How Important Are Structural Variants for Speciation?

Total Page:16

File Type:pdf, Size:1020Kb

How Important Are Structural Variants for Speciation? G C A T T A C G G C A T genes Review How Important Are Structural Variants for Speciation? Linyi Zhang 1,*, Radka Reifová 2, Zuzana Halenková 2 and Zachariah Gompert 1 1 Department of Biology, Utah State University, Logan, UT 84322, USA; [email protected] 2 Department of Zoology, Faculty of Science, Charles University, 12800 Prague, Czech Republic; [email protected] (R.R.); [email protected] (Z.H.) * Correspondence: [email protected] Abstract: Understanding the genetic basis of reproductive isolation is a central issue in the study of speciation. Structural variants (SVs); that is, structural changes in DNA, including inversions, translocations, insertions, deletions, and duplications, are common in a broad range of organisms and have been hypothesized to play a central role in speciation. Recent advances in molecular and statistical methods have identified structural variants, especially inversions, underlying ecologically important traits; thus, suggesting these mutations contribute to adaptation. However, the contribu- tion of structural variants to reproductive isolation between species—and the underlying mechanism by which structural variants most often contribute to speciation—remain unclear. Here, we review (i) different mechanisms by which structural variants can generate or maintain reproductive isolation; (ii) patterns expected with these different mechanisms; and (iii) relevant empirical examples of each. We also summarize the available sequencing and bioinformatic methods to detect structural variants. Lastly, we suggest empirical approaches and new research directions to help obtain a more complete assessment of the role of structural variants in speciation. Citation: Zhang, L.; Reifová, R.; Keywords: reproductive isolation; hybridization; suppressed recombination Halenková, Z.; Gompert, Z. How Important Are Structural Variants for Speciation? Genes 2021, 12, 1084. https://doi.org/10.3390/ genes12071084 1. Introduction Identifying the genetic basis of reproductive isolation (RI) is important for understand- Academic Editors: Arcadi Navarro ing the speciation process, including how speciation begins and is completed [1–4]. Various Cuartiellas, Karel Janko and genetic changes can contribute to RI and promote speciation. In some cases, mutations Peter Mikulíˇcek in a few genes are known to contribute substantially to RI, suggesting a relatively simple genetic basis for speciation. Such speciation genes have been linked to hybrid inviability Received: 15 June 2021 in Drosophila (Hmr)[5], melanoma formation in Xiphophorus (Xmrk-2)[6], and changes in Accepted: 14 July 2021 the mating system in Solanum spp. (STYLE2.1) (reviewed by [7–9]). However, speciation Published: 17 July 2021 often involves many genes [10], and details of the genetic architecture of RI, including the types of mutations involved, could be critical for understanding the speciation process. Publisher’s Note: MDPI stays neutral The theory suggests that structural variants (see Figure1A); that is, a type of mutation with regard to jurisdictional claims in that cause a change in chromosomal location (translocation), orientation (inversion), or published maps and institutional affil- copy numbers (deletion, insertion and duplication) might be particularly important for iations. speciation, especially in preventing species from merging upon secondary contact [11–13]. Here, we review this body of theory about the ways in which structural variants can contribute to RI, evaluate evidence in support of or against this theory, and discuss future avenues of productive research on the role of structural variants in speciation, with an Copyright: © 2021 by the authors. emphasis on advances made possible by new molecular and statistical tools for detecting Licensee MDPI, Basel, Switzerland. and analyzing structural mutations. Although SVs are highly variable in size, we focus on This article is an open access article SVs greater than 50 bp in length [11]. distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Genes 2021, 12, 1084. https://doi.org/10.3390/genes12071084 https://www.mdpi.com/journal/genes Genes 2021, 12, 1084 2 of 17 Genes 2021, 12, x FOR PEER REVIEW 2 of 18 Figure 1. (A) Types of structural variants. (B) Underdominance of heterozygotes due to structural variants. Red Xs in (1) Figure 1. (A) Types of structural variants. (B) Underdominance of heterozygotes due to structural variants. Red Xs in and (2) suggested meiotic pairing failure, while red Xs in (3) indicate reduced fitness of the individual. (C) Structural C (1)variants and (2) suppress suggested recombination meiotic pairing as a mechanism failure, while to prevent red Xs sp inecies (3) indicate from hybridizing. reduced fitness Allele ofa and the b individual. would cause ( hybrid) Structural variantsinviability/sterility suppress recombination when present in as th ae mechanism same genetic to background. prevent species Without from an hybridizing. inversion, recombination Allele a and bcan would break cause up the hybrid inviability/sterilitylink between alleles when at locus present A and in locus the same B and genetic then selection background. can purge Without alleles an a inversion, and b (see recombination [14]). Red crosses can indicate break up the linkreduced between fitness alleles of the at individual. locus A and (D) locusGene duplications B and then selectionas a mechanism can purge for DMI alleles (Dobzhansky–Muller a and b (see [14]). Incompatibilities). Red crosses indicate reducedThe 0 stands fitness for of loss the of individual. function at (theD) Genelocus. duplicationsRed crosses