Molecular Biology of the Cell 6Th Edition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Uncoupling Proteins: Functional Characteristics and Role in the Pathogenesis of Obesity and Type II Diabetes
Diabetologia 2001) 44: 946±965 Ó Springer-Verlag 2001 Uncoupling proteins: functional characteristics and role in the pathogenesis of obesity and Type II diabetes L. T.Dalgaard, O.Pedersen Steno Diabetes Center, Gentofte, Denmark Abstract obesity. The three uncoupling protein homologue genes UCP1, UCP2, and UCP3 have been investigat- Uncoupling proteins are mitochondrial carrier pro- ed for polymorphisms and mutations and their impact teins which are able to dissipate the proton gradient on Type II diabetes mellitus, obesity, and body weight of the inner mitochondrial membrane. This uncou- gain or BMI. The main conclusion is that variation in pling process reduces the amount of ATP generated the UCP1, UCP2 or UCP3 genes is not associated through an oxidation of fuels. The hypothesis that un- with major alterations of body weight gain. The con- coupling proteins UCPs) are candidate genes for hu- tribution of UCP genes towards polygenic obesity man obesity or Type II non-insulin-dependent) dia- and Type II diabetes is evaluated and discussed. [Dia- betes mellitus is based on the finding that a chemical betologia 2001) 44: 946±965] uncoupling of the mitochondrial membrane reduces body adiposity, and that lower metabolic rates predict Keywords Uncoupling proteins, Type II diabetes weight gain. It is straightforward to hypothesize that mellitus, obesity, genetics, body weight regulation, common polymorphisms of UCP1, UCP2 and UCP3 energy expenditure, metabolic rate, brown adipose genes lower metabolic rate by a more efficient energy tissue, white adipose tissue, reactive oxygen species, coupling in the mitochondria. Furthermore, geneti- polymorphism, mutation, transgenics, gene knock- cally engineered mice over expressing different UCP out. -
Effects of 2,4-Dinitrophenol and Other Metabolic Inhibitors on The
(CANCER RESEARCH 40, 3669-3673. October 1980] 0008-5472/80-0040-OOOOS02.00 Effects of 2,4-Dinitrophenol and Other Metabolic Inhibitors on the Bidirectional Carrier Fluxes, Net Transport, and Intracellular Binding of Methotrexate in Ehrlich Ascites Tumor Cells1 David W. Fry, J. Courtland White, and I. David Goldman2 Department ol Medicine, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298 ABSTRACT edly influenced by (a) the concentration of the inhibitor, (b) whether measurements are taken during influx, net transport, 2,4-Dinitrophenol (DNP), an uncoupler of oxidative phos- or the steady state, (c) whether total intracellular or freely phorylation, has been frequently used to evaluate the effects exchangeable MTX is determined, and (d) whether or not of energy depletion on methotrexate (MTX) transport. The glucose or other energy-producing substrates are present. results from these studies, however, have shown a multiplicity of effects that suggest a more complicated interaction with the MTX transport system than adenosine 5'-triphosphate deple INTRODUCTION tion alone. Accordingly, studies were undertaken to compare Membrane transport of MTX3 is a complex process. While the effects of DNP with a variety of other metabolic inhibitors this system conforms in many respects to other carrier-me on influx, efflux, net uptake, and intracellular binding of MTX in diated processes with the demonstration of temperature and Ehrlich ascites tumor cells. Low concentrations of DNP (0.1 sulfhydryl dependence (10), heteroexchange diffusion (9, 25), mw) inhibited efflux and increased the intracellular steady-state and inhibition by structural analogs (8, 10), some properties of concentration of MTX, both of which were totally reversed by the transport system are poorly understood. -
Cellular Biology 1
