Genome-Wide Expression Patterns of Rhoptry Kinases During the Eimeria Tenella Life-Cycle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed. -
Coccidiosis in Large and Small Ruminants
Coccidiosis in Large and Small Ruminants a, b Sarah Tammy Nicole Keeton, PhD, MS *, Christine B. Navarre, DVM, MS KEYWORDS Coccidia Coccidiosis Diarrhea Ruminants Cattle Sheep Goats Ionophores KEY POINTS Coccidiosis is an important parasitic disease of ruminant livestock caused by the proto- zoan parasite of the genus Eimeria. Calves between 6 and 12 months of age and lambs and kids between 1 and 6 months of age are most susceptible. Subclinical disease is characterized by poor growth. Clinical disease is most commonly characterized by diarrhea. Control of coccidiosis is based on sound management, the use of preventive medications, and treatment of clinical cases as necessary. INTRODUCTION: NATURE OF THE PROBLEM Coccidiosis is a parasitic disease of vertebrate animals, including domestic ruminants.1 It is economically significant, with losses from both clinical and subclinical disease. Coccidiosis is caused by the protozoan parasite of the genus Eimeria. Eimeria are host specific, meaning that an Eimeria species that infect goats does not infect sheep or cattle and vice versa. Certain species of Eimeria are nonpathogenic and do not cause disease. The pathogenic species and sites of infection are listed in Table 1. Mixed infections with multiple pathogenic and nonpathogenic species is common. LIFE CYCLE Proper treatment and control of coccidiosis requires an understanding of the complex life cycle and transmission of Eimeria spp (Fig. 1). The life cycle can be divided into Disclosure: The authors have nothing to disclose. a Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA; b LSU AgCenter, School of Animal Sciences, Louisiana State University, 111 Dalrymple Bldg, 110 LSU Union Square, Baton Rouge, LA 70803-0106, USA * Corresponding author. -
Development of a Canine Coccidiosis Model and the Anticoccidial Effects of a New Chemotherapeutic Agent
DEVELOPMENT OF A CANINE COCCIDIOSIS MODEL AND THE ANTICOCCIDIAL EFFECTS OF A NEW CHEMOTHERAPEUTIC AGENT Sheila Mitchell Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Biomedical and Veterinary Sciences David S. Lindsay Anne M. Zajac Nammalwar Sriranganathan Sharon G. Witonsky Byron L. Blagburn April 11, 2008 Blacksburg, Virginia Keywords: Apicomplexa, coccidia, canine, animal model, monozoic cyst, cell culture, Toxoplasma gondii, treatment DEVELOPMENT OF A CANINE COCCIDIOSIS MODEL AND THE ANTICOCCIDIAL EFFECTS OF A NEW CHEMOTHERAPEUTIC AGENT Sheila Mitchell ABSTRACT Coccidia are obligate intracellular parasites belonging to the phylum Apicomplexa. Many coccidia are of medical and veterinary importance such as Cystoisospora species and Toxoplasma gondii. The need to discover new anticoccidial therapies has increased due to development of resistance by the parasite or toxicity issues in the patient. The goals of this work were to develop a model for canine coccidiosis while proving that Cystoisospora canis is a true primary pathogen in dogs and to determine the efficacy of a new anticoccidial agent. A canine coccidiosis model would be useful in evaluating new anticoccidial treatments. Oral infections with 5 X 104 (n=2) and 1 X 105 (n=20) sporulated C. canis oocysts were attempted in 22 purpose bred beagle puppies. Clinical signs associated with disease were observed in all dogs. Bacterial and viral pathogens were ruled out by transmission electron microscopy (TEM) and bacterial growth assays. Development of C. canis in cell culture was also evaluated. The efficacy of ponazuril, a new anticoccidial drug, was examined in T. -
(Alveolata) As Inferred from Hsp90 and Actin Phylogenies1