indicate as a mechanism reduced fitness for DMI of the (Dobzhansky–Muller individual. Incompatibilities). The 0 stands for loss of function at the locus. Red crosses indicate reduced fitness of the individual. The study of structural variants dates back to the early 1920s, when Alfred Sturtevant identifiedThe studyan inversion of structural while variantscomparing dates the backchromosomes to the early of 1920s,D. simulans when with Alfred its sister Sturtevant speciesidentified D. melanogaster an inversion [15]. while Since comparing then, large the structural chromosomes variants ofhaveD. been simulans identifiedwith itsus- sister ingspecies cytologicD. melanogaster techniques in[15 various]. Since species, then, including large structural Drosophila variants [16], grasshoppers have been identified[17], and corn [18]. Due to the prevalence of structural variants in Drosophila and their easy using cytologic techniques in various species, including Drosophila [16], grasshoppers [17], identification with cytogenetic techniques, structural variants were among the first ge- and corn [18]. Due to the prevalence of structural variants in Drosophila and their easy netic markers used in population genetics [19]. Biologists in the 1930s–1960s hypothesized identification with cytogenetic techniques, structural variants were among the first genetic that these chromosome-level changes drove speciation based on the observation that markers used in population genetics [19]. Biologists in the 1930s–1960s hypothesized that many different structural variants were fixed between closely related species [17,20,21]. However,these chromosome-level with the advent of changes other molecular drove speciation markers (first based allozymes, on the observation and then later that mi- many crosatellitesdifferent structural and single variants nucleotide were polymorphisms fixed between closely[SNPs]) related and an species increased [17 focus,20,21 on]. However, the rolewith of the changes advent in of gene other expression molecular versus markers protein (first sequences allozymes, of individual and then latergenes, microsatellites the em- phasisand single on structural nucleotide variants polymorphisms decreased some [SNPs]) from and the an 1970 increased to the 1990s focus [1]. on the role of changes in geneRecent expression advances versus in molecular protein and sequences statistical of individualmethods have genes, brought the emphasis a renaissance on structural in thevariants study decreased of structural some variants, from theas these 1970 totechniques the 1990s can [1]. readily identify and genotype structuralRecent variants advances [22–27]. in molecular Recent evidence and statistical shows that methods large-scale have broughtstructural a renaissancevariants, es- in the peciallystudy of inversions, structural variants,are associated as these with techniques adaptive cantrait readily variation: identify including and genotype phenology structural in Rhagoletisvariants [fruit22–27 flies]. Recent[3], mimetic evidence wing showspatterns that in Heliconius large-scale butterflies structural [28,29], variants, cryptic especially col- orationinversions, in Timema are associated stick insects with [30], adaptive the repeated trait variation: evolution includingof distinct phenologymarine and in fresh-Rhagoletis waterfruit fliesecotypes [3], mimetic of three-spined wing patterns sticklebacks in Heliconius [31], andbutterflies ecotypes of [28 Helianthus,29], cryptic sunflowers coloration in [26].Timema However,stick insects in most [30 cases,], the it repeated is unclear evolution whether of the distinct SVs associated marine and with freshwater local adapta- ecotypes tionof three-spined represent balanced sticklebacks polymorphisms [31], and ecotypesversus the of earlyHelianthus stages ofsunflowers speciation
Recommended publications
  • Random Mutation and Natural Selection in Competitive and Non-Competitive Environments
    ISSN: 2574-1241 Volume 5- Issue 4: 2018 DOI: 10.26717/BJSTR.2018.09.001751 Alan Kleinman. Biomed J Sci & Tech Res Mini Review Open Access Random Mutation and Natural Selection In Competitive and Non-Competitive Environments Alan Kleinman* Department of Medicine, USA Received: : September 10, 2018; Published: September 18, 2018 *Corresponding author: Alan Kleinman, PO BOX 1240, Coarsegold, CA 93614, USA Abstract Random mutation and natural selection occur in a variety of different environments. Three of the most important factors which govern the rate at which this phenomenon occurs is whether there is competition between the different variants for the resources of the environment or not whether the replicator can do recombination and whether the intensity of selection has an impact on the evolutionary trajectory. Two different experimental models of random mutation and natural selection are analyzed to determine the impact of competition on random mutation and natural selection. One experiment places the different variants in competition for the resources of the environment while the lineages are attempting to evolve to the selection pressure while the other experiment allows the lineages to grow without intense competition for the resources of the environment while the different lineages are attempting to evolve to the selection pressure. The mathematics which governs either experiment is discussed, and the results correlated to the medical problem of the evolution of drug resistance. Introduction important experiments testing the RMNS phenomenon. And how Random mutation and natural selection (RMNS) are a does recombination alter the evolutionary trajectory to a given phenomenon which works to defeat the treatments physicians use selection pressure? for infectious diseases and cancers.
