Light-Aided Digestion, Grazing and Growth in Herbivorous Protists

Total Page:16

File Type:pdf, Size:1020Kb

Light-Aided Digestion, Grazing and Growth in Herbivorous Protists AQUATIC MICROBIAL ECOLOGY Vol. 23: 253–261, 2001 Published February 28 Aquat Microb Ecol Light-aided digestion, grazing and growth in herbivorous protists Suzanne L. Strom* Shannon Point Marine Center, Western Washington University, 1900 Shannon Point Rd., Anacortes, Washington 98221, USA ABSTRACT: The effect of light on digestion, grazing and growth rates of herbivorous protists was studied in a series of laboratory experiments. Relative to complete darkness, bright light (900 µmol photons m–2 s–1) resulted in a 40-fold increase in food vacuole loss rates (a proxy for digestion) in the heterotrophic dinoflagellate Noctiluca scintillans when fed phytoplankton prey. However, light had no effect on vacuole loss rate when N. scintillans was fed heterotrophic (non-pigmented) prey. Inges- tion rates of 2 ciliate species feeding on phytoplankton were enhanced by factors of 2 to 7 in moder- ate light relative to darkness, and one of the ciliates (the tintinnid Coxliella sp.) exhibited large light- dependent increases in population growth rate. At very low prey concentrations, the presence of light allowed modest growth (0.12 d–1) in populations that otherwise died rapidly (–0.46 d–1); at high prey concentrations, growth rate was nearly 20 times higher (0.36 vs 0.02 d–1) in light versus dark treat- ments. Light-aided growth at both low (subsaturating) and high (saturating) prey concentrations indi- cates that light affected both the extent of digestive breakdown and the rate of digestive throughput. A possible mechanism for the observed light enhancement is photooxidative breakdown of ingested organic matter in these nearly transparent grazers. Photooxidation may be sensitized by chlorophylls and phaeopigments in ingested cells, and should be favored by the oxygen- and lipid-rich environ- ment of phytoplankton chloroplasts. Light-aided digestion, ingestion and growth of protist grazers has important ecological implications, including the possible systematic underestimation of rates of protist herbivory and growth in laboratory experiments, which are typically conducted in dim light or darkness. In aquatic ecosystems, the spatial and temporal coupling of phytoplankton production and grazing losses by a single abiotic resource — light — should lead to reduced temporal variation in oceanic phytoplankton biomass, and may also influence prey selectivity by protists, the ocean’s dominant herbivorous grazers. KEY WORDS: Grazing · Growth · Digestion · Ciliate · Dinoflagellate · Herbivory · Light · Active oxygen Resale or republication not permitted without written consent of the publisher INTRODUCTION 1995). The variation of light with time of day, latitude, and season drives profound variation in primary The role of light in regulating phytoplankton photo- production over these temporal scales (Banse 1992, synthesis is probably one of the most intensively stud- Longhurst 1998). Light, along with nutrient supply, is ied aspects of biological oceanography. The degree of thought to constitute the principal ‘bottom-up’ control light penetration into ocean waters and its spectral on phytoplankton biomass and growth rate in the sea. composition at depth define the zone in which photo- Over the last 15 yr or so, protist grazers have been synthesis can occur (Kirk 1994) and establish a depth shown to consume a large fraction of primary produc- gradient of habitat types for different phytoplankton tion in both coastal and oceanic regions (reviewed by species (e.g. Campbell & Vaulot 1993, Moore et al. Lynn & Montagnes 1991, Sherr & Sherr 1994). Protist grazing is generally believed to be the major sink for phytoplankton production in open ocean surface *E-mail: [email protected] waters (Banse 1992). In conjunction with their impor- © Inter-Research 2001 254 Aquat Microb Ecol 23: 253–261, 2001 tance as grazers, the dissolved waste products of graz- gellate Prorocentrum micans (pigmented, UTEX1993) ing protists are the dominant source of recycled nutri- or the tintinnid Coxliella sp. (non-pigmented). For the ents in ocean surface waters (Johannes 1965, Caron & P. micans experiment, N. scintillans was fed P. micans Goldman 1990), while protist biomass in turn provides exclusively for 5 d, then concentrated using reverse fil- food for organisms at higher trophic levels (Stoecker & tration (100 µm mesh), resuspended, and reconcen- Capuzzo 1990, Gifford & Dagg 1991, Fessenden & trated to remove nearly all prey from the medium. For Cowles 1994). While considerably less well studied the Coxliella sp. experiment, N. scintillans was starved than ‘bottom-up’ processes, protist herbivory appears for 5 d, then fed the tintinnid Coxliella sp. for 2 d. Prey to be the primary ‘top-down’ control on phytoplankton was then removed from the N. scintillans culture as biomass and growth rate in the sea. above. Coxliella sp. in turn was reared on a mixture of Aside from behavioral phenomena such as diel ver- microalgae, then starved for 1 d (prey removed by tical migration and phototaxis, light is thought to affect sieving) before being added to the N. scintillans cul- rates of zooplankton activity only indirectly, through ture. Epifluorescence microscopy showed few or no the abundance and physiological condition of phyto- algal cells inside individual Coxliella sp. after 1 d with- plankton prey. Long-term study of planktonic protist out food. grazers and their interaction with phytoplankton For each experiment, Noctiluca scintillans (1 to 2 pigments suggested that light might interact with cells ml–1), preconditioned as above, were distributed the digestion of pigmented prey in these consumers, into 300 ml polycarbonate bottles filled with ciliate many of which are transparent to visible light. Such medium. Triplicate bottles were prepared for each of an interaction was intimated in the work of Klein et 3 light treatments (9 per experiment). All bottles were al. (1986), who found that light enhanced the degra- held in the same water bath (temperature 14.5°C) and dation of alloxanthin and chlorophyll c by the protist illuminated continuously from above and below for 2 d. grazer Oxyrrhis marina. The goal of this study was Irradiance levels in the bottles were 0, 450, and to determine whether light exerts a direct effect on 900 µmol photons m–2 s–1. Subsamples were removed rates of digestion, feeding and growth in heterotrophic at the beginning and end of the incubation period and protists. preserved with acid Lugol's (final conc. 1.5%). Food vacuole dimensions (length and width) were measured using a video camera mounted on an inverted micro- METHODS AND MATERIALS scope, and Bioscan Optimas image analysis software. Food vacuole volumes were calculated assuming each Protist culture. Heterotrophic protists were isolated vacuole was a prolate spheroid; there were typically from local waters (northern Puget Sound, Washington, 4 to 6 vacuoles per cell (range 2 to 32). All food vac- USA) and grown in ‘ciliate medium’ (0.2 µm filtered, uoles in the first 30 N. scintillans cells encountered autoclaved seawater with dilute trace metal addition) were measured for each sample, and an average total according to Gifford (1985). Cultures were kept in dim vacuole volume per individual was then calculated for light (<10 µmol photons m–2 s–1) on a 14:10 h light:dark the sample. cycle at either 12 or 15°C, and fed mixed diets of phyto- Food vacuole loss rates for each bottle were esti- plankton (Strom & Morello 1998). None of the protist mated from the change in average vacuole volume per isolates were mixotrophic