Cellular biology 1 INTRODUCTION • Specialized intracellular membrane-bound organelles (Fig. 1.2), such as mitochondria, Golgi apparatus, endoplasmic reticulum (ER). This chapter is an overview of eukaryotic cells, addressing • Large size (relative to prokaryotic cells). their intracellular organelles and structural components. A basic appreciation of cellular structure and function is important for an understanding of the following chapters’ information concerning metabolism and nutrition. For fur- ther detailed information in this subject area, please refer to EUKARYOTIC ORGANELLES a reference textbook. Nucleus The eukaryotic cell The nucleus is surrounded by a double membrane (nuclear Humans are multicellular eukaryotic organisms. All eukary- envelope). The envelope has multiple pores to allow tran- otic organisms are composed of eukaryotic cells. Eukaryotic sit of material between the nucleus and the cytoplasm. The cells (Fig. 1.1) are defined by the following features: nucleus contains the cell’s genetic material, DNA, organized • A membrane-limited nucleus (the key feature into linear structures known as chromosomes. As well as differentiating eukaryotic cells from prokaryotic cells) chromosomes, irregular zones of densely staining material that contains the cell’s genetic material. are also present. These are the nucleoli, which are responsible Inner nuclear Nucleus membrane Nucleolus Inner Outer Outer mitochondrial nuclear mitochondrial membrane membrane membrane Ribosome Intermembrane space Chromatin Mitochondrial Rough matrix Mitochondrial Nuclear endoplasmic ribosome pore reticulum Crista Mitochondrial mRNA Smooth Vesicle endoplasmic Mitochondrion Circular reticulum mitochondrial Proteins of the DNA Vesicle budding electron transport off rough ER Vesicles fusing system with trans face of Cytoplasm Golgi apparatus ‘Cis’ face + discharging protein/lipid Golgi apparatus ‘Trans’ face Lysosome Vesicles leaving Golgi with modified protein/lipid cargo Cell membrane Fig. -
Metabolic Plasticity Is an Essential Requirement of Acquired Tyrosine Kinase Inhibitor Resistance in Chronic Myeloid Leukemia
cancers Article Metabolic Plasticity Is an Essential Requirement of Acquired Tyrosine Kinase Inhibitor Resistance in Chronic Myeloid Leukemia Miriam G. Contreras Mostazo 1,2,3, Nina Kurrle 3,4,5, Marta Casado 6,7 , Dominik Fuhrmann 8, Islam Alshamleh 4,9, Björn Häupl 3,4,5, Paloma Martín-Sanz 7,10, Bernhard Brüne 5,8,11 , 3,4,5 4,9 3,4,5, 1,2,7,12, , Hubert Serve , Harald Schwalbe , Frank Schnütgen y , Silvia Marin * y 1,2,7,12, , and Marta Cascante * y 1 Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; [email protected] 2 Institute of Biomedicine of University of Barcelona, 08028 Barcelona, Spain 3 Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe-University, 60590 Frankfurt am Main, Germany; [email protected] (N.K.); [email protected] (B.H.); [email protected] (H.S.); [email protected] (F.S.) 4 German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; [email protected] (I.A.); [email protected] (H.S.) 5 Frankfurt Cancer Institute (FCI), Goethe University, 60590 Frankfurt am Main, Germany; [email protected] 6 Biomedicine Institute of Valencia, IBV-CSIC, 46010 Valencia, Spain; [email protected] 7 CIBER of Hepatic and Digestive Diseases (CIBEREHD), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain; [email protected] 8 Institute of Biochemistry I, Faculty of -
Passive and Active Transport
Passive and Active Transport 1. Thermodynamics of transport 2. Passive-mediated transport 3. Active transport neuron, membrane potential, ion transport Membranes • Provide barrier function – Extracellular – Organelles • Barrier can be overcome by „transport proteins“ – To mediate transmembrane movements of ions, Na+, K+ – Nutrients, glucose, amino acids etc. – Water (aquaporins) 1) Thermodynamics of Transport • Aout <-> Ain (ressembles a chemical equilibration) o‘ • GA - G A = RT ln [A] • ∆GA = GA(in) - GA(out) = RT ln ([A]in/[A]out) • GA: chemical potential of A o‘ • G A: chemical potential of standard state of A • If membrane has a potential, i.e., plasma membrane: -100mV (inside negative) then GA is termed the electrochemical potential of A Two types of transport across a membrane: o Nonmediated transport