    [Show full text]
  • Plant Evolution an Introduction to the History of Life
    Plant Evolution An Introduction to the History of Life KARL J. NIKLAS The University of Chicago Press Chicago and London CONTENTS Preface vii Introduction 1 1 Origins and Early Events 29 2 The Invasion of Land and Air 93 3 Population Genetics, Adaptation, and Evolution 153 4 Development and Evolution 217 5 Speciation and Microevolution 271 6 Macroevolution 325 7 The Evolution of Multicellularity 377 8 Biophysics and Evolution 431 9 Ecology and Evolution 483 Glossary 537 Index 547 v Introduction The unpredictable and the predetermined unfold together to make everything the way it is. It’s how nature creates itself, on every scale, the snowflake and the snowstorm. — TOM STOPPARD, Arcadia, Act 1, Scene 4 (1993) Much has been written about evolution from the perspective of the history and biology of animals, but significantly less has been writ- ten about the evolutionary biology of plants. Zoocentricism in the biological literature is understandable to some extent because we are after all animals and not plants and because our self- interest is not entirely egotistical, since no biologist can deny the fact that animals have played significant and important roles as the actors on the stage of evolution come and go. The nearly romantic fascination with di- nosaurs and what caused their extinction is understandable, even though we should be equally fascinated with the monarchs of the Carboniferous, the tree lycopods and calamites, and with what caused their extinction (fig. 0.1). Yet, it must be understood that plants are as fascinating as animals, and that they are just as important to the study of biology in general and to understanding evolutionary theory in particular.
    [Show full text]
  • Local Drift Load and the Heterosis of Interconnected Populations
    Heredity 84 (2000) 452±457 Received 5 November 1999, accepted 9 December 1999 Local drift load and the heterosis of interconnected populations MICHAEL C. WHITLOCK*, PAÈ R K. INGVARSSON & TODD HATFIELD Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4 We use Wright's distribution of equilibrium allele frequency to demonstrate that hybrids between populations interconnected by low to moderate levels of migration can have large positive heterosis, especially if the populations are small in size. Bene®cial alleles neither ®x in all populations nor equilibrate at the same frequency. Instead, populations reach a mutation±selection±drift±migration balance with sucient among-population variance that some partially recessive, deleterious mutations can be masked upon crossbreeding. This heterosis is greatest with intermediate mutation rates, intermediate selection coecients, low migration rates and recessive alleles. Hybrid vigour should not be taken as evidence for the complete isolation of populations. Moreover, we show that heterosis in crosses between populations has a dierent genetic basis than inbreeding depression within populations and is much more likely to result from alleles of intermediate eect. Keywords: deleterious mutations, heterosis, hybrid ®tness, inbreeding depression, migration, population structure. Introduction genetic drift, producing ospring with higher ®tness than the parents (see recent reviews on inbreeding in Crow (1948) listed several reasons why crosses between Thornhill, 1993). Decades of work in agricultural individuals from dierent lines or populations might genetics con®rms this pattern: when divergent lines are have increased ®tness relative to more `pure-bred' crossed their F1 ospring often perform substantially 1individuals, so-called `hybrid vigour'. Crow commented better than the average of the parents (Falconer, 1981; on many possible mechanisms behind hybrid vigour, Mather & Jinks, 1982).