in the sense of possessing individual between the initial and final (2 d) sampling their own chloroplasts or retaining chloroplasts from times. The rate of decrease in food vacuole volume was ingested prey. Phytoplankton were obtained from cul- considered a measure of digestion rate. Vacuole loss ture collections and grown in f/2 without added Si; rates do not account for qualitative changes in ingested they were maintained at 15°C on a 14:10 h light:dark prey, which were also observed to vary among treat- cycle (irradiance range 70 to 100 µmol photons m–2 s–1). ments, but do provide a measure of throughput rate, Light for experiments was provided by ‘cool white’ flu- analogous to a gut passage time for a metazoan grazer. orescent bulbs, and all light intensities were measured Grazing experiments. In separate experiments, the with a Biospherical Instruments QSL 100 4π PAR sen- effect of light on the ingestion rate of 2 ciliate species sor. In general, grazer species for experiments were (Coxliella sp. and Strombidinopsis acuminatum) was chosen to represent common coastal heterotrophic measured. Neither of the ciliates retains chloroplasts. protist species that are transparent and feed on phyto- Both experiments were conducted at 13°C, and bottles plankton. Phytoplankton prey were chosen to repre- were incubated on a bottle roller (3 to 4 rpm) to ensure sent a range of taxa and thus pigment composition. that non-motile fluorescently labeled algae (FLA) Digestion experiments. In separate experiments, the remained in suspension. For the tintinnid Coxliella sp., heterotrophic dinoflagellate Noctiluca scintillans (non- a stock culture was sieved to remove remnant mainte- bioluminescent strain) was fed the autotrophic dinofla- nance prey cells and individuals were resuspended in Strom: Effect of light on herbivorous protists 255 ciliate medium (100 ml in triplicate polycarbonate To initiate the experiment, Coxliella sp. cells were re- bottles) for an experimental concentration of 5 to 6 cil- moved from residual maintenance prey by sieving; cili- iates ml–1. The autotrophic dinoflagellate Gymnodin- ates were resuspended into fresh sterile filtered seawa- ium simplex (UBC119a) was then added to a concen- ter (300 ml per bottle) in 12 polycarbonate bottles (3 per tration of 560 cells ml–1. After 3 h acclimation to treatment). Emiliania huxleyi cells (concentration de- experimental irradiance levels (0 and 100 µmol pho- termined by haemocytometer count at the beginning of tons m–2 s–1), fluorescently labeled (DTAF) G. simplex each light period) were added at high or low densities were added at a tracer level of 79 cells ml–1 (14% of as described above.
Recommended publications
  • Destabilization, Stabilization, and Multiple Attractors in Saturated Mixotrophic Environments
    Downloaded from orbit.dtu.dk on: Sep 27, 2021 Destabilization, stabilization, and multiple attractors in saturated mixotrophic environments Lindstrom, Torsten; Cheng, Yuanji; Chakraborty, Subhendu Published in: SIAM Journal on Applied Mathematics Link to article, DOI: 10.1137/19M1294186 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Lindstrom, T., Cheng, Y., & Chakraborty, S. (2020). Destabilization, stabilization, and multiple attractors in saturated mixotrophic environments. SIAM Journal on Applied Mathematics, 80(6), 2338-2364. https://doi.org/10.1137/19M1294186 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. SIAM J. APPL.MATH. © 2020 Society for Industrial and Applied Mathematics Vol. 80, No. 6, pp. 2338{2364 DESTABILIZATION, STABILIZATION, AND MULTIPLE ATTRACTORS IN SATURATED MIXOTROPHIC ENVIRONMENTS\ast \" y z x TORSTEN LINDSTROM , YUANJI CHENG , AND SUBHENDU CHAKRABORTY Abstract. The ability of mixotrophs to combine phototrophy and phagotrophy is now well recognized and found to have important implications for ecosystem dynamics.
