Unicellular Eukaryotes As Models in Cell and Molecular Biology

Total Page:16

File Type:pdf, Size:1020Kb

Unicellular Eukaryotes As Models in Cell and Molecular Biology Unicellular Eukaryotes as Models in Cell and Molecular Biology: Critical Appraisal of Their Past and Future Value Martin Simon*, Helmut Plattner†,1 *Molecular Cellular Dynamics, Centre of Human and Molecular Biology, Saarland University, Saarbru¨cken, Germany †Faculty of Biology, University of Konstanz, Konstanz, Germany 1Corresponding author: e-mail address: [email protected] Contents 1. Introduction 142 2. What is Special About Unicellular Models 143 2.1 Unicellular models 144 2.2 Unicellular models: Examples, pitfals, and perspectives 148 3. Unicellular Models for Organelle Biogenesis 151 3.1 Biogenesis of mitochondria in yeast 152 3.2 Biogenesis of secretory organelles, cilia, and flagella 152 3.3 Phagocytotic pathway 153 3.4 Qualifying for model system by precise timing 155 3.5 Free-living forms as models for pathogenic forms 157 4. Models for Epigenetic Phenomena 158 4.1 Epigenetic phenomena from molecules to ultrastructure 161 4.2 Models for RNA-mediated epigenetic phenomena 163 4.3 Excision of IESs during macronuclear development: scnRNA model 170 4.4 Maternal RNA controlling DNA copy number 172 4.5 Maternal RNA matrices providing template for DNA unscrambling in Oxytricha 172 4.6 Impact of epigenetic studies with unicellular models 173 5. Exploring Potential of New Model Systems 175 5.1 Human diseases as new models 175 5.2 Protozoan models: Once highly qualified Now disqualified? 178 5.3 Boon and bane of genome size: Small versus large 179 5.4 Birth and death of nuclei, rather than of cells 183 5.5 Special aspects 184 6. Epilogue 185 Acknowledgment 186 References 186 141 142 Abstract Unicellular eukaryotes have been appreciated as model systems for the analysis of cru- cial questions in cell and molecular biology. This includes Dictyostelium (chemotaxis, amoeboid movement, phagocytosis), Tetrahymena (telomere structure, telomerase function), Paramecium (variant surface antigens, exocytosis, phagocytosis cycle) or both ciliates (ciliary beat regulation, surface pattern formation), Chlamydomonas (flagellar biogenesis and beat), and yeast (S. cerevisiae) for innumerable aspects. Nowadays many problems may be tackled with “higher” eukaryotic/metazoan cells for which full geno- mic information as well as domain databases, etc., were available long before protozoa. Established molecular tools, commercial antibodies, and established pharmacology are additional advantages available for higher eukaryotic cells. Moreover, an increasing number of inherited genetic disturbances in humans have become elucidated and can serve as new models. Among lower eukaryotes, yeast will remain a standard model because of its peculiarities, including its reduced genome and availability in the haploid form. But do protists still have a future as models? This touches not only the basic under- standing of biology but also practical aspects of research, such as fund raising. As we try to scrutinize, due to specific advantages some protozoa should and will remain favor- able models for analyzing novel genes or specific aspects of cell structure and function. Outstanding examples are epigenetic phenomena a field of rising interest. 1. INTRODUCTION Eukaryotic cells are complex four dimensional systems, like a 4D puz zle, with molecular components varying in space and with time, for exam ple, after stimulation or during development. Furthermore, elements have to be routinely exchanged, for instance for repair work, as it occurs during molecular and organellar autophagy. All parts have to fit together at all times, not only in the individual organelles but in the cell as a whole and, in mul ticellular organisms, in the context of tissues. This makes it difficult to dissect individual aspects of cell structure, biogenesis, and function. Therefore, yeast and protists (protozoa and some algae), both endowed with some simple traits, have been appreciated as model systems over decades. In Section 2, we explore