Zoonotic Diseases Associated with Free-Roaming Cats R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Parinaud's Oculoglandular Syndrome
Tropical Medicine and Infectious Disease Case Report Parinaud’s Oculoglandular Syndrome: A Case in an Adult with Flea-Borne Typhus and a Review M. Kevin Dixon 1, Christopher L. Dayton 2 and Gregory M. Anstead 3,4,* 1 Baylor Scott & White Clinic, 800 Scott & White Drive, College Station, TX 77845, USA; [email protected] 2 Division of Critical Care, Department of Medicine, University of Texas Health, San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA; [email protected] 3 Medical Service, South Texas Veterans Health Care System, San Antonio, TX 78229, USA 4 Division of Infectious Diseases, Department of Medicine, University of Texas Health, San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA * Correspondence: [email protected]; Tel.: +1-210-567-4666; Fax: +1-210-567-4670 Received: 7 June 2020; Accepted: 24 July 2020; Published: 29 July 2020 Abstract: Parinaud’s oculoglandular syndrome (POGS) is defined as unilateral granulomatous conjunctivitis and facial lymphadenopathy. The aims of the current study are to describe a case of POGS with uveitis due to flea-borne typhus (FBT) and to present a diagnostic and therapeutic approach to POGS. The patient, a 38-year old man, presented with persistent unilateral eye pain, fever, rash, preauricular and submandibular lymphadenopathy, and laboratory findings of FBT: hyponatremia, elevated transaminase and lactate dehydrogenase levels, thrombocytopenia, and hypoalbuminemia. His condition rapidly improved after starting doxycycline. Soon after hospitalization, he was diagnosed with uveitis, which responded to topical prednisolone. To derive a diagnostic and empiric therapeutic approach to POGS, we reviewed the cases of POGS from its various causes since 1976 to discern epidemiologic clues and determine successful diagnostic techniques and therapies; we found multiple cases due to cat scratch disease (CSD; due to Bartonella henselae) (twelve), tularemia (ten), sporotrichosis (three), Rickettsia conorii (three), R. -
Coccidiosis in Large and Small Ruminants
Coccidiosis in Large and Small Ruminants a, b Sarah Tammy Nicole Keeton, PhD, MS *, Christine B. Navarre, DVM, MS KEYWORDS Coccidia Coccidiosis Diarrhea Ruminants Cattle Sheep Goats Ionophores KEY POINTS Coccidiosis is an important parasitic disease of ruminant livestock caused by the proto- zoan parasite of the genus Eimeria. Calves between 6 and 12 months of age and lambs and kids between 1 and 6 months of age are most susceptible. Subclinical disease is characterized by poor growth. Clinical disease is most commonly characterized by diarrhea. Control of coccidiosis is based on sound management, the use of preventive medications, and treatment of clinical cases as necessary. INTRODUCTION: NATURE OF THE PROBLEM Coccidiosis is a parasitic disease of vertebrate animals, including domestic ruminants.1 It is economically significant, with losses from both clinical and subclinical disease. Coccidiosis is caused by the protozoan parasite of the genus Eimeria. Eimeria are host specific, meaning that an Eimeria species that infect goats does not infect sheep or cattle and vice versa. Certain species of Eimeria are nonpathogenic and do not cause disease. The pathogenic species and sites of infection are listed in Table 1. Mixed infections with multiple pathogenic and nonpathogenic species is common. LIFE CYCLE Proper treatment and control of coccidiosis requires an understanding of the complex life cycle and transmission of Eimeria spp (Fig. 1). The life cycle can be divided into Disclosure: The authors have nothing to disclose. a Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA; b LSU AgCenter, School of Animal Sciences, Louisiana State University, 111 Dalrymple Bldg, 110 LSU Union Square, Baton Rouge, LA 70803-0106, USA * Corresponding author. -
(Scrub Typhus). Incubation Period 1 to 3