    [Show full text]
  • Bioenergetics of Mixotrophic Metabolisms: a Theoretical Analysis
    Bioenergetics of mixotrophic metabolisms: A theoretical analysis by Stephanie Slowinski A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Science in Earth Sciences (Water) Waterloo, Ontario, Canada, 2019 © Stephanie Slowinski 2019 Author’s Declaration This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Statement of Contributions This thesis consists of two co-authored chapters. I contributed to the study design and execution in chapters 2 and 3. Christina M. Smeaton (CMS) and Philippe Van Cappellen (PVC) provided guidance during the study design and analysis. I co-authored both of these chapters with CMS and PVC. iii Abstract Many biogeochemical reactions controlling surface water and groundwater quality, as well as greenhouse gas emissions and carbon turnover rates, are catalyzed by microorganisms. Representing the thermodynamic (or bioenergetic) constraints on the reduction-oxidation reactions carried out by microorganisms in the subsurface is essential to understand and predict how microbial activity affects the environmental fate and transport of chemicals. While organic compounds are often considered to be the primary electron donors (EDs) in the subsurface, many microorganisms use inorganic EDs and are capable of autotrophic carbon fixation. Furthermore, many microorganisms and communities are likely capable of mixotrophy, switching between heterotrophic and autotrophic metabolisms according to the environmental conditions and energetic substrates available to them.
    [Show full text]
  • Wrc Research Report No. 131 Effects of Feedlot Runoff
    WRC RESEARCH REPORT NO. 131 EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA BY Kenneth S. Todd, Jr. College of Veterinary Medicine Department of Veterinary Pathology and Hygiene University of Illinois Urbana, Illinois 61801 FINAL REPORT PROJECT NO. A-074-ILL This project was partially supported by the U. S. ~epartmentof the Interior in accordance with the Water Resources Research Act of 1964, P .L. 88-379, Agreement No. 14-31-0001-7030. UNIVERSITY OF ILLINOIS WATER RESOURCES CENTER 2535 Hydrosystems Laboratory Urbana, Illinois 61801 AUGUST 1977 ABSTRACT Water samples and free-living and sessite ciliated protozoa were col- lected at various distances above and below a stream that received runoff from a feedlot. No correlation was found between the species of protozoa recovered, water chemistry, location in the stream, or time of collection. Kenneth S. Todd, Jr'. EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA Final Report Project A-074-ILL, Office of Water Resources Research, Department of the Interior, August 1977, Washington, D.C., 13 p. KEYWORDS--*ciliated protozoa/feed lots runoff/*water pollution/water chemistry/Illinois/surface water INTRODUCTION The current trend for feeding livestock in the United States is toward large confinement types of operation. Most of these large commercial feedlots have some means of manure disposal and programs to prevent runoff from feed- lots from reaching streams. However, there are still large numbers of smaller feedlots, many of which do not have adequate facilities for disposal of manure or preventing runoff from reaching waterways. The production of wastes by domestic animals was often not considered in the past, but management of wastes is currently one of the largest problems facing the livestock industry.
    [Show full text]
  • Screening Snake Venoms for Toxicity to Tetrahymena Pyriformis Revealed Anti-Protozoan Activity of Cobra Cytotoxins
    toxins Article Screening Snake Venoms for Toxicity to Tetrahymena Pyriformis Revealed Anti-Protozoan Activity of Cobra Cytotoxins 1 2 3 1, Olga N. Kuleshina , Elena V. Kruykova , Elena G. Cheremnykh , Leonid V. Kozlov y, Tatyana V. Andreeva 2, Vladislav G. Starkov 2, Alexey V. Osipov 2, Rustam H. Ziganshin 2, Victor I. Tsetlin 2 and Yuri N. Utkin 2,* 1 Gabrichevsky Research Institute of Epidemiology and Microbiology, ul. Admirala Makarova 10, Moscow 125212, Russia; fi[email protected] 2 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia; [email protected] (E.V.K.); damla-sofi[email protected] (T.V.A.); [email protected] (V.G.S.); [email protected] (A.V.O.); [email protected] (R.H.Z.); [email protected] (V.I.T.) 3 Mental Health Research Centre, Kashirskoye shosse, 34, Moscow 115522, Russia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +7-495-3366522 Deceased. y Received: 10 April 2020; Accepted: 13 May 2020; Published: 15 May 2020 Abstract: Snake venoms possess lethal activities against different organisms, ranging from bacteria to higher vertebrates. Several venoms were shown to be active against protozoa, however, data about the anti-protozoan activity of cobra and viper venoms are very scarce. We tested the effects of venoms from several snake species on the ciliate Tetrahymena pyriformis. The venoms tested induced T. pyriformis immobilization, followed by death, the most pronounced effect being observed for cobra Naja sumatrana venom. The active polypeptides were isolated from this venom by a combination of gel-filtration, ion exchange and reversed-phase HPLC and analyzed by mass spectrometry.