the possibility of using unicellular eukaryotes as models in the past and possibly also in the future. Mitochondria, Golgi apparatus, secretory organelles, cilia, and flagella look essentially the same throughout eukaryotes, from protists to mammals. Even plant cells follow essentially the same construction principle, disre garding the fact that, on the one hand, they harbor additional elements 143 (chloroplasts and their derivatives, glyoxysomes, etc.) and, on the other hand, they lack some components. Differences concern the lack of a centri ole, for instance in Angiosperms (flowering plants) and some Gymnosperms (Gnetales, Coniferae) (Hodges et al., 2012). Also some of the unicellular model organisms can live without a centriole (Bettencourt Dias, 2013; see Section 3), although centriole equivalents, the ciliary basal bodies, are present in unsurpassed numbers. This is an example of how unicellular organisms with particular traits can be favorable objects for the analysis of specific questions. In this context, the essential question we may ask a model system is which components are essential for centriole and which ones for basal body function. Taking advantage of specific traits of unicellular organisms has intensely facilitated the elaboration of new concepts in cell biology, as we will testify in this review. This view is not shared by all. For instance, Munro stated in a recent “highly accessed” article: “It is unlikely that the planet’s tax payers will be willing to pay for enough cell biologists to investigate every last intriguing invertebrate or bizarre bikont, and thus future work is likely to focus on particular key cell types, especially those found in tax payers themselves”(Munro, 2013). Does that mean the end of work with model cells, with any model? We here try to inves tigate the potential advantages and disadvantages of unicellular models with out talking up or down their advantages and their disadvantages. We are encouraged by a recent comment on “the genome’s rising stars,” where the perspectives of epigenetic research are appreciated (Maxmen, 2013): “Some experiments also call for experience with model systems...” As we outline in Section 4, epigenetics is one of the topics which promises a future par ticularly for protistan model systems. In Section 5, we try to give nonprotist models a fair chance. Finally, in Section 6, we try to reach an objective judg ment about the future of unicellular models. 2. WHAT IS SPECIAL ABOUT UNICELLULAR MODELS Nature provides a plethora of cells with special traits that appear aber rant when compared with “normal” cells, particularly when these are inte grated in a tissue such as liver. Consider, for instance, the example of the centriole in Section 1. However, deviations from what we consider “nor mal” from the mammalian point of view can not only fulfill special require ments in a “lower” eukaryote growing in the wild but may also offer to the 144 experimentalist a handle on specific problems which otherwise would be difficult to address. 2.1. Unicellular models To serve as a model, easy cultivation and established genomics are important prerequisites. In this section, we present lower eukaryotes preferably used as unicellular models, together with their systematic/evolutionary positions, and the type of problems for which they were or are still considered as models. 2.1.1 Dictyostelium (Amoebozoa, Mycetozoa) Dictyostelium (Amoebozoa, Mycetozoa) has served as a model for many aspects (Mu¨ller Taubenberger et al., 2013) including amoeboid movement and phagocytosis (Cosson and Soldati, 2008) as well as for cell adhesion (Annesley and Fisher, 2009; Bagorda and Parent, 2008; Harloff et al., 1989). Note that cell adhesion molecules were detected in Dictyostelium (Beug et al., 1973; Mu¨ller and Gerisch, 1978). They are of particular impor tance for this organism whose amoeba stage is capable of developmentally controlled cell aggregation (King et al., 2003; Williams et al., 2005). Haploid Dictyostelium cells greatly facilitate genetics studies. 