TYPHUS Causative Agents TYPHUS Rickettsia typhi (murine typhus) and Orientia tsutsugamushi (scrub typhus). Causative Agents IncubationRickettsia typhi Period (murine typhus) and Orientia tsutsugamushi (scrub typhus). 1 to 3 weeks Incubation Period Infectious1 to 3 weeks Period Zoonoses with no human-to-human transmission. Infectious Period TransmissionZoonoses with no human-to-human transmission. Scrub typhus: Bite of grass mites (larval trombiculid mites) MurineTransmission typhus: Bite of rat fleas (also cat and mice fleas) RodentsScrub typhus: are the Bite preferred of grass and mites normal (larval hosts. trombiculid mites) Murine typhus: Bite of rat fleas (also cat and mice fleas) EpidemiologyRodents are the preferred and normal hosts. Distributed throughout the Asia-Pacific rim and is a common cause of pyrexia of unknownEpidemiology origin throughout SE Asia. Occupational contact with rats (e.g. construDistributedction throughout workers inthe makeAsia-Pshiftacific container rim and isfacilities, a common shop cause owners, of pyrexia granary of workers,unknown andorigin garbage throughout collectors) SE orAsia. exposure Occupational to mite habitat contacts in lonwithg grassrats (e.g. hikersconstru andction so ldiers)workers are inrisk make factors.-shift container facilities, shop owners, granary workers, and garbage collectors) or exposure to mite habitats in long grass (e.g. Inhikers Singapore, and soldiers) a total are ofrisk 13 factors. laboratory confirmed cases of murine typhus were r eported in 2008. The majority of cases were foreign workers. In Singapore, a total of 13 laboratory confirmed cases of murine typhus were Clinicalreported Featuresin 2008. The majority of cases were foreign workers. Fever Clinical Headache Features (prominent) MyalgiaFever ConjunctiHeadache val(prominent) suffusion MaculopapularMyalgia rash Conjunctival suffusion Scrub Maculopapular typhus may alsorash have: relative bradycardia, eschar (80%), painful regional adenopathy, hepatosplenomegaly, meningoencephalitis and renal failure. -
Species List 02/11/2017
1 of 27 Kelvingrove Park - species list 02/11/2017 Group Taxon Common Name Earliest Latest Records acarine Hydracarina 2004 2004 1 amphibian Bufo bufo Common Toad 2014 2014 2 amphibian Lissotriton helveticus Palmate Newt 2006 2006 1 amphibian Lissotriton vulgaris Smooth Newt 1997 1997 1 amphibian Rana temporaria Common Frog 2009 2017 6 annelid Alboglossiphonia heteroclita 2003 2004 2 annelid Erpobdella testacea 2003 2003 1 annelid Glossiphonia complanata 2003 2003 1 annelid Helobdella stagnalis 2003 2014 3 annelid Lumbricus terrestris Common Earthworm 1996 2000 1 annelid Naididae 2004 2004 1 annelid Tubificidae Tubificid Worm Sp. 2003 2004 2 bird Acanthis flammea Common (Mealy) Redpoll 1991 1991 1 bird Accipiter nisus Sparrowhawk 1983 2008 7 bird Aegithalos caudatus Long-tailed Tit 1991 2017 16 bird Aix galericulata Mandarin Duck 1969 1969 1 bird Alcedo atthis Kingfisher 1988 2017 27 bird Anas penelope Wigeon 1994 1994 1 bird Anas platyrhynchos Mallard 1968 2014 246 bird Anser anser Greylag Goose 1973 1973 1 bird Apus apus Swift 2008 2014 4 bird Ardea cinerea Grey Heron 1991 2014 28 bird Aythya ferina Pochard 1939 1994 10 bird Aythya fuligula Tufted Duck 1992 2004 16 bird Bucephala clangula Goldeneye 1991 2006 59 bird Carduelis carduelis Goldfinch 1998 2014 12 bird Certhia familiaris Treecreeper 1995 2017 11 bird Chloris chloris Greenfinch 1988 2016 7 bird Chroicocephalus ridibundus Black-headed Gull 1961 2014 16 bird Cinclus cinclus Dipper 1991 2014 8 bird Columba livia Feral Pigeon 1958 2015 21 bird Columba oenas Stock Dove 2014 2015 2 bird Columba palumbus Woodpigeon 2014 2014 7 bird Corvus corone Carrion Crow 2014 2014 1 2 of 27 Kelvingrove Park - species list 02/11/2017 Group Taxon Common Name Earliest Latest Records bird Corvus corone agg. -
Reproduction and Behaviour of European Wildcats in Species Specific Enclosures
Symposium Biology and Conservation of the European Wildcat (Felis silvestris silvestris) Germany January 21st –23rd 2005 Abstracts Mathias Herrmann, Hof 30, 16247 Parlow, [email protected], Mobil: ++49 +171 9962910 Introduction More than four years after the last meeting of wildcat experts in Nienover, Germany, the NABU (Naturschutzbund Deutschland e.V.) invited for a three day symposium on the conservation of the European wildcat. Since the last meeting the knowledge on wildcat ecology increased a lot due to the field work of several research teams. The aim of the symposium was to bring these teams together to discuss especially questions which could not be solved by one single team due to limited number of observed individuals or special landscape features. The focus was set on the following questions: 1) Hybridization and risk of infection by domestic cat - a threat to wild living populations? 