Subcellular Localization of Dinoflagellate Polyketide Synthases and Fatty Acid Synthase Activity1

Total Page:16

File Type:pdf, Size:1020Kb

Subcellular Localization of Dinoflagellate Polyketide Synthases and Fatty Acid Synthase Activity1 J. Phycol. 49, 1118–1127 (2013) © Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A. DOI: 10.1111/jpy.12120 SUBCELLULAR LOCALIZATION OF DINOFLAGELLATE POLYKETIDE SYNTHASES AND FATTY ACID SYNTHASE ACTIVITY1 Frances M. Van Dolah,2 Mackenzie L. Zippay Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina 29412, USA Marine Biomedical and Environmental Sciences, Medical University of South Carolina, Charleston, South Carolina 29412, USA Laura Pezzolesi Interdepartmental Research Centre for Environmental Science (CIRSA), University of Bologna, Ravenna 48123, Italy Kathleen S. Rein Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, USA Jillian G. Johnson Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina 29412, USA Marine Biomedical and Environmental Sciences, Medical University of South Carolina, Charleston, South Carolina 29412, USA Jeanine S. Morey, Zhihong Wang Marine Biotoxins Program, NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina 29412, USA and Rossella Pistocchi Interdepartmental Research Centre for Environmental Science (CIRSA), University of Bologna, Ravenna 48123, Italy Dinoflagellates are prolific producers of polyketide related to fatty acid synthases (FAS), we sought to secondary metabolites. Dinoflagellate polyketide determine if fatty acid biosynthesis colocalizes with synthases (PKSs) have sequence similarity to Type I either chloroplast or cytosolic PKSs. [3H]acetate PKSs, megasynthases that encode all catalytic domains labeling showed fatty acids are synthesized in the on a single polypeptide. However, in dinoflagellate cytosol, with little incorporation in chloroplasts, PKSs identified to date, each catalytic domain resides consistent with a Type I FAS system. However, on a separate transcript, suggesting multiprotein although 29 sequences in a K. brevis expressed sequence tag database have similarity (BLASTx e- complexes similar to Type II PKSs. Here, we provide À evidence through coimmunoprecipitation that value <10 10) to PKSs, no transcripts for either Type I single-domain ketosynthase and ketoreductase (cytosolic) or Type II (chloroplast) FAS are present. proteins interact, suggesting a predicted multiprotein Further characterization of the FAS complexes may complex. In Karenia brevis (C.C. Davis) Gert Hansen help to elucidate the functions of the PKS enzymes & Ø. Moestrup, previously observed chloroplast identified in dinoflagellates. localization of PKSs suggested that brevetoxin Key index words: brevetoxin; Coolia monotis; dinofla- biosynthesis may take place in the chloroplast. Here, gellates; fatty acid synthase; Karenia brevis; Ostreopsis we report that PKSs are present in both cytosol and cf. ovata; palytoxin; polyketide synthase chloroplast. Furthermore, brevetoxin is not present in isolated chloroplasts, raising the question of what List of abbreviations: ACP, acyl carrier protein; chloroplast-localized PKS enzymes might be doing. AT, acyl transferase; CHAPS, 3[(3-cholamidopropyl) Antibodies to K. brevis PKSs recognize cytosolic and dimethylammonio]-propanesulfonic acid; CIB, chloroplast proteins in Ostreopsis cf. ovata Fukuyo, chloroplast isolation buffer; DAPI, 4′,6-diamidin- and Coolia monotis Meunier, which produce different 2-phenylindole; DH, dehydratase; DPM, distintegra- suites of polyketide toxins, suggesting that these PKSs tions per minute; EDTA, Ethylenediaminetetraacetic may share common pathways. Since PKSs are closely acid; EST, expressed sequence tag; FAME, fatty acid methyl ester; FAS, fatty acid synthase; IP, 1 immunoprecipitation; KR, ketoreductase; KS, ketoa- Received 22 May 2013. Accepted 25 August 2013. – 2Author for correspondence: e-mail [email protected]. cyl synthase; LC-MS, liquid chromatography mass Editorial Responsibility: C. Bowler (Associate Editor) spectrometry; LOD, limit of detection; MRM, multi- 1118 DINOFLAGELLATE POLYKETIDE SYNTHASES 1119 ple reaction monitoring; PBS, phosphate-buffered