J. Phycol. 40, 341–350 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03129.x EARLY EVOLUTIONARY HISTORY OF DINOFLAGELLATES AND APICOMPLEXANS (ALVEOLATA) AS INFERRED FROM HSP90 AND ACTIN PHYLOGENIES1 Brian S. Leander2 and Patrick J. Keeling Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada Three extremely diverse groups of unicellular The Alveolata is one of the most biologically diverse eukaryotes comprise the Alveolata: ciliates, dino- supergroups of eukaryotic microorganisms, consisting flagellates, and apicomplexans. The vast phenotypic of ciliates, dinoflagellates, apicomplexans, and several distances between the three groups along with the minor lineages. Although molecular phylogenies un- enigmatic distribution of plastids and the economic equivocally support the monophyly of alveolates, and medical importance of several representative members of the group share only a few derived species (e.g. Plasmodium, Toxoplasma, Perkinsus, and morphological features, such as distinctive patterns of Pfiesteria) have stimulated a great deal of specula- cortical vesicles (syn. alveoli or amphiesmal vesicles) tion on the early evolutionary history of alveolates. subtending the plasma membrane and presumptive A robust phylogenetic framework for alveolate pinocytotic structures, called ‘‘micropores’’ (Cavalier- diversity will provide the context necessary for Smith 1993, Siddall et al. 1997, Patterson -
Feline—Aerosol Transmission
Feline—Aerosol Transmission foreign animal disease zoonotic disease Anthrax (Bacillus anthracis) Aspergillus spp. Bordetella bronchiseptica Calicivirus (FCV) Canine Parvovirus 2 Chlamydophila felis Coccidioides immitis Cryptococcus neoformans Feline Distemper (Feline Panleukopenia, Feline Parvovirus) Feline Infectious Peritonitis (FIP) Feline Viral Rhinotracheitis (FRV) Glanders (Burkholderia mallei) Hendra Virus Histoplasma capsulatum Melioidosis (Burkholderia pseudomallei) Nipah Virus Plague (Yersinia pestis) Pneumocystis carinii Q Fever (Coxiella burnetii) Tuberculosis (Mycobacterium spp.) www.cfsph.iastate.edu Feline—Oral Transmission foreign animal disease zoonotic disease Anthrax (Bacillus anthracis) Babesia spp. Botulism (Clostridium botulinum) Campylobacter jejuni Canine Parvovirus 2 Coccidiosis (Isospora spp.) Cryptosporidium parvum Escherichia coli (E. coli) Feline Coronavirus (FCoV) Feline Distemper (Feline Panleukopenia, Feline Parvovirus) Feline Immunodefi ciency Virus (FIV) Feline Infectious Peritonitis (FIP) Feline Leukemia Virus (FeLV) Giardia spp. Glanders (Burkholderia mallei) Helicobacter pylori Hookworms (Ancylostoma spp.) Leptospirosis (Leptospira spp.) Listeria monocytogenes Melioidosis (Burkholderia pseudomallei) Pseudorabies Roundworms (Toxocara spp.) Salmonella spp. Strongyles (Strongyloides spp.) Tapeworms (Dipylidium caninum, Echinococcus spp.) Toxoplasma gondii Tuberculosis (Mycobacterium spp.) Tularemia (Francisella tularensis) Whipworms (Trichuris campanula) www.cfsph.iastate.edu -
Comparative Transcriptome Analysis of Second- and Third-Generation Merozoites of Eimeria Necatrix
Su et al. Parasites & Vectors (2017) 10:388 DOI 10.1186/s13071-017-2325-z RESEARCH Open Access Comparative transcriptome analysis of second- and third-generation merozoites of Eimeria necatrix Shijie Su1,2,3, Zhaofeng Hou1,2,3, Dandan Liu1,2,3, Chuanli Jia1,2,3, Lele Wang1,2,3, Jinjun Xu1,2,3 and Jianping Tao1,2,3* Abstract Background: Eimeria is a common genus of apicomplexan parasites that infect diverse vertebrates, most notably poultry, causing serious disease and economic losses. Eimeria species have complex life-cycles consisting of three developmental stages. However, the molecular basis of the Eimeria reproductive mode switch remains an enigma. Methods: Total RNA extracted from second- (MZ-2) and third-generation merozoites (MZ-3) of Eimeria necatrix was subjected to transcriptome analysis using RNA sequencing (RNA-seq) followed by qRT-PCR validation. Results: A total of 6977 and 6901 unigenes were obtained from MZ-2 and MZ-3, respectively. Approximately 2053 genes were differentially