscopic organisms spend their entire life span as microscopic organisms. Nevertheless, Morphological species concept physical size remains a dominant conceptual framework for most practicing microbiologists, Biological species concept and most of the discussion in this book is presented from this perspective. Other responses Evolutionary species concept have focused on unicellularity (as opposed to multicellularity) as the defining characteristic Other concepts of microorganisms, however, viruses are acellular, and many investigators have argued that the so-called unicellular stage of bacteria, for example, is not a naturally occurring phe- Species concepts for prokaryotes nomenon. Some investigators have advanced the cellularity argument by invoking differen- tiation as the separating principle, but many “unicellular” organisms also go through Theoretical mechanisms
    [Show full text]
  • Biographical Memoirs
    NATIONAL ACADEMY OF SCIENCES G EORGE GAYLORD S IMPSON 1902—1984 A Biographical Memoir by E V E R E T T O LSON Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1991 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. GEORGE GAYLORD SIMPSON June 16, 1902-October 6, 1984 BY EVERETT C. OLSON1 EORGE GAYLORD SIMPSON'S passing in 1984 brought Gan era in vertebrate paleontology to an end. Along with Edward Drinker Cope, Henry Fairfield Osborn, and Alfred Sherwood Romer, Simpson ranks among the great paleon- tologists of our time. The intellects of several generations of students were shaped by either following or rejecting his ele- gant analyses and interpretations of evolution and the history of life. Although the "Simpson Era" had its roots in the 1920s and 1930s, it seemed to emerge fully formed and without precedent with the publication of Tempo and Mode in Evolution (delayed until 1944 by World War II), following belatedly on the heels of Quantitative Zoology (1939), which Simpson had written with Anne Roe. Both books left researchers in a va- riety of fields pondering and often revising, conceptual bases 1 Although I had earlier written a memorial to George Gaylord Simpson for the Geological Society of America, I agreed to prepare a more intimate and more per- sonal essay for the National Academy of Sciences Biographical Memoirs. The more objective accounts of his life include the essay mentioned above (Memorial Series, Geological Society of America, 1985) and the essay by Bobb Schaeffer and Malcolm McKenna (News Bulletin, Society of Vertebrate Paleontology, no.
    [Show full text]
  • 'Nothing Make Sense Except in the Light of Evolution'?
    To appear in Acta Biotheoretica 1 In what sense does ‘nothing make sense except in the light of 1 evolution’? Paul E. Griffiths Department of Philosophy, University of Sydney, NSW 2006, Australia & ESRC Centre for Genomics in Society, University of Exeter, Exeter, EX4 4PJ, UK [email protected] Abstract Dobzhansky argued that biology only makes sense if life on earth has a shared history. But his dictum is often reinterpreted to mean that biology only makes sense in the light of adaptation. Some philosophers of science have argued in this spirit that all work in ‘proximal’ biosciences such as anatomy, physiology and molecular biology must be framed, at least implicitly, by the selection histories of the organisms under study. Others have denied this and have proposed non-evolutionary ways in which biologists can frame these investigations. This paper argues that an evolutionary perspective is indeed necessary, but that it must be a forward-looking perspective informed by a general understanding of the evolutionary process, not a backward-looking perspective informed by the specific evolutionary history of the species being studied. Interestingly, it turns out that there are aspects of proximal biology that even a creationist cannot study except in the light of a theory of their effect on future evolution. 1. Dobzhansky’s dictum Classic scientific articles are often more cited than read. ‘Nothing in biology makes sense except in the light of evolution’ by the Ukranian-American geneticist Theodosius Dobzhansky (1973) is no exception. It argues that the observed diversity of life and its distribution on the earth’s surface make no sense when viewed as the result of the special creation of each species by God.
    [Show full text]
  • University of Cincinnati
    UNIVERSITY OF CINCINNATI Date: 14-May-2010 I, Lindsay R Craig , hereby submit this original work as part of the requirements for the degree of: Doctor of Philosophy in Philosophy It is entitled: Scientific Change in Evolutionary Biology: Evo-Devo and the Developmental Synthesis Student Signature: Lindsay R Craig This work and its defense approved by: Committee Chair: Robert Skipper, PhD Robert Skipper, PhD 6/6/2010 690 Scientific Change in Evolutionary Biology: Evo-Devo and the Developmental Synthesis A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Philosophy of the College of Arts and Sciences by Lindsay R. Craig B.A. Butler University M.A. University of Cincinnati May 2010 Advisory Committee: Associate Professor Robert Skipper, Jr., Chair/Advisor Professor Emeritus Richard M. Burian Assistant Professor Koffi N. Maglo Professor Robert C. Richardson Abstract Although the current episode of scientific change in the study of evolution, the Developmental Synthesis as I will call it, has attracted the attention of several philosophers, historians, and biologists, important questions regarding the motivation for and structure of the new synthesis are currently unanswered. The thesis of this dissertation is that the Developmental Synthesis is a two-phase multi-field integration motivated by the lack of adequate causal explanations of the origin of novel morphologies and the evolution of developmental processes over geologic time. I argue that the first phase of the Developmental Synthesis is a partial explanatory reconciliation. More specifically, I contend that the rise of the developmental gene concept and the discovery of highly conserved developmental genes helped demonstrate the overlap in explanatory interests between the developmental sciences and other scientific fields within the domain of evolutionary biology.
    [Show full text]
  • Evolution Viewed from Physics, Physiology and Medicine Denis Noble Interface Focus 2017 7 20160159; DOI: 10.1098/Rsfs.2016.0159
    Evolution viewed from physics, physiology and medicine Denis Noble Department of Physiology, Anatomy & Genetics University of Oxford Parks Road, Oxford OX1 3PT [email protected] Review article: Evolution viewed from physics, physiology and medicine Denis Noble Interface Focus 2017 7 20160159; DOI: 10.1098/rsfs.2016.0159. Published 18 August 2017 http://rsfs.royalsocietypublishing.org/content/7/5/20160159 Abstract Stochasticity is harnessed by organisms to generate functionality. Randomness does not, therefore, necessarily imply lack of function or ‘blind chance’ at higher levels. In this respect, biology must resemble physics in generating order from disorder. This fact is contrary to Schrödinger’s idea of biology generating phenotypic order from molecular level order, which inspired the Central Dogma of Molecular Biology. The order originates at higher levels, which constrain the components at lower levels. We now know that this includes the genome, which is controlled by patterns of transcription factors and various epigenetic and reorganisation mechanisms. These processes can occur in response to environmental stress so that the genome becomes “a highly sensitive organ of the cell” (McClintock). Organisms have evolved to be able to cope with many variations at the molecular level. Organisms also make use of physical processes in evolution and development when it is possible to arrive at functional development without the necessity to store all information in DNA sequences. This view of development and evolution differs radically from that of Neo-Darwinism with its emphasis on blind chance as the origin of variation. Blind chance is necessary but the origin of functional variation is not at the molecular level.
    [Show full text]