    [Show full text]
  • Adaptive Tuning of Mutation Rates Allows Fast Response to Lethal Stress In
    Manuscript 1 Adaptive tuning of mutation rates allows fast response to lethal stress in 2 Escherichia coli 3 4 a a a a a,b 5 Toon Swings , Bram Van den Bergh , Sander Wuyts , Eline Oeyen , Karin Voordeckers , Kevin J. a,b a,c a a,* 6 Verstrepen , Maarten Fauvart , Natalie Verstraeten , Jan Michiels 7 8 a 9 Centre of Microbial and Plant Genetics, KU Leuven - University of Leuven, Kasteelpark Arenberg 20, 10 3001 Leuven, Belgium b 11 VIB Laboratory for Genetics and Genomics, Vlaams Instituut voor Biotechnologie (VIB) Bioincubator 12 Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium c 13 Smart Systems and Emerging Technologies Unit, imec, Kapeldreef 75, 3001 Leuven, Belgium * 14 To whom correspondence should be addressed: Jan Michiels, Department of Microbial and 2 15 Molecular Systems (M S), Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, box 16 2460, 3001 Leuven, Belgium, [email protected], Tel: +32 16 32 96 84 1 Manuscript 17 Abstract 18 19 While specific mutations allow organisms to adapt to stressful environments, most changes in an 20 organism's DNA negatively impact fitness. The mutation rate is therefore strictly regulated and often 21 considered a slowly-evolving parameter. In contrast, we demonstrate an unexpected flexibility in 22 cellular mutation rates as a response to changes in selective pressure. We show that hypermutation 23 independently evolves when different Escherichia coli cultures adapt to high ethanol stress. 24 Furthermore, hypermutator states are transitory and repeatedly alternate with decreases in mutation 25 rate. Specifically, population mutation rates rise when cells experience higher stress and decline again 26 once cells are adapted.
    [Show full text]
  • Microevolution and the Genetics of Populations ​ ​ Microevolution Refers to Varieties Within a Given Type
    Chapter 8: Evolution Lesson 8.3: Microevolution and the Genetics of Populations ​ ​ Microevolution refers to varieties within a given type. Change happens within a group, but the descendant is clearly of the same type as the ancestor. This might better be called variation, or adaptation, but the changes are "horizontal" in effect, not "vertical." Such changes might be accomplished by "natural selection," in which a trait ​ ​ ​ ​ within the present variety is selected as the best for a given set of conditions, or accomplished by "artificial selection," such as when dog breeders produce a new breed of dog. Lesson Objectives ● Distinguish what is microevolution and how it affects changes in populations. ● Define gene pool, and explain how to calculate allele frequencies. ● State the Hardy-Weinberg theorem ● Identify the five forces of evolution. Vocabulary ● adaptive radiation ● gene pool ● migration ● allele frequency ● genetic drift ● mutation ● artificial selection ● Hardy-Weinberg theorem ● natural selection ● directional selection ● macroevolution ● population genetics ● disruptive selection ● microevolution ● stabilizing selection ● gene flow Introduction Darwin knew that heritable variations are needed for evolution to occur. However, he knew nothing about Mendel’s laws of genetics. Mendel’s laws were rediscovered in the early 1900s. Only then could scientists fully understand the process of evolution. Microevolution is how individual traits within a population change over time. In order for a population to change, some things must be assumed to be true. In other words, there must be some sort of process happening that causes microevolution. The five ways alleles within a population change over time are natural selection, migration (gene flow), mating, mutations, or genetic drift.
    [Show full text]
  • What Is a Species, and What Is Not? Ernst Mayr Philosophy of Science
    What Is a Species, and What Is Not? Ernst Mayr Philosophy of Science, Vol. 63, No. 2. (Jun., 1996), pp. 262-277. Stable URL: http://links.jstor.org/sici?sici=0031-8248%28199606%2963%3A2%3C262%3AWIASAW%3E2.0.CO%3B2-H Philosophy of Science is currently published by The University of Chicago Press. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/ucpress.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Tue Aug 21 14:59:32 2007 WHAT IS A SPECIES, AND WHAT IS NOT?" ERNST MAYRT I analyze a number of widespread misconceptions concerning species.