2.1.2 Paramecium and Tetrahymena (Alveolata, Ciliata) Paramecium and Tetrahymena (Alveolata, Ciliata), mainly P. tetraurelia and T. thermophila, have served as models for the function (Sleigh, 1969) and bio genesis (Smith et al., 2005) of cilia. In ciliates, metachronal waves of ciliary beat (Fig. 3.1) are easy to study. Because of the surface mucus layer on mam malian ciliated epithelia it was impossible to analyze their metachronal beat which in ciliates is clearly imposed by hydrodynamic coupling. Only recently has this phenomenon been formally described on a more general basis (Elgeti and Gompper, 2013). The regular construction of the cortex of Tetrahymena and Paramecium (Fig. 3.2) was helpful in analyzing pattern formation, with epigenetic effects involved (Aufderheide et al., 1980; Frankel, 1973). This regularity also greatly facilitated the analysis of exocy tosis and endocytosis (Section 3.4). Study of phagocytosis under precisely timed conditions was another aspect (Allen and Fok, 2000). In Paramecium, synchronous exocytosis of a large number of dense core secretory organ elles, the trichocysts, can be achieved (Plattner et al., 1984), because a cell contains up to 1000 trichocysts ready for immediate release upon 145 Figure 3.1 Scanning electron micrograph of the surface of a Paramecium cell. Cilia are arranged in waves due to metachronal beat activity. Already early on, the great number of cilia and easy accessibility of Paramecium to electrophysiology have made this cell an invaluable model. Magnification 1100Â. Unpublished
Recommended publications
  • Basal Body Structure and Composition in the Apicomplexans Toxoplasma and Plasmodium Maria E
    Francia et al. Cilia (2016) 5:3 DOI 10.1186/s13630-016-0025-5 Cilia REVIEW Open Access Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium Maria E. Francia1* , Jean‑Francois Dubremetz2 and Naomi S. Morrissette3 Abstract The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, includ‑ ing the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9 2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the rela‑ tionship between asexual+ stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian api‑ complexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure.
    [Show full text]
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Gaits in Paramecium Escape
    Transitions between three swimming gaits in Paramecium escape Amandine Hamela, Cathy Fischb, Laurent Combettesc,d, Pascale Dupuis-Williamsb,e, and Charles N. Barouda,1 aLadHyX and Department of Mechanics, Ecole Polytechnique, Centre National de la Recherche Scientifique, 91128 Palaiseau cedex, France; bActions Thématiques Incitatives de Genopole® Centriole and Associated Pathologies, Institut National de la Santé et de la Recherche Médicale Unité-Université d’Evry-Val-d’Essonne Unité U829, Université Evry-Val d'Essonne, Bâtiment Maupertuis, Rue du Père André Jarlan, 91025 Evry, France; cInstitut National de la Santé et de la Recherche Médicale Unité UMRS-757, Bâtiment 443, 91405 Orsay, France; dSignalisation Calcique et Interactions Cellulaires dans le Foie, Université de Paris-Sud, Bâtiment 443, 91405 Orsay, France; and eEcole Supérieure de Physique et de Chimie Industrielles ParisTech, 10 rue Vauquelin, 75005 Paris, France Edited* by Harry L. Swinney, University of Texas at Austin, Austin, TX, and approved March 8, 2011 (received for review November 10, 2010) Paramecium and other protists are able to swim at velocities reach- or in the switching between the different swimming behaviors ing several times their body size per second by beating their cilia (11, 13–17). in an organized fashion. The cilia beat in an asymmetric stroke, Below we show that Paramecium may also use an alternative to which breaks the time reversal symmetry of small scale flows. Here cilia to propel itself away from danger, which is based on tricho- we show that Paramecium uses three different swimming gaits to cyst extrusion. Trichocysts are exocytotic organelles, which are escape from an aggression, applied in the form of a focused laser regularly distributed along the plasma membrane in Paramecium heating.