    [Show full text]
  • Of a Eukaryote, Tetrahymena Pyriformis (Evolution of Repeated Genes/Amplification/DNA RNA Hybridization/Maero- and Micronuclei) MENG-CHAO YAO, ALAN R
    Proc. Nat. Acad. Sci. USA Vol. 71, No. 8, pp. 3082-3086, August 1974 A Small Number of Cistrons for Ribosomal RNA in the Germinal Nucleus of a Eukaryote, Tetrahymena pyriformis (evolution of repeated genes/amplification/DNA RNA hybridization/maero- and micronuclei) MENG-CHAO YAO, ALAN R. KIMMEL, AND MARTIN A. GOROVSKY Department of Biology, University of Rochester, Rochester, New York 14627 Communicated by Joseph G. Gall, May 31, 1974 ABSTRACT The percentage of DNA complementary repeated sequences (5, 8). To our knowledge, little evidence to 25S and 17S rRNA has been determined for both the exists to support any of these hypotheses. macro- and micronucleus of the ciliated protozoan, Tetra- hymena pyriformis. Saturation levels obtained by DNA - The micro- and macronuclei of the ciliated protozoan, RNA hybridization indicate that approximately 200 Tetrdhymena pyriformis are analogous to the germinal and copies of the gene for rRNA per haploid genome were somatic nuclei of higher eukaryotes. While both nuclei are present in macronuclei. The saturation level obtained derived from the same zygotic nucleus during conjugation, with DNA extracted from isolated micronuclei was only the genetic continuity of 5-10% of the level obtained with DNA from macronuclei. only the micronucleus maintains After correction for contamination of micronuclear DNA this organism. The macronucleus is responsible for virtually by DNA from macronuclei, only a few copies (possibly all of the transcriptional activity during growth and division only 1) of the gene for rRNA are estimated to be present in and is capable of dividing an indefinite number of times during micronuclei. Micronuclei are germinal nuclei.
    [Show full text]
  • An Improved Model of Carbon and Nutrient Dynamics in the Microbial Food Web in Marine Enclosures
    AQUATIC MICROBIAL ECOLOGY Vol. 14: 91-108.1998 Published January 2 Aquat Microb Ecol An improved model of carbon and nutrient dynamics in the microbial food web in marine enclosures 'Ecological Modelling Centre, Joint Department of Danish Hydraulic Institute and VKI, Agern Alle 5, DK-2970 Harsholrn, Denmark 'VKI, Agern All6 11, DK-2970 Harsholrn, Denmark 3National Environmental Research Institute, PO Box 358, Frederiksborgvej 399, DK-4000 Roskilde, Denmark ABSTRACT: A description of an improved dynamic simulation model of a marine enclosure 1s given. New features In the model are the inclusion of picoalgae and rnixotrophs; the ability of bacteria to take up dissolved inorganic nutrients directly; and, for the phytoplankton functional groups, the inclusion of luxury uptake and the decoupling of the nutrient uptake dynamics from carbon-assimilat~ondynamics. This last feature implies dynamically variable phosphorus/carbon and nitrogedcarbon ratios. The model was calibrated with experimental results from enclosure experiments carried out in Knebel Vig, a shallow microtidal land-locked fjord in Denmark, and verified with results from enclosure experi- ments in Hylsfjord, a deep and salinity-stratified Norwegian fjord. Both observations and model simu- lation~showed dominance of a microbial food web in control enclosures with low productivity. In N- and P-enriched enclosures a classical food web developed, while an intermediate system was found in N-, P- and Si-enriched enclosures. Mixotrophic flagellates were most important in the nutrient-limited control enclosures where they accounted for 49% of the pigmented biomass and about 48% of the primary production. Lumping the mixotrophs in the simulation model with either the autotrophic or the heterotrophic functional groups reduced total primary production by 74 %.