tain multiple modules on a single polypeptide, each saline; PKS, polyketide synthase; SIM, selected ion of which contains all active site domains needed to monitoring; TBS, tris-buffered saline; TBST, tris- carry out one chain extension, where each module buffered saline with tween; TE, thioesterase used only once during polyketide assembly. In con- trast, bacterial Type II PKSs are organized as com- plexes of smaller proteins where each catalytic Marine dinoflagellates produce some of the most domain is located on a separate peptide, a structure potent toxins on earth, and are responsible for similar to Type II FAS present in bacteria and chlo- more than 60,000 intoxication incidents per year on roplasts of higher plants and some algae. Type III a worldwide basis (Van Dolah 2000). The majority PKSs are small, structurally divergent proteins of dinoflagellate toxins that adversely affect human typified by plant chalcone synthases, and melanin health are polyether compounds, synthesized by producing PKSs in bacteria (Hopwood 1997, Funa complex enzymes known as PKS (Shimizu 2003). et al. 1999, Khosla et al. 1999, Gross et al. 2006). Polyketides are synthesized in a manner analogous PKSs have a patchy distribution among protist lin- to fatty acid biosynthesis through the sequential eages for which genomic sequence data are available addition of carboxylic acid building blocks: the con- (John et al. 2008): type I PKSs are present in chlo- densation reaction between carboxylic acids is per- rophytes (Chlamydomonas reinhardtii and Ostreococcus formed by a b-KS domain, whereupon the b-keto spp.) and the haptophyte Emiliania huxleyi, but are group may be fully or partially reduced by successive absent from stramenopiles (Thallassiosira pseudonan- activities of KR, DH, and enoyl reductase domains na, Phaeodactylum tricornutim, Phytophthora spp.) and following each chain elongation step (Staunton and Excavata (Trypanosoma spp., Leishmania major, Naegle- Weissman 2001). The growing carbon chain resides ria gruberi, Monosiga brevicollis). Transcriptome on a phosphopantetheine “arm” on the ACP that sequencing identified Type I PKSs in Prymnesio- “swings” it into close proximity of the catalytic sites, phytes, Chrysochromulina polylepis (John et al. 2010), while an AT brings additional “extender” carboxylic and Prymnesium parvum (Freitag et al. 2011). Among acid units to be added to the growing chain. The the closest relatives to dinoflagellates, Type I PKSs full-length polyketide is then released from the PKS are absent from the ciliate, Tetrahymena thermophile, complex by a TE, and post-PKS modifications create but are variably present in the Apicomplexa (pres- the final polyketide structure. ent in Cryptosporidium spp., Toxoplasma gondii, and PKSs are structurally and functionally similar to Eimeria tenella, but absent from Plasmodium FASs and likely evolved from an ancestral condens- falciparum and Theileria parva). The Type I PKS in ing enzyme that served to make cellular functions Cryptosporidium parvum is a 40 kb, intronless gene more efficient (Hopwood 1997). The addition of an that encodes for a single 13,000 amino acid ACP and AT produced a primitive PKS, while fur- modular protein (Zhu et al. 2002). ther additions of a reductive cycle converted the Because of the large, complex genomes of dino- primitive PKS to an FAS. The fully reductive FAS flagellates (e.g. 1 9 1011 bp in K. brevis), the avail- became fixed in primary metabolism as fatty acids ability of genomic sequences has been limited to became essential components of the cell. PKSs sub- date. In the amphidinolide producer Amphidinium,a sequently diverged, retaining variable numbers of predicted 5,625 bp PKS was found, containing sev- reductive catalytic domains to produce a variety of eral PKS domains (KS, AT, DH, KR, ACP, and TE; endproducts. Recent studies in plants suggest that Kubota et al. 2006). However, many unexplained the duplication of genes involved in primary metab- frame shifts and gaps were present in the sequence. olism is the primary source of new genetic material Similarly, Bachvaroff and Place (2008) found for secondary