expressed genes (DEGs) between MZ-2 and MZ-3. Compared with MZ-2, 837 genes were upregulated and 1216 genes were downregulated in MZ-3. Approximately 95 genes in MZ-2 and 48 genes in MZ-3 were further identified to have stage-specific expression. Gene ontology category and KEGG analysis suggested that 216 upregulated genes in MZ-2 were annotated by 70 GO assignments, 242 upregulated genes were associated with 188 signal pathways, while 321 upregulated genes in MZ-3 were annotated by 56 GO assignments, 322 upregulated genes were associated with 168 signal pathways. The molecular functions of upregulated genes in MZ-2 were mainly enriched for protein degradation and amino acid metabolism. -
Zoonotic Diseases Associated with Free-Roaming Cats R
Zoonoses and Public Health REVIEW ARTICLE Zoonotic Diseases Associated with Free-Roaming Cats R. W. Gerhold1 and D. A. Jessup2 1 Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, The University of Tennessee, Knoxville, TN, USA 2 California Department of Fish and Game (retired), Santa Cruz, CA, USA Impacts • Free-roaming cats are an important source of zoonotic diseases including rabies, Toxoplasma gondii, cutaneous larval migrans, tularemia and plague. • Free-roaming cats account for the most cases of human rabies exposure among domestic animals and account for approximately 1/3 of rabies post- exposure prophylaxis treatments in humans in the United States. • Trap–neuter–release (TNR) programmes may lead to increased naı¨ve populations of cats that can serve as a source of zoonotic diseases. Keywords: Summary Cutaneous larval migrans; free-roaming cats; rabies; toxoplasmosis; zoonoses Free-roaming cat populations have been identified as a significant public health threat and are a source for several zoonotic diseases including rabies, Correspondence: toxoplasmosis, cutaneous larval migrans because of various nematode parasites, R. Gerhold. Center for Wildlife Health, plague, tularemia and murine typhus. Several of these diseases are reported to Department of Forestry, Wildlife, and cause mortality in humans and can cause other important health issues includ- Fisheries, The University of Tennessee, ing abortion, blindness, pruritic skin rashes and other various symptoms. A Knoxville, TN 37996-4563, USA. Tel.: 865 974 0465; Fax: 865-974-0465; E-mail: recent case of rabies in a young girl from California that likely was transmitted [email protected] by a free-roaming cat underscores that free-roaming cats can be a source of zoonotic diseases. -
Cyclospora Cayetanensis and Cyclosporiasis: an Update
microorganisms Review Cyclospora cayetanensis and Cyclosporiasis: An Update Sonia Almeria 1 , Hediye N. Cinar 1 and Jitender P. Dubey 2,* 1 Department of Health and Human Services, Food and Drug Administration, Center for Food Safety and Nutrition (CFSAN), Office of Applied Research and Safety Assessment (OARSA), Division of Virulence Assessment, Laurel, MD 20708, USA 2 Animal Parasitic Disease Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Building 1001, BARC-East, Beltsville, MD 20705-2350, USA * Correspondence: [email protected] Received: 19 July 2019; Accepted: 2 September 2019; Published: 4 September 2019 Abstract: Cyclospora cayetanensis is a coccidian parasite of humans, with a direct fecal–oral transmission cycle. It is globally distributed and an important cause of foodborne outbreaks of enteric disease in many developed countries, mostly associated with the consumption of contaminated fresh produce. Because oocysts are excreted unsporulated and need to sporulate in the environment, direct person-to-person transmission is unlikely. Infection by C. cayetanensis is remarkably seasonal worldwide, although it varies by geographical regions. Most susceptible populations are children, foreigners, and immunocompromised patients in endemic countries, while in industrialized countries, C. cayetanensis affects people of any age. The risk of infection in developed countries is associated with travel to endemic areas and the domestic consumption of contaminated food, mainly fresh produce imported from endemic regions. Water and soil contaminated with fecal matter may act as a vehicle of transmission for C. cayetanensis infection. The disease is self-limiting in most immunocompetent patients, but it may present as a severe, protracted or chronic diarrhea in some cases, and may colonize extra-intestinal organs in immunocompromised patients. -