2) Reproductive success, mating behaviour, and life span - what strategy do wildcats have? 3) ffh - reports/ monitoring - which methods should be used? 4) Habitat utilization in different landscapes - species of forest or semi-open landscape? 5) Conservation of the wildcat - which measures are practicable? 6) Migrations - do wildcats have juvenile dispersal? 75 Experts from 9 European countries came to Fischbach within the transboundary Biosphere Reserve "Vosges du Nord - Pfälzerwald" to discuss distribution, ecology and behaviour of this rare species. The symposium was organized by one single person - Dr. Mathias Herrmann - and consisted of oral presentations, posters and different workshops. 2 Scientific program Friday Jan 21st 8:00 – 10:30 registration /optional: Morning excursion to the core area of the biosphere reserve 10:30 Genot, J-C., Stein, R., Simon, L. -
Development of a Canine Coccidiosis Model and the Anticoccidial Effects of a New Chemotherapeutic Agent
DEVELOPMENT OF A CANINE COCCIDIOSIS MODEL AND THE ANTICOCCIDIAL EFFECTS OF A NEW CHEMOTHERAPEUTIC AGENT Sheila Mitchell Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Biomedical and Veterinary Sciences David S. Lindsay Anne M. Zajac Nammalwar Sriranganathan Sharon G. Witonsky Byron L. Blagburn April 11, 2008 Blacksburg, Virginia Keywords: Apicomplexa, coccidia, canine, animal model, monozoic cyst, cell culture, Toxoplasma gondii, treatment DEVELOPMENT OF A CANINE COCCIDIOSIS MODEL AND THE ANTICOCCIDIAL EFFECTS OF A NEW CHEMOTHERAPEUTIC AGENT Sheila Mitchell ABSTRACT Coccidia are obligate intracellular parasites belonging to the phylum Apicomplexa. Many coccidia are of medical and veterinary importance such as Cystoisospora species and Toxoplasma gondii. The need to discover new anticoccidial therapies has increased due to development of resistance by the parasite or toxicity issues in the patient. The goals of this work were to develop a model for canine coccidiosis while proving that Cystoisospora canis is a true primary pathogen in dogs and to determine the efficacy of a new anticoccidial agent. A canine coccidiosis model would be useful in evaluating new anticoccidial treatments. Oral infections with 5 X 104 (n=2) and 1 X 105 (n=20) sporulated C. canis oocysts were attempted in 22 purpose bred beagle puppies. Clinical signs associated with disease were observed in all dogs. Bacterial and viral pathogens were ruled out by transmission electron microscopy (TEM) and bacterial growth assays. Development of C. canis in cell culture was also evaluated. The efficacy of ponazuril, a new anticoccidial drug, was examined in T. -
CD Alert Monthly Newsletter of National Centre for Disease Control, Directorate General of Health Services, Government of India
CD Alert Monthly Newsletter of National Centre for Disease Control, Directorate General of Health Services, Government of India May - July 2009 Vol. 13 : No. 1 SCRUB TYPHUS & OTHER RICKETTSIOSES it lacks lipopolysaccharide and peptidoglycan RICKETTSIAL DISEASES and does not have an outer slime layer. It is These are the diseases caused by rickettsiae endowed with a major surface protein (56kDa) which are small, gram negative bacilli adapted and some minor surface protein (110, 80, 46, to obligate intracellular parasitism, and 43, 39, 35, 25 and 25kDa). There are transmitted by arthropod vectors. These considerable differences in virulence and organisms are primarily parasites of arthropods antigen composition among individual strains such as lice, fleas, ticks and mites, in which of O.tsutsugamushi. O.tsutsugamushi has they are found in the alimentary canal. In many serotypes (Karp, Gillian, Kato and vertebrates, including humans, they infect the Kawazaki). vascular endothelium and reticuloendothelial GLOBAL SCENARIO cells. Commonly known rickettsial disease is Scrub Typhus. Geographic distribution of the disease occurs within an area of about 13 million km2 including- The family Rickettsiaeceae currently comprises Afghanistan and Pakistan to the west; Russia of three genera – Rickettsia, Orientia and to the north; Korea and Japan to the northeast; Ehrlichia which appear to have descended Indonesia, Papua New Guinea, and northern from a common ancestor. Former members Australia to the south; and some smaller of the family, Coxiella burnetii, which causes islands in the western Pacific. It was Q fever and Rochalimaea quintana causing first observed in Japan where it was found to trench fever have been excluded because the be transmitted by mites. -