    [Show full text]
  • Wrc Research Report No. 131 Effects of Feedlot Runoff
    WRC RESEARCH REPORT NO. 131 EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA BY Kenneth S. Todd, Jr. College of Veterinary Medicine Department of Veterinary Pathology and Hygiene University of Illinois Urbana, Illinois 61801 FINAL REPORT PROJECT NO. A-074-ILL This project was partially supported by the U. S. ~epartmentof the Interior in accordance with the Water Resources Research Act of 1964, P .L. 88-379, Agreement No. 14-31-0001-7030. UNIVERSITY OF ILLINOIS WATER RESOURCES CENTER 2535 Hydrosystems Laboratory Urbana, Illinois 61801 AUGUST 1977 ABSTRACT Water samples and free-living and sessite ciliated protozoa were col- lected at various distances above and below a stream that received runoff from a feedlot. No correlation was found between the species of protozoa recovered, water chemistry, location in the stream, or time of collection. Kenneth S. Todd, Jr'. EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA Final Report Project A-074-ILL, Office of Water Resources Research, Department of the Interior, August 1977, Washington, D.C., 13 p. KEYWORDS--*ciliated protozoa/feed lots runoff/*water pollution/water chemistry/Illinois/surface water INTRODUCTION The current trend for feeding livestock in the United States is toward large confinement types of operation. Most of these large commercial feedlots have some means of manure disposal and programs to prevent runoff from feed- lots from reaching streams. However, there are still large numbers of smaller feedlots, many of which do not have adequate facilities for disposal of manure or preventing runoff from reaching waterways. The production of wastes by domestic animals was often not considered in the past, but management of wastes is currently one of the largest problems facing the livestock industry.
    [Show full text]
  • Screening Snake Venoms for Toxicity to Tetrahymena Pyriformis Revealed Anti-Protozoan Activity of Cobra Cytotoxins
    toxins Article Screening Snake Venoms for Toxicity to Tetrahymena Pyriformis Revealed Anti-Protozoan Activity of Cobra Cytotoxins 1 2 3 1, Olga N. Kuleshina , Elena V. Kruykova , Elena G. Cheremnykh , Leonid V. Kozlov y, Tatyana V. Andreeva 2, Vladislav G. Starkov 2, Alexey V. Osipov 2, Rustam H. Ziganshin 2, Victor I. Tsetlin 2 and Yuri N. Utkin 2,* 1 Gabrichevsky Research Institute of Epidemiology and Microbiology, ul. Admirala Makarova 10, Moscow 125212, Russia; fi[email protected] 2 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia; [email protected] (E.V.K.); damla-sofi[email protected] (T.V.A.); [email protected] (V.G.S.); [email protected] (A.V.O.); [email protected] (R.H.Z.); [email protected] (V.I.T.) 3 Mental Health Research Centre, Kashirskoye shosse, 34, Moscow 115522, Russia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +7-495-3366522 Deceased. y Received: 10 April 2020; Accepted: 13 May 2020; Published: 15 May 2020 Abstract: Snake venoms possess lethal activities against different organisms, ranging from bacteria to higher vertebrates. Several venoms were shown to be active against protozoa, however, data about the anti-protozoan activity of cobra and viper venoms are very scarce. We tested the effects of venoms from several snake species on the ciliate Tetrahymena pyriformis. The venoms tested induced T. pyriformis immobilization, followed by death, the most pronounced effect being observed for cobra Naja sumatrana venom. The active polypeptides were isolated from this venom by a combination of gel-filtration, ion exchange and reversed-phase HPLC and analyzed by mass spectrometry.