Scope Specification of Coccidiosis in the Poultry on Researchers
International Journal of Avian & Wildlife Biology Review Article Open Access Scope specification of coccidiosis in the poultry on researchers Abstract Volume 5 Issue 2 - 2020 The poultry is important in Socio economy of the worlds. Poultry gave us many valuable Mushtak Mohamoud Cisman, Zainab Abdi products such meat and egg that important in nutritional value and health status. The poultry defined small scale keeping for many rural and livelihood in their household income.They Ahmed, Hoodo Ali Mohamoud, Abdulrazak prefer to keep in different condition such as free range extensive, backyard, semi intensive Tahir Awale, Hamze Suleiman H Nour and intensive in their chickens because the poultry provide the household income for the Faculty of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Hargeisa University, Hargeisa, Somaliland sale of live birds and eggs. According to consumption of poultry provide valuable source of protein in the diet. The farmer prefers for raising poultry in their rapid growth and Correspondence: Hamze Suleiman H Nour, Faculty of their daily product. As many diseases challenged in the production and productivity as Veterinary Medicine, College of Agriculture and Veterinary well the health status of poultry like other livestock disease. Also, there is gastrointestinal Medicine, Hargeisa University, Hargeisa, College of Veterinary parasites that endemic in many countries of the world. These parasitic diseases of poultry Science, Department Tropical Veterinary Medicine, Mekelle include coccidiosis. The coccidia Eimeria. This Eimeria live and replicate intestinal mucosa University, Mekelle Ethiopia. Ministry of Livestock and Fishier then caused damage. This Eimeria cause destructive absorption of the intestine leading Development, Hargeisa Somaliland, Tel +252634756262, dehydration and blood loss, and cause immune suppression and cause infection with other Email opportunistic bacterial infections. -
A Novel Rhoptry Protein As Candidate Vaccine Against Eimeria Tenella Infection
Article A Novel Rhoptry Protein as Candidate Vaccine against Eimeria tenella Infection Xingju Song 1,2, Xu Yang 1,2, Taotao Zhang 1,2, Jing Liu 1,2 and Qun Liu 1,2,* 1 National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; [email protected] (X.S.); [email protected] (X.Y.); [email protected] (T.Z.); [email protected] (J.L.) 2 Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China * Correspondence: [email protected] Received: 25 July 2020; Accepted: 10 August 2020; Published: 12 August 2020 Abstract: Eimeria tenella (E. tenella) is a highly pathogenic and prevalent species of Eimeria that infects chickens, and it causes a considerable disease burden worldwide. The secreted proteins and surface antigens of E. tenella at the sporozoite stage play an essential role in the host–parasite interaction, which involves attachment and invasion, and these interactions are considered vaccine candidates based on the strategy of cutting off the invasion pathway to interrupt infection. We selected two highly expressed surface antigens (SAGs; Et-SAG13 and Et-SAG) and two highly expressed secreted antigens (rhoptry kinases Eten5-A, Et-ROPK-Eten5-A and dense granule 12, Et-GRA12) at the sporozoite stage. Et-ROPK-Eten5-A and Et-GRA12 were two unexplored proteins. Et-ROPK-Eten5-A was an E. tenella-specific rhoptry (ROP) protein and distributed in the apical pole of sporozoites and merozoites. Et-GRA12 was scattered in granular form at the sporozoite stage. -