Feline—Aerosol Transmission
Feline—Aerosol Transmission foreign animal disease zoonotic disease Anthrax (Bacillus anthracis) Aspergillus spp. Bordetella bronchiseptica Calicivirus (FCV) Canine Parvovirus 2 Chlamydophila felis Coccidioides immitis Cryptococcus neoformans Feline Distemper (Feline Panleukopenia, Feline Parvovirus) Feline Infectious Peritonitis (FIP) Feline Viral Rhinotracheitis (FRV) Glanders (Burkholderia mallei) Hendra Virus Histoplasma capsulatum Melioidosis (Burkholderia pseudomallei) Nipah Virus Plague (Yersinia pestis) Pneumocystis carinii Q Fever (Coxiella burnetii) Tuberculosis (Mycobacterium spp.) www.cfsph.iastate.edu Feline—Oral Transmission foreign animal disease zoonotic disease Anthrax (Bacillus anthracis) Babesia spp. Botulism (Clostridium botulinum) Campylobacter jejuni Canine Parvovirus 2 Coccidiosis (Isospora spp.) Cryptosporidium parvum Escherichia coli (E. coli) Feline Coronavirus (FCoV) Feline Distemper (Feline Panleukopenia, Feline Parvovirus) Feline Immunodefi ciency Virus (FIV) Feline Infectious Peritonitis (FIP) Feline Leukemia Virus (FeLV) Giardia spp. Glanders (Burkholderia mallei) Helicobacter pylori Hookworms (Ancylostoma spp.) Leptospirosis (Leptospira spp.) Listeria monocytogenes Melioidosis (Burkholderia pseudomallei) Pseudorabies Roundworms (Toxocara spp.) Salmonella spp. Strongyles (Strongyloides spp.) Tapeworms (Dipylidium caninum, Echinococcus spp.) Toxoplasma gondii Tuberculosis (Mycobacterium spp.) Tularemia (Francisella tularensis) Whipworms (Trichuris campanula) www.cfsph.iastate.edu -
Ehrlichiosis in Brazil
Review Article Rev. Bras. Parasitol. Vet., Jaboticabal, v. 20, n. 1, p. 1-12, jan.-mar. 2011 ISSN 0103-846X (impresso) / ISSN 1984-2961 (eletrônico) Ehrlichiosis in Brazil Erliquiose no Brasil Rafael Felipe da Costa Vieira1; Alexander Welker Biondo2,3; Ana Marcia Sá Guimarães4; Andrea Pires dos Santos4; Rodrigo Pires dos Santos5; Leonardo Hermes Dutra1; Pedro Paulo Vissotto de Paiva Diniz6; Helio Autran de Morais7; Joanne Belle Messick4; Marcelo Bahia Labruna8; Odilon Vidotto1* 1Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina – UEL 2Departamento de Medicina Veterinária, Universidade Federal do Paraná – UFPR 3Department of Veterinary Pathobiology, University of Illinois 4Department of Veterinary Comparative Pathobiology, Purdue University, Lafayette 5Seção de Doenças Infecciosas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul – UFRGS 6College of Veterinary Medicine, Western University of Health Sciences 7Department of Clinical Sciences, Oregon State University 8Departamento de Medicina Veterinária Preventiva e Saúde Animal, Universidade de São Paulo – USP Received June 21, 2010 Accepted November 3, 2010 Abstract Ehrlichiosis is a disease caused by rickettsial organisms belonging to the genus Ehrlichia. In Brazil, molecular and serological studies have evaluated the occurrence of Ehrlichia species in dogs, cats, wild animals and humans. Ehrlichia canis is the main species found in dogs in Brazil, although E. ewingii infection has been recently suspected in five dogs. Ehrlichia chaffeensis DNA has been detected and characterized in mash deer, whereas E. muris and E. ruminantium have not yet been identified in Brazil. Canine monocytic ehrlichiosis caused by E. canis appears to be highly endemic in several regions of Brazil, however prevalence data are not available for several regions. -
Scope Specification of Coccidiosis in the Poultry on Researchers
International Journal of Avian & Wildlife Biology Review Article Open Access Scope specification of coccidiosis in the poultry on researchers Abstract Volume 5 Issue 2 - 2020 The poultry is important in Socio economy of the worlds. Poultry gave us many valuable Mushtak Mohamoud Cisman, Zainab Abdi products such meat and egg that important in nutritional value and health status. The poultry defined small scale keeping for many rural and livelihood in their household income.They Ahmed, Hoodo Ali Mohamoud, Abdulrazak prefer to keep in different condition such as free range extensive, backyard, semi intensive Tahir Awale, Hamze Suleiman H Nour and intensive in their chickens because the poultry provide the household income for the Faculty of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Hargeisa