    [Show full text]
  • Systematics in Palaeontology
    Systematics in palaeontology THOMAS NEVILLE GEORGE PRESIDENT'S ANNIVERSARY ADDRESS 1969 CONTENTS Fossils in neontological categories I98 (A) Purpose and method x98 (B) Linnaean taxa . x99 (e) The biospecies . 202 (D) Morphology and evolution 205 The systematics of the lineage 205 (A) Bioserial change 205 (B) The palaeodeme in phyletic series 209 (e) Palaeodemes as facies-controlled phena 2xi Phyletic series . 2~6 (A) Rates of bioserial change 2~6 (B) Character mosaics 218 (c) Differential characters 222 Phylogenetics and systematics 224 (A) Clade and grade 224 (a) Phylogenes and cladogenes 228 (e) Phylogenetic reconstruction 23 I (D) Species and genus 235 (~) The taxonomic hierarchy 238 5 Adansonian methods 240 6 References 243 SUMMARY A 'natural' taxonomic system, inherent in evolutionary change, pulses of biased selection organisms that themselves demonstrate their pressure in expanded and restricted palaeo- 'affinity', is to be recognized perhaps only in demes, and permutations of character-expres- the biospecies. The concept of the biospecies as sion in the evolutionary plexus impose a need a comprehensive taxon is, however, only for a palaeontologically-orientated systematics notional amongst the vast majority of living under which (in evolutionary descent) could organisms, and it is not directly applicable to be subsumed the taxa of the neontological fossils. 'Natural' systems of Linnaean kind rest moment. on assumptions made a priori and are imposed Environmentally controlled morphs, bio- by the systematist. The graded time-sequence facies variants, migrating variation fields, and of the lineage and the clade introduces factors typological segregants are sources of ambiguity into a systematics that cannot well be accommo- in a distinction between phenetic and genetic dated under pre-Darwinian assumptions or be fossil grades.
    [Show full text]
  • Genetic Structure and Eco-Geographical Differentiation of Lancea Tibetica in the Qinghai-Tibetan Plateau
    G C A T T A C G G C A T genes Article Genetic Structure and Eco-Geographical Differentiation of Lancea tibetica in the Qinghai-Tibetan Plateau Xiaofeng Chi 1,2 , Faqi Zhang 1,2,* , Qingbo Gao 1,2, Rui Xing 1,2 and Shilong Chen 1,2,* 1 Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China; [email protected] (X.C.); [email protected] (Q.G.); [email protected] (R.X.) 2 Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810001, China * Correspondence: [email protected] (F.Z.); [email protected] (S.C.) Received: 14 December 2018; Accepted: 24 January 2019; Published: 29 January 2019 Abstract: The uplift of the Qinghai-Tibetan Plateau (QTP) had a profound impact on the plant speciation rate and genetic diversity. High genetic diversity ensures that species can survive and adapt in the face of geographical and environmental changes. The Tanggula Mountains, located in the central of the QTP, have unique geographical significance. The aim of this study was to investigate the effect of the Tanggula Mountains as a geographical barrier on plant genetic diversity and structure by using Lancea tibetica. A total of 456 individuals from 31 populations were analyzed using eight pairs of microsatellite makers. The total number of alleles was 55 and the number per locus ranged from 3 to 11 with an average of 6.875. The polymorphism information content (PIC) values ranged from 0.2693 to 0.7761 with an average of 0.4378 indicating that the eight microsatellite makers were efficient for distinguishing genotypes.
    [Show full text]
  • Evolution Ofsenescence Under Positive Pleiotropy?
    Why organisms age: Evolution ofsenescence under positive pleiotropy? Alexei A. Maklako, Locke Rowe and Urban Friberg Linköping University Post Print N.B.: When citing this work, cite the original article. Original Publication: Alexei A. Maklako, Locke Rowe and Urban Friberg, Why organisms age: Evolution ofsenescence under positive pleiotropy?, 2015, Bioessays, (37), 7, 802-807. http://dx.doi.org/10.1002/bies.201500025 Copyright: Wiley-VCH Verlag http://www.wiley-vch.de/publish/en/ Postprint available at: Linköping University Electronic Press http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-117545 1 Why organisms age: Evolution of senescence under positive pleiotropy? Alexei A. Maklakov1, Locke Rowe2 and Urban Friberg3,4 1Ageing Research Group, Department of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden 2 Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St., Toronto, ON, M5S 3G5, Canada 3Ageing Research Group, Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden 4IFM Biology, AVIAN Behavioural Genomics and Physiology Group, Linköping University, Linköping, Sweden Corresponding author: Maklakov, A.A. ([email protected]) Keywords: Aging, life-history evolution, mutation accumulation, positive pleiotropy senescence 2 Abstract Two classic theories maintain that aging evolves either because of alleles whose deleterious effects are confined to late life or because of alleles with broad pleiotropic effects that increase early-life fitness at the expense of late-life fitness. However, empirical studies often reveal positive pleiotropy for fitness across age classes, and recent evidence suggests that selection on early-life fitness can decelerate aging and increase lifespan, thereby casting doubt on the current consensus.