metabolism. Following duplication, numerous large introns within a genomic sequence even minor sequence changes in one copy can alter for a PKS KR domain protein in Amphidinium carte- substrate specificity, leading to new secondary rae that far exceeds the size of its coding region. metabolism products (Ober 2005). Since secondary Degenerate PCR identified partial sequences con- metabolites are not essential for survival, these taining type I PKS KS domains in seven dinoflagel- genes are more tolerant of mutations than their late species, including two encoded by K. brevis counterparts in primary metabolism, further pro- (Snyder et al. 2003, 2005). Using a cDNA library moting the diversity observed in secondary metabo- screening approach, Monroe and Van Dolah (2008) lites (Weng et al. 2012). identified K. brevis transcripts with sequence similar- PKSs are typically categorized as Types I–III, ity to type I PKSs. However, each transcript con- although these divisions are becoming less clear as tained only a single catalytic domain, a structure more PKSs are characterized. Type I are large pro- more similar to type II PKSs. Homologous single- teins with multiple active sites on a single polypep- domain Type I-like PKS
Recommended publications
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Wrc Research Report No. 131 Effects of Feedlot Runoff
    WRC RESEARCH REPORT NO. 131 EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA BY Kenneth S. Todd, Jr. College of Veterinary Medicine Department of Veterinary Pathology and Hygiene University of Illinois Urbana, Illinois 61801 FINAL REPORT PROJECT NO. A-074-ILL This project was partially supported by the U. S. ~epartmentof the Interior in accordance with the Water Resources Research Act of 1964, P .L. 88-379, Agreement No. 14-31-0001-7030. UNIVERSITY OF ILLINOIS WATER RESOURCES CENTER 2535 Hydrosystems Laboratory Urbana, Illinois 61801 AUGUST 1977 ABSTRACT Water samples and free-living and sessite ciliated protozoa were col- lected at various distances above and below a stream that received runoff from a feedlot. No correlation was found between the species of protozoa recovered, water chemistry, location in the stream, or time of collection. Kenneth S. Todd, Jr'. EFFECTS OF FEEDLOT RUNOFF ON FREE-LIVING AQUATIC CILIATED PROTOZOA Final Report Project A-074-ILL, Office of Water Resources Research, Department of the Interior, August 1977, Washington, D.C., 13 p. KEYWORDS--*ciliated protozoa/feed lots runoff/*water pollution/water chemistry/Illinois/surface water INTRODUCTION The current trend for feeding livestock in the United States is toward large confinement types of operation. Most of these large commercial feedlots have some means of manure disposal and programs to prevent runoff from feed- lots from reaching streams. However, there are still large numbers of smaller feedlots, many of which do not have adequate facilities for disposal of manure or preventing runoff from reaching waterways. The production of wastes by domestic animals was often not considered in the past, but management of wastes is currently one of the largest problems facing the livestock industry.
    [Show full text]
  • (Alveolata) As Inferred from Hsp90 and Actin Phylogenies1
    J. Phycol. 40, 341–350 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03129.x EARLY EVOLUTIONARY HISTORY OF DINOFLAGELLATES AND APICOMPLEXANS (ALVEOLATA) AS INFERRED FROM HSP90 AND ACTIN PHYLOGENIES1 Brian S. Leander2 and Patrick J. Keeling Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada Three extremely diverse groups of unicellular The Alveolata is one of the most biologically diverse eukaryotes comprise the Alveolata: ciliates, dino- supergroups of eukaryotic microorganisms, consisting flagellates, and apicomplexans. The vast phenotypic of ciliates, dinoflagellates, apicomplexans, and several distances between the three groups along with the minor lineages. Although molecular phylogenies un- enigmatic distribution of plastids and the economic equivocally support the monophyly of alveolates, and medical importance of several representative members of the group share only a few derived species (e.g. Plasmodium, Toxoplasma, Perkinsus, and morphological features, such as distinctive patterns of Pfiesteria) have stimulated a great deal of specula- cortical vesicles (syn. alveoli or amphiesmal vesicles) tion on the early evolutionary history of alveolates. subtending the plasma membrane and presumptive A robust phylogenetic framework for alveolate pinocytotic structures, called ‘‘micropores’’ (Cavalier- diversity will provide the context necessary for Smith 1993, Siddall et al. 1997, Patterson