    [Show full text]
  • Interdependence Between Chloroplasts and Mitochondria in the Light and the Dark
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1366 (1998) 235^255 Review Interdependence between chloroplasts and mitochondria in the light and the dark Marcel H.N. Hoefnagel a, Owen K. Atkin b, Joseph T. Wiskich a;* a Department of Botany, University of Adelaide, Adelaide, SA 5005, Australia b Research School for Biological Sciences, Australian National University, Canberra, ACT 0200, Australia Received 21 April 1998; revised 3 June 1998; accepted 10 June 1998 ß 1998 Elsevier Science B.V. All rights reserved. Keywords: Chloroplast; Chlororespiration; Excess reductant; Metabolite exchange; Mitochondrion; Photosynthesis; Respiration Contents 1. Introduction .......................................................... 236 2. Interactions between organelles depends on metabolite exchange . .................. 236 2.1. ATP exchange ..................................................... 236 2.2. Transport of reducing equivalents across membranes . ....................... 237 2.3. Exchange of carbon compounds ....................................... 238 3. Respiration in the light . ................................................. 239 3.1. Does respiration continue in the light? . .................................. 239 3.2. Substrates for the mitochondria in the light . ............................ 240 3.3. ATP supply in the light: chloroplasts versus mitochondria . .................. 240 3.4. Adenylate control of respiration in the light .
    [Show full text]
  • Subcellular Localization of Dinoflagellate Polyketide Synthases and Fatty Acid Synthase Activity1
    J. Phycol. 49, 1118–1127 (2013) © Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A. DOI: 10.1111/jpy.12120 SUBCELLULAR LOCALIZATION OF DINOFLAGELLATE POLYKETIDE SYNTHASES AND FATTY ACID SYNTHASE ACTIVITY1 Frances M. Van Dolah,2 Mackenzie L. Zippay Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina 29412, USA Marine Biomedical and Environmental Sciences, Medical University of South Carolina, Charleston, South Carolina 29412, USA Laura Pezzolesi Interdepartmental Research Centre for Environmental Science (CIRSA), University of Bologna, Ravenna 48123, Italy Kathleen S. Rein Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA Jillian G. Johnson Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina 29412, USA Marine Biomedical and Environmental Sciences, Medical University of South Carolina, Charleston, South Carolina 29412, USA Jeanine S. Morey, Zhihong Wang Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina 29412, USA and Rossella Pistocchi Interdepartmental Research Centre for Environmental Science (CIRSA), University of Bologna, Ravenna 48123, Italy Dinoflagellates are prolific producers of polyketide related to fatty acid synthases (FAS), we sought to secondary metabolites. Dinoflagellate polyketide determine if fatty acid biosynthesis colocalizes with synthases (PKSs) have sequence similarity to Type I either chloroplast or cytosolic PKSs. [3H]acetate PKSs, megasynthases that encode all catalytic domains labeling showed fatty acids are synthesized in the on a single polypeptide. However, in dinoflagellate cytosol, with little incorporation in chloroplasts, PKSs identified to date, each catalytic domain resides consistent with a Type I FAS system.