Multifunctional Polyketide Synthase Genes Identified by Genomic Survey of the Symbiotic Dinoflagellate, Symbiodinium Minutum
Beedessee et al. BMC Genomics (2015) 16:941 DOI 10.1186/s12864-015-2195-8 RESEARCH ARTICLE Open Access Multifunctional polyketide synthase genes identified by genomic survey of the symbiotic dinoflagellate, Symbiodinium minutum Girish Beedessee1*, Kanako Hisata1, Michael C. Roy2, Noriyuki Satoh1 and Eiichi Shoguchi1* Abstract Background: Dinoflagellates are unicellular marine and freshwater eukaryotes. They possess large nuclear genomes (1.5–245 gigabases) and produce structurally unique and biologically active polyketide secondary metabolites. Although polyketide biosynthesis is well studied in terrestrial and freshwater organisms, only recently have dinoflagellate polyketides been investigated. Transcriptomic analyses have characterized dinoflagellate polyketide synthase genes having single domains. The Genus Symbiodinium, with a comparatively small genome, is a group of major coral symbionts, and the S. minutum nuclear genome has been decoded. Results: The present survey investigated the assembled S. minutum genome and identified 25 candidate polyketide synthase (PKS) genes that encode proteins with mono- and multifunctional domains. Predicted proteins retain functionally important amino acids in the catalytic ketosynthase (KS) domain. Molecular phylogenetic analyses of KS domains form a clade in which S. minutum domains cluster within the protist Type I PKS clade with those of other dinoflagellates and other eukaryotes. Single-domain PKS genes are likely expanded in dinoflagellate lineage. Two PKS genes of bacterial origin are found in the S. minutum genome. Interestingly, the largest enzyme is likely expressed as a hybrid non-ribosomal peptide synthetase-polyketide synthase (NRPS-PKS) assembly of 10,601 amino acids, containing NRPS and PKS modules and a thioesterase (TE) domain. We also found intron-rich genes with the minimal set of catalytic domains needed to produce polyketides. -
Plasmodium Falciparum Full Life Cycle and Plasmodium Ovale Liver Stages in Humanized Mice
ARTICLE Received 12 Nov 2014 | Accepted 29 May 2015 | Published 24 Jul 2015 DOI: 10.1038/ncomms8690 OPEN Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice Vale´rie Soulard1,2,3, Henriette Bosson-Vanga1,2,3,4,*, Audrey Lorthiois1,2,3,*,w, Cle´mentine Roucher1,2,3, Jean- Franc¸ois Franetich1,2,3, Gigliola Zanghi1,2,3, Mallaury Bordessoulles1,2,3, Maurel Tefit1,2,3, Marc Thellier5, Serban Morosan6, Gilles Le Naour7,Fre´de´rique Capron7, Hiroshi Suemizu8, Georges Snounou1,2,3, Alicia Moreno-Sabater1,2,3,* & Dominique Mazier1,2,3,5,* Experimental studies of Plasmodium parasites that infect humans are restricted by their host specificity. Humanized mice offer a means to overcome this and further provide the opportunity to observe the parasites in vivo. Here we improve on previous protocols to achieve efficient double engraftment of TK-NOG mice by human primary hepatocytes and red blood cells. Thus, we obtain the complete hepatic development of P. falciparum, the transition to the erythrocytic stages, their subsequent multiplication, and the appearance of mature gametocytes over an extended period of observation. Furthermore, using sporozoites derived from two P. ovale-infected patients, we show that human hepatocytes engrafted in TK-NOG mice sustain maturation of the liver stages, and the presence of late-developing schizonts indicate the eventual activation of quiescent parasites. Thus, TK-NOG mice are highly suited for in vivo observations on the Plasmodium species of humans. 1 Sorbonne Universite´s, UPMC Univ Paris 06, CR7, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Bd de l’hoˆpital, F-75013 Paris, France.