    [Show full text]
  • Screening Snake Venoms for Toxicity to Tetrahymena Pyriformis Revealed Anti-Protozoan Activity of Cobra Cytotoxins
    toxins Article Screening Snake Venoms for Toxicity to Tetrahymena Pyriformis Revealed Anti-Protozoan Activity of Cobra Cytotoxins 1 2 3 1, Olga N. Kuleshina , Elena V. Kruykova , Elena G. Cheremnykh , Leonid V. Kozlov y, Tatyana V. Andreeva 2, Vladislav G. Starkov 2, Alexey V. Osipov 2, Rustam H. Ziganshin 2, Victor I. Tsetlin 2 and Yuri N. Utkin 2,* 1 Gabrichevsky Research Institute of Epidemiology and Microbiology, ul. Admirala Makarova 10, Moscow 125212, Russia; fi[email protected] 2 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia; [email protected] (E.V.K.); damla-sofi[email protected] (T.V.A.); [email protected] (V.G.S.); [email protected] (A.V.O.); [email protected] (R.H.Z.); [email protected] (V.I.T.) 3 Mental Health Research Centre, Kashirskoye shosse, 34, Moscow 115522, Russia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +7-495-3366522 Deceased. y Received: 10 April 2020; Accepted: 13 May 2020; Published: 15 May 2020 Abstract: Snake venoms possess lethal activities against different organisms, ranging from bacteria to higher vertebrates. Several venoms were shown to be active against protozoa, however, data about the anti-protozoan activity of cobra and viper venoms are very scarce. We tested the effects of venoms from several snake species on the ciliate Tetrahymena pyriformis. The venoms tested induced T. pyriformis immobilization, followed by death, the most pronounced effect being observed for cobra Naja sumatrana venom. The active polypeptides were isolated from this venom by a combination of gel-filtration, ion exchange and reversed-phase HPLC and analyzed by mass spectrometry.
    [Show full text]
  • Of a Eukaryote, Tetrahymena Pyriformis (Evolution of Repeated Genes/Amplification/DNA RNA Hybridization/Maero- and Micronuclei) MENG-CHAO YAO, ALAN R
    Proc. Nat. Acad. Sci. USA Vol. 71, No. 8, pp. 3082-3086, August 1974 A Small Number of Cistrons for Ribosomal RNA in the Germinal Nucleus of a Eukaryote, Tetrahymena pyriformis (evolution of repeated genes/amplification/DNA RNA hybridization/maero- and micronuclei) MENG-CHAO YAO, ALAN R. KIMMEL, AND MARTIN A. GOROVSKY Department of Biology, University of Rochester, Rochester, New York 14627 Communicated by Joseph G. Gall, May 31, 1974 ABSTRACT The percentage of DNA complementary repeated sequences (5, 8). To our knowledge, little evidence to 25S and 17S rRNA has been determined for both the exists to support any of these hypotheses. macro- and micronucleus of the ciliated protozoan, Tetra- hymena pyriformis. Saturation levels obtained by DNA - The micro- and macronuclei of the ciliated protozoan, RNA hybridization indicate that approximately 200 Tetrdhymena pyriformis are analogous to the germinal and copies of the gene for rRNA per haploid genome were somatic nuclei of higher eukaryotes. While both nuclei are present in macronuclei. The saturation level obtained derived from the same zygotic nucleus during conjugation, with DNA extracted from isolated micronuclei was only the genetic continuity of 5-10% of the level obtained with DNA from macronuclei. only the micronucleus maintains After correction for contamination of micronuclear DNA this organism. The macronucleus is responsible for virtually by DNA from macronuclei, only a few copies (possibly all of the transcriptional activity during growth and division only 1) of the gene for rRNA are estimated to be present in and is capable of dividing an indefinite number of times during micronuclei. Micronuclei are germinal nuclei.