    [Show full text]
  • Calvin Cycle E
    Photosynthesis Photosynthesis is the process by which plants use sunlight (light energy) to produce glucose from carbon dioxide and water, with oxygen as a byproduct. This process occurs LIGHT STROMA in the chloroplasts in a plant cell and has DEPENDENT Cytochrome b f Reduced REACTIONS two stages – the light-dependent reactions 6 NADP NADP + 1. Light activation of and the light-independent reactions. H ATP synthase photocentres It all starts with the sunlight hitting e- PSII 2. Photolysis of water - + the fi rst photocentre (PSII). (P68 e PSI H e- (P 3. Electron transport e- ATP e- + 4. Pumping H into the + O H thylakoid space ADP + Pi H O + + H 5. Synthesis of ATP H 6. Reduction of NADP Photolysis THYLAKOID SPACE CO OXYGEN Thylakoid membrane GLUCOSE REDUCED NADP & ATP NADP REDUCED Glucose is used in respiration for energy. Glucose is converted to: 1. Cellulose for cell walls 2. Sucrose for transport 3. Starch for storage ADP + Pi & NADP + Pi ADP CHLOROPLAST CALVIN C LIGHT CO YCL E ( Six INDEPENDENT RuBisCO tu rn enzyme BON FIXAT s CAR ION to REACTIONS p ro d u c Calvin cycle e RuBP GP g l 1. Carbon fi xation u Ribulose bisphosphate Glycerate phosphate c o s e ) 2. Reduction P B 3. Regeneration of RuBP u R ATP F ADP + Pi O N ADP + Pi O R I ATP E T D A R Reduced NADP U E C N T E I O G NADP N E R GALP Glyceraldehyde phosphate Hexose Glucose LAMELLA THYLAKOIDS STROMA KEY TO SYMBOLS INNER CHLOROPLAST MEMBRANE Carbon atom: Electron transport: e- OUTER CHLOROPLAST MEMBRANE H+ movement: GLOSSARY ATP synthase: An enzyme that catalyses the Ferrodoxin: An electron carrier sitting just Light-dependent reactions: The fi rst stage Photosystem I (PSI): The second photosystem Plastoquinone: A molecule that is reduced Regeneration of RuBP: The third stage of Stroma: The aqueous solution that fi lls the synthesis of ATP from ADP and inorganic outside the thylakoid in the chloroplast of photosynthesis.
    [Show full text]
  • Bisphosphate Carboxylase/Oxygenase Activation in Tomato (Lycopersicon Esculentum Mil!.)
    Plant Physiol. (1995) 107: 585-591 The Effects of Chilling in the Light on Ribulose-1,5- Bisphosphate Carboxylase/Oxygenase Activation in Tomato (Lycopersicon esculentum Mil!.) George T. Byrd’, Donald R. Ort, and William 1. Ogren* Photosynthesis Research Unit, Agricultura1 Research Service, United States Department of Agriculture (G.T.B., D.R.O., W.L.O.), and Department of Plant Biology, University of lllinois at Urbana-Champaign (D.R.O., W.L.O.), Urbana, lllinois 61801 reduced leve1 of RuBP. The bisphosphatases are activated Photosynthesis rate, ribulose-l,5-bisphosphate carboxylase/oxy- by the Fd/thioredoxin system (Buchanan, 1980), which genase (Rubisco) activation state, and ribulose bisphosphate con- may be affected by the light-chilling regime. Thus, in to- centration were reduced after exposing tomato (Lycopersicon es- mato, chilling in the light appears to limit the capacity of culentum Mill.) plants to light at 4°C for 6 h. Analysis of lysed and leaves to regenerate RuBP, the substrate in photosynthetic reconstituted chloroplasts showed that activity of the thylakoid CO, fixation catalyzed by the enzyme Rubisco (EC membrane was inhibited and that Rubisco, Rubisco activase, and 4.1.1.39). other soluble factors were not affected. Leaf photosynthesis rates Rubisco activity also has been reported to be directly and the ability of chilled thylakoid membranes to promote Rubisco impaired during chilling in the light in short-term (Sas- activation recovered after 24 h at 25°C. Thylakoid membranes from control tomato plants were as effective as spinach thylakoids in senrath et al., 1990) and long-term (Briiggemann et al., activating spinach Rubisco in the presence of spinach Rubisco ac- 1992) experiments.