    [Show full text]
  • CH28 PROTISTS.Pptx
    9/29/14 Biosc 41 Announcements 9/29 Review: History of Life v Quick review followed by lecture quiz (history & v How long ago is Earth thought to have formed? phylogeny) v What is thought to have been the first genetic material? v Lecture: Protists v Are we tetrapods? v Lab: Protozoa (animal-like protists) v Most atmospheric oxygen comes from photosynthesis v Lab exam 1 is Wed! (does not cover today’s lab) § Since many of the first organisms were photosynthetic (i.e. cyanobacteria), a LOT of excess oxygen accumulated (O2 revolution) § Some organisms adapted to use it (aerobic respiration) Review: History of Life Review: Phylogeny v Which organelles are thought to have originated as v Homology is similarity due to shared ancestry endosymbionts? v Analogy is similarity due to convergent evolution v During what event did fossils resembling modern taxa suddenly appear en masse? v A valid clade is monophyletic, meaning it consists of the ancestor taxon and all its descendants v How many mass extinctions seem to have occurred during v A paraphyletic grouping consists of an ancestral species and Earth’s history? Describe one? some, but not all, of the descendants v When is adaptive radiation likely to occur? v A polyphyletic grouping includes distantly related species but does not include their most recent common ancestor v Maximum parsimony assumes the tree requiring the fewest evolutionary events is most likely Quiz 3 (History and Phylogeny) BIOSC 041 1. How long ago is Earth thought to have formed? 2. Why might many organisms have evolved to use aerobic respiration? PROTISTS! Reference: Chapter 28 3.
    [Show full text]
  • Of a Eukaryote, Tetrahymena Pyriformis (Evolution of Repeated Genes/Amplification/DNA RNA Hybridization/Maero- and Micronuclei) MENG-CHAO YAO, ALAN R
    Proc. Nat. Acad. Sci. USA Vol. 71, No. 8, pp. 3082-3086, August 1974 A Small Number of Cistrons for Ribosomal RNA in the Germinal Nucleus of a Eukaryote, Tetrahymena pyriformis (evolution of repeated genes/amplification/DNA RNA hybridization/maero- and micronuclei) MENG-CHAO YAO, ALAN R. KIMMEL, AND MARTIN A. GOROVSKY Department of Biology, University of Rochester, Rochester, New York 14627 Communicated by Joseph G. Gall, May 31, 1974 ABSTRACT The percentage of DNA complementary repeated sequences (5, 8). To our knowledge, little evidence to 25S and 17S rRNA has been determined for both the exists to support any of these hypotheses. macro- and micronucleus of the ciliated protozoan, Tetra- hymena pyriformis. Saturation levels obtained by DNA - The micro- and macronuclei of the ciliated protozoan, RNA hybridization indicate that approximately 200 Tetrdhymena pyriformis are analogous to the germinal and copies of the gene for rRNA per haploid genome were somatic nuclei of higher eukaryotes. While both nuclei are present in macronuclei. The saturation level obtained derived from the same zygotic nucleus during conjugation, with DNA extracted from isolated micronuclei was only the genetic continuity of 5-10% of the level obtained with DNA from macronuclei. only the micronucleus maintains After correction for contamination of micronuclear DNA this organism. The macronucleus is responsible for virtually by DNA from macronuclei, only a few copies (possibly all of the transcriptional activity during growth and division only 1) of the gene for rRNA are estimated to be present in and is capable of dividing an indefinite number of times during micronuclei. Micronuclei are germinal nuclei.
    [Show full text]
  • Soft Inheritance: Challenging the Modern Synthesis
    Genetics and Molecular Biology, 31, 2, 389-395 (2008) Copyright © 2008, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Review Article Soft inheritance: Challenging the Modern Synthesis Eva Jablonka1 and Marion J. Lamb2 1The Cohn Institute for the History and Philosophy of Science and Ideas, Tel-Aviv University, Tel-Aviv, Israel. 211 Fernwood, Clarence Road, London, United Kingdom. Abstract This paper presents some of the recent challenges to the Modern Synthesis of evolutionary theory, which has domi- nated evolutionary thinking for the last sixty years. The focus of the paper is the challenge of soft inheritance - the idea that variations that arise during development can be inherited. There is ample evidence showing that phenotypic variations that are independent of variations in DNA sequence, and targeted DNA changes that are guided by epigenetic control systems, are important sources of hereditary variation, and hence can contribute to evolutionary changes. Furthermore, under certain conditions, the mechanisms underlying epigenetic inheritance can also lead to saltational changes that reorganize the epigenome. These discoveries are clearly incompatible with the tenets of the Modern Synthesis, which denied any significant role for Lamarckian and saltational processes. In view of the data that support soft inheritance, as well as other challenges to the Modern Synthesis, it is concluded that that synthesis no longer offers a satisfactory theoretical framework for evolutionary biology. Key words: epigenetic inheritance, hereditary variation, Lamarckism, macroevolution, microevolution. Received: March 18, 2008; Accepted: March 19, 2008. Introduction 1. Heredity occurs through the transmission of germ- There are winds of change in evolutionary biology, line genes.