    [Show full text]
  • Cyclospora Cayetanensis and Cyclosporiasis: an Update
    microorganisms Review Cyclospora cayetanensis and Cyclosporiasis: An Update Sonia Almeria 1 , Hediye N. Cinar 1 and Jitender P. Dubey 2,* 1 Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA 2 Animal Parasitic Disease Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Building 1001, BARC-East, Beltsville, MD 20705-2350, USA * Correspondence: [email protected] Received: 19 July 2019; Accepted: 2 September 2019; Published: 4 September 2019 Abstract: Cyclospora cayetanensis is a coccidian parasite of humans, with a direct fecal–oral transmission cycle. It is globally distributed and an important cause of foodborne outbreaks of enteric disease in many developed countries, mostly associated with the consumption of contaminated fresh produce. Because oocysts are excreted unsporulated and need to sporulate in the environment, direct person-to-person transmission is unlikely. Infection by C. cayetanensis is remarkably seasonal worldwide, although it varies by geographical regions. Most susceptible populations are children, foreigners, and immunocompromised patients in endemic countries, while in industrialized countries, C. cayetanensis affects people of any age. The risk of infection in developed countries is associated with travel to endemic areas and the domestic consumption of contaminated food, mainly fresh produce imported from endemic regions. Water and soil contaminated with fecal matter may act as a vehicle of transmission for C. cayetanensis infection. The disease is self-limiting in most immunocompetent patients, but it may present as a severe, protracted or chronic diarrhea in some cases, and may colonize extra-intestinal organs in immunocompromised patients.
    [Show full text]
  • Multifunctional Polyketide Synthase Genes Identified by Genomic Survey of the Symbiotic Dinoflagellate, Symbiodinium Minutum
    Beedessee et al. BMC Genomics (2015) 16:941 DOI 10.1186/s12864-015-2195-8 RESEARCH ARTICLE Open Access Multifunctional polyketide synthase genes identified by genomic survey of the symbiotic dinoflagellate, Symbiodinium minutum Girish Beedessee1*, Kanako Hisata1, Michael C. Roy2, Noriyuki Satoh1 and Eiichi Shoguchi1* Abstract Background: Dinoflagellates are unicellular marine and freshwater eukaryotes. They possess large nuclear genomes (1.5–245 gigabases) and produce structurally unique and biologically active polyketide secondary metabolites. Although polyketide biosynthesis is well studied in terrestrial and freshwater organisms, only recently have dinoflagellate polyketides been investigated. Transcriptomic analyses have characterized dinoflagellate polyketide synthase genes having single domains. The Genus Symbiodinium, with a comparatively small genome, is a group of major coral symbionts, and the S. minutum nuclear genome has been decoded. Results: The present survey investigated the assembled S. minutum genome and identified 25 candidate polyketide synthase (PKS) genes that encode proteins with mono- and multifunctional domains. Predicted proteins retain functionally important amino acids in the catalytic ketosynthase (KS) domain. Molecular phylogenetic analyses of KS domains form a clade in which S. minutum domains cluster within the protist Type I PKS clade with those of other dinoflagellates and other eukaryotes. Single-domain PKS genes are likely expanded in dinoflagellate lineage. Two PKS genes of bacterial origin are found in the S. minutum genome. Interestingly, the largest enzyme is likely expressed as a hybrid non-ribosomal peptide synthetase-polyketide synthase (NRPS-PKS) assembly of 10,601 amino acids, containing NRPS and PKS modules and a thioesterase (TE) domain. We also found intron-rich genes with the minimal set of catalytic domains needed to produce polyketides.
    [Show full text]
  • Cynomys Gunnisoni)
    This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. Am. Midl. Nat. 145:409-413 Prevalence of Eimeria (Apicomplexa: Eimeriidae) in Reintroduced Gunnison's Prairie Dogs (Cynomys gunnisoni) ABSTRACT.Fecal samples from 54 (Sunnison's prairie dogs (Cynomysgunnisoni) from A1- buquerque, NM were analyzed for the presence of coccidia and all were positive. They were then relocated to an abandoned prairiedog town on the Sevilleta Long Term Ecological Research (LTER) site. Six Eimerzaspecies, E. callospermophili,E. cynomysis,E. pseudospermo- phili (new host record), E. spermophili,E. Iudoviciani and E. vilasi (new host record) were found in Albuquerque animals, but only 2 species, E. callospermophiliand E. vilasi were present in relocated hosts. A significant (P < 0.05) reduction was seen in the prevalence of E. vilasi (72% vs. 13%) and in the prevalence of infections (P < 0.05) with 2 or more Eimerza species (39% vs. 4%) in pre- and postrelocation animals. To assess the impact of the intro- duction of C. gunnisoni on the resident rodent population, feces were collected from 6 species of rodents. Five Eimerzaspecies, E. arizonensis (Reithrodontomys),E. chobotar7(Dipo- domys, Perognathus), E. Iiomysis (Dipodomys), E. mohavensis (Dipodomys) and E. reedi (Perog- nathus) were found. We found no evidence of coccidia transfer among introduced and res- ident rodent species. INTRODUCTION Prairie dogs are an important part of the grassland systems of North America and with 98% of their historic original population already destroyed due, in part, to habitat loss, they are prime candidates for relocation efforts (Miller et al., 1994; Long, 1998).