    [Show full text]
  • Ultrastructure of Endosymbiotic Chlorella in a Vorticella
    DNA CONTENTOF DOUBLETParamecium 207 scott DM, ed., Methods in Cell Physiology, Academic Press, New cleocytoplasmic ratio requirements for the initiation of DNA repli- York, 4, 241-339. cation and fission in Tetrahymena. Cell Tissue Kinet. 9, 110-30. 27. ~ 1975. The Paramecium aurelia complex of 14 30. Yao MC, Gorovsky MA. 1974. Comparison of the sequence sibling species. Trans. Am. Micrnsc. SOL. 94, 155-78. of macro- and micronuclear DNA of Tetrahymena pyriformis. 28. Woodward J, Gelher G, Swift H. 1966. Nucleoprotein Chromosomn 48, 1-18. changes during the mitotic cycle in Paramecium aurelia. Exp. Cell 31. Zech L. 1966. Dry weight and DNA content in sisters Res. 23, 258-64. of Bursaria truncatella during the interdivision interval. Exp. Cell 29. Worthington DH, Salamone M, Nachtwey DS. 1975. Nu- Res. 44, 599-605. J. Protorool. 25(2) 1978 pp. 207-210 0 1978 by the Socitky of Protozoologists Ultrastructure of Endosymbiotic Chlorella in a Vorticella LINDA E. GRAHAM* and JAMES M. GRAHAM? “Department of Botany, University of Witconsin, Madison, Wisconsin 53706 and +Division of Biological Sciences, University of Micliigan, Ann Arbor, Michigan 48109 SYNOPSIS. Observations were made on the ultrastructure of a species of Vorticella containing endosymbiotic Chlorella The Vorticella, which were collected from nature, bore conspicuous tubercles of irregular size and distribution on the pel- licle. Each endosymbiotic algal cell was located in a separate vacuole and possessed a cell wall and cup-shaped chloroplast \\ith a large pyrenoid. The pyrenoid was bisected by thylakoids and surrounded by starch plates. No dividing or degenerat- ing algal cells were observed.
    [Show full text]
  • MIXOTROPHY in FRESHWATER FOOD WEBS a Dissertation
    MIXOTROPHY IN FRESHWATER FOOD WEBS A Dissertation Submitted to the Temple University Graduate Board In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY by Sarah B. DeVaul May 2016 Examining Committee Members: Robert W. Sanders, Advisory Chair, Biology Erik E. Cordes, Biology Amy Freestone, Biology Dale Holen, External Member, Penn State Worthington Scranton © Copyright 2016 by Sarah B. DeVaul All Rights Reserved ii ABSTRACT Environmental heterogeneity in both space and time has significant repercussions for community structure and ecosystem processes. Dimictic lakes provide examples of vertically structured ecosystems that oscillate between stable and mixed thermal layers on a seasonal basis. Vertical patterns in abiotic conditions vary during both states, but with differing degrees of variation. For example, during summer thermal stratification there is high spatial heterogeneity in temperature, nutrients, dissolved oxygen and photosynthetically active radiation. The breakdown of stratification and subsequent mixing of the water column in fall greatly reduces the stability of the water column to a vertical gradient in light. Nutrients and biomass that were otherwise constrained to the depths are also suspended, leading to a boom in productivity. Freshwater lakes are teeming with microbial diversity that responds to the dynamic environment in a seemingly predictable manner. Although such patterns have been well studied for nanoplanktonic phototrophic and heterotrophic populations, less work has been done to integrate the influence of mixotrophic nutrition to the protistan assemblage. Phagotrophy by phytoplankton increases the complexity of nutrient and energy flow due to their dual functioning as producers and consumers. The role of mixotrophs in freshwater planktonic communities also varies depending on the relative balance between taxon-specific utilization of carbon and energy sources that ranges widely between phototrophy and heterotrophy.
    [Show full text]