    [Show full text]
  • 3 Further Challenges
    3 Further Challenges Hamilton’s claim of the inevitability of senescence can be disproved even within his own framework. Furthermore, his framework has sev- eral limitations. In this chapter theoretical and empirical issues that weaken his approach as the main explanation for the evolution of senes- cence will be discussed. Building on Medawar [126] and Williams [212], Hamilton wrote the pioneering first chapter on the moulding of senes- cence. I draw two main conclusions. • First, Hamilton’s basic notion – that the age-pattern of mortality is an inverse function of the age-pattern of his indicator – is wrong. For both his indicator and the other indicators in Table 2.1 the relationship between the indicator and mortality is so complicated that sophisticated modeling is required. • Second, several theoretical arguments as well as the bulk of em- pirical findings suggest that mutation accumulation is of secondary importance in molding the age-trajectories of mortality across the varied species of life. The primary force appears to be adaptation, i.e. the concept that patterns of aging are a byproduct of optimiza- tion of trade-offs. Hence, deep understanding of the evolution of aging requires optimization modeling. 3.1 General Problem with All Indicators Because his indicator declines with age, Hamilton deduced that mor- tality must increase with age. The relationship between his indicator of selection pressure and the age-pattern of mortality is not a simple one, however. During development his indicator is constant, while mortality, 36 3 Further Challenges for many and perhaps all species, is falling. At post-reproductive ages his indicator is zero, while mortality, at least in humans, rises and then slowly levels off.
    [Show full text]
  • The Tempo and Mode of Evolution Reconsidered Stephen Jay Gould
    Punctuated Equilibria: The Tempo and Mode of Evolution Reconsidered Stephen Jay Gould; Niles Eldredge Paleobiology, Vol. 3, No. 2. (Spring, 1977), pp. 115-151. Stable URL: http://links.jstor.org/sici?sici=0094-8373%28197721%293%3A2%3C115%3APETTAM%3E2.0.CO%3B2-H Paleobiology is currently published by Paleontological Society. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/paleo.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Sun Aug 19 19:30:53 2007 Paleobiology.
    [Show full text]
  • Modelling the Evolution and Expected Lifetime of a Deme's Principal Gene
    Letters in Biomathematics, 2015 Vol. 2, No. 1, 13–28, http://dx.doi.org/10.1080/23737867.2015.1040859 RESEARCH ARTICLE Modelling the evolution and expected lifetime of a deme’s principal gene sequence B.K. Clark∗ Department of Physics, Illinois State University, Normal, IL, USA (Received 3 April 2015; accepted 10 April 2015) The principal gene sequence (PGS), defined as the most common gene sequence in a deme, is replaced over time because new gene sequences are created and compete with the current PGS, and a small fraction become PGSs. We have developed a set of coupled difference equations to represent an ensemble of demes, in which new gene sequences are introduced via chromosomal inversions. The set of equations used to calculate the expected lifetime of an existing PGS include inversion size and rate, recombination rate and deme size. Inversion rate and deme size effects are highlighted in this work. Our results compare favourably with a cellular automaton-based representation of a deme. Keywords: inversion; recombination; gene sequence; stasipatric speciation 1. Introduction Chromosomal inversions are examples of a broader group of chromosomal rearrangements. Stasipatric speciation is when chromosomal inversions are the primary mechanism of speciation (White, 1978); however, examples of speciation typically include chromosomal inversions only as a contributing factor. Examples are ubiquitous, including Drosophila (Ayala & Coluzzi, 2005; Noor, Grams, Bertucci, & Reiland, 2001; Ranz et al., 2007), sunflowers (Rieseberg, 2001; Rieseberg et al., 2003), and primates (Ayala & Coluzzi, 2005; Lee, Han, Meyer, Kim, & Batzer, 2008; Navarro & Barton, 2003a, 2003b), for example. Suppressed recombination of inverted chromosome segments has been investigated as a speciation mechanism (Ayala & Coluzzi, 2005; Navarro & Barton, 2003a, 2003b), and the precise role of inversions in speciation is still debated (Faria & Navarro, 2010).
    [Show full text]