    [Show full text]
  • Ultrastructure of Endosymbiotic Chlorella in a Vorticella
    DNA CONTENTOF DOUBLETParamecium 207 scott DM, ed., Methods in Cell Physiology, Academic Press, New cleocytoplasmic ratio requirements for the initiation of DNA repli- York, 4, 241-339. cation and fission in Tetrahymena. Cell Tissue Kinet. 9, 110-30. 27. ~ 1975. The Paramecium aurelia complex of 14 30. Yao MC, Gorovsky MA. 1974. Comparison of the sequence sibling species. Trans. Am. Micrnsc. SOL. 94, 155-78. of macro- and micronuclear DNA of Tetrahymena pyriformis. 28. Woodward J, Gelher G, Swift H. 1966. Nucleoprotein Chromosomn 48, 1-18. changes during the mitotic cycle in Paramecium aurelia. Exp. Cell 31. Zech L. 1966. Dry weight and DNA content in sisters Res. 23, 258-64. of Bursaria truncatella during the interdivision interval. Exp. Cell 29. Worthington DH, Salamone M, Nachtwey DS. 1975. Nu- Res. 44, 599-605. J. Protorool. 25(2) 1978 pp. 207-210 0 1978 by the Socitky of Protozoologists Ultrastructure of Endosymbiotic Chlorella in a Vorticella LINDA E. GRAHAM* and JAMES M. GRAHAM? “Department of Botany, University of Witconsin, Madison, Wisconsin 53706 and +Division of Biological Sciences, University of Micliigan, Ann Arbor, Michigan 48109 SYNOPSIS. Observations were made on the ultrastructure of a species of Vorticella containing endosymbiotic Chlorella The Vorticella, which were collected from nature, bore conspicuous tubercles of irregular size and distribution on the pel- licle. Each endosymbiotic algal cell was located in a separate vacuole and possessed a cell wall and cup-shaped chloroplast \\ith a large pyrenoid. The pyrenoid was bisected by thylakoids and surrounded by starch plates. No dividing or degenerat- ing algal cells were observed.
    [Show full text]
  • Redalyc.IDENTIFICATION and CHARACTERIZATION of Eimeria Spp. DURING EARLY NATURAL INFECTION in GOAT KIDS in BAJA CALIFORNIA SUR
    Tropical and Subtropical Agroecosystems E-ISSN: 1870-0462 [email protected] Universidad Autónoma de Yucatán México Cepeda-Palacios, Ramón; González, Angélica; López, Alberto; Ramírez-Orduña, Juan M.; Ramírez-Orduña, Rafael; Ascencio, Felipe; Dorchies, Philippe; Angulo, Carlos IDENTIFICATION AND CHARACTERIZATION OF Eimeria spp. DURING EARLY NATURAL INFECTION IN GOAT KIDS IN BAJA CALIFORNIA SUR, MEXICO Tropical and Subtropical Agroecosystems, vol. 18, núm. 3, 2015, pp. 279-284 Universidad Autónoma de Yucatán Mérida, Yucatán, México Available in: http://www.redalyc.org/articulo.oa?id=93944043004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Tropical and Subtropical Agroecosystems, 18 (2015): 279 - 284 IDENTIFICATION AND CHARACTERIZATION OF Eimeria spp. DURING EARLY NATURAL INFECTION IN GOAT KIDS IN BAJA CALIFORNIA SUR, MEXICO [IDENTIFICACIÓN Y CARACTERIZACIÓN DE Eimeria spp. DURANTE LA INFECCIÓN NATURAL TEMPRANA EN CABRITOS EN BAJA CALIFORNIA SUR, MÉXICO] Ramón Cepeda-Palacios1, Angélica González1, Alberto López1, Juan M. Ramírez-Orduña1, Rafael Ramírez-Orduña1, Felipe Ascencio3, Philippe Dorchies2, Carlos Angulo3* 1Laboratorio de Sanidad Animal, Universidad Autónoma de Baja California Sur, Carr. Sur km. 5.5., Col. Mezquitito, La Paz, B.C.S. 23080, Mexico ([email protected]) 2Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles, 31076, Toulouse Cedex 03, France.([email protected]) 3Grupo de Inmunología & Vacunología. Centro de Investigaciones Biológicas del Noroeste, SC. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. C.P.