occurs by passive diffusion, i.e., O2, CO2 driven by chemical potential gradient, i.e. cannot occur against a concentration gradient o Mediated transport occurs by dedicated transport proteins 1. Passive-mediated transport/facilitated diffusion: [high] -> [low] 2. Active transport: [low] -> [high] May require energy in form of ATP or in form of a membrane potential 2) Passive-mediated transport Substances that are too large or too polar to diffuse across the bilayer must be transported by proteins: carriers, permeases, channels and transporters A) Ionophores B) Porins C) Ion Channels D) Aquaporins E) Transport Proteins A) Ionophores Organic molecules of divers types, often of bacterial origin => Increase the permeability of a target membrane for ions, frequently antibiotic, result in collapse of target membrane potential by ion equilibration 1. Carrier Ionophore, make ion soluble in membrane, i.e. valinomycin, 104 K+/sec 2. -
Interdependence Between Chloroplasts and Mitochondria in the Light and the Dark
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1366 (1998) 235^255 Review Interdependence between chloroplasts and mitochondria in the light and the dark Marcel H.N. Hoefnagel a, Owen K. Atkin b, Joseph T. Wiskich a;* a Department of Botany, University of Adelaide, Adelaide, SA 5005, Australia b Research School for Biological Sciences, Australian National University, Canberra, ACT 0200, Australia Received 21 April 1998; revised 3 June 1998; accepted 10 June 1998 ß 1998 Elsevier Science B.V. All rights reserved. Keywords: Chloroplast; Chlororespiration; Excess reductant; Metabolite exchange; Mitochondrion; Photosynthesis; Respiration Contents 1. Introduction .......................................................... 236 2. Interactions between organelles depends on metabolite exchange . .................. 236 2.1. ATP exchange ..................................................... 236 2.2. Transport of reducing equivalents across membranes . ....................... 237 2.3. Exchange of carbon compounds ....................................... 238 3. Respiration in the light . ................................................. 239 3.1. Does respiration continue in the light? . .................................. 239 3.2. Substrates for the mitochondria in the light . ............................ 240 3.3. ATP supply in the light: chloroplasts versus mitochondria . .................. 240 3.4. Adenylate control of respiration in the light . -
Evidence for a Respiratory Chain in the Chloroplast
Proc. NatL Acad. Sci. USA Vol. 79, pp. 4352-4356, July 1982 Cell Biology Evidence for a respiratory chain in the chloroplast (photosynthesis/respiration/starch degradation/evolution) PIERRE BENNOUN Institut de Biologie Physico-Chimique, 13, rue Pierre et Marie Curie, 75005, Paris, France Communicated by Pierre Joliot, April 12, 1982 ABSTRACT Evidence is given for the existence ofan electron in 20 ml of 20 mM N-tris(hydroxymethyl)methylglycine(Tri- transport pathway to oxygen in the thylakoid membranes ofchlo- cine)/KOH, pH 7.8/10 mM NaCl/10 mM MgCl2/1 mM K2- roplasts (chlororespiration). Plastoquinone is shown to be a redox HPO4/0.1 M sucrose/5% Ficoll. The cell suspension was carrier common to both photosynthetic and chlororespiratory passed through a Yeda press operated at 90 kg/cm2, diluted pathways. It is shown that, in dark-adapted chloroplasts, an elec- with 200 ml of Ficoll-lacking buffer, and centrifuged, and the trochemical gradient is built up across the thylakoid membrane pellet was suspended in the same buffer. by transfer of electrons through the chlororespiratory chain as Chlorophyll fluorescence kinetics and luminescence mea- well as by reverse functioning of the chloroplast ATPases. It is surements were performed as described (9). proposed that these mechanisms ensure recycling ofthe ATP and NAD(P)H generated by the glycolytic pathway converting starch into triose phosphates. Chlororespiration is thus an 02-uptake RESULTS process distinct from photorespiration and the Mehler reaction. The plastoquinone (PQ) pool ofchloroplast is a redox carrier of The evolutionary significance of chlororespiration is discussed. the photosynthetic electron transport chain. -