    [Show full text]
  • The Yeast Sup35nm Domain Propagates As a Prion in Mammalian Cells Carmen Krammera, Dmitry Kryndushkinb, Michael H
    The yeast Sup35NM domain propagates as a prion in mammalian cells Carmen Krammera, Dmitry Kryndushkinb, Michael H. Suhrec, Elisabeth Kremmerd, Andreas Hofmanne, Alexander Pfeifere, Thomas Scheibelc, Reed B. Wicknerb, Hermann M. Scha¨ tzla, and Ina Vorberga,1 aInstitute of Virology, Technische Universita¨t Mu¨ nchen, Trogerstrasse 30, 81675 Munich, Germany; bLaboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; cLehrstuhl fu¨r Biomaterialien, Geba¨ude FAN/D, Universita¨t Bayreuth, Universita¨tsstrasse 30, 95447 Bayreuth, Germany; dInstitute of Molecular Immunology, Helmholtz Zentrum Mu¨nchen, Marchioninistrasse 25, 81377 Munich, Germany; and eInstitute of Pharmacology and Toxicology, Universita¨t Bonn, Reuterstrasse 2b, 53113 Bonn, Germany Contributed by Reed B. Wickner, November 13, 2008 (sent for review October 13, 2008) Prions are infectious, self-propagating amyloid-like protein aggre- for Sup35p aggregation (12). Stable maintenance of yeast prions gates of mammals and fungi. We have studied aggregation propen- relies on the activity of a variety of molecular chaperones (13). sities of a yeast prion domain in cell culture to gain insights into Deletion of the heat shock protein Hsp104 cures all known naturally general mechanisms of prion replication in mammalian cells. Here, we occurring yeast prions, strongly emphasizing its crucial role in prion report the artificial transmission of a yeast prion across a phylogenetic biogenesis (14). In concert with other heat shock factors, Hsp104 is kingdom. HA epitope-tagged yeast Sup35p prion domain NM was capable of disaggregating aberrant protein aggregates, and thereby stably expressed in murine neuroblastoma cells. Although cytosoli- likely generates prion seeds that can be passed on to daughter cells cally expressed NM-HA remained soluble, addition of fibrils of bac- (5, 15).
    [Show full text]
  • Cross.Corrected.Pdf (1.066Mb)
    iii ANALYSIS OF THE HERITABILITY OF CORTICAL INVERSIONS THROUGH SEXUAL EXCHANGE IN Paramecium tetraurelia A Senior Scholars Thesis by REBECCA KANG CROSS Submitted to Honors and Undergraduate Research Texas A&M University in partial fulfillment of the requirements for the designation as UNDERGRADUATE RESEARCH SCHOLAR May 2012 Major: Molecular and Cell Biology iii ANALYSIS OF THE HERITABILITY OF CORTICAL INVERSIONS THROUGH SEXUAL EXCHANGE IN Paramecium tetraurelia A Senior Scholars Thesis by REBECCA KANG CROSS Submitted to Honors and Undergraduate Research Texas A&M University in partial fulfillment of the requirements for the designation as UNDERGRADUATE RESEARCH SCHOLAR Approved by: Research Advisor: Karl Aufderheide Associate Drirector, Honors and Undergraduate Research: Duncan MacKenzie May 2012 Major: Molecular and Cell Biology iii ABSTRACT Analysis of the Heritability of Cortical Inversions through Sexual Exchange in Paramecium tetraurelia. (May 2012) Rebecca Kang Cross Department of Biology Texas A&M University Research Advisor: Dr. Karl Aufderheide Department of Biology Paramecium tetraurelia is a large, single-celled, ciliated protist. Short cell cycle times (4.5-5 hours) and manipulable Mendelian genetics have made it an attractive research species, particularly for developmental genetics investigations. A genetic cross between cells with inverted ciliary rows and cells with normal cortexes was performed to determine the heritability of cortical inversions through sexual exchange in P. tetraurelia. A nuclear gene, nd6, which confers trichocyst nondischarge, was used in the cross to demonstrate a Mendelian inheritance pattern. Quantitative scoring of cortical phenotypes, including the location and size of the inversion, and the total number of ciliary rows was performed for the P1, F1, and F2 generations.