    [Show full text]
  • Genome-Wide Expression Patterns of Rhoptry Kinases During the Eimeria Tenella Life-Cycle
    microorganisms Article Genome-Wide Expression Patterns of Rhoptry Kinases during the Eimeria tenella Life-Cycle Adeline Ribeiro E Silva † , Alix Sausset †, Françoise I. Bussière, Fabrice Laurent, Sonia Lacroix-Lamandé and Anne Silvestre * Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), Université de Tours, ISP, 37380 Nouzilly, France; [email protected] (A.R.E.S.); [email protected] (A.S.); [email protected] (F.I.B.); [email protected] (F.L.); [email protected] (S.L.-L.) * Correspondence: [email protected]; Tel.: +33-2-4742-7300 † These two first authors contributed equally to the work. Abstract: Kinome from apicomplexan parasites is composed of eukaryotic protein kinases and Api- complexa specific kinases, such as rhoptry kinases (ROPK). Ropk is a gene family that is known to play important roles in host–pathogen interaction in Toxoplasma gondii but is still poorly described in Eimeria tenella, the parasite responsible for avian coccidiosis worldwide. In the E. tenella genome, 28 ropk genes are predicted and could be classified as active (n = 7), inactive (incomplete catalytic triad, n = 12), and non-canonical kinases (active kinase with a modified catalytic triad, n = 9). We char- acterized the ropk gene expression patterns by real-time quantitative RT-PCR, normalized by parasite housekeeping genes, during the E. tenella life-cycle. Analyzed stages were: non-sporulated oocysts, sporulated oocysts, extracellular and intracellular sporozoites, immature and mature schizonts I, Citation: Ribeiro E Silva, A.; Sausset, first- and second-generation merozoites, and gametes. Transcription of all those predicted ropk was A.; Bussière, F.I.; Laurent, F.; Lacroix- Lamandé, S.; Silvestre, A.
    [Show full text]
  • Tetrahymena As a Unicellular Model Eukaryote: Genetic and Genomic Tools
    REVIEW GENETIC TOOLBOX Tetrahymena as a Unicellular Model Eukaryote: Genetic and Genomic Tools Marisa D. Ruehle,*,1 Eduardo Orias,† and Chad G. Pearson* *Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, and †Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106 ABSTRACT Tetrahymena thermophila is a ciliate model organism whose study has led to important discoveries and insights into both conserved and divergent biological processes. In this review, we describe the tools for the use of Tetrahymena as a model eukaryote, including an overview of its life cycle, orientation to its evolutionary roots, and methodological approaches to forward and reverse genetics. Recent genomic tools have expanded Tetrahymena’s utility as a genetic model system. With the unique advantages that Tetrahymena provide, we argue that it will continue to be a model organism of choice. KEYWORDS Tetrahymena thermophila; ciliates; model organism; genetics; amitosis; somatic polyploidy ENETIC model systems have a long-standing history as cost-effective laboratory handling, and its accessibility to both Gimportant tools to discover novel genes and processes in forward and reverse genetics. Despite its affectionate reference cell and developmental biology. The ciliate Tetrahymena ther- as “pond scum” (Blackburn 2010), the beauty of Tetrahymena mophila is a model system that combines the power of for- as a genetic model organism is displayed in many lights. ward and reverse genetics with a suite of useful biochemical Tetrahymena has a long and distinguished history in the and cell biological attributes. Moreover, Tetrahymena are discovery of broad biological paradigms (Figure 2), begin- evolutionarily divergent from the commonly studied organ- ning with the discovery of the first microtubule motor, dynein isms in the opisthokont lineage, permitting examination of (Gibbons and Rowe 1965).
    [Show full text]