The Electrochemical Gradient of Protons and Its Relationship to Active Transport in Escherichia Coli Membrane Vesicles
Proc. Natl. Acad. Sci. USA Vol. 73, No. 6, pp. 1892-1896, June 1976 Biochemistry The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles (flow dialysis/membrane potential/energy transduction/lipophilic cations/weak acids) SOFIA RAMOS, SHIMON SCHULDINER*, AND H. RONALD KABACK The Roche Institute of Molecular Biology, Nutley, New Jersey 07110 Communicated by B. L. Horecker, March 17, 1976 ABSTRACT Membrane vesicles isolated from E. coli gen- presence of valinomycin), a respiration-dependent membrane erate a trans-membrane proton gradient of 2 pH units under potential (AI, interior negative) of approximately -75 mV in appropriate conditions when assayed by flow dialysis. Using E. coli membrane vesicles has been documented (6, 13, 14). the distribution of weak acids to measure the proton gradient (ApH) and the distribution of the lipophilic cation triphenyl- Moreover it has been shown that the potential causes the ap- methylphosphonium to measure the electrical potential across pearance of high affinity binding sites for dansyl- and azido- the membrane (AI), the vesicles are shown to generate an phenylgalactosides on the outer surface of the membrane (4, electrochemical proton gradient (AiH+) of approximately -180 15) and that the potential is partially dissipated as a result of mV at pH 5.5 in the presence of ascorbate and phenazine lactose accumulation (6). Although these findings provide ev- methosulfate, the major component of which is a ApH of about idence for the chemiosmotic hypothesis, it has also been dem- -110 mV. As external pH is increased, ApH decreases, reaching o at pH 7.5 and above, while AI remains at about -75 mV and onstrated (6, 16) that vesicles are able to accumulate lactose and internal pH remains at pH 7.5. -
Calvin Cycle E
Photosynthesis Photosynthesis is the process by which plants use sunlight (light energy) to produce glucose from carbon dioxide and water, with oxygen as a byproduct. This process occurs LIGHT STROMA in the chloroplasts in a plant cell and has DEPENDENT Cytochrome b f Reduced REACTIONS two stages – the light-dependent reactions 6 NADP NADP + 1. Light activation of and the light-independent reactions. H ATP synthase photocentres It all starts with the sunlight hitting e- PSII 2. Photolysis of water - + the fi rst photocentre (PSII). (P68 e PSI H e- (P 3. Electron transport e- ATP e- + 4. Pumping H into the + O H thylakoid space ADP + Pi H O + + H 5. Synthesis of ATP H 6. Reduction of NADP Photolysis THYLAKOID SPACE CO OXYGEN Thylakoid membrane GLUCOSE REDUCED NADP & ATP NADP REDUCED Glucose is used in respiration for energy. Glucose is converted to: 1. Cellulose for cell walls 2. Sucrose for transport 3. Starch for storage ADP + Pi & NADP + Pi ADP CHLOROPLAST CALVIN C LIGHT CO YCL E ( Six INDEPENDENT RuBisCO tu rn enzyme BON FIXAT s CAR ION to REACTIONS p ro d u c Calvin cycle e RuBP GP g l 1. Carbon fi xation u Ribulose bisphosphate Glycerate phosphate c o s e ) 2. Reduction P B 3. Regeneration of RuBP u R ATP F ADP + Pi O N ADP + Pi O R I ATP E T D A R Reduced NADP U E C N T E I O G NADP N E R GALP Glyceraldehyde phosphate Hexose Glucose LAMELLA THYLAKOIDS STROMA KEY TO SYMBOLS INNER CHLOROPLAST MEMBRANE Carbon atom: Electron transport: e- OUTER CHLOROPLAST MEMBRANE H+ movement: GLOSSARY ATP synthase: An enzyme that catalyses the Ferrodoxin: An electron carrier sitting just Light-dependent reactions: The fi rst stage Photosystem I (PSI): The second photosystem Plastoquinone: A molecule that is reduced Regeneration of RuBP: The third stage of Stroma: The aqueous solution that fi lls the synthesis of ATP from ADP and inorganic outside the thylakoid in the chloroplast of photosynthesis. -
Bisphosphate Carboxylase/Oxygenase Activation in Tomato (Lycopersicon Esculentum Mil!.)