University, Hargeisa, Somaliland sale of live birds and eggs. According to consumption of poultry provide valuable source of protein in the diet. The farmer prefers for raising poultry in their rapid growth and Correspondence: Hamze Suleiman H Nour, Faculty of their daily product. As many diseases challenged in the production and productivity as Veterinary Medicine, College of Agriculture and Veterinary well the health status of poultry like other livestock disease. Also, there is gastrointestinal Medicine, Hargeisa University, Hargeisa, College of Veterinary parasites that endemic in many countries of the world. These parasitic diseases of poultry Science, Department Tropical Veterinary Medicine, Mekelle include coccidiosis. The coccidia Eimeria. This Eimeria live and replicate intestinal mucosa University, Mekelle Ethiopia. Ministry of Livestock and Fishier then caused damage. This Eimeria cause destructive absorption of the intestine leading Development, Hargeisa Somaliland, Tel +252634756262, dehydration and blood loss, and cause immune suppression and cause infection with other Email opportunistic bacterial infections. -
Flea Control in Cats Where Did My Cat Get Fleas? the Most Common Flea
Flea Control in Cats Where did my cat get fleas? The most common flea found on cats and dogs is the cat flea (Ctenocephalides felis), although any species of fleas, including fleas from rabbits, squirrels or other wildlife, can be found on cats. The most important source of cat fleas is newly emerged adult fleas from flea pupae in your house or yard. Adult fleas live, feed and mate on our pets; the female flea lays eggs that fall off into the environment where they hatch into larvae. The larvae eat organic debris until they mature into pupae. The pupae are encased in a sticky cocoon, helping them to camouflage in the environment and making them difficult to eradicate. Adult fleas will not emerge from the pupae until they sense an animal nearby to feed on. Newly hatched adult fleas jump onto a host animal to complete their life cycle. Two days after eating a blood meal from the host, the female flea begins to lay eggs. Under ideal conditions, the flea can complete its entire life cycle in as little as two weeks; in adverse conditions, the fleas within the pupae remain dormant, and can wait as much as a year to hatch, when conditions are more desirable. Homes with carpets and central heating provide ideal conditions for the year-round development of fleas. The highest numbers of flea eggs, larvae and pupae will be found in areas of the house where pets spend the most time, such as their beds and furniture. Even though fleas may be in your house, you probably won't see them. -
Murine Typhus As a Common Cause of Fever of Intermediate Duration a 17-Year Study in the South of Spain
ORIGINAL INVESTIGATION Murine Typhus as a Common Cause of Fever of Intermediate Duration A 17-Year Study in the South of Spain M. Bernabeu-Wittel, MD; J. Pacho´n, PhD; A. Alarco´n, PhD; L. F. Lo´pez-Corte´s, PhD; P. Viciana, PhD; M. E. Jime´nez-Mejı´as, PhD; J. L. Villanueva, PhD; R. Torronteras, PhD; F. J. Caballero-Granado, PhD Background: Fever of intermediate duration (FID), char- cluded, and MT was the cause in 6.7% of 926 cases of acterized by a febrile syndrome lasting from 7 to 28 days, FID. Insect bites were reported in only 3.8% of the cases is a frequent condition in clinical practice, but its epide- of MT previous to the onset of illness. Most cases (62.5%) miological and etiologic features are not well described. occurred in the summer and fall. A high frequency of rash Murine typhus (MT) is a worldwide illness; neverthe- (62.5%) was noted. Arthromyalgia (77%), headache less, to our knowledge, no studies describing its epide- (71%), and respiratory (25%) and gastrointestinal (23%) miological and clinical characteristics have been per- symptoms were also frequent. Laboratory findings were formed in the south of Spain. Also, its significance as a unspecific. Organ complications were uncommon (8.6%), cause of FID is unknown. but they were severe in 4 cases. The mean duration of fever was 12.5 days. Cure was achieved in all cases, al- Objective: To determine the epidemiological features, though only 44 patients received specific treatment. clinical characteristics, and prognosis of MT and, pro- spectively, its incidence as a cause of FID.