    [Show full text]
  • Subcellular Localization of Dinoflagellate Polyketide Synthases and Fatty Acid Synthase Activity1
    J. Phycol. 49, 1118–1127 (2013) © Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A. DOI: 10.1111/jpy.12120 SUBCELLULAR LOCALIZATION OF DINOFLAGELLATE POLYKETIDE SYNTHASES AND FATTY ACID SYNTHASE ACTIVITY1 Frances M. Van Dolah,2 Mackenzie L. Zippay Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina 29412, USA Marine Biomedical and Environmental Sciences, Medical University of South Carolina, Charleston, South Carolina 29412, USA Laura Pezzolesi Interdepartmental Research Centre for Environmental Science (CIRSA), University of Bologna, Ravenna 48123, Italy Kathleen S. Rein Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA Jillian G. Johnson Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina 29412, USA Marine Biomedical and Environmental Sciences, Medical University of South Carolina, Charleston, South Carolina 29412, USA Jeanine S. Morey, Zhihong Wang Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina 29412, USA and Rossella Pistocchi Interdepartmental Research Centre for Environmental Science (CIRSA), University of Bologna, Ravenna 48123, Italy Dinoflagellates are prolific producers of polyketide related to fatty acid synthases (FAS), we sought to secondary metabolites. Dinoflagellate polyketide determine if fatty acid biosynthesis colocalizes with synthases (PKSs) have sequence similarity to Type I either chloroplast or cytosolic PKSs. [3H]acetate PKSs, megasynthases that encode all catalytic domains labeling showed fatty acids are synthesized in the on a single polypeptide. However, in dinoflagellate cytosol, with little incorporation in chloroplasts, PKSs identified to date, each catalytic domain resides consistent with a Type I FAS system.
    [Show full text]
  • Diversity of Life Paramecia—Paramecium Caudatum
    Used in: Diversity of Life Paramecia—Paramecium caudatum Background. Paramecia are single-celled ciliated protists found in freshwater ponds. They feed on microorganisms such as bacteria, algae, and yeasts, sweeping the food down the oral groove, into the mouth. Their movement is characterized by whiplike movement of the cilia, small hair-like projections that are arranged along the outside of their bodies. They spiral through the water until running into an obstacle, at which point the cilia "reverse course" so the paramecium can swim backwards and try again. Paramecia have two nuclei and reproduce asexually, by binary fission. A paramecium can also exchange genetic material with another via the process of conjugation. Acquiring paramecia. You can purchase Paramecium caudatum from Delta Education or a biological supply house. This species is a classic classroom organism, hardy and large enough for students to easily observe using a light microscope. Purchase enough to "spike" a sample of water that students will use for preparing slides of elodea leaves and to use in Part 2 of Investigation 3 when students will focus specifically on study of the organism itself. What to do when they arrive. Open the shipping container, remove the culture jar, and loosen the lid on the jar. Aerate the culture using the pipette supplied, bubbling air through the water. Repeat several times to oxygenate the water. After about 15 minutes, use a dropper or the pipette to obtain organisms, gathering them from around the barley (or other food source). Prepare a wet-mount slide and look for paramecia using a microscope.
    [Show full text]