Plant Physiol. (1995) 107: 585-591 The Effects of Chilling in the Light on Ribulose-1,5- Bisphosphate Carboxylase/Oxygenase Activation in Tomato (Lycopersicon esculentum Mil!.) George T. Byrd’, Donald R. Ort, and William 1. Ogren* Photosynthesis Research Unit, Agricultura1 Research Service, United States Department of Agriculture (G.T.B., D.R.O., W.L.O.), and Department of Plant Biology, University of lllinois at Urbana-Champaign (D.R.O., W.L.O.), Urbana, lllinois 61801 reduced leve1 of RuBP. The bisphosphatases are activated Photosynthesis rate, ribulose-l,5-bisphosphate carboxylase/oxy- by the Fd/thioredoxin system (Buchanan, 1980), which genase (Rubisco) activation state, and ribulose bisphosphate con- may be affected by the light-chilling regime. Thus, in to- centration were reduced after exposing tomato (Lycopersicon es- mato, chilling in the light appears to limit the capacity of culentum Mill.) plants to light at 4°C for 6 h. Analysis of lysed and leaves to regenerate RuBP, the substrate in photosynthetic reconstituted chloroplasts showed that activity of the thylakoid CO, fixation catalyzed by the enzyme Rubisco (EC membrane was inhibited and that Rubisco, Rubisco activase, and 4.1.1.39). other soluble factors were not affected. Leaf photosynthesis rates Rubisco activity also has been reported to be directly and the ability of chilled thylakoid membranes to promote Rubisco impaired during chilling in the light in short-term (Sas- activation recovered after 24 h at 25°C. Thylakoid membranes from control tomato plants were as effective as spinach thylakoids in senrath et al., 1990) and long-term (Briiggemann et al., activating spinach Rubisco in the presence of spinach Rubisco ac- 1992) experiments. -
Photosynthesis and Respiration
18 Photosynthesis and Respiration ATP is the energy currency of the cell Goal To understand how energy from sunlight is harnessed to Cells need to carry out many reactions that are energetically unfavorable. generate chemical energy by photosynthesis and You have seen some examples of these non-spontaneous reactions in respiration. earlier chapters: the synthesis of nucleic acids and proteins from their corresponding nucleotide and amino acid building blocks and the transport Objectives of certain ions against concentration gradients across a membrane. In many cases, unfavorable reactions like these are coupled to the hydrolysis of ATP After this chapter, you should be able to: in order to make them energetically favorable under cellular conditions; we • Explain the concepts of oxidation and have learned that for these reactions the free energy released in breaking reduction. the phosphodiester bonds in ATP exceeds the energy consumed by the • Explain how light energy generates an uphill reaction such that the sum of the free energy of the two reactions is electrochemical gradient. negative (ΔG < 0). To perform these reactions, cells must then have a way • Explain how an electrochemical of generating ATP efficiently so that a sufficient supply is always available. gradient generates chemical energy. The amount of ATP used by a mammalian cell has been estimated to be on the order of 109 molecules per second. In other words, ATP is the principal • Explain how chemical energy is harnessed to fix carbon dioxide. energy currency of the cell. • Explain how glucose is used to generate How does the cell produce enough ATP to sustain life and what is the source ATP anaerobically. -
3. Transport Can Be Active Or Passive. •Passive Transport Is Movement
3. Transport can be active or passive. F 6-3 Taiz. Microelectrodes are used to measure membrane •Passive transport is movement down an electrochemical potentials across cell membrane gradient. •Active transport is movement against an electrochemical gradient. What is an electrochemical gradient? How is it formed? Passive and active transport of ions result in electric potential difference across membranes. •Movement of an uncharged mol Is dependent on conc. gradient alone. •Movement of an ion depends on the electric gradient and the conc. gradient. •Diffusion potential- Pump potential- How do you know if an ion is moving uphill or downhill? Nernst Eq What is the driving force for uphill movement? A) ATP ; b) H+ gradient 6-5. Pump potential and diffusion potential. How can we determine whether an ion moves in or out by active or passive transport? Nernst equation states that at equilibrium the difference in concentration of an ion between two compartments is balanced by the voltage difference. Thus it can predict the ion conc at equilibrium at a certain ΔE. Very useful to predict active or passive transport of an ion. Fig. 6-4, Taiz. Passive and active transporters. Tab 6-1, Taiz . Using the Nernst equation to predict ion conc. at equilibrium when the Cell electrical potential, Δψ = -110 mV ---------------------------------------------------------------------------------------- Ext Conc. Ion Internal concentration (mM) Summary: In general observed Nernst (Predicted) ---------------------------------------------------------------------------------------- Cation uptake: passive 1 mM K+ 75 mM 74 Cation efflux: active 1 mM Na+ 8 mM 74 1 mM Ca2+ 2 mM 5,000 Anion uptake: active 0.2 mM Mg2+ 3 1,340 Anion release: passive - 2 mM NO3 5 mM 0.02 1 Cl- 10 mM 0.01 - 1H2PO4 21 0.01 ---------------------------------------------------------